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Abstract. Weak matching rules for a quasicrystalline tiling are local rules that
ensure that fluctuations in "perp-space" are uniformly bounded. It is shown
here that weak matching rules exist for JV-fold symmetric tilings, where N is any
integer not divisible by four. The result suggests that, contrary to previous
indications, quasicrystalline ground states are not confined to those symme-
tries for which the incommensurate ratios of wavevectors are quadratic
irrationals. An explicit method of constructing weak matching rules for ΛΓ-fold
symmetric tilings in two dimensions is presented. It is shown that the
generalization of the construction yields weak matching rules in the case of
icosahedral symmetry as well.

1. Introduction

The discovery of quasicrystalline phases of certain alloys raises a fundamental
question in the theory of solid structure. Icosahedral and decagonal quasicrystals
have been observed, as have octagonal and dodecagonal samples with a lesser
degree of translational order, but no other noncrystallographic symmetries have
been observed to date. Is there some a priori principle that prohibits them?

A useful way to approach the question is to represent quasicrystals as space-
filling arrangements of rigid tiles of two or more types, where it is assumed that a
good approximation to the actual atomic structure is obtained by decorating each
tile of a given type with the same atomic motif. It is well known that
quasicrystalline tilings of arbitrary symmetry can be constructed using a variety of
algorithms [1]. The mere existence of a tiling does not imply, however, that it is a
plausible template for a real atomic structure. It may be that certain tilings or even
entire symmetry classes can be eliminated from consideration on physical grounds.

One criterion for physical relevance is locality. In real solids, the interaction
between atoms decays rapidly with their separation, so a physically plausible
model Hamiltonian should not contain terms depending on the relative positions
of widely separated units. In a tiling model, where the energetics are encoded in
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rules determining which configurations of tiles are allowed to occur, the rules must
be local in the sense that the configurations specified are of bounded size. One is
immediately led to ask whether tilings of a given symmetry exist with the property
that their long-range translational order can be ensured by local rules. A negative
answer would imply that ordered quasicrystals of that symmetry could not exist in
the absence of long-range interactions. If, on the other hand, there do exist local
rules which single out a class of ordered tilings, then one might expect to observe
real quasicrystals of that symmetry.

Tilings that support "perfect matching rules," which ensure that any infinite
tiling is a perfectly ordered quasicrystal of a particular local isomorphism class, are
known to exist for the cases of 5- and 10-fold symmetry [2, 3], 8- and 12-fold
symmetry [4], and icosahedral symmetry [5, 6]. The fact that the incommensurate
ratios associated with these symmetries are all quadratic has been emphasized by
Levitov in ref. [7], where the question of which 2D tilings support local rules is
explicitly addressed. In the course of demonstrating why quadratic irrationals are
special for 2D tilings, Levitov found it useful to introduce two less stringent types
of matching rules, which he called "strong local rules" and "weak local rules."
Strong local rules ensure perfect quasicrystalline order, but the tilings consistent
with the rules are not all locally isomorphic. Weak local rules allow bounded
deviations from perfect quasicrystalline order (in a sense that will be made precise
in the next section). Levitov showed that undecorated iV-fold symmetric rhombic
tilings obtained by the canonical projection technique (see below) do not support
strong local rules for any N other than 5, 8,10, or 12 (or the crystallographic cases
2, 3, 4, and 6). He also showed that all 5-fold tilings obtained by canonical
projection do support weak local rules. (For a review of the theory of matching
rules for 2D quasicrystals, see ref. [8].)

In this paper, it is shown that there exist 2D tilings with N-ϊold symmetry that
support weak local rules if N is any odd number or twice an odd number. The
result does not contradict those of Levitov, but still comes as somewhat of a
surprise. One might have expected that the proven lack of strong matching rules
could be shown to imply the impossibility of having weak matching rules, but here
we have explicit counterexamples.

The strategy followed is to define a certain constraint on the configurations of
tiles in a rhombic tiling and then show that the constraint (called the "alternation
condition") has three properties when applied to JV-fold symmetric tilings with
prime N:

1. it is consistent with some space-filling tilings of the plane,
2. it ensures that fluctuations away from perfect quasicrystalline order are
uniformly bounded, and
3. it can be implemented using local rules for how tiles join.

The extensions to factorable N and to icosahedral symmetry follow easily from the
analysis of prime N.

The main purpose of this paper is to present rigorous proofs of the three
properties of the alternation condition and thereby elucidate certain features of
tilings with iV-fold symmetry. A significant byproduct of the analysis is that it
yields new insights into two classes of tilings that have already appeared in the
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literature: the "generalized Penrose tilings," here called "5-fold canonical projec-
tions," composed of rhombi decorated as in [9] and the icosahedral tilings
composed of rhombohedra decorated as in [1, p. 22].

Unfortunately, the constructions involved in the proofs are difficult to describe
without the aid of several new terms and the introduction of new notation. These
definitions of terms and notations have been collected in a list that constitutes
Sect. 2. Section 3 contains several lemmas and corollaries that are used in Sect. 4,
where the main results are proven. In Sects. 3 and 4, attention is restricted to prime
values of JV. In Sect. 5, the construction of a decoration scheme that enforces the
weak matching rules for general prime JV is presented. In Sect. 6 the special case of
7-fold symmetry is examined in more detail. In Sect. 7 non-prime values of JV are
discussed, in Sect. 8 icosahedral tilings, and Sect. 9 contains some concluding
remarks on the implications of the work.

The results presented in this paper supersede the discussion of weak matching
rules in ref. [8].

2. Definitions and Notation

For the analysis presented in this paper, it is natural to divide the cases of JV-fold
symmetry into five categories: (1) JV is prime; (2) JV is odd but factorable; (3) JV is
twice a prime; (4) JV/2 is odd but factorable; and (5) JV is divisible by four. In the
constructions that will be considered for producing tilings of these symmetries,
tilings with even values of JV appear only as special cases of tilings with JV/2-fold
symmetry. Furthermore, most of the analysis is not applicable to tilings in
category (5). It is therefore adequate to make definitions that are only relevant for
tilings in categories (1) and (2), even where natural generalizations exist. In the
following definitions and throughout this paper JV represents any integer greater
than two, Q represents any odd integer greater than two, and P represents any
prime number greater than two.

Many of the following definitions are based on concepts that have already
appeared in the literature and are repeated here only to establish notation. Further
discussion of duals of JV-grids and of the projection technique for generating
quasicrystal tilings can be found in ref. [1] and the papers and references contained
therein. The method of lifting a tiling into a higher dimensional cubic lattice is
discussed by Elser [10] and Henley [11]. The concept of weak matching rules was
first introduced by Levitov [7].

2.1. Duals of N-Grids

A grid is a set of non-intersecting infinite grid lines for which every point on the
plane lies either on a grid line or between two grid lines. A grid line need not be
straight. Associated with every grid is a vector called a star vector. The grid lines
are indexed by consecutive integers ranging from — oo to + oo.

An N-grid is a set of JV grids in which each grid line in each grid intersects every
grid line in every other grid in at most one point, which is not a point of tangency.
The star vectors of the grids composing an JV-grid are denoted ew, with n = 0,...,
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N — 1. No two star vectors can be exactly parallel or antiparallel. The indices of the
grid lines in the grid with star vector eπ are denoted kn.

The vector obtained by rotating a star vector en through 90° in the
counterclockwise direction will be denoted e*.

A symmetric Q-grid is a Q-grid with star vectors of the form eπ = (cos(2πn/Q),
sin(2πn/Q)). Note that the Q-grid itself does not necessarily have Q-fold symmetry;
only the star vectors do.

A Q-fold star is simply the set of star vectors of a symmetric Q-grid.
A periodic Q-grid is a Q-grid in which each grid is composed of equally spaced

straight lines normal to its star vector, with the spacing being the same for all grids.
In this paper, the periodic Q-grids discussed will always be symmetric Q-grids as
well, so that the equations of the grid lines can be written

(1)

where xM k is a point on the kth grid line perpendicular to the star vector eM, T is the
spacing between grid lines, and γn is a real number called the phase of the grid.
Note that only the fractional part of γn is significant.

The dual of an N-grid is a tiling composed of parallelograms with vertices, v, at
positions w(1)(ι;) determined as follows. (The reason for using "w(1)(ι;)" to represent
the position of a vertex will become clear in the next subsection.) The points in the
plane that do not lie on any grid line are divided by the JV-grid into connected open
regions. For each n, there exists some kn for which the points in a given open region
lie between grid lines kn and kn+1. The vertex dual to the open region lies at the

N-ί

point w ( 1 )= £ knen. Note that vertices dual to open regions sharing a common
w = 0

border along a grid line with star vector eΠ differ in position by the vector eΠ.

Fig. 1. Definition of tile type, row, row border and net. The star vectors are shown in the inset.
Each tile marked with a dot is a (2,3)-tile. (Its edges are parallel to e2 or e3, so it is the dual of an
intersection of grid lines with those star vectors.) The shaded tiles form a 4-row. The vertices
marked with open circles form a 4-row border. The tiles marked with a dot form a 3 x 3 (2,3)-net.
The curvy lines are guides to the eye, representing the grid lines defining the net
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The dual of an intersection of two grid lines is a parallelogram tile with edges
given by the star vectors of the two grids. Every space-filling tiling composed of
parallelograms (aligned edge-to-edge) whose edges are taken from a finite set of
star vectors, no two of which are parallel, is the dual of some ΛΓ-grid.

The dual of an intersection of grid lines with star vectors e, and e7- will be
referred to as a tile of type (i,j), or simply an (i,j)-tile. For a symmetric β-grid, an
(ιj)-tile is a rhombus with a pair of \2π(ί—j)/Q\ angles (see Fig. 1).

All tiles having a pair of \2πk/Q\ angles are tiles of the same shape but are not
necessarily of the same type. Tiles of the same shape are called fc-tiles. An (ίj)-tile is
a special case of a fe-tile if \i—j\ = k.

The dual of a symmetric Q-grid is called a Q-fold tiling. It consists of rhombi
with each edge parallel to one of the vectors in a β-fold star.

A row is an infinite set of tiles consisting of the duals of all the intersections lying
on a single grid line. If the grid line has star vector en, the row consists of tiles joined
along edges parallel to en and is referred to as row of type n or an n-row (see Fig. 1).
Note that a row cannot end in the interior of a portion of tiling composed solely of
parallelogram tiles.

A row border is a set of vertices lying on one border of a row (see Fig. 1). If the
tile edges in the interior of the row of type n are thought of as instances of the vector
en, the heads of all these vectors form a type n row border (or an n-row border), as do
the tails.

A L x L (n, m)-net is a set of (w, m)-tiles dual to the intersections of L grid lines of
type n with L grid lines of type m. (An example is shown in Fig. 1.)

2.2. Lifts, Projections, and Perp-Space Coordinates

The lift of a Q-fold tiling is a unique subset of points of a β-dimensional hypercubic
lattice H defined as follows. Let the basis vectors of H be denoted Bn. The lift of the

vertex at w( *} = £ fcπeM is the hypercubic lattice point W = £ fcJBπ and the lift of
n=0 n=0

the tiling is the set of all lifted vertices. The β-dimensional space spanned by the
vectors Bn is denoted E.

The canonical projection procedure is defined as follows (recall that β is odd):
β x β projection matrices SP{i) are defined with elements

( ) f 0 Γ ι = 1 " " " ( β " 1 ) / 2 a n d

• E<? is a β-dimensional vector defined by E® = &$(BJk for i = ί,..., ( β - l ) / 2 ,

n = 0, . . . , Q - 1 . Similarly, E ( 0 ) Ξ Ξ ^ ( B J ^ (the value of n does not matter).
• It is straightforward to show the following:
o For each />0, the Ef span a 2D subspace of E, which will be denoted
E ( 0. The ID subspace spanned by E ( 0 ) will be denoted E ( 0 ).
o 3P{i) - R is the orthogonal projection of the point ReE onto E(ι) (including

o E{ι) and EU) are orthogonal for any pair i

• ^ 1 is defined as X 0>{i) = J-0>(1\ where J is the identity. Also define S(R), a
iΦl

unit hypercube, as {X|0^(X —R) BΠ< 1 Vrc}, where R is an arbitrary vector in E.
S\R) is the image of S(R) under 0>\
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• A canonical projection is a tiling obtained by projecting with ^ ( 1 ) all points in
the lattice H whose images under 0*1 lie in Sλ(R) for some fixed vector R. It can be
shown that the procedure for obtaining a canonical projection is completely
equivalent to forming the dual of a periodic β-grid [12].

The 2D vectors w(0 and the scalar Γ are defined as follows: We assign to each
Q - l

vertex v the vectors w(0(ι>) = £ knen x b where i = 1,..., (β —1)/2, " x " denotes the
« = o

ordinary product, and it is understood here and throughout the paper that the
subscripts are taken modulo β. Note that w(1)(t;) is just the ordinary position of the
vertex. For different values of i, the vectors w(0 should be thought of as lying in

Q-i
different spaces. We also assign to v an integer Γ(υ) = £ kn.

n = 0

It is straightforward to show that if orthogonal x and y axes in E(i) are defined
with the x axis parallel to ^ ( I ) B 0 , then w(ί)(ϋ) is the same as the projection of the lift
of υ onto E(ί), up to an overall scale factor. Similarly, Γ(v) species the projection of
the lift of v onto E ( 0 ). For this reason the variables w(0, for i ̂  2 and Γ will be called
perp-space variables and spatial variations in their values will be called perp-space
fluctuations. Note that not all perp-space variables correspond to phason degrees
of freedom (continuous symmetries of the free energy for a generic β-fold
symmetric state [13]). In particular, variations of Γ are not phasons, nor are
variations in w0 ) if/ and β are not relatively prime. If β is a prime, however, then
long-wavelength spatial variations in any of the w(ί) are properly called phasons.

The i-sleeve of an n-row border is the strip of smallest width bounded by two
straight lines perpendicular to enxi that contains all the points w(ι)(ι;), where v runs
through all the vertices in the row border.

2.3. Weak Matching Rules

The r-atlas of a tiling is the set of all configurations appearing in the tiling that can
be circumscribed by a circle of radius r [7].

Local matching rules for a set of tiles are rules requiring that every
configuration of radius r or smaller composed of those tiles be a member of a
specified r-atlas, where r is finite. The distance r is called the radius of the matching
rules.

Weak matching rules for the constituent tiles of a β-fold tiling are local
matching rules with the following properties:

1. There exists an infinite space-filling tiling that satisfies the rules everywhere;
2. Let W be the lift of one of the vertices in any infinite tiling satisfying the rules.
There exists a finite distance d such that H^ 1 -(W — R)|| <d for all W and some
fixed R, where ||X|| is the Euclidean norm of X. In other words, weak matching
rules ensure that in an infinite tiling perp-space fluctuations are bounded for all
ϊ φ l (including ί = 0).

A tiling is said to support weak matching rules if and only if there exist weak
matching rules for its constituent tiles which are satisfied by the tiling itself.

2.4. The Alternation Condition

The tiles in an m-ro w are of types (m, m ± i\ where i = 1,..., (Q — 1 )/2. A β-fold tiling
satisfies the alternation condition (AC) if and only if for every m-row and every i Φ 0,
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Fig. 2. Definition of the alternation condition. The star vectors are shown in the inset. (2,3)-tiles
are marked with a solid circle. (2,1)-tiles are marked with an open circle. Along every 2-row the
solid and open circles alternate. Note that the (2,0) and (2,4) tiles alternate also. The curvy lines
are guides to the eye that follow the 2-rows

among the tiles lying between any two tiles of type (m, m ± i), there is a tile of type
(m, m + 0 In other words, the alternation condition requires that as an m-row is
traversed from "left" to "right" tiles of type (m,m — i) and (m,m + ϊ) alternate for
every i (see Fig. 2). Note that the AC applies to each tile shape independently.
Between two tiles of the same shape (with the same value of ί) there can be any
number of tiles of other shapes.

3. Some Preliminary Results

Lemmas 1, 2, and 3, and Corollary 1, below apply to β-fold tilings with arbitrary
odd Q. Lemma 4 applies only to P-fold tilings, where P is a prime.

Lemma 1. Let vγ and v2 be any two vertices lying on the same m-row border in a
Q-fold tiling obeying the AC. The value of \(w{i)(v1)—yv{i)(v2)) emXi\ is uniformly

(Q-i)/2

bounded by £ |cos(2πί//Q)|.
j=i

Proof Assume, without loss of generality, that in moving along the row border
from Vi to υ2, the edges of tiles of type (m,m—j) are traversed in the + e m _ ,
direction. The edges of tiles of type (m,m+j) will then be traversed in the — em+j

direction. In traversing an edge in the + e m _ 7 direction one adds e ( m _ J ) X l to w(l),
thereby increasing the value of w(ι) -emXi by cos(2π(//Q). Similarly, in traversing an
edge in the — em+j direction one adds — e(m+j)xi to w(i), thereby decreasing
w(0 ew * i by cos(2πi//0. Let nj± be the number of tiles of type (m,m±j) between v1

and v2. We have ( Q _ i ) / 2

(w<V)-w ( ί )(t;2)) em><ι.= Σ (nj--nj+)cos(2πij/Q). (2)
j — i

The AC implies that | ^ _ — nj+\ is either 0 or 1, immediately implying the desired
result. Q.E.D.
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Lemma 1 states that there is a bound on the width of the i-sleeve of any row of
any type in a tiling obeying the AC. When Q is a prime, the bound is the same for all
i and will be referred to as Ds. When Q is factorable, Ds is taken to be the maximum
value of the bound obtained for different values of i.

Corollary 1. Let v0 be a vertex in a Q-fold tiling obeying the AC and let v be any
vertex on an m-row border containing v0. Then w{i)(v) lies within a distance Ds of a
straight line with the equation w(ι) ew x f = w(ι)(ι;0) em x f.

Proof. This follows trivially from the preceding lemma.

Lemma 2. For any two vertices vx and v2 in a Q-fold tiling obeying the AC, two rows
can be chosen, one having a border containing vuthe other a border containing v2,
and the two having some tile in common.

Proof Every vertex in a rhombic tiling lies on at least three row borders of different
types, since it must be shared by at least three tiles of different types. Therefore two
row borders of different types can be chosen, one containing vί9 the other ι?2. The
1-sleeves of the row borders have different slopes and therefore must intersect.
Since the 1-sleeves are of bounded width (Lemma 1), the row borders contained
within them must also intersect at a common vertex. The vertex belongs to a tile
shared by the two rows. Q.E.D.

Lemma 3. Let vγ and v2 be any two vertices lying on the same m-row border in a
Q-fold tiling obeying the AC and let |(w ( 1 )(ϋ 1)- w(1)(ϋ2)) e*| = D. (Recall that e* is
the rotation of em by 90° and hence lies along the direction of the m-row.) Then
Kw^i^) — w(ι)(t;2)) e* x i\ = D' is less than μD for any i, where μ is the maximum value
of sin(2π//β)/sin(2πfc/<2) far any integers j and k with modQfcφ0.

Proof Assume, without loss of generality, that (w(1)(t;1)-w(1)(ί?2)) e* is positive.
Each edge in the row border between v± and v2 contributes sin(2π//Q) to D, for
some 1 ̂ j ^ (Q —1)/2, and sin(2π/c/β) to D', where k = ij. Thus the absolute value of
the largest possible discrepancy between the contribution of any single edge to D
and to D' is a factor of μ. The lemma follows immediately. Q.E.D.

Lemma 4. Let v be any vertex lying in a P-fold tiling obeying the AC, and let r
designate an m-row having v on one of its borders. There exists a finite distance Dt

such that the distance between v and the nearest (m, m + i)-tile in r is less than Dt for
all i. (In other words, the distance from any vertex in any m-row to the nearest
(m, m + ΐ)-tile is uniformly bounded.)

Proof. We will show that a tile of every type must occur within every circular region
of radius Dt in the tiling, where Dt is not explicitly determined but is known to be
finite. The basic idea is to show that a large number of tiles of some unspecified type
must exist within a circle of "small" radius, then show that the presence of these
tiles necessarily implies the presence of a slightly smaller number of tiles of another
type within a larger radius, and finally to iterate the reasoning to show that all tile
types must be represented within the large circle of radius Dt.

Consider a circle of radius R (the "small" radius) and let the number of (j, k)-
tiles contained within the circle be denoted 7} fc. Since the number of distinct tile
types is finite and the number of tiles in the circle is proportional to R2, one can
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always choose n and ή such that Tnn> is greater than or equal to πR2/A, where A is
the sum of the areas of the distinct tile types. Assuming the length of a tile edge is 1,
the number of tiles in the circle that can lie on a single row is at most 2R/W, where
W=sin(2π/Q) is the width of the thinnest tile shape. Therefore the number of
n-rows passing through the circle must be at least TΛtn./(2R/W)}£πWR/2A. Also,
the number of n-rows passing through the circle is at most 2R, so there must be at
least one n-row that contains at least Tntn,/2R^πR/2A (n,n')-tiles.

Let i = n — ri and L=πWR/2A. There is an n-row passing through the circle
that has at least L(n,n — ΐ)-tiles on it, since W^ 1. Between any two (n, n — i)-tiles on
the same n-row there must be an (n, n + ϊ)-tile (by the AC). Therefore, there must be
at least L— 1 (n 4- ι)-rows passing through the circle. Now Corollary 1 implies that
for two n-rows with 1-sleeves separated by some finite distance d, the presence of an
(n, n + z)-tile in one of them implies the existence of an (n, n + ι)-tile in the other
within a distance d csc(2πί/Q) along the same (n + f)-row, since the 1-sleeves of the
row borders must intersect at that distance. Thus a circle of radius R csc(2πi/Q)
(with the same center as the original circle) contains an (L— 1) x (L— 1) (n, n -f f)-net.
Similarly, that same circle must contain an (L— l)x(L— 1) (n — i, n — 2j)-net.

Using similar reasoning applied to the (n, n + ι)-tiles, it can be shown that there
must exist an (L—2)x(L—2) (n + i, n + 2ί)-net (and an (L—2)x(L—2) (n — 2ι,
n — 3z)-net) within a circle of radius R csc2(2πi/Q). The reasoning is then iterated to
show that for a choice of R such that L is greater than (Q —1)/2, there is at least one
row of type n+ji for all j within a circle of radius # csc(Q~ 1)/2(2πi/β). When Q is a
prime, this includes all star vector directions, regardless of the values of n and i.

Thus, the distance from v to the nearest row of type m + i is bounded. Let r'
designate this nearest row. Again, Corollary 1 implies that there is a maximum
distance between the point v and the intersection of the 1-sleeves of r and r'. Where
the two sleeves intersect, there is a tile of type (m, m + i). Q.E.D.

4. The Main Result

We are now in a position to prove that the AC has the properties claimed in the
introduction.

First, it is easy to see that all canonical projections satisfy the AC. Recall that a
canonical projection is the dual of some periodic Q-grid. Consider a pair of
periodic grids with star vectors m + ί and m — L These grids form a periodic lattice
of rhombi. For any i, a grid line normal to em is parallel to one of the diagonals of
the rhombi. The grid line must therefore intersect two adjacent edges of each
rhombus that it passes through. Since these adjacent edges belong to different
grids, two intersections of the same type cannot occur without the other in
between. The duals of these two intersections are tiles of type m + i and m — L

Second, we must prove that the AC allows only uniformly bounded perp-space
fluctuations.

Theorem 1. Let vγ and v2 be any two vertices in a Q-fold tiling obeying the AC. The
value of |Γ(ί;1)-Γ(ι;2)| is bounded by Q — ί.

Proof. Applying the reasoning in the proof of Lemma 1 with i = 0 shows that the
maximum possible value of \r(v3) — r(v4)\ for v3 and v4 on the same row border is
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(<2-l)/2. Now consider two arbitrary vertices υx and v2. Let Rx and R2 be row
borders of different types containing υx and v2, respectively, and let υ12 be the
vertex shared by Rx and R2 (Lemma 2). Writing Γ(v1)-Γ(v2) = (Γ(vί)-Γ(vί2))
+ (Γ(vι 2) ~ Γ{v2)) and substituting the bound (Q -1)/2 twice on the right-hand side
yields the desired result: l/"^) —Γ(ι ; 2 ) | gQ- l . Q.E.D.

Theorem 2. Let v1 and v2 be any two vertices in any P-fold tiling obeying the AC
(where P is a prime number). There exists a finite number Dw such that Hw*0^)
-w ( i )(ι;2)ll <DW for all i = 2,..., (P

Proof. Let υ3 and v4 be two vertices on the same m-row border. By Lemma 1 we
already know that |(w ( ί )(ι?3)-w ( i )(ϋ4)).eMXi | is bounded. We will now prove that
I(w(i)(u3)-w(ί)(t?4)) e * x j | is also bounded, from which the theorem will quickly
follow. (Recall that e* is the rotation of e through 90°.) The P-fold symmetry allows
us to carry out the proof for the specific case of m = 0 and from that infer its validity
for all other m.

The proof relies on the constructions illustrated in Fig. 3. Parts (a) and (b) of the
figure refer to the same sets of row borders, the difference being that (a) refers to
their positions in the w(1)-plane while (b) refers to the w(i)-plane.

Let r be a 0-row border containing υ3 and v4 (lying in the strip labelled 0 0 in
Fig. 3a) and assume that |(w(0(υ3)-w( i)(u4)) eg| equals A (as indicated in Fig. 3b).
We will show that if A is chosen large enough a contradiction arises, regardless of
the distance between w(1)(i;3) and w(1)(i;4). By Lemmas 3 and 4, a large enough

(b) oo o, o2

(a)

(Q-i)

Fig. 3a, b. Proof of Theorem 2. The case chosen for the purposes of illustration is that of 7-fold
symmetry, a The w(1)-plane: The shaded strips contain the 1-sleeves of the row borders used in
the proof. Each strip has width 2(Dt + Ds) and is labelled by Λn, where A specifies the star vector
associated with the row border and n is an integer index. The heavily shaded strip contains a
2-row. The meaning of xp and zPtq is explained in the text, b The w(i)-plane: The shaded strips
contain the /-sleeves of the same rows labelled in a. For the illustration, we have chosen i = 3.
Strips with the same labels in a and b correspond to the same row border and xp and zp>q identify
the same vertices in a and b
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choice for A guarantees that this distance must be larger than 2(Dt + Ds). Lemma 4
also implies that there exist 0-, 1-, and (β —l)-row borders in the tiling with
1-sleeves that lie within the shaded regions of Fig. 3a, where the thickness of the
shaded strips is 2(Dt + Ds) and the separation between parallel strips is much
greater than their thickness. The shaded strips are spaced periodically to form a
triangular lattice as indicated in the figure.

Corollary 1 implies that Fig. 3b can be constructed such that the f-sleeves of the
row borders lying in the shaded strips of Fig. 3a lie in shaded strips of Fig. 3b.
Again, the shaded strips are spaced periodically. There are two consistent ways of
labelling the strips in Fig. 3b, one of which is shown in the figure. The other is
related to this one by inversion and need not be analyzed independently.

A proof that the form of Fig. 3b is forced is given in the appendix. The form is a
direct consequence of the facts that (1) if two vertices are connected by a finite
sequence of edges their separation in the w(0 plane is bounded (being no greater
than the edge length times the number of edges in the sequence); and (2) A, the
distance between w(i\v 3) and wω(ι;4), has been chosen much larger than Dt.

Consider now the nearest 2-row border to v3, which must lie in the heavily
shaded strip in Fig. 3a [14]. Let xp be the vertex at the intersection of the 2-row
border and the 0-row border with index p. (See Fig. 3a.) Let zpq be the vertex at the
intersection of the 0-row border with index p and the 1-row border with index q,
where for each p we choose q such that w(1)(zp q) is as close as possible to w(1)(xp). It
is obvious that ||w(1)(xp) —w(1)(zp ^)|| is bounded. On the other hand, ||w(ί)(xp)
— w(i)(zPt€) || grows without bound with increasing p, as can be seen by the following
reasoning. In the w(1)-plane the points zpq lie close to a line normal to e2, implying
that for large values of p,

>-cot(4π/β). (3)

1 ) cot(2πi/β).

Substituting from Eq. (3) for (2q/p — l), we have

o \
— - 1 ) cot(2πf/β) ^> -cot(4π/β) tan(2π/β) cot(2πi/β). (4)
V )

But this slope cannot equal — cot (4πi/β), the slope of a line normal to e 2 x b for any i
in the range 2,..., (β —1)/2. In the w(ί)-plane, the slope of the strip containing all the
xp is therefore different from the slope of a line approximating the zpq.

Thus ||w( i )(x jP)-w( i )(zJ, tβ)||/||w(1)(xp)-w(1)(z l l f ί)|| grows without bound and we
have a contradiction of Lemma 3 applied to the 0-row borders of large index. The
contradiction means that A cannot be chosen arbitrarily large and the reasoning
was completely independent of the distance between w(0(f3) and w(ι)(f4). Hence
|(w(ί)(ι;3) — wω(ί;4)) e* x £| is uniformly bounded on every 0-row border for m = 0 in a
tiling obeying the AC and, by symmetry, on every m-row border for arbitrary m.
This result, along with Lemma 1, implies that || w(l)(i;3) —w(l)(t;4)|| <D'W for any two
vertices on the same row border, where D'w is finite.

For two vertices that are not on the same row border, Lemma 2 immediately
implies \\yviι\v1) — yv{ι\υ2)\\ <DW, where Dw = 2Df

w. Q.E.D.
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We have demonstrated that the AC applied to a P-fold tiling allows only
bounded fluctuations in Γ and in w(ί) for all ί = 2,..., (P —1)/2. It is now easy to see
that the AC can be implemented in the cases of interest using a finite r-atlas (the
third necessary property for weak matching rules). Lemma 4 implies that there is a
maximum distance between two tiles of the same type in any given row. Choosing r
to be greater than this distance, one merely has to include in the r-atlas only
configurations consistent with the AC.

The main claim of this paper has now been justified: For prime values of P, there
exist weak matching rules for P-fold symmetric tilings.

5. Nearest Neighbor Rules for the Alternation Condition

By allowing the tiles of the same type to be decorated in several different ways, the
AC can be enforced for any Q-fold tiling (Q is odd) using an r-atlas that includes
only configurations of two tiles sharing an edge. (Each distinct decoration of a
configuration must be included separately in the r-atlas.) The construction
described below produces such a decoration for any Q. Each tile is decorated with
an arrow on each of its edges and tiles are allowed to share an edge only if their
arrows on that edge are of the same type and point in the same direction.
Following the discussion of the general case, the 6 = 7 cased is illustrated explicitly.

There are (β —1)/2 distinct tile shapes in a β-fold tiling and we will need
y=2«2-3)/2 different types of arrows. (The reason for this number will soon
become clear.) For each tile shape we construct several decorations consisting of
distinct ways of marking each edge with one arrow. Since an arrow can point in
either of two directions and must be one of Y types, the arrow on an edge
represents 1 + log2 Y—(Q — l)/2 bits of information, one bit for each tile shape. The
arrow on each edge can therefore be used to specify which orientation of each tile
shape might be joined to that edge. Recall that a tile with two 2πk/Q angles is called
a "fc-tile" and a tile with edges parallel to ef and e,- is called an "(ί, j)~tile".

For an edge parallel to eM, let a = 1 if the arrow on it is in the en direction and
a— — 1 if the arrow is in the — eπ direction. Also, let the "left" and "right" sides of
the edge be defined relative to the forward direction of the arrow. Now if a fc-tile is
to be added to a given edge parallel to em, it must be either an (m, m — A:)-tile or an
(m, m + /c)-tile. A given type of arrow specifies, for each fc, whether a fc-tile added to
the left of the edge would have to be an (m, m — αfc)-tile or an (m, m + αfc)-tile. If the
arrow specifies + ak on the left, then it specifies + ak on the right. Each arrow type
specifies a particular choice of sign for each value of fc. No two arrow types specify
the same set of choices or sets that are related by the inversion of every sign. Sets
related by the inversion of every sign are designated by the same type of arrow
pointing in opposite directions. Opposite edges of each fc-tile are required to have
arrows that specify identical orientations for tiles of shapes other than fc and
opposite orientations for fc-tiles. In this way, as a tile is traversed from one edge to
the opposite edge the decoration keeps track of the expected orientation of the next
tile in the row according to the AC.

An example of the decoration scheme described here is shown in Fig. 4 for the
case Q = 7. Figure 4a indicates the meaning of each type of arrow (see caption).
Figure 4b shows a portion of a 7-fold tiling with tiles decorated to enforce the AC.
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Fig. 4. A decoration that enforces the alternation condition for Q = 7. The four types of arrows
are shown at left. The three tiles to the right (left) of each arrow indicate the orientations of each
tile shape that can be added to the right (left) of the arrow. (The different shapes correspond to
the different values of k discussed in the text and the different orientations of corresponding tiles
for different arrow types correspond to different choices of sign for a given k.) Note that when
rotation by 180° of the entire figure is taken into account, all possible sets of orientations
consistent with the alternation condition are included. The decoration of a portion of a 7-fold
tiling is shown at right. The eight different decorations of the 2-tile are marked with solid dots

Fig. 5. A decoration that enforces the alternation condition for 2 = 5. There are two types of
arrows, shown here together with the tile orientations they force on the left and right. The four
tiles that are formed are shown at left

The number of distinct ways a tile of any given shape can be decorated is Y2/2,
as determined by the following reasoning: Once a given edge is decorated the
decoration on the opposite edge is determined. In addition one bit of information
on each edge is fixed by the tile itself; once the arrow type for an edge of the tile is
determined, the arrow direction is fixed since it is known whether the tile lies to the
left or right of the edge. Thus each of two adjacent edges of the tile must be
decorated in one of Y ways, which would appear to produce Y2 tile decorations.
The tile decorations have been double counted, however, as they come in pairs
related by rotation of the tile by 180°. Since there are (Q —1)/2 tile shapes, the total
number of distinct decorated tiles (counting enantiomorphs as distinct) is
Y2(Q- l)/4 = ( β - 1)2Q"5. In Fig. 4b, the 8 different decorated 2-tiles are marked
with solid circles.

Another example of a decoration scheme that is equivalent to enforcing the AC
has already appeared in the literature. The case Q = 5 requires four tiles which are
equivalent to those discussed in ref. [9]. These are shown in Fig. 5.
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6. An Example: 7-Fold Symmetry

A closer examination of the decorated 7-fold tilings is worthwhile. Figure 6 shows
a portion of the dual to a periodic 7-grid for which the sum of the phases, £ γn9 is an
integer. It can be shown that the tiling actually has 14-fold symmetry, not just
7-fold, and that it is locally isomorphic to all duals of periodic 7-grids in which the
sum of the phases is zero. It will be referred to as a "Γ = 0 tiling," where Γ is to be
thought of as the sum of the y's. (The symbol "Γ" is a natural choice since the sum of
the phases of the 7-grid is proportional to ^ ( 0 )R, where R is the vector used in the
definition of the corresponding canonical projection, and, as we have already seen,
Γ is used to specify positions in E{0\)

First, for each tile shape only seven of the eight possible decorations appear in
Fig. 6. Indeed, it can be shown that the Γ = 0 7-fold tilings do not contain any tiles
of the missing types. (One shows that certain inequalities must be satisfied by the γn

in order for sequence of intersections of grid lines to correspond to a particular
decoration and that these inequalities are incompatible with the condition that
£ yn = 0. The proof applies to any (Mold tiling, always ruling out one decoration of
each tile shape.) One can therefore delete the missing decorated tiles from the
original set and still have weak matching rules for the Γ = 0 tilings. Equivalently,
one can delete from the r-atlas for the undecorated tiles all configurations which
would require the missing decorations and thereby obtain weak matching rules for
the Γ = 0 undecorated tilings. It is not known whether additional tile decorations
could be deleted if one did not insist on including a canonical projection among the
allowed tilings.

Second, it is interesting to examine the ways in which tiles can be rearranged
without violating the matching rules. Figure 7 shows four pairs of three-tile

Fig. 6. A portion of a Γ = 0 7-fold tiling. The decorated tiles shown in the inset do not occur in the
Γ = 0 tilings. The shaded tiles can be rearranged locally (see Fig. 7). Movement of any of the
unshaded tiles necessarily involves rearrangements of infinite numbers of tiles. This is most
apparent for the tiles marked with a solid dot, since their decorations are not a part of any
transformable hexagon (see Fig. 7)
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Fig. 7. Transformable hexagons of the decorated 7-fold tiling. Each member of a pair can be
transformed into the other without introducing any violation of the alternation condition
matching rules into the tiling. In addition to the four pairs shown here, there are four obtained
from these by reflection

configurations (hexagons) that occur in any 7-fold canonical projection (not only
Γ = 0). Either of the hexagons in a pair can be transformed into the other without
changing the decoration of the exterior edges, so any member of a pair appearing
in a tiling can be transformed into its partner without introducing a violation of the
matching rules. The transformation of one hexagon into its partner is called a
"flip." Note that a flip changes the position of the internal vertex of the hexagon
and hence changes w(l) at that vertex for all /. Note also that a flip can produce new
hexagons in the tiling that can be flipped in turn.

The existence of transformable hexagons means that the matching rules are at
best weak. For any of the shaded tiles in Fig. 6 there exists a finite sequence of flips
that changes the position of the tile and therefore can introduce fluctuations in w(0.
On the other hand, there are tiles that can never participate in a flip since their
decorations simply do not appear in any of the transformable hexagons. These are
marked with a solid circle in Fig. 6. Loosely speaking, they give the tiling a sort of
rigidity in perp-space. The perp-space variables associated with their vertices are
fixed and therefore the perp-space fluctuations between them are constrained.
(Note that this observation alone is not sufficient to prove that large perp-space
fluctuations cannot occur in tilings that are not derived from flipping trans-
formable hexagons in canonical projections. Nevertheless, it gives some idea of
the way the matching rules function.) An important unresolved issue is whether
additional decorating marks could be placed on each tile in such a way that all the
hexagons are fixed and the matching rules become strong.

The flipping of transformable hexagons should not be confused with the effect
of phason strains, which are long-wavelength spatial variations in the hydrody-
namic variables of the system. The phason variables for a β-fold tiling can be
thought of as coarse grained averages of w(0 for those values off that are relatively
prime with Q. In the 7-fold case, coarse grained averages of w(2) and w(3) are phason
variables. A small uniform shift in a phason variable induces flips of hexagons of
other types than those shown in Fig. 7 and consequent transformations of the
arrows on tiles that do not move at all. The presence of phason strains is signalled
by isolated violations of the matching rules, just as in the familiar case of 5-fold
symmetry. Details are beyond the scope of this work.
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Finally, a comparison of the 7-fold case and the well-known 5-fold case is
revealing. In contrast to the 7-fold case, the 5-fold tilings composed of decorated
tiles contain no transformable hexagons. There are no hexagons that can be
flipped without a consequent change in the arrows on the exterior edges, so any flip
induces a violation of the matching rules. It is therefore tempting to speculate that
the matching rules constructed for the 5-fold tilings actually do not allow any
deviation from the canonical projections and are therefore strong matching rules,
but this conjecture has yet to be proven.

The Γ = 0 5-fold tilings are just the original Penrose tilings. As in the 7-fold
case, one type of decorated tile of each shape does not appear in the Γ = 0 tiling. In
the 5-fold case, it is known that the Γ = 0 tiling supports "perfect matching rules",
which restrict the possible infinite tilings to a single local isomorphism class. The
effect of the analogous removal of decorated tiles in the 7-fold case is not yet
understood, but the 5-fold result indicates that it could be dramatic.

7. Other N-Fold Symmetries

7.1. 3-Fold Tilings

The AC decoration of the tiles in a 3-fold tiling produces one type of tile: a 60°
rhombus with a single arrow on each edge always pointing towards the same size
angle. Only one tiling consistent with the rules exists and it is periodic.

7.2. Q-Fold Ήlings with Factorable Q

When Q has two prime factors px and p2 greater than 2, the proof of Lemma 4
breaks down. For i equal to p1 or p2 the directions labelled m + ki (modulo Q) do
not include all of the star vector directions. It is easy to see the consequence: a
Pi-fold or p2-ϊold canonical projection is perfectly consistent with the decoration
of the Q-fold tiles, although it uses only a subset of them. It is therefore clear that
the AC alone is not a weak matching rule for the β-fold tiling. Note that w(Pl + υ is
unbounded for the p2-fold tiling constructed from a subset of the (Mold tiles. Using
P1P2 = 0 (modβ) and the fact that only edges parallel to eP2 x f appear in the p2-fold
tiling, we have

w ( p l + » = Σ k P 2 x f i ( P ί + 1)Xp2Xi

ϊ = 0

Pi
~ 2j kp2 X fip2 X i

i = 0

= W < » (5)

and w(1) is obviously unbounded (since the tiling is infinite).
One can disallow the p2Λo\ά tiling simply by not including in the r-atlas any

configurations larger than some appropriate size that do not contain at least one
tile of every type, thereby making Lemma 4 true by decree. All of the other proofs
carried out for prime symmetries remain valid for any odd Q. Thus we see that
weak matching rules exist for Q-fold canonical projections for all odd values of Q.
Expressing the rules as nearest neighbor matching rules for decorated tiles is much
more complicated, however, when Q is not a prime.
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7.3. N-Fold Tilings with N = 2Q

When N is twice an odd number β, the tilings of JV-fold symmetry are just a subset
of the g-fold tilings. It can be shown that there are two classes of Q-fold canonical
projections with 2β-fold symmetry, the Γ — 0 tilings and the tilings dual to periodic
β-grids with the sum of the phases equal to 1/2. Clearly, the weak matching rules
obtained by the decoration described above act as weak matching rules for the
2β-fold symmetric tilings. Two interesting questions arise: First, in a physical
system that is well described by the weak matching rule decoration of β-fold tiles,
will the equilibrium configuration have β-fold symmetry or 2β-fold symmetry?
Second, if the appropriate decorated tiles are deleted (in analogy with the 5-fold
and 7-fold cases) is the tiling guaranteed to exhibit 2β-fold symmetry? The answers
are beyond the scope of this work.

7.4. N-Fold Tilings with N a Multiple of 4

When N is a multiple of 4 there are square tiles in the canonical projection and the
AC is not well-defined. AT = 4 is a trivial case; the only tile type is a square and the
only edge-to-edge tiling is periodic. For N = 8 or N = 12, it is known that the tiles
can be decorated to yield perfect matching rules, but the construction is not as
straightforward as the AC rules [4,15]. Higher values of AT have yet to be analyzed.

8. Icosahedral Tilings

Analogues of all of the constructions described in this paper can be defined for
icosahedral tilings. The canonical projection tilings with icosahedral symmetry
consist of tiles of two shapes - a prolate and an oblate rhombohedron with edges
parallel to six star vectors pointing to the vertices of an icosahedron. The tile
vertices are projections of 6D hypercubic lattice points onto a 3D subspace. The
canonical projections can also be generated as the duals of periodic 6-grids in
which the grids are sets of parallel planes normal to the star vectors. It is known
that these tilings support perfect matching rules if the tiles are decorated to form 22
distinct tile types [5]. There is also strong evidence, though no rigorous proof, that
perfect matching rules exist for a set of four decorated tiles - the prolate
rhombohedron and the three zonohedra derived from it by the successive addition
of edges parallel to the icosahedral vertex vectors [6].

5

The icosahedral analogue of the vectors w(ί) are the two 3D vectors u = £ knen

andw= £ fcπeM, where eπ are the icosahedral star vectors:£ fcπeM,

en=—=(2 cos(2πn/5), 2 sin(2πn/5), 1) n = 0,..., 4;

^ 5 (6)
e5 =(0,0,1);

and ew are a permuted set of the star vectors:

£« = emod5(2n) Π = 0, ..., 4

e 5 = - e 5 .
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Fig. 8. The AC decoration of the rhombohedral tiles in the icosahedral canonical projections.
The four shapes on the left (right) can be cut out and folded to form decorated prolate (oblate)
rhombohedra. The four shapes on the top form decorated rhombohedra with a three-fold axis of
symmetry, decorations which never appear in the icosahedral canonical projections

The position of a vertex v in the ordinary physical space is specified by u(v) and its
position in the complementary 3D space is specified by w(ι ). There is no analogue
of Γ for the icosahedral projections from 6D.

It is also possible to define an analogue of the alternation condition for the two
rhombohedra of the canonical projection tiling. A row is now a series of
rhombohedra joined along parallel faces, or, in other words, the rhombohedra
dual to the intersections of each of four sets of grid planes with the line of
intersection of two planes taken from the remaining two grids. The four sets of grid
planes form two pairs that produce tiles of the same shape in different orientations
and these alternate along the row. Using a construction similar in spirit to the
edge-arrow decoration described above, a decoration that enforces the AC can be
produced that requires 4 tile types of each shape. Figure 8 shows the eight distinct
decorated tiles. The rule is that on adjoining faces both the black and the white
dots must match. To see how the dot positions are determined, imagine the faces of
a rhombohedron to be transparent and view the rhombohedron along a line of
sight parallel to four of its edges. From this view, one sees two opposite faces
overlayed. For the prolate rhombohedron, the black dot on the front face overlays
the black dot on the back, while the white dots lie in opposite corners. For the
oblate rhombohedron, the white dots are in the same corner and the black dots in
opposite corners. The black and white dots then ensure alternation of the oblate
and prolate rhombohedra, respectively. Note that four of the decorations respect
the three-fold symmetry of the rhombohedra and the other four do not.

Theorem 3. The AC decoration defines a weak matching rule for the icosahedral
canonical projections.

Proof. We wish to show that fluctuations in w are bounded. Let a set of tiles whose
dual intersections lie on a single grid plane be called a "slab" and the vertices on
one surface of the slab be called a "slab border" in analogy with the definitions of
"row" and "row border." (Each slab border in an icosahedral canonical projection
is an example of a "Wieringa roof" [3].) Consider a slab border corresponding to a
grid plane with star vector e5. The projection of the slab border onto the xy-plane
is a 5-fold tiling. Now it is straightforward to check that the AC defined on the
rhombohedra acts on the projected 5-fold tiles precisely as the 2D AC studied
above. Also, for a vertex v on a slab border normal to e5, the x and y components of
u(v) and w(ι ) are equivalent to w(1) and w(2) of the 5-fold tiling, respectively. Finally,
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the z components of u(v) and w(ι?) are equivalent to + Γ and — Γ, respectively,
where Γ is the usual £ kn- Theorems 1 and 2 therefore imply that for two vertices on
any slab with star vector e5 the quantity Hw^) — w(t;2)|| is bounded. Icosahedral
symmetry then implies that ^(i^) — w(t;2)|| is bounded on any slab. Now for any
two vertices in the tiling one can choose two intersecting slabs with each of the
vertices lying on one of the slabs. (Compare Lemma 2.) Since the slab borders must
have the same value of w at their intersection, it is clear that the total variation in w
is bounded. Q.E.D.

The icosahedral canonical projections do not contain any of the three-fold
symmetric decorations shown in Fig. 8. This is simply a consequence of the fact
that all of the grid planes in the dual are flat and normal to the icosahedral star
vectors. (The proof is left to the reader.) Thus the three-fold symmetric decorations
can be deleted from the set of allowed configurations and consistency with the
canonical projections is retained. The remaining decorations are the four shown
on the bottom in Fig. 8. It is interesting to note that they are equivalent to the
decorations presented on p. 22 of ref. [1]. There are no analogues of transformable
hexagons that can be formed by these decorated tiles and it is believed that the
decoration provides perfect matching rules for the icosahedral projection tiling,
but no proof has been given.

9. Conclusion

We have shown that tilings with Λf-fold symmetry, where N is a prime or twice a
prime, support weak matching rules and indicated how to construct a set of
decorated tiles that serves to implement such rules. Though the result is not
contradicted by any previous work, there has been no prior suggestion of its
possibility. A more thorough investigation of the structure of the tilings with these
symmetries may now be within reach. Just as the matching rules for Penrose tilings
are intimately related to decorations that reveal the Fibonacci sequences
underlying the tilings [16], the weak matching rules for other symmetries may help
to uncover the relevant algebraic structures for cases in which the incommensurate
ratios involved are not quadratic.

The result also revives the possibility that physical systems governed by local
interactions can exhibit quasicrystalline symmetries other than those based on
quadratic irrationals. More careful studies of this matter are necessary, however.
For example, the ground state of a solid must correspond to a single class of locally
isomorphic tilings, but weak matching rules do not select a single class. Longer
range interactions or small differences in the energies of different configurations
obeying the weak matching rules must become important and their possible effects
should be explored. Also, the consequences of weak matching rules for elastic and
hydrodynamic properties have yet to be worked out.

Finally, the fact that icosahedral tilings can support weak matching rules
should be explored further. The possibility that perfect matching rules can be
relaxed in certain ways but still be sufficiently restrictive to limit perp-space
fluctuations means that a new variety of decoration schemes may become
available for use as templates for an atomic structure. In searching for matching
rules that can be implemented in a natural way in physical systems, one now has a
wider range of models available.
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Appendix

We wish to show that the i-sleeves of the row borders lying in the shaded strips of
Fig. 3a must lie in the shaded regions of Fig. 3b.

First, we make repeated use of Lemma 3 to show that the strips containing the
f-sleeves form a triangular lattice, without yet worrying about whether the strips in
each direction are equally spaced. Consider the regions where three shaded strips
intersect in Fig. 3a. The tiles at the intersections of the rows contained in the strips
are obviously all separated by a finite distance less than or of the order of the strip
width, 2(Dt + Ds). Lemma 3 therefore implies that the separation between the
vertices of these three tiles in the w(0 plane is bounded by some finite distance D.
Note that D depends only on Dί9 Ds, and i; it is independent of A.

Begin now with the strips labelled 00, l0, and (Q — l)ί and take A to be much
larger than D. Consistency with Lemma 3 requires that the strip 0x must be added
and that the spacing between 00 and 0x is roughly equal to (A/2) tan(2π/β), the
deviation being of the order of Dt + Ds. Applying this reasoning to strips in the
other directions and then to the new triangles formed as strips are added yields a
triangular lattice.

Second, similar reasoning applied to larger triangles, such as the one formed by
00, l0, and (Q — 1)Π, shows that the spacing between any two strips in a given
direction whose indices differ by n must be the same to within a number of the
order of Dt + Ds. For example, consider the triangle formed by 00, l0, and (Q — l)n

and that formed by 0 0 ,1 1 ? and (Q — 1)Λ+1. Each of these determines a position for
the strip 0Π. Since the two determinations must be consistent and the strip 1 _„ must
intersect the intersection of 00 and (Q — 1)Π, the spacings between 1 _„ and l 0 and
between l_n_! and l_ x must be approximately the same. Similar reasoning
applies to the other directions.

Considering the sequence of positions yn of the centers of the strips normal to a
given direction, we have just shown that

ym-ym-n = Sn + £m,n, (8)

where sn is a constant (independent of m) of the order of A and εm „ is of the order of
Dt + Ds. In order to satisfy the equation for all n simultaneously, we must have

(9)

where 5 is a constant depending only on the direction of the strip and εm is bounded
by a number on the order of Dt + Ds. The strips can be enlarged so that when
equally spaced they include the possible deviations in εm. There is no danger of
parallel strips overlapping since s is of the order oΐΔ, which can be chosen as large
as desired. Symmetry immediately guarantees that 5 is the same for the strips in the
1 and (Q — 1) directions. Hence, the triangular lattice of strips can always be made
to have the form shown in Fig. 3b.
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