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Abstract. We study a system of interacting diffusions. The variables present
the amount of charge at various sites of a periodic multidimensional lattice.
The equilibrium states of the diffusion are canonical Gibbs measures of a given
finite range interaction. Under an appropriate scaling of lattice spacing and
time, we derive the hydrodynamic limit for the evolution of the macroscopic
charge density.

1. Introduction

The derivation of the hydrodynamic equation for infinite particle systems with
conservation law has been the subject of active research. One such model is the
Ginzburg—Landau model [11]. The hydrodynamic equation for this model is
obtained in [3] and [4]. In this model charges are located at the various sites of
a periodic multidimensional lattice. The flow of these charges from one site to
another is governed by a suitable diffusion law. After an appropriate space and
time scaling, the microscopic charge density converges to a deterministic limit
which is characterized as the solution of a nonlinear parabolic equation.

The passage to the hydrodynamic limit for the Ginzburg—Landau model under
certain conditions was studied in [4]. We describe these conditions.

For any positive integer N, let Sy denote the periodic lattice {j:j=0,1,...,N}
with 0 and N identified, and let S% denote the product of d copies of Sy. For each
site a in S%, there is a random variable x, = x,(t) which is the amount of charge
at site a. The family of x, undergo a diffusion with generator

2 2 0 0
A= 3(e- L) -Twea-sen(-o)| 0

where both sums are over the adjacent sites a and b in S%. The generator £ is
formally symmetric with respect to the product measure py(dx) defined as

pa(dx) = [ e **2dx,, (12)
aest
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where x denotes the vector (x,;aeS%). The function ¢:R—R is a continuously
differentiable function with the following properties.

[em?@dx =1, (1.3)
[e**7?Pdx < o0, (1.4)
M@= dx < o0 (1.5)

for all 4 in R.
The diffusion generated by #Y starts from an initial distribution which has a
density f$ with respect to the measure py and f satisfies the entropy bound

1
~al Rog fRdpy = (16)

uniformly in N and for some finite constant C. Then the evolution corresponding
to the diffusion will give us a density f’% which satisfies the forward equation,

ofn
ot

Associated with the charge configuration xeR"* and ¢ > 0, we define the signed
measure

=2%1\. (L.7)

1
un(t) = Ne Z X4(t)0gn - (1.8)

aeS‘,’v

Let S be the unit circle or the interval 0 < 6 < 1 with 0 and 1 identified, and let S¢
be the product of d copies of S. Then uy(t) = puy(t,df) is a measure on the
d-dimensional torus S¢.

We assume that for some nice function my(0) and any positive o

lim | f%dpy=0, (1.9)

N-w Ey 5
Eys= {)_c: ;5}.

Here df denotes the normalized Haar measure on §% It is shown in [4] that
there exists a function m(t, 6) such that

lim [ J(0)ux(t, d6) = [ J(O)m(t, 6)df, (1.10)

where

1
§i 27 @N)x, = [ J(0)mo(6)d0

and this function satisfies a nonlinear parabolic equation which will be described
below (see (1.13)).

We generalize the above result by adding an interaction term to the function
— ¢(x) in the measure py. This means that we replace the product measure py
with a Gibbs measure which has an interaction of finite range. The important aspect
of our work is that we do not exclude the occurrence of phase transition in the
space of Gibbs measures.
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Let F be a function which depends on a fixed finite number of coordinates.
We assume that F is bounded, continuously differentiable and has bounded first
derivatives. The interaction energy corresponding to the interaction field F is defined
by

HN(x)= Y Flt,x),

aeS}‘v

where 1, denotes the shift operator in the space S%. We now replace the generator
£ with

N? o 0\
"g’NIT[Z(axa ax,,>
, OHy, . OHy 0
—Z<¢(xa>—¢(x,,)+ R ())(ax a—)] (1.11)

Xp

This generator is reversible with respect to the Gibbs measure vy defined as
1
va(dx) = ——exp (#'x(x))p(dx), (1.12)
N

where Z is the normalizing constant.

We now assume that the diffusion generated by Ly starts from an initial
distribution which has a density f§ with respect to the measure vy and f satisfies
the entropy bound

1
Wfff%logf% dvy<C (1.6

uniformly in N and for some finite constant C. Then the evolution corresponding
to the diffusion will give us a density f% which satisfies

0 ,
o Lt (1.7)
We also assume that for some nice function m,(0) and any positive 9,
lim | fRdvy=0, (1.9)
Nz ENs

where

: %ZJ(a/N)xa — [ J(O)mo(6)d0

Eg,a={)_c _2_5}

We define h as the convex conjugate of the specific free energy ¢ defined by

1
o) = 13111; Wlogj'exp </1 ; xa>vN(d>_c).

We now state our main result.

Theorem 1.1. If the initial distribution of charges satisfies (1.6") and (1.9'), then for
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all time t, every smooth J and each 6 >0,
lim | fidvy=0,

N—=w
Ens

where

NIE Y. J(a/N)x, — [ J(O)m(z, 0)d6

;Vﬁ:{'x: 25}7

and m(t, 0) satisfies weakly the following nonlinear parabolic equation:

%’ =3 AW (m(t,0)), m(0,0)=mqy(0). (1.13)

When F = 0, then A’ is strictly increasing. It is well known in statistical mechanics
that for some nonzero F, the function 4’ is not strictly increasing, which makes
the evolution Eq. (1.13) degenerate. This corresponds to a phase transition
in physics. Nonetheless we can still derive the hydrodynamic equation for the
charge density m. We will also verify properties such as uniqueness of solutions,
maximum principle and the asymptotic behavior of the solution m(t, ) as time
goes to infinity.

In the presence of phase transition, our result implies that the different phases
do not segregate macroscopically at the hydrodynamic time scale. This is consistent
with the Lifshitz—Slyozov theory. According to this theory, it takes times of the
order N3 for forming a macroscopic droplet. Therefore segregation cannot be seen
on the hydrodynamic time scale.

Let J be a fixed smooth function and consider the stochastic process

1
yn(t) = [ J(O)u(t, d6) = N 2. (@/N)x,(0).

It is not hard to see that
dyn(t) = dMy(t) + Ax(t)dt,
where M (t) is a continuous martingale which goes to zero as N goes to infinity, and

AVO % 5 S AT@N)Golzx()),

OH §
0x¢

Go(x) = ¢'(x0) — (x)- (1.14)

The main step in the proof of the hydrodynamic behavior for our example (like [4])
is that

t 1t
lim [ Ay(s)ds = 5.” AJ(O)W (m(0, s))ds db, (1.15)
N—-w 0 0
where m is the solution of (1.13).

When F = 0, then for any bounded continuous local function G (i.e. depending
on a fixed finite number of coordinates) and for any smooth test function J, it is



Hydrodynamic Limit 449

shown in [4] that

lim %ZJ (a/N )j G(t,x(s))ds = j [ J(8)Bg(m(s, 0))dsdo, (1.16)
N—- a 0 )
where
1
Bs(y)=| G(?_C)]:[Welxa-wx..)dxm
M(l) = je)"‘_d’(x)dx
and

A=H(y).

In general, if F # 0 and if phase transition occurs, we do not expect to have (1.16)
for any G. We can however prove (1.16) for G= G, and obtain (1.15). This is
because of a very special form of G, which makes it possible to avoid any problem
coming from phase transitions.

We expect that the distribution of the charge configuration x(t) for t > 0, looks
somewhat like

CNEXP <Z /laxa>dv,v,

where 1, ~ h'(m(t,a/N)). As in [4], we use the entropy production as a technical
tool to prove the validity of such a picture. This is the content of Sect. 3. Before
this, we need to establish a local ergodic theorem. This is done in Sect. 2. In this
section, we basically use the techniques of large deviations. Finally in Sect. 5 we
derive the hydrodynamic equation and study some of its properties.

2. Large Deviations for Conditioned Gibbs Measures

The object of this section is a large deviations result (and its corollaries) for the
conditioned Gibbs measures. First we start with some preliminary considerations
related to theory of the large deviations. Let X be a Polish space with Borel field
4. A function I: X —[0, oo] is called a rate function if it is lower semicontinuous
and the set {x|I(x)<¢} is compact for all finite /. A family P, of probability
measures on X is said to have the large deviation property with rate I if there exists a
sequence a, which tends to co and

1
lim supa— log 1, (C) < — inf I(x) 2.1)
n— oo n xeC
for all closed subsets C of X, and
1
lim inf ;log 1,(0) = — inf I(x) 2.2)
n— oo n xe0

for all open subsets O of X.
Our first lemma is a useful form of the so-called Contraction Principle.
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Lemma 2.1. Let @: X, — Y, where X, is a subset of X and Y is another Polish space.
Suppose that for each positive number ¢ there exists a closed subset C, of X such
that @ restricted to C, is continuous and moreover

lim sup lim supa— logP(X —C,)= — 0.

{0 n—o

Then the family P,o®~' has the large deviation property with the rate I(x)=
inf I(x).

P(x)=y
Proof. Let C be any closed subset of Y. Then
P, (®eC) < P,({@C}NC,) + P,(X —C,).
The set C = {®@eC}NC, is closed and
lim supa—log P,({®eC}nC) < —infI(x) £ —inf(y).
n— oo xeC yeC

So, we have the upper bound estimate because P,(X — C,) is superexponentially
small when [ — oo.
For the lower bound estimate, let O be an open subset of Y,

P,(®€0) 2 P,({®e0}u(X — C)))— P,(X = C,).
The set O = {@e0}U(X — C,) is open and

hmmf—logP ({Pe0}U(X —C,))= — infI(x) = —mfI( ).

n-o xe0 yeb

Moreover P,(X — C,) is supcArexponentially small as [ — co.
It is not hard to check that I is a rate function. We omit the proof of it. []

We recall the following result which can be found in [2].

Lemma 2.2. Let W, be a sequence of R%-valued random variables on a probability
space (22, F ., Q) If

1
c(t) = lim —log E%»¢' W~

n-ow Ay
|14
"edx
a'l

has the upper bound large deviation property with the rate I(t) that is the convex
conjugate of c(t).

exists for all t in RY, then the family

P,(dx) = Q.,(

Lemma 2.3. Suppose o/ is a collection of closed subsets of X such that for any closed
subset C of X, there exists a decreasing sequence A,, in </ satisfying ﬂ A,=C.If
(2.1) holds for all A in o, then it holds for all closed sets C.

Proof. Suppose that (2.1) holds for all 4 in /. Let C be a closed subset of X and
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C= ﬂ A,, for some decreasing subsequence 4,, of /. Then

lim sup—logP,,(C)<1nf11m suplog P,(A,,) £ —sup inf I(x).

n— oo m n— o m Xx€Am

We will show
inf I(x) < sup inf I(x).

xeC m xeAm

Suppose that sup inf I(x) is finite. Set K, = {x|I(x) <}, where

m xeAm

I=sup inf I(x)+ 1.

m x€Am

Then inf I(x)= inf I(x) and therefore there exists x,,€4,,n K, such that

XEAm xeAmn Ky

inf I(x)=I(x,,).

X€EAm

We may choose a subsequence of x,, which converges to some yeﬂA =C.
Therefore

sup inf I(x)=liminfI(x,)=I(y) = infI(x). O

m x€Am m-— oo xeC

Before we state the main result of this section, let us recall the definition and
some properties of Gibbs measures.

We consider the configuration space X = R which is the set of x:7*>R or
x = (x,;aeZ?. The set X is endowed with the product topology which makes X a
Polish space. For q, let 7, be the translation operator on X defined by (7,x)(b) =
x(a + b). #(X) denotes the space of probability measures and .#,(X) denotes the
space of translation invariant probability measures on X. Both of these spaces are
endowed with the topology of weak convergence.

For each neZ*, we define

T,={aez’0<a;<n forall j, where a=(a;:1<j=<d)}.
For each xeX and neZ™, we define x" by
x"(@) = x(a)aeT,,
x"(a + (n + 1)e’) = x"(a); acZ*,
where e] = ;. X, denotes the set of all x". The empirical process is defined as

we=ITal ™1 Y e,

aeT,

where | T,| is the number of sites in T,. It is easy to see that R, e (X).
Let ¢:R— R be a continuously differentiable function satisfying

fe ?Pdx =1, 2.3)
[e**¥dx < o0, (2.4)

[ e ®1=909gx < o 2.5)
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for all real A. Equations (2.4) and (2.5) are equivalent to saying that there exists a
function w(x) which is symmetric and convex on R with

x|

lim ——=0, w(x)=]|x| for all x and
x>0 W(X)
[er®7Mdx < 0o, [N dx < oo, (2:6)

We consider the following classes of local functions:

CP. = {G: X >R such that G is bounded continuous and depends on a fixed finite
number of coordinates},

Civ. = {GeCy,:G is continuously differentiable with bounded first derivatives},

Cx. = {GeCyp,:G is smooth with bounded derivatives}.

Let xeX and T be a subset of Z%. Then x; denotes the restriction of x to T.
That is x7: T—R and xp(a) = x(a) for aeT. If z is another configuration, then
x7 v z denotes the configuration which agrees with x on T and with z on
T¢=Z7%— T. In other words x; v z is the configuration x on T with the boundary
condition z.

Let F be a function in C2_, which depends only on the coordinates x, for a in
a finite set A = Z%. We define the interaction energy by

Hp1(x) =) Flz,x),
where the sum is over indices a such that a + A = T. Given a boundary condition
z in X, we define
Hp1,(X) = Hpr(x)+ ) F((tX)r Vv 2),
where the sum is over a such that
@+ANT#F and (a@a+A)NT#J.

We also define the interaction energy for a configuration with periodic boundary
conditions. For this, one considers the space of periodic configurations X, and
defines
‘}?F,n().f) = }; F(TaX"),

where S, is obtained by identifying the opposite faces of T,,.

We take the probability measure p(dx) = e~ *®dx and for each subset T of Z¢,
the measure p7 is the product measure of p which is defined on R”. Now we define
the finite volume Gibbs measure v  associated with F and p by

ve,r(dx) = ——exp (# p,7(x))p" (dx), 2.7)

Zer

where
Zpr = [exp (K 1(x))p"(dx). (2.8)

In the same way we define v ., Z; 1., V¢ ,, and Zy, by replacing # ; in (2.7)
and (2.8) with s ; and H r.n- We also consider the finite volume canonical Gibbs
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measures v} p and v; r, which are obtained by conditioning the measures v ; and
Vr,T,, Tespectively, with respect to mp(x) =y, where

T aZT X, (2.9)

We define 9%, in the same way by choosing T = S¢ in (2.9).

Note that a calculation like (2.15) below ensures the existence of a version of
the conditioned measure v}  which is continuous in y.

The family of the translation invariant (infinite volume) Gibbs measures and
canonical Gibbs measures are defined by

Gp={ueM |u(|x,=z, for a¢T)=v; r_ for all z and finite T = 7%},
7= {neM |u(|x, =z, for a¢ T and mq()=y)
=V}.p, for all z and finite T <= 2%}.

my(x) =

We denote the distribution of R, with respect to vg, 5,, by P, or simply P,
when there is no danger of confusion. That is

P,(A)=vp 1,(R, €A)
for A a Borel subset of .#,. The probability measures P}, and P, are defined
in the same way. It is known [9] that the family P, has the large dev1at10n property

with the rate function I. In order to define I.(u) for ue#., we first define the
pressure of an interaction F by

Y(F)= hm IT l ——logZ; .. (2.10)

Note that this limit is uniform in z, and ¥(F) is independent of z.
The specific entropy of a measure p in 4, with respect to p is defined as

1 du”
lo du™,
n—'wlTl < gdp ) #

where the measure ™" is the projection of u on the space X r,. The rate function
I is defined by

H (1) =

Ie(W) = H, () — [ Fdp + P(F), (211)
or
Ip(p) = lim T, jfnlng dvp,T, (2.12)

where f, is the density of the measure u™ with respect to the Gibbs measure vg . .
If « and f are two probability measures such that

do= fdp
for some density f'eL'(df), then

fgdo<logfe’dp + [log fda

for any geL!(dx). We will refer to this inequality as the basic entropy estimate.
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The large deviation property of the sequence R,, with respect to the Gibbs
measure vy r, also implies the large deviation property of the distributions of the
sequence my, (x). For this we use the Contraction Principle.

Lemma 2.4. Let z" be an arbitrary sequence in X and FeCy .. Then the Jamily
#(dy) =g 1, (mr,€dy) has the large deviation property with the rate I:(y) =
inf  1p(p), where D(p) = jxodu for those measures p such that jlxold,u is finite.

o=y

Proof. Set C,= {u|{w(xo)u(dx) < I}. Note that the set C, is closed in X and @

restricted to C, is continuous. Now we can apply Lemma 2.1. For this we need to

check P,(X — C,) is superexponentially small as | - co. For notational convenience
we denote v ;. by v,. Using the Tchebyshev inequality,

P,,(X—C,)=v,,{)_c:|7{| Y w(xa)>l}§e"”T"'E”"exp< Y w(xa)>.
nl aeTp

aeTy

On the other hand

Tlnl exp( Y w(xa)>

n— o aeTy
= lim sup l;l ( Y (w(x,)— ¢(x,,))>exp< Y Fl(r,x )dx— Y(F)
< ”F”a0 +10gjeW(x)_¢(X)d(x)— Y(F) < 0.

Thus

limsup limsup

=00 n— oo l n

(X —C)=—o0

and this completes the proof. []

Once we establish the large deviation property of the sequence my (x) with
respect to Gibbs measures, it is not hard to identify the rate function as the convex
conjugate h of the free energy ¢ defined by

@(4) = ¢(F, 4) = lim sup

naooll

(1 Y x )VF,T"’Z"(d)_c). (2.13)

Lemma 2.5.
Tr(y):=h(y) =sup (2y — o(A)) (2.14)
Proof. 1t is enough to show that
o(4)=sup (1y — ().
We only verify
o(4) < sup (dy - L))
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We omit the easy proof of
@(4) 2 sup (y — Tx(y))
y

which follows from the lower bound large deviation estimate.
Let C,and v, be as in Lemma 2.4. Since the function @ (defined by @(u) = [ x,du)
restricted to the set C, is continuous, by Varadhan’s theorem ([13]) we have

lim sup ! log | exp(l Y xa>dvn§sup (Ay — Ip(y)),
n— o ITnI K aeTy y
where K,={)_c Y w(xa)éllT,,|}.
aeTy,

Therefore we only need to show

1
log | exp(i Y xa>v,,(d)_c)= — 00
Kj

limsup limsup

1= n—> o !T,,‘ acTy

or

1
lim sup lim sup —log | exp< Y w(x,,))v,,(d)_c) = — .
Kj

1= 00 n— o I Tn’ aeTy,
But this is an easy consequence of the Tchebyshev inequality and (2.6). [
Corollary 2.6. The family p, has the large deviation property with rate h.

Now we state the main result of this section.

Theorem 2.7. Let {z,} be a sequence of the boundary conditions and {y,} be a
sequence of real numbers such that lim y,=y. Then the family {P}";  } has the

n—>w

upper bound large deviation property with rate
Ig(p)—h(y), if \xodu=y;
Iy(u)z{ogu ), il Jxodu

F otherwise.

>

The proof of this Theorem is carried out in several steps.
Let GeCj,.. Set

1
| T
Let g,(F,z;y) denote the density of my with respect to vg 5 .. Then

G(y) = log [ exp (# ¢ 1,(x))V} 1., (dx).

Lemma 2.8.
Gu(y) = : loggu(F + G,z,;y) — . 10g g,(F, 2,3 y)
| Tl | T,
+Llog Zri6r,:, —Llog Zir (2.15)

| Tl | Tl
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Proof. Let J be a test function,
§I(0)Gu(F, 243 y)exp (1T, G,(y))dy

1
= JJmz, () exp (K g.1,.,(0) + Ky, () —dp™;
F

VA
=5 [ ) XD (H p ) 7 —dp™

F+G

z
=28 [ J())gu(F + G,z,; y)dy.
Zy

Here to simplify the notations we have dropped the indices z and T, from Z. [
The main ingredient to prove Theorem 2.7 is the following Lemma:
Lemma 2.9. The family G, is equicontinuous on every compact subset of R.
Proof: Step 1. Because of Lemma 2.8, it is enough to show that the sequence
1 a0
| Tl gu(y)

is uniformly bounded over any compact subset of R. Here, for ease in notation
we have used g, for ¢,(G, z,; y).
Let J be a test function. Then we have

ITI (9a(y)dy
L (3
= exp(”arn(x Z«ﬁ(xa))
x,,) .
aeTy ,
=1 |T,| {ITIa;,, 0x, |T|a;n¢(xa)}d"o,r,,,;n
1
el E AV =) x)— ¢(x,) Javsr . bdy.
| T,| aéT, 5x
Therefore
L g 1 o
IT,| Zg; =T & <0x —¢ “a’)dvé.n,gn- (2.16)
So
| T, 38 |T| X 16/ (xldvsr, ., 2.17)

where ¢, is a constant depending only on G.
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Step 2. Let

71 T 1, (0,

It is easy to see that
1
vé, Tz (d.)_C) = Z_ exp (‘%G, Tz ()_C))Vz(d)_c)
Yy

Here v)(dx) is vg,m"(d)_c), where we set G =0, and Zy is the obvious normalizing
constant. Now we use the basic entropy estimate to deduce

1 \
K,(y) = I(I T a; |¢'(xa)|>exp (fy/c,n,zn()—‘))z_ vi(dx)

y

=

logfexp< 2 l¢ (xa)l>vy(dX)
1 exp(‘#G,Tn,g"()_c)) y
e

y
=j1+j2.

Tl

On the other hand
I'%G.Tn,;" g Cy I Tnl’

where ¢, is a constant depending only on G. Therefore

Zy = .[ exp (%G,Tm;n)vx(d)_c) g e—cl”‘nl.
So
jz é 26‘1.

Final Step. In order to finish the proof, all we need is to show that the term .#,
is uniformly bounded in y for y in a compact subset of R. Let J be a test function
as before, and let k,(y) be the density of my (x) with respect to p™(dx)=
exp(—— Y d)(xa)>d;c. Then

aeTy,

[k, (y)J(y)<f CXP< > ¢ (xa)l>vy(dx)>dy

aeT,

=] J(mn(x))exp< >, (19 (x)l — d)(xa))) [] dx,

aeTyn aeTy

% (xa)l = dixa)

=M™ [, () T]

=M [ J(y)k,(y)dy,

dx,
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where k,(y) is the density of myr (x) with respect to the product measure

o9 (xa)l — $(xa) J
e — xa
aeT, M
and
M= j’el¢’(x)l—¢(x)dx.
Therefore
1 , 1 -~ 1
log fexp| Y [¢'(x,)| |vi(dx) = — logk,(y) ——logk,(y) + M.  (2.18)
ITnI aeTp |Tn| [Tnl

Note that we can write

e|¢'(xa)|—¢(xa)d _ oy
where

P = —1¢'(| + p(x) + log M.

So, by (2.18) the term .#, is bounded if we can show (1/|T,|)logk,(y) is bounded
and (1/|T,|)logk,(y) is bounded above. We will show these in Lemmas 2.10
and 2.11. J

Lemma 2.10. (1/|T,|)logk,(y) is bounded over any compact subset of R.

Proof. This immediately follows from Theorem 3.4 in [4]. O

Lemma 2.11. There exists a positive constant ¢, such that
ki(y) < c,| T,

forallnz=1.

Proof. Let f = e~?. First we show feI*(R). Because of (2.5), it suffices to check
that e ¢ is uniformly bounded. This follows from the integrability of the derivative
of e™?,

[l¢'le ? <log[el®! % < co.
Since feI*(R), we have f* feL®. This implies that the n-fold convolution of f is
bounded by || f* f|l,, for n 2 2. Therefore the density of ) x, is also uniformly

aeTy

bounded for all n> 1. Thus k,(y) is bounded by |T,| | f*f .. O

An easy consequence of Lemma 2.9 and Corollary 2.6 is the following theorem
which is a large deviation result for the densities g,(F, z; y).

Theorem 2.12. Let FeC),.. Then
1
lim
n—o | Tnl

uniformly in boundary conditions z and uniformly in y in compact intervals of R.

logg,(F,z;y) = — h(y)
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Proof. Tt suffices to show

(F Zmy)— - h(y)

nmlTl

uniformly on compact y-intervals, where {z,} is any sequence of boundary
conditions.

By Lemma 2.10 the sequence {(1/|T,|)logg,(F,z,;y)} is equicontinuous over
compact intervals. Now we show that this sequence is bounded over any compact
y-intervals. By (2.15) we have

|—7~1—|10g Jexp (1, (W)

|T| sZn3Y) — ITllogk(y)HogZFrz,
where v} and k, are as in the proof of Lemma 2.9. Since the right-hand side of the
above identity is uniformly bounded in y, and since the sequence (1/| T,|)logk,(y)
is uniformly bounded over compact y-intervals (Lemma 2.10), therefore the
sequence {(1/|T,|)logg,(F,z,;y)} is also uniformly bounded over compact y-
intervals.

If a subsequence of {(1/|T,|)logg,(F,z,;y)} converges to a function g, then by
Corollary 2.6, g can only be — h(y) and this completes the proof. [J

Now we check that [} is a rate function.
Lemma 2.13. The set {u:13(p) < ¢} is compact for all ¢.
Proof. Let I(n) < co. Then, by the basic entropy inequality

[w(eo)pldx) = — I( 5 W(xa)>u(d)_c)

n| aeTy

- =

I( ) w(xa>)u“<d)_c>

aeTy,

l

S

log[ ew( Y W(xa)>pT"(d>_c)

aeTy

du’™
IT | — [ log i T"(x)u "(dx).

Therefore, after passing to limit as n— oo,
J wxo)u(dx) < log [e*™~¢Xdx + H (1)
=log [ %9dx + I () + [ Fdu — y(F)
_S_ Co + IF(”)a

where ¢, is a constant depending on F.
This implies that [w(x,)u(dx) is bounded if Ir(p) is bounded. Note that
D(p) =fx0du is continuous if it is restricted to the set {u:{w(xo)u(dx)<¢,} for
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any 7o,
(B S ¢} = {p:fxodu =y and L < ¢ +h(y))
= {m:fxodp =y and fw(x,) < co + £+ h(y)}
N{w:Ip(p) <7+ h(y)}.

Thus the set {u:I%(p) < ¢} is compact, because I is a rate function.

Proof of Theorem 2.7. Step 1. We use Lemma 2.3, in order to show the inequality
(2.2) (i.e. the upper bound estimate) for the family {P}; , }. For this, we need
to consider a suitable closed base for the topology of the weak convergence. Let
o, be the collection of the closed sets of the form

{ueM (X):[ G duel,,[G,dpel, - [ G duel,},

where I,,...,I, are fixed closed subsets of R and G, ..., G, are in C},.. We also
use the compact notation G =(G,...,G,) in the sequel.

Note that if 4,,..., A4, are in &/, then A, "---NA4,, is also in o/,. Let & be
the collection of all finite unions of the elements of «7,. That is,

s/ ={B,U---UB|for some B, B,,...,B, in «/,}.

It is easy to check that &/ is a topological closed base for .# ,(X). Since the space
M (X) is separable, then for any closed subset C of .#,(X), there exists a decreasing
sequence {A,} in & such that C=n,A,.

Step 2. Consider the continuous function @:.# (x)— R* defined as

O(w) = [Gdp.
For ease in notation, we set v;" = vy . . Let 0=0,,...,0,)eR*. We define
. 1
&0;y) =&(0y,..., 0, y) = lim T log [ exp (| T,|(0- ®(w) Py , (dw)
.1 ’
= lim T Jexp(Hyg 7 )avir.

The last equality needs some explanation. From the definition of Py .~ we
obtain the last term with #, 1. . . But, after passing to limit, the contribution of
the boundary condition disappears. Now we use (2.15) to conclude

o
$6;y) = lim 1=

logg,(0-G+F,z,y)

lim !
n—o ITnl

+ P0G+ F)— ¥(F)

Let ¢(-, A) be defined as in (2.13) and let h(*; y) be the convex conjugate of ¢(; 4)
in the variable A. By Theorem 2.12,

80; )= —h(@ G+ F;y) +h(F;y)+ ¥(O G+ F)— ¥(F)

logg,(F,z,; )
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Step 3. By Lemma 2.2, the family
(| Gdueds)
has the upper bound large deviation property with rate
1(%;y)
which is the convex conjugate of £(6; y) in the variable §. More precisely
I1(£;y) =sup (0t — £(6; )
9
=sup(0-t+sup(ly — @@ G+ F;4)) — ¥(0-G + F) + ¥(F)) — h(y)
0 i
=sup(@'t+ 1y — @ G+ F,4)— ¥(F+0-G)+ ¥(F)) — h(y).
0,4

Step 4. Let ®(p) = (fGdp, [ xodu). We have shown the Contraction Principle for
@ in Lemma 2.4 (when G =0). However, with the same argument, we have the
same result for @ for any G in CL.. We can also identify the rate function as in
Lemma 2.5. Thus the family {P; . , 0@‘1} has the large deviation property with
the rate function "

~

I(;y)=inf {Iz(1):{ Gdu=1t and [x,du= y}
= convex conjugate of ¢(0;4) in @ and 4,
where

¢(0; 1) = lim

log | exp (l Y X, + f@g()_c)) T (.9

n— oo |Tn| aeTy,
1
= lim T logjexp(l Y x,,)vFH,.G,T L (dx)— P(F)+ YO G+F)
n— oo n aeTp smen

=o(F+0-G;A)—¥Y(F)+ ¥ G+ F).
Thus
I(;y) = I(t; y) — h(y).

Final Step. Let A= {u:{G,duel,,...,[ G, duel,} as in the beginning of the proof.
Then

1
lim sup mlog Py (A) = —inf{l(t;y):t,€ly,..., 1€l } by step 3,

= —inf{I(;y):t,€l,,..., i€l } + h(y)
=— inf (Ip(p) —h(y))

ueA
[xodu=y

= — inf I(p).

ueA

Since any set in &/ is a finite union of the sets in ., we also have the above
inequality for Ae/. []
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Let FeC,.. For each 4, set F,(x) = F(x) + Ax,. For simplicity we denote ¢ F,
by 9,.

Theorem 2.14. Suppose that GeCL or G(x) = G,(x) + ¢'(x,) for some G,€C.. Let
z, be a sequence in X, let y, be a sequence of real numbers such that lim y, =y, and
let FeCL,.. Then the family oo

o, (dt) = viry . {”{7 aezT,. G(ra,)_c)edt}
has the upper bound large deviation property with rate
Jo(t)=inf {I(u): [ Gdp =1}.
Moreover J4(t)=0 if and only if t = [Gdu for some pe%,, with {xqdp=y.

Proof. If GeC},, then the large deviation property is an immediate consequence

of the Contraction Principle and Theorem 2.7. If G(x) = G,(x) + ¢'(x,) for some
G,eC?., we may apply Lemma 2.1. For this we need to show that

1 1
lim sup lim sup —— log v}, | <— Y wd'(x,) 2 f) = — 0. (2.19)
=0 n—oo | Tnl e I Tnl aeTy

Because the function @(p) = [ Gdy, restricted to the set {u:[w(¢'(x,))u(dx) < 7} is
continuous.
Formula (2.19) follows from

. 1
lim sup T

and the Tchebychev inequality. For this, we can essentially repeat our argument
in the final step of the proof of Lemma 2.9 (see (2.18)).
If J5(t) =0, then there exists a measure y in 4 (X) such that

fxodu=y; [Gdu=t; and I(u)=h(y). 221
On the other hand by (2.11) we have
I (W=H,(1)— [Fdu—Afxodu+ ¥Y(F,)
=Ie(pw) — {Ay — (¥(F,) — ¥(F))}. (2.22)
From the definition of the function h as the convex conjugate of ¢, we have

h(y) = sup (Ay — @(F; 1)) = sup (Ay — P(F;) + ¥(F)),

log | exp( Y w(¢’(xa))>dv{{'Tm£" <+ w (2.20)

aeT,

and the supremum is attained at A = h'(y). Therefore
h(y) =K (y)y — ¥(Fyy) + F(F).
From this, (2.21) and (2.22), we obtain
I (=0 if A=H(y).

Finally, it follows from the Variational Principle (see Preston [10], p.115) that
HEG(y)-
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Remark 2.15. We have assumed that h is differentiable. Since h is convex, this is
equivalent to strict convexity of ¢(4) or ¥Y(F,) in A. This also follows from the
Variational Principle. See Preston [10], p. 158 for more details.

Corollary 2.16. If Gy(x) = ¢'(xo) — (04 ,/0x,)(x), where H ,= H ¢ 1., then J g (t)=0
if and only if t = W (y).

Proof. Let ue%9, for some AeR. Then
jGodu= (G

0
-l Z(‘f - ) Jud)

¢’ (xo)> (dx)

lTnl aeTn
1 oA, ,
= — [ u(dz) T T< ox. E)—d)(xa))dvﬁ,’r,,,g
=A+r, (2.23)
where lim r, =0. This is because

n—oo

dszmiE =

exp(%’ (x)— Z P(x)+4 Y x >

F;.T,z, aeTn aeTn

where #, = H r1,: Lhe last equality in (2.23) follows from integration by parts.
The error r, comes from the boundary condition z when we replace 0.#,/0x, with
0, /0x,.

Now let 1 =Hh'(y) and pass to limit n— oo in (2.23). [

Theorem 2.17. Let K be a bounded subset of R, and let G, be as in Corollary 2.16.
Then

lim sup f Z Go(t,x)—H(y)|dvy, ,=0. (2.24)
n>w zeX |T | acT' e
yekK

Proof. It follows from Theorem 2.14 and its corollary that

. 1
lim v%?T,,,g,,( > 5> =0,

— G -
T ZT o(TaX) = H'(y)
where y,— y,z, is an arbitrary sequence in X, and § > 0. Therefore, for (2.24) we
only need to check the uniform integrability of the sequence

1
T Y, Golt.x)

€Ty

with respect to the measures vy . . For this, it suffices to show

1
StuW( Y ¢'(xa)>dV¥"T . < 0.
n |T,| o7, s
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Since w is convex, it is enough to show

T T WD

But this is an immediate consequence of (2.20) and Jensen’s inequality. []
Theorem 2.18. Let FeCl,.. Then
1 /
1o ()
I T,| 9(¥)

uniformly in ze X and y in a compact subset of R, where

9n(¥) = 9u(F, 2, y).

Proof. This follows from Theorem 2.17 and (2.16). [J

The function G, is of very special form. That is why we have an ergodic theorem
like Theorem 2.16 even when phase transition occurs (i.e. ¢, for some 4 is not
singleton). In general we do not expect to have such a result for any GeCY,.. If we
however assume that the space of Gibbs measures has a linear structure, we can
extend Theorem 2.16 to any GeCy.. Note that this assumption does not exclude
phase transition.
Definition 2.19. We say that ¢, has linear structure if p,,u,€%, and jxodyl =
Jxodu,, then py = p,.

If %, has linear structure for all A, then, for any GeC},, we can define

Ag(y)=[Gdp,
where 4 is the unique measure in %, such that | xqdu = y.

Theorem 2.20. Under the above assumption,

lim sup
n=o zeXI 'T IaeTn
yeK

Ag(y)|dvir, . =0,

where K is any bounded subset of R.
Proof. This follows from Theorem 2.14 and the proof to Theorem 2.17. [
In Sect. 5 we will need the following estimate.
Lemma 2.21. There exists a constant ¢ such that
[ = ¢+ h(y). (2.25)

Proof. Let G, be as in Corollary 2.16, and let ue%,.,, be such that { x,du=y. Let
2= H(y). Using the basic entropy estimate we have
1
T a;ﬁkﬁ (x2ldvp, 1, = 7] logfexp<a;nl¢ (xa)l)de"
N 1
| T,

j (%Fa, Twz log ZFAmeZ)dvFA’TmZ.



Hydrodynamic Limit 465

By integrating both sides in z with respect to u and passing to the limit, we obtain

1 ,
lim sup | ( Y d)’(xa)|>u(d>_c) <log[el?™=¢®dx 4 [ Fdu+ A [ xodu— W(F))

n— oo 'Tn‘ aeTn
é Cy + h(y),

where ¢ is a suitable constant and A = #’(y). On the other hand, by our calculation
in Corollary 2.16 we have

1
[F(»)| = ¢; +lim SUPI<|T | ) I¢'(x..)|)d/4

n— o €Tr

for some constant c,. This will give us (2.25) with c=c¢; +¢,. [J

3. A Local Ergodic Theorem

Initially we start from a distribution having density f$ with respect to the Gibbs
measure vy with periodic boundary condition (see (1.12)) The initial density f%
satisfies the entropy condition

1
il filog fidvy < C.

Then the evolution governed by the generator #, (see (1.10)) gives us the density
f% which satisfies the forward equation
of n
ot

Then for large N the measure f’dvy locally looks somewhat like a Gibbs measure
with the interaction F and a chemical potential A = h'(y), where y corresponds to
the macroscopic charge density, coming from the averages m;. To make this precise,
we first state Theorem 3.1 which is some kind of ergodic theorem.

Let Qy be the law of the diffusion generated by £ on the space C([0, o), X)
where Xy =R,

=$Nf;\!'

Theorem 3.1. Let G, be as in Corollary 2.16, and let T (a)=a+ T,. Then

1 ! 1
lim lim sup lim sup limsup—; Y E2~ Go(t,x(5))
k> £-0 P /-.aop N*OOde ,,g-;’ '(‘; |T/(a)|ue;,(a) °
— Yol (my, ,(x(5)))|ds =0, (3.1)

where

-k x<—k

x |x|=k
Y(x)=1 k x> k;
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If we set
N 1t
fyx) = ;I S(x)ds
0
and
nn(x) = WGEZSZN Fi(rx) (3.2

for xeR*", then (3.1) can be written as

lim lim sup lim sup lim sup E"™ ¥

k=0 e—20 (>0 N— o

¥ Golrux) — Yok (my, (x)| =

33
IT | ueTy ( )

The proof of (3.3) is carried out in several steps. Let PV denote nydvy.

s}=o

Before proving Theorem 3.2, we study the limit points of the sequence nydvy.
For this we follow [4]. First we define

W=y sup[f — du]

Theorem 3.2. For any 6 >0,

lim lim sup P”{ Y. Go(t,x) — K (m,(x))| >
(v N-© IT(I !

ueTy

for u a measure on the space RS"iV. Then
Lemma 3.3. (a)

1
FI nylognydvy < C, (34
(b)

NN 3.5
We omit the proof, which follows the proof of Theorem 2.4 in [4].
Let Proj, denote the projection on the space R™. Let 7 be the set of measures

ueM (X) such that for each ¢, Proj,(u) is a weak limit point of the sequence

Proj,(P").
Lemma 3.4. (a)

1
supsup E* —— " w(x,) < oo;
ned IT laeT;
(b)
1
supsup E*¥ — %" w(¢'(x,)) < o0
peg (¢ l T, l ¢l aeTy
(©
T <%,



Hydrodynamic Limit 467

Proof. (a) is an easy consequence of (3.4) and the basic entropy estimate. (b) also
follows from this estimate

N 1 N
EF W' (x) = E™ < Z w(¢'(x,))

,T |"ET( aeSy
1
= F lOgIeXP QO w(d'(xa))dvy + Wj nylognydvy.

This is uniformly bounded in N because of (3.4) and (2.6).
(c) Consider the following diffusion generator

1/ 0 o \? 0H'y OHy 0 0
ga,b_'j(a;c—a—a_)(:b) ——<¢(Xa)—¢( b)_—_ %, >(6—xa—6_x,,>

For finite T < Z¢, we define

$T=z$a,bs

where the sum is over bonds a, b (adjacent sites) in T. Corresponding to £, we
associate the form

F1()=sup [f ~Zf d#], (3.6)
>0 f

where ue.#(R5) for some S with T+ A< S (A is the range of F). When ue.#(R5)
then the supremum in (3.6) is over feC®(R5,R). Note that

fN(”) = fs‘,‘v(,'l) = Z]a,b(.u)s
AN =Y V().

0 0
mﬂ——j( S _of ) dvy. (37)

where

6xb

From these considerations and Lemma 3.3, we obtain

C
N <
éaa,b(\/ ny) < aNZd

for a, b adjacent sites (this is because 7, is translation invariant in the space Rs"’v).
This implies
C
P ——
/n,b( )_ 4N2td

(for the relation between #,, and &5, in general see Stroock [12], Theorem 7.44).
Suppose that a + A, b+ A < T,. Then, in (3.6) with T = {a, b}, if we restrict the
supremum to functions feC*(R%,R) and f >0, we obtain

Fap(Proj(PY)) < £, ,(P").
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Thus
1s(PrOj,(PM) S (8)
@ ‘ =4N*td
Let ue7 . Then by lower semicontinuity of #,,, we have
Fap(Proj, p)=0.
Thus
Fr(Proj,p)=0 (39

for any finite set T < Z%. In Lemma 3.5, we will show that (3.9) implies (c) and this
completes the proof. []

Lemma 3.5. The following statements are equivalent:

(@) #r(Proj,u)=0 for all large ¢ such that T + A< T,, and all finite sets T < 7%
(b) [ Lrfdu=0, for all feCZ, and all finite sets T = Z%

() pe%s.
Proof. (a<>b) Consider the inequalities
&
[TTf dp=0 (3.10)

for feC., f >0 and T < Z° finite. By setting f = ™ with ueCZ, and teR, and
then varying ¢, it is easy to see that (3.10) is equivalent to

[Lrudu=0 (3.11)

for all ueC, and T < Z* finite.
(b<>c) Let #; be the g-field generated by the variables x, with a¢T, and
my(x). Then, if f,geC3, and g is & r-measurable, we have

ZL1(f9)=9Zrf. (3.12)

Given ue (X), let ur, denote the conditional probability distribution of u
given & ;. More precisely

pr(dx) = wdx|x, =z, for a¢T, and my(x)=y),
where y = my(z). From (3.12), we conclude that (3.11) is equivalent to
[&Lrfadpy,=0 (3.13)

for all feCpe., and almost all z with respect to u (here, we have used the fact that
we only need to verify (3.13) for a suitable countable family of functions f).

It is not hard to see that #; acting on the space of functions defined for the
variables x,, for all ae T and m(x) = y is elliptic with the unique invariant measure
v}, Thus (3.13) is equivalent to

v’;é:;ﬂr,E aa. z,

and this completes the proof. [J
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Proof of Theorem 3.2. On account of Theorem 2.16 and Lemma 3.4 (c), we only
need to check
limsup limsupsup |  pu(dz)=0.
P fom ped Imp@)lzp
But this is an immediate consequence of Lemma 3.4 (a), because w in this lemma
satisfies (2.6). [

What we have shown so far is an ergodic theorem for the averages of G, over
the microscopically large blocks of Z%. In Theorem 3.1, however, we need to show
that these averages are close to the chemical potential of a macroscopic charge
density. The gap between Theorems 3.1 and 3.2 is filled by the following result:

Theorem 3.6. For any 6 >0,

lim lim sup lim 1sup PY{x: W (my(x) — W (my (x)| >0} =

£20 /o0
For this, we first link a block to a macroscopically close block by the following
lemma.

Lemma 3.7. For any 6 >0
lim lim sup lim sup sup PY{x:| W (my(x) — K (mq,(x))| > 8} =0,

20 /o N—- o
where the supremum is over sites v such that T (v) < Ty,, and
(A is the range of F).

Proof. Let dB,, , be the projection of fydvy on the space R"** x R"* where

v may depend on N,/ and ¢. After a change of variable we view this measure as

a measure on the space R"*" x R™9*4 where v, is now a fixed site such that
(T (vo) + ) (T, + A)= .

We abuse the notation and denote this measure by By, .
Let B, be any limit point of B, , as N goes to 1nﬁn1ty Then by (3.9) and its
consequence (3.11) we have

K4 rfdB, = I < r[(vo)f dp,=0
for all feC®(R™** x R™*4 R). The proof of Lemma 3.5 implies that
dﬂ/ = f v;"tTl,g V{'?T,(uo),;ﬂdy 1»,dy,,dz) (3.15)

for some probability measure y. We also consider %, , and &5 ,, where A= T,
T,(v) < Ty,. Then, the proof of Lemma 2.3 in [4] implies that &3 (ny) < Ce?d/4t.
Therefore

Ce?d

N <
fOU(P )_ 4t )
Ce?d
foo(BNlu)=—'
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Then by lower semicontinuity of #,, (or £ ,,),

Ced
FoulB) S

Let B(dy,, dy,) be the distribution of m;, and Mz, With respect to §,. Our Theorem
2.18 and (}'15) allow us to fgllow the proof of Theorem 4.3 in [4] and conclude
that any f, a limit point of 5, as £ goes to infinity, satisfies

o 2Ce%d
§ 1K) = K2Ry, dys) £ = (3.16)

Now let ¢ >0 in (3.16). This will prove (3.14). [
Proof of Theorem 3.6. Let
By, = {veSy:T,(v) € Ty, and (T, + A) (T (v) + A) = J}.
Let M (v) denote the indicator function of the set
{x:(mp(x), mp(X))€ Ay},
where
As={(x, y)eR*:|K(x) — K'(y)| = 6}.

We simplify the notation by dropping indices N, 7 and ¢, from B and M(v). We will

also denote lim lim sup lim sup by ‘Lims’. After these conventions, Lemma 3.7 says
20 /o N-

Lims sup EP" M(v) = 0.

veB

Since
|
EP" ¥ wx)<C 3.17)
I TI aeT
for any T < §%, we obtain

Lims sup E”™ M(v)|my, | = 0.

veB

Therefore
. ~ 1
Lims EF" — Z M(@v) =0, (3.18)
,BI veB
~ 1
Lims E? ﬁ Y M(v)|my | =0. (3.19)
veB

From (3.19) we conclude

1
— =3 (1 = M@)mz,|=0. (3.20)

Lims EP"|m
The lBl veB
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Denoting Y. M(v) by M, we can write
veB

B
Lims PN< 1— |BI - >6’>=0
|Bl—M
for any ¢’ > 0 (because of (3.18)). This and the uniform integrability property (3.17)
imply
Lims P¥ 1-M 1-M >0 0
1ms ( |B] ;( (v) )mT,(u) |B|— M 1;8( (U))mT((b) >

for ' >0. Let W = B M(v))my,,. Then by (3.20),

Lims PY(|m;, — W|> ) =0. (3.21)
Since W is a convex combination of random variables m, such that

(mr, mp €A,
we have
(mT,, W)¢Aa/z-

This is simply because the set {y:(x, y)¢A;,} is an interval for fixed xeR. Finally
(3.21) guarantees

Lims P™((my,, m; )eA,) < Lims PY((m, , W)€ As,) =0,
and this is precisely the content of the theorem. [

Proof of Theorem 3.1. It follows from what we have just proved and Theorem 3.2

<| T Y Golt, x)) Yol (mg, (x))| > 6):

ueTy
Since ¥, is bounded, we can replace the convergence in probability with the
convergence in expectation. Now all we need to complete the proof is the uniform
integrability of the sequence

lim sup lim sup lim sup P¥ <

£—0 {0 N-ow

{ITIZGO(”}

ueTy

But this is just the role of Lemma 3.4 (b). [

If we assume that ¢, has linear structure for all A (see Definition 2.19), then
we can improve Theorem 3.1 by replacing G, with any GeC},.. Essentially, this is
because Ag(y) is continuous in y and A4(y) is affine on the interval {y:h'(y) = h'(x)}
for each fixed x. These two properties of A; will be shown in Lemma 3.9.

Theorem 3.8. Let GeCy.. Then

lim lim sup E™® |.—— 3" G(t,(x) — Ag(my, )| =0.

e20 N-o ITNS aeTy,
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Proof. If we go through the proof of Theorem 3.1, we will see that we only need
to verify

lim lim sup lim sup P¥ ( Y, Aglmy,,) — Aglmy )| > 5) =0 (3.22)
=20 /(oo N— oo l TNgI veTy, Ne
for any 6 > 0.

We continue to use our compact notations like B and Lims as in the proof of
Theorem 3.6. We can write the content of this theorems as

Lims sup P¥(|K'(my, ) — '(my,)| > 8) =0 (3.23)

veB

for any 6> 0. Let K denote the (may be degenerate) interval {y:h'(y)=h'(m;, )}
and let C, be the closest point in K to my,,. Since Ag is affine on K, we have

<|B| Y. C, ) B[ 2 Z Ag(C,). (3.24)

veB

It is not hard to see that (3.23) implies

Lims P”( ycC,— mr, | > 5) =0, (3.25)
|B| veB
Lims P”( 5 ZB A(C,) - B Bl Z A(my )| > 6) (3.26)

for any 6 > 0. We omit the proof of (3.25) and (3.26) which is very much like the
proof of Theorem 3.6. Now (3.22) follows from (3.24), (3.25) and (3.26). [

Lemma 3.9. (a) A; is a continuous function, and
(b) Ag is affine on the interval {y:h'(y)=H'(x)}.

Proof. (a) Using the basic entropy estimate, it is not hard to see

sup [ w(xo)du < oo,
ue9,
AeJ

where J is a bounded subset of R. This implies that @(u) = [ x,du is a continuous

function on the space | %,. Now let y,—y and y, = [ x,dp, for some p,el ) %;.
AeJ A
Then if u is any weak limit point of the sequence p,, we have

y=[xodu and pel)¥%,.
2

Thus
lim A4(y,) = lim j'Gdy,, = _[Gdu = A4(y).

n— o n— oo

(b) This follows from linearity of {Gdu in . [

4. Large Deviations for Empirical Measures

In Sect. 5 we will use Theorem 3.1 to derive the hydrodynamic equation. This
requires to replace back y, with &'. This is the object of Theorem 4.1.
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Let fy be the density relative to dvy of a random variable on R®* such that

1
SUPWIfNIOg Sfndvy = C.
N

Let Qy be the law of the empirical measure

1
u= NF z xaéa/Nf

aesfv

where x, are distributed according to fydvy.
Theorem 4.1. For any limit Q of Qy, we have
Q{uu«xdo}=1

o[«

Here, d0 denotes the probability Haar measure on the d-dimensional torus.

The proof of this follows Lemma 6.3 in [4] which uses the large deviation
property of the empirical measures. When the interaction F is not present (i.e. vy
is a product measure), the large deviation property is shown in [13]. In Theorem 4.2
we show the upper bound large deviation property for empirical measures with
respect to vy. This is all we need to carry out the proof of Theorem 4.1.

and

Theorem 4.2. The family Qy has the upper bound large deviation property with the
rate function

jh(j—‘;)d() if p«df

J(w = ,
+ o otherwise

We recall the function ¢ defined by

1

¢(4) = lim log fexp </l Y x,,)va.
n— oo , T,,I aeTn

We first prove

Theorem 4.3. Let f be a continuous function on the d-dimensional torus. Then

lim Nld—log E*™ exp( Y f(a/N)) = [ @(f(6))db. 4.1)

N-w aesy;

Proof. Let {(f) denote the left-hand side of (4.1). The idea is dividing S% into small
pieces on which of each f(a/N) is almost a constant. Then we can use ¢ to calculate
&)

Let k be a fixed positive integer and let ¥ be a collection of cubes of length
k, all separated by corridors of width £, where £ is the length of A (A is the range of
F). Let I" denote the union of the cubes in €% and let MY be the total number of
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them. We may construct €5 such that
kiMy
lim Tdk =1 4.2)

N- oo

Since f and F are bounded and since | ¢°!*! p(dx) < oo for all ceR(p(dx) = e~ *¥dx),
we may drop all terms with x,, aeS% — I' in (4.1), and obtain

C(f)=13im IOgI [1 [exp<2fa/N)x + Ak, r(x)ﬂ T(dx)—y(F). (43)
Te‘é

Let w(d) =sup| f(t + h) — f(t)|, where the supremum is over t and over |h| < 6.
Let b(T) denote the center of T. In (4.3) we like to replace f(a/N) with f(b(T)/N).
Let 1 <p<oo and 1/p+ 1/g = 1. Then by the Schwartz inequality

j exp[ > (f(%)x + m,rm)]dﬂ SN TPBN,Tp), (@44

aeT

where

1/p
d(N,T,p)=[Iexp( <§V’)Z +pfm(x))dp] :

AN, T,p)= [f(‘l“’<\/‘7lﬁ>aezr|xal>] ’

Furthermore (N, T,p) < «/'(N, T, p)exp(IT|(p — 1)/p|| F || ,), where

1/p
'(N, TP)_|:fexP<Pf( ( )>Zxa+¢7fp‘r()_c)>de] ,

aeT

and
1 Mik? KIN) | x|
lim sup—N~log n A(N, Tp)—llmsup Nig log [ &2 p(dx)=0. (4.5)
Te%k
Let @A) = ITllog EF Texp(l Y x > Note that ¢, (1) only depends on k the
aeT

length of T. From (4.4) and (4.5) we conclude

{(f) = limsup hmsup llmsupN Z log o/'(N, T, p) — ¥(F).

r—1 N—- o TE%,(

On the other hand

, b(T) 1
|T'logtsal(N ,T,p)= oIT logjexp(pf< )Z;xa)dvp,T+mlogZF,T

ae

1 b(T
=E"”<”f< 5\!))) m‘° g2
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Thus

1 MY
C(f)<llmsupllmsupllmsup{ N y <pT<pf< (n»w%ﬁlogzp T} Y(F)

p—1 k= N—-© Te‘ék

=lim sup hm sup j or(pf(6))do

= [ o(f(6))do.

We can prove {(f) = [ ¢(f(6))d6 in the same way. First we apply the Schwarz
inequality to write

j exp( 2 f(f’@)x,, ¥ m,ro_c))dpf
aeT N
1/p
[Iexp<p2f< )x +p Ky, r(x)> T] B(N,T,p).

The rest of the proof is analogous to what we did in the above and we omit it.

Proof of Theorem 4.2. Let K be the convex conjugate of {. That is
K(w= Sl}p(f fdp =), (4.6)

where the supremum is over all bounded continuous functions. We can obtain the
upper bound large deviation estimate (2.1) for the family {Qy} when C is compact
by the same argument used in [14] (Lemma 11.3). To extend this to closed sets,
we have to establish some kind of exponential tightness (see Stroock [12], page
46). More precisely, we need to show that for any large # there exists a compact
set C, such that

lim lim sup log ON(C)) = — 0. 4.7

f—»x N—oo

Set C, = {u: | ull = ¢}, where || u|| denotes the total variation of u. C, is compact, and

N R EY) ER e )|

Now (4.7) follows from (2.4).

So far we have shown the upper bound large deviation property for the family
{Qx} with rate K. We will show in Lemma 5.4 that K is equal to J and J is a rate
function. []

Lemma 44. K =J and J is a rate function.

Proof. Step 1. Let f be a bounded measurable function. By Lusin’s theorem, for
any ¢ > 0, there is a closed subset of torus D, and a bounded continuous function
fesuch that u(DS) + | D¢| < (|| denotes the Haar measure on torus) and f| b, = =f] o,
From this we see that the supremum in (4.6) can be extended to all bounded
measurable functions.



476 F. Rezakhanlou

Step 2. Let du be absolutely continuous with respect to df, g=du/df. Set
gn=(—n) v (g9 An)and f,=Hh(g,). If —n<g(x) <n, then g,(x)=g(x) and f,(x)=
h'(g(x)). Therefore

hg)= | [9fu—o(fI]1< sup faf —o(f) =K.

—n<g<n —n<g<n
On the other hand, it is easy to see K(u) < [ h(g). Thus
Kpw=Jw if upu«do.

Final Step. We will finish the proof by showing K(u) < co implies that u « dé.
Since K is convex and translation invariant, then

Kk, p) = K(u),
where {k,} is an approximation to identity. Therefore, if K(u) < co, then by step 2,

sup [ h(k,*p) < co.

>0

On the other hand lim (h(x))/|x| = + c0. In fact if h(x,) < Cx, for some sequence
| x| o0

x,T + oo, and some positive constant C, then h(x) < Cx for large x, because h is
convex. But this implies that ¢(y) the convex conjugate of h is infinite for y > C,
and this is impossible. Therefore the sequence {k,*u} is uniformly integrable, and
this implies that u is absolutely continuous.

J is a rate function because

lim @=
Ix]=0 |X]

5. Hydrodynamic Limit

Let f% be the initial density with respect to the Gibbs measure vy. The measure
vy is the Gibbs measure with periodic boundary conditions corresponding to the
interaction field F, where F is bounded, continuously differentiable and has
bounded first derivatives. Then the evolution governed by £, and starting from
£ at time t = 0, will give us a probability measure Q, on the space C([0, co), RV).
Let .#, denote the compact metric space (under weak convergence) of all signed
measures of total variation at most /. For each N, and the set of trajectories
{x,(t):aeS%} we define

1
”(t) = W st xa(t)éa/N (51)

in the space u,.#,. This, as a function of te[0,t,], is an element of 2=
u,C([0,t], #,), where C([0, t,],.#,) is the space of weakly continuous maps
from [0, 1,] into .#,. Then (5.1) introduces a probability measure Q on the space
Q. It is not hard to see that the sequence”Qy is tight. This follows Lemmas 6.1
and 6.2 in [4] adapted to our setting. Let Q be any limit point of the sequence
Qx- Then
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Theorem 5.1. Q is concentrated on the single path u(t,d0) =m(t,0)d0 that is the
unique weak solution of

om 1
5 = 5AH ), m(0,6) =mo(0) (5.2)
satisfying the estimates
{h(m(t,0))db < C, (5.3)
31§ IV (s, 0))2dsdo < C. (54)
0

for all t 2 0.

Proof. Since the entropy is decreasing, we have

1
il fivlog fdwy = C

for all t = 0. Therefore, by Theorem 4.1 we have pu(t,d6) = m(t, 0)df and
E2[h(m(z,6))d6 < C.

This and the uniqueness result (Theorem 5.2) imply (5.3). The inequality (3.16)
allows us to follow the proof of Theorem 5.1 and Lemma 6.6 in [4] to conclude
(5.4). The uniqueness of the solution of (5.2) under the conditions (5.3) and (5.4)
will be shown in Theorem 5.2 below.

We now turn to the proof of (5.2). Let J be a smooth test function. Consider
the functional

V(t, N, k; g) = [ J(O)u(t, d0) — | J(6) (0, d6)

Y. AJ(a/N)yoh (my, (t.x(s)))ds.

aeva

1 t
o |
By Itd’s formula

% Z J(a/N)x(t) — 1—V17 Z J(a/N)x,(0)
= ZIW ; iAJ(a/N)GO(Ta,_)_C(S))dS + MN(I) + 7y

where My is a Martingale and lim ry=0 in probability (see the proof of
N—- oo

Lemma 3.4.(b) for the way we treated the unboundedness of G,). ry is an error
coming from replacing (I/NZ)Z [J(a/N +ej/N)+ J(a/N —e;/N)—2J(a/N)] with

J
AJ(a/N) in 1t6’s formula. An explicit calculation shows lim E2¥| M (t)|?> = 0. This
N—- o

and Theorem 3.1 imply
lim limsup limsup E2¥|V(t, N, &, k; p)| = O.

k— oo e—=0 N- oo
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Therefore
lim EC|V(t,k; u)| =0,

k=00

where
Vit ki) = [ J(0)u(t, d6) —  J(6) (0, dO)

- % § [ AT Ok (m(s, 6))d0ds.
0

This is because when a/N is close 6, then m; (1,x(s)) is almost the average of
u(s, d) over the cube of side 2¢ and center 8, divided by its volume. This converges

to m(s,0,) as ¢ tends to zero.
Finally, using Lemma 2.21 and Theorem 4.1 we can pass to the limit as k — o

and yield
E|([ J(O)u(t,d6) — [ J(B)u(0,d6) — % j [AJ(O)H (m(s, 0))dsdb| =0,
0

and this completes the proof. [
Theorem 5.2. The weak solution of (5.2) is unique within the class of functions m(t, 6)
satisfying (5.3) and (5.4).
Proof. Consider the nonlinear operator A(m) = — Ah’(m) with
D(A)={meH 'nL":W(m)eH"}.
The operator A is maximal and monotone in the sense that
{my —my, Amy — Am, pp -1 20

for m;,m,e H ™, and the graph of 4 as a subset of H™! x H™! is maximal within

the graph monotone operators (see Barbu [1] for more details). Thus we have

uniqueness of the solution of (5.2) in the H !-sense (this follows from the

monotonicity property). For the rest of the proof, we verify that if the weak solution

of (5.2) satisfies (5.4), then this solution is also a strong solution in the space of H ™.
t

Let v(t) = [ VK'(m(s))ds. Then v is absolutely continuous as a function from

0
[0, 00) into L2, and v'(t) = VK (m(t)) for almost all t. Since m(t,) is a weak solution
of (5.2), we have £ div v(t) = m(t) — m(0) in distribution. Therefore || m(t)—m(s) | F-: <
(d/4)||v(t) — v(s)||? and this implies that m:[0, co]— H ™! is absolutely continuous
and dm/dt = 1AW (m) for almost all ¢, in the H ™ !-sense. []

When /' is not strictly increasing, the solutions of (5.2) might be singular. If,
however, m(0) = m, is in a single phase (for example m, is in a region on which h”
is uniformly positive), then m(t) will stay in that phase for all t = 0. This is evident
in the following theorem.

Theorem 5.3. (Maximum Principle). Suppose that m,(t) and m,(t) are two solutions
of (5.2) such that m(0),m,(0)eL* and

ml(O’ 0) é m2(0, 0)
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for almost all 0, then

my(t, 0) < m,(t,0) (5.5)
for all t and almost all 6.
Proof. Let A*u= — AA*(u), where

1 —_
209 =] h'(y)k<’-‘—el>dy +ex,

where k:R—R™* is a smooth function with support in the interval [ — 1,1]. Then
A¥() 1s smooth with (d/dx)A°(x) = ¢ for all x. We also have
A¥(x) > h'(x) (5.6)

uniformly in bounded subsets of R.
Let mi(t) be the unique solution (in H ~!-sense) of (dm/dt) + 1 A*m = 0 such that
m;(0) = m;(0) for i =1 or 2. We then have

d
¢ 1made) — mi(®) -1 = {mi(t) — mi(2), A(my() — A*(m3() Dgr-»

= {my(t) — mi(2), W' (m(1)) — A5 (mi (1)) > L2 (5.7)
On the other hand, we can use the maximum principle for solutions m{ to obtain
mi(t,60) < m5(t, 0) (5.8)

for all ¢t and 6. We also have sup |mé(t, 0)| < co for i = 1,2. Therefore, by (5.6),
t,0
11113 sup || K (mi(z)) — A°(m(t) || .- = 0.
e t
This allows us to replace A*(mi(t)) with h'(mi(t)) in (5.7). So
d
lim sup sup — | mi(t) — my(t) |-+ <0
e—0 t dt
for i = 1,2. Therefore m(t) converges to m(t) in H™*, for all ¢. This and (5.8) imply
(5.5. 0O

It is of interest to study the asymptotic behavior of the solution m(t) when ¢
goes to infinity. For an account of this problem, see [5], Lecture 26. Here, we
confine ourselves to the case myeL®, and we show that the limit of m(t) as t goes
to infinity, exists.

Theorem 5.4. If mqeL”, then lim m(t) = m(c0) exists in H™', and we have

t—= o
' (m(c0,8,)) = K (fmo(0)db) (5.9)
for almost all 6,,.
Proof. Since myeL®, we have sup ||m(t)|,» < co. Therefore {m(t):t=0} is a
t

precompact subset of H ™ !. Taking into account the condition (5.4), we may choose
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a sequence of t,1 oo, such that
m(t,) > m(c0) in H™1, (5.10)
VK (m(t,))—0 in L2 (5.11)

for some m(co)e H ™ *. Since [m(z,, 0)d0 = [ my(0)d6, we have [m(c0, 0)d6 = [ m,(6)d6
and (5.11) guarantees that we also have (5.9).

Finally || m(t) — m(o0)| - is nonincreasing in ¢t (because of (5.9), v(t) = m(o0) is
a steady solution of (5.2)), thus lim m(t) = m(c0) in H™ 1.

t—=> oo
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