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Abstract. We study a system of interacting diffusions. The variables present
the amount of charge at various sites of a periodic multidimensional lattice.
The equilibrium states of the diffusion are canonical Gibbs measures of a given
finite range interaction. Under an appropriate scaling of lattice spacing and
time, we derive the hydrodynamic limit for the evolution of the macroscopic
charge density.

1. Introduction

The derivation of the hydrodynamic equation for infinite particle systems with
conservation law has been the subject of active research. One such model is the
Ginzburg-Landau model [11]. The hydrodynamic equation for this model is
obtained in [3] and [4]. In this model charges are located at the various sites of
a periodic multidimensional lattice. The flow of these charges from one site to
another is governed by a suitable diffusion law. After an appropriate space and
time scaling, the microscopic charge density converges to a deterministic limit
which is characterized as the solution of a nonlinear parabolic equation.

The passage to the hydrodynamic limit for the Ginzburg-Landau model under
certain conditions was studied in [4]. We describe these conditions.

For any positive integer iV, let SN denote the periodic lattice {j: j = 0,1,..., N}
with 0 and N identified, and let Sd

N denote the product of d copies of SN. For each
site a in Sd

N, there is a random variable xa = xa(t) which is the amount of charge
at site a. The family of xa undergo a diffusion with generator

where both sums are over the adjacent sites a and b in Sd

N. The generator !£% is
formally symmetric with respect to the product measure pN(dx) defined as

pN{dx)=Ue-«x >dxa9 (1.2)
aeSN



446 F. Rezakhanlou

where x denotes the vector (xa;aeSd

N). The function φ:R-»R is a continuously
differentiable function with the following properties.

J<Γ**>dx=l, (1.3)

$eλχ-φ(x)dx<oo, (1.4)

feλ\Φ'iχ)\-Φ(*)dx<O0 (1.5)

for all λ in R.
The diffusion generated by <£% starts from an initial distribution which has a

density f% with respect to the measure pN and f% satisfies the entropy bound

jJϊf/>g/£«W^C (1.6)

uniformly in N and for some finite constant C. Then the evolution corresponding
to the diffusion will give us a density fι

N which satisfies the forward equation,

"I ?0 ft (\ η\

Associated with the charge configuration xeRNd and t ^ 0, we define the signed
measure

eSd

N

Let S be the unit circle or the interval 0 ^ θ ^ 1 with 0 and 1 identified, and let Sd

be the product of d copies of S. Then μN(t) = μN(t, dθ) is a measure on the
d-dimensional torus Sd.

We assume that for some nice function mo(θ) and any positive δ

lim J f°dρN = 0, (1.9)

where

Here d# denotes the normalized Haar measure on Sd. It is shown in [4] that
there exists a function m(ί, 0) such that

lim $J(θ)μN(t,dθ) = $J(θ)m(t,θ)dθ, (1.10)
iV-> oo

and this function satisfies a nonlinear parabolic equation which will be described
below (see (1.13)).

We generalize the above result by adding an interaction term to the function
— φ(x) in the measure pN. This means that we replace the product measure ρN

with a Gibbs measure which has an interaction of finite range. The important aspect
of our work is that we do not exclude the occurrence of phase transition in the
space of Gibbs measures.
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Let F be a function which depends on a fixed finite number of coordinates.
We assume that F is bounded, continuously differentiable and has bounded first
derivatives. The interaction energy corresponding to the inter action field F is defined
by

where τa denotes the shift operator in the space Sd

N. We now replace the generator
<£% with

This generator is reversible with respect to the Gibbs measure vN defined as

vN(dx) = ^-exp(jeN{x))pN(dx)9 (1.12)
Z

where ZN is the normalizing constant.
We now assume that the diffusion generated by LN starts from an initial

distribution which has a density f% with respect to the measure vN and f% satisfies
the entropy bound

—j j / $ log / # dvN ^ C (1-6')

uniformly in N and for some finite constant C. Then the evolution corresponding
to the diffusion will give us a density f'N which satisfies

*N _ cp ft a ηf\

We also assume that for some nice function mo{θ) and any positive δ,

j im J f°NdvN = 0, (1.9')

where

1
• = <x:

We define h as the convex conjugate of the specific free energy φ defined by

φ(λ)= lim -^ log jexpί / i £ x a )vN(dx).

We now state our main result.

Theorem 1.1. If the initial distribution of charges satisfies (L6r) and {1.9% then for
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all time t, every smooth J and each δ > 0,

lim J /5v^viv = 0,
EN,δ

where

1
: JV*

and m(t,θ) satisfies weakly the following nonlinear parabolic equation:

dt

When F — 0, then ft' is strictly increasing. It is well known in statistical mechanics
that for some nonzero F, the function h! is not strictly increasing, which makes
the evolution Eq. (1.13) degenerate. This corresponds to a phase transition
in physics. Nonetheless we can still derive the hydrodynamic equation for the
charge density m. We will also verify properties such as uniqueness of solutions,
maximum principle and the asymptotic behavior of the solution m(t, θ) as time
goes to infinity.

In the presence of phase transition, our result implies that the different phases
do not segregate macroscopically at the hydrodynamic time scale. This is consistent
with the Lifshitz-Slyozov theory. According to this theory, it takes times of the
order JV3 for forming a macroscopic droplet. Therefore segregation cannot be seen
on the hydrodynamic time scale.

Let J be a fixed smooth function and consider the stochastic process

It is not hard to see that

dyN(ή = dMN(ή + AN(ήdt,

where MN(t) is a continuous martingale which goes to zero as N goes to infinity, and

ΛN(t)

(1-14)

The main step in the proof of the hydrodynamic behavior for our example (like [4])
is that

lim } AN(s)ds = M J ΔJ{θ)h'(m{θ,s))dsdθ, (1.15)

where m is the solution of (1.13).
When F = 0, then for any bounded continuous local function G (i.e. depending

on a fixed finite number of coordinates) and for any smooth test function J, it is
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shown in [4] that

l i m τϊdΣJ(a/N)\G(τaΦ))ds = }JJ(θ)BG(m(s,θ))dsdθ, (1.16)
N->oo-t> a 0 0

where

BG(y) = f G(x) ^

and

In general, if F Φ 0 and if phase transition occurs, we do not expect to have (1.16)
for any G. We can however prove (1.16) for G = GQ and obtain (1.15). This is
because of a very special form of Go which makes it possible to avoid any problem
coming from phase transitions.

We expect that the distribution of the charge configuration x(t) for t > 0, looks
somewhat like

where λa&h'(m(t,a/N)). As in [4], we use the entropy production as a technical
tool to prove the validity of such a picture. This is the content of Sect. 3. Before
this, we need to establish a local ergodic theorem. This is done in Sect. 2. In this
section, we basically use the techniques of large deviations. Finally in Sect. 5 we
derive the hydrodynamic equation and study some of its properties.

2. Large Deviations for Conditioned Gibbs Measures

The object of this section is a large deviations result (and its corollaries) for the
conditioned Gibbs measures. First we start with some preliminary considerations
related to theory of the large deviations. Let X be a Polish space with Borel field
$. A function /:X-»[0, oo] is called a rate function if it is lower semicontinuous
and the set {x\I{x)ti^} is compact for all finite L A family Pn of probability
measures on X is said to have the large deviation property with rate / if there exists a
sequence an which tends to oo and

l i m s u p - l o g μ Λ Q ύ - inf I(x) (2.1)
/j-+oo an xeC

for all closed subsets C of X, and

lim inf— log μn(O)^- inf L(x) (2.2)
n-*oo an χeθ

for all open subsets 0 of X.
Our first lemma is a useful form of the so-called Contraction Principle.
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Lemma 2.1. Let Φ: Xo -> Y, where Xo is a subset ofX and Y is another Polish space.
Suppose that for each positive number £ there exists a closed subset Cf of X such
that Φ restricted to C( is continuous and moreover

lim sup lim sup — logPn(X — C,)= — oo.
/-+oo n->oo ^n

Then the family Pn°Φ~ι has the large deviation property with the rate ΐ(x) =
inf I(x).

Φ(x) = y

Proof Let C be any closed subset of Y. Then

Pn(ΦeC) S Pn{{ΦeC}nC,) + Pn(X - Ce).

The set C = {ΦeC} n Ce is closed and

l imsup—logP Λ ({ΦeC}nC,)^ - in f J(x)^ -inf/(y).
n-*oo dn xeC yeC

So, we have the upper bound estimate because Pn(X — Q ) is superexponentially
small when /->oo.

For the lower bound estimate, let O be an open subset of Y,

Pn(Φe0) ^ Pn({Φe0}v(X - C,)) - Pn(X - C,).

The set O = {ΦeO} u(X - C{) is open and

—\ogPn({ΦeO}κj(X-C,))^ - inf
n->co Qn χeθ yeό

Moreover Pn(X — Cf) is superexponentially small as /-• oo.
It is not hard to check that / is a rate function. We omit the proof of it. •

We recall the following result which can be found in [2].

Lemma 2.2. Let Wn be a sequence of Rd-valued random variables on a probability
space (Ωn9^n,Qn). If

c(t)= lim-log EQ»etW"

exists for all t in Rd, then the family

ίw

has the upper bound large deviation property with the rate I(t) that is the convex
conjugate of c(t).

Lemma 2.3. Suppose stf is a collection of closed subsets ofX such that for any closed
subset C of X, there exists a decreasing sequence Am in stf satisfying f] Am = C. If
(2.1) holds for all A in s/9 then it holds for all closed sets C. m

Proof Suppose that (2.1) holds for all A in s/. Let C be a closed subset of X and
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C = f] Am for some decreasing subsequence Am of si. Then
m

lim sup — log Pn(C) ̂  inf lim sup log Pn(Am) ^ - sup inf /(x).
n-> oo fln m n-> co m xeAm

We will show

inf/(x)^sup inf /(x).
xeC m xeAm

Suppose that sup inf I(x) is finite. Set Kt = {x|/(x) ̂  /}, where
m xeAm

Z = sup inf / ( x ) + l .
tn xεAm

Then inf /(x) = inf I(x) and therefore there exists xmeAmnKι such that

inf /(x) = /(x J .

We may choose a subsequence of xm which converges to some ye^]Am = C.
Therefore

sup inf /(x) ̂  lim inf/(xm) ^ /(y) ̂  inf/(x). Π
m xe^4w m-*oo xeC

Before we state the main result of this section, let us recall the definition and
some properties of Gibbs measures.

We consider the configuration space X = R z which is the set of x: Zd—>R or
x = (xa;aeZd). The set X is endowed with the product topology which makes X a
Polish space. For a, let τa be the translation operator on X defined by (τax)(b) =
x(a + b). Jί{X) denotes the space of probability measures and Jίτ(X) denotes the
space of translation invariant probability measures on X. Both of these spaces are
endowed with the topology of weak convergence.

For each n e Z + , we define

0^aj^n for all 7, where a = {ayA^j^

For each xeX and neZ+, we define x" by

xn(a) = x(a)aeTn,

where e/J = δjΛ. Xn denotes the set of all xn. The empirical process is defined as

where | ΓJ is the number of sites in Tn. It is easy to see that RnxsJi\(X).

Let φ:R->R be a continuously differentiable function satisfying

\e~φ(x)dx = \, (2.3)

μ^-φ^dx<ao, (2.4)
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for all real λ. Equations (2.4) and (2.5) are equivalent to saying that there exists a
function w(x) which is symmetric and convex on R with

lim -V- = 0, w(x) >\x\ for all x and
x-ooW(x)

jeMχ)-Φ(χ)dx < 0 0 ? jewmx))~φ{x)dx < oo. (2.6)

We consider the following classes of local functions:

C^oc = {G: X -> R such that G is bounded continuous and depends on a fixed finite
number of coordinates},

Qoc = {GeCi°oc:G is continuously differentiable with bounded first derivatives},
QSc = {GeC,°oc:G is smooth with bounded derivatives}.

Let xeX and T be a subset of Zd. Then x τ denotes the restriction of x to T.
That is x τ : T - ^ R and xτ(a) = x(a) for αeT. If z is another configuration, then
xτvz denotes the configuration which agrees with x on T and with z on
Tc = Zd — T. In other words x τ v z is the configuration x on T with the boundary
condition z.

Let F be a function in Cj°oc which depends only on the coordinates xa for a in
a finite set A c Zd. We define the interaction energy by

where the sum is over indices a such that a + Λ g T. Given a boundary condition
z in X, we define

jrF T ί(x) = ̂ F,Γfe) + Σ ^ ( M ) τ v z)9

where the sum is over a such that

0 and (a + Λ)nTcϊ0.

We also define the interaction energy for a configuration with periodic boundary
conditions. For this, one considers the space of periodic configurations Xn and
defines

Σ
αe5n

where S,, is obtained by identifying the opposite faces of Tn.
We take the probability measure p(dx) = e~φ(x)dx and for each subset T of Zd

9

the measure pτ is the product measure of p which is defined on R τ . Now we define
the finite volume Gibbs measure vFT associated with F and p by

ZF τ

(2.7)
z,F τ

where

ZFT = jexp(3tfFT(x))pτ(dx). (2.8)

In the same way we define vF T z, ZFTz, vF>M, and ZFn by replacing J f F Γ in (2.7)
and (2.8) with J^FfT and ̂ F > n . We also consider the finite volume canonical Gibbs
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measures vy

F τ and vy

F τ z which are obtained by conditioning the measures vFT and
vF,τ,z respectively, with respect to mτ(x) = y, where

We define vy

Fn in the same way by choosing T = Sd

nm (2.9).
Note that a calculation like (2.15) below ensures the existence of a version of

the conditioned measure vy

FT which is continuous in y.
The family of the translation invariant (infinite volume) Gibbs measures and

canonical Gibbs measures are defined by

$F = {μeJίτ\μ{-\xa = za for aφT) = vFTz for all z and finite Tcz Zd},

% = {μeJΐτ\μ('\xa = za for aφT and mT( ) = y)

= vy

FTz for all z and finite T c Zd}.

We denote the distribution of Rnx with respect to vF Γ π, by P^ ̂  or simply Pn

when there is no danger of confusion. That is

for A 3. Borel subset of Jίx. The probability measures Py

FnΣ and P n z are defined
in the same way. It is known [9] that the family Pn has the large deviation property
with the rate function IF. In order to define IF(μ) for μeJiτ, we first define the
pressure of an interaction F by

^ n X (2.10)

Note that this limit is uniform in z, and *F(F) is independent of z.
The specific entropy of a measure μ in ̂ τ with respect to p is defined as

where the measure μΓ n is the projection of μ on the space X Γ n . The rate function
IF is defined by

IF(μ) = Hp(μ)-JFdμ+Ψ(F\ (2.11)

or

IF(μ) = lim - ί - J /π log/πΛF,T n, (2.12)

where /„ is the density of the measure μTn with respect to the Gibbs measure vF Tn.
If α and β are two probability measures such that

for some density fsϋ(dβ\ then

\gda ̂  \og\e9dβ + Jlog/dα

for any gel}(da). We will refer to this inequality as the basic entropy estimate.
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The large deviation property of the sequence Rn^ with respect to the Gibbs
measure vFTn also implies the large deviation property of the distributions of the
sequence mTn(x). For this we use the Contraction Principle.

Lemma 2.4. Let zΛ be an arbitrary sequence in X and FeC®oc. Then the family

v nidy) = VFTZ (mτn£dy) has the large deviation property with the rate IF(y) =
inf IF(μ), where Φ(μ) = \xodμ for those measures μ such that j\xo\dμ is finite.

Φ(μ) = y

Proof. Set C,= {μ|jw(xo)μ(ί/x)^ /}. Note that the set Cx is closed in X and Φ
restricted to C{ is continuous. Now we can apply Lemma 2.1. For this we need to
check Pn(X — Cz) is superexponentially small as /-» oo. For notational convenience
we denote vFTnZ by vn. Using the Tchebyshev inequality,

P^X-C^vJx:-^- Σ w(xa)>l}se-ι^E*»exp( £ w(xa)\
I liJαeTn J \aeTn )

On the other hand

limsup —-log£v"exp( £ w{xa)
n->oo Mill \αeTn

= limsup J-logJexp(Σ (w(xa)-φ(xa)))exp( Σ F(τax))dx- Ψ(F)
n~>co Mnl \aeTn / \aeTn J

^ \\F\\n +\ogjeMx)-φix)d(x)- Ψ(F)<oo.

Thus

limsup limsup — logPn(X - Ct)= - oo,
/-»oo «-» oo Mnl

and this completes the proof. •

Once we establish the large deviation property of the sequence mTn{x) with
respect to Gibbs measures, it is not hard to identify the rate function as the convex
conjugate h of the free energy φ defined by

—-logjexpί λ £ xa)vFiT (dx). (2.
M J \ aeTn /

j £ ) F i T .13)
n->oo M J \ aeTn /

Lemma 2.5.

IF(yY.= Hy) = sup (λy - φ(λ)). (2.14)
y

Proof. It is enough to show that

= sup(λy-ίF{y)).
y

We only verify

φ(λ) S sup {λy - IF(y)).
y
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We omit the easy proof of

which follows from the lower bound large deviation estimate.
Let Cj and vn be as in Lemma 2.4. Since the function Φ (defined by Φ(μ) = J xodμ)

restricted to the set C, is continuous, by Varadhan's theorem ([13]) we have

lim sup — log J exp ( λ £ xa )dvn g sup (λy - ϊF(y)),
n-+ao I ίn\ Kι \ aeTn J y

where Kt = <x £ w(xa)^l\Ί

Therefore we only need to show

lim sup lim sup—— log J expί λ £ *a )vΛ(dx)= - oo

or

lim sup lim sup — log J exp ( £ W ( * J ) vn(ώc) = - oo.
Z^oo n^oo \ln\ κc \aeTn J

But this is an easy consequence of the Tchebyshev inequality and (2.6). •

Corollary 2.6. The family μn has the large deviation property with rate h.

Now we state the main result of this section.

Theorem 2.7. Let {zn} be a sequence of the boundary conditions and {yn} be a
sequence of real numbers such that lim yn = y. Then the family {Py

Fy z } has the

upper bound large deviation property with rate

{μ)~h(y\ if \xodμ = y\

oo, otherwise.

The proof of this Theorem is carried out in several steps.
Let GeCl0C. Set

GH(y) = y-̂ rj l nJ

Let gn(F,z;y) denote the density of mTn with respect to vf JnV Then

Lemma 2.8.

= 7ψ-> loggn(F + G, zn; y)-rψ-> loggn(F, zn; y)

(2.15)
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Proof. Let J be a test function,

lJ{y)gH{F9zH;y)exp{\Tn\GH{y))dy

jJ(mΓ n)exppfF + G
+c>7. dpτ";

Here to simplify the notations we have dropped the indices z and Tn from Z. •

The main ingredient to prove Theorem 2.7 is the following Lemma:

Lemma 2.9. The family Gn is equicontinuous on every compact subset of R.

Proof: Step 1. Because of Lemma 2.8, it is enough to show that the sequence

i g'niy)

\Tn\gn{y)

is uniformly bounded over any compact subset of R. Here, for ease in notation
we have used gn for gn(G,zn;y).

Let J be a test function. Then we have

= - T ^ T J J'(y)g*(y)dy

Therefore

So

\Tn\gn(

VψΊ Σ l (2.17)

where c0 is a constant depending only on G.
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Step 2. Let

I 1n\ aeTn

It is easy to see that

Here vy

n(dx) is vj>τ (dx), where we set G = 0, and Zy is the obvious normalizing
constant. Now we use the basic entropy estimate to deduce

Σ \Φ'(χa)\
T

\Φ'M\\y

n{dx)
)

aeTn

On the other hand

where cx is a constant depending only on G. Therefore

So

Sίep. In order to finish the proof, all we need is to show that the term J x

is uniformly bounded in y for y in a compact subset of R. Let J be a test function
as before, and let kn(y) be the density of mTn(x) with respect to pTn{dx) =

expί — Σ 0(*J p*. Then

aeTn

Jφ'(x«)|-Φ(xβ)

) Π Tj dxa

aeTn M
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where kn(y) is the density of mTn(x) with respect to the product measure

Π
aeTn

e\Φ'(Xa)\-φ(Xa)

and

Therefore

logjexpf X l0^Jl)v^x) = -^logM);)--i-logMy) + M. (2.18)
I ' J \aeTn ) \ln\ \ln\

Note that we can write

\φ'(xa)\-φ(xa)

M αeTn

where

${x)= -\φ'{x)\ + φ{x) + logM.

So, by (2.18) the term <fi is bounded if we can show (1/\Tn\) log kn(y) is bounded
and (l/\Tn\)\ogkn(y) is bounded above. We will show these in Lemmas 2.10
and 2.11. •

Lemma 2.10. (1/\Tn\)logkn(y) is bounded over any compact subset of R.

Proof This immediately follows from Theorem 3.4 in [4]. •

Lemma 2.11. There exists a positive constant c2 such that

K(y)^c2\τn\

for alln^l.

Proof Let f = e~φ. First we show / G L 2 ( R ) . Because of (2.5), it suffices to check
that e~φ is uniformly bounded. This follows from the integrability of the derivative

Since / G L 2 ( R ) , we have fxfeLf0. This implies that the π-fold convolution of/ is

bounded by H / * / ^ for n ^ 2 . Therefore the density of £ χ

a is a l s o uniformly
aeTn

bounded for all n ^ 1. Thus kn(y) is bounded by | Tn\ | |/*/| |«,. D

An easy consequence of Lemma 2.9 and Corollary 2.6 is the following theorem
which is a large deviation result for the densities gn(F, z; y).

Theorem 2.12. Let FeC}oc. Then

lim — log gn(F, z;y)= - h(y)

uniformly in boundary conditions z and uniformly in y in compact intervals of R.



Hydrodynamic Limit 459

Proof. It suffices to show

lim —-\oggn(F,zn;y) = -h(y)

uniformly on compact y-intervals, where {zn} is any sequence of boundary
conditions.

By Lemma 2.10 the sequence {(l/\Tn\)loggn(F,zn;y)} is equicontinuous over
compact intervals. Now we show that this sequence is bounded over any compact
y-intervals. By (2.15) we have

γ = \ ( F )log gn(F9 zn; y)--^ log kn(y) + log ZF Tn

where vζ and kn are as in the proof of Lemma 2.9. Since the right-hand side of the
above identity is uniformly bounded in y, and since the sequence (I/\Tn\)logkn(y)
is uniformly bounded over compact y-intervals (Lemma 2.10), therefore the
sequence {(l/\Tn\)loggn(F,zn;y)} is also uniformly bounded over compact y-
intervals.

If a subsequence of {(1/| Tn\)loggn(F,zn;y)} converges to a function g, then by
Corollary 2.6, g can only be — h(y) and this completes the proof. •

Now we check that PF is a rate function.

Lemma 2.13. The set {μ:PF(μ) ^ f} is compact for all t.

Proof. Let PF{μ) < oo. Then, by the basic entropy inequality

JW(x0)μ(dx) = - i - J ί Σ w(xa))μ(dx)

Σ
βeΓn

JaeTn

Therefore, after passing to limit as n-+ co,

j w(xo)μ(dx) g log J^*>-^>dx + Hp(μ)

= \og]ew{x)-φ{x)dx + IF(μ)

where c0 is a constant depending on F.
This implies that jw(xo)μ(dx) is bounded if IF(μ) is bounded. Note that

= jxodμ is continuous if it is restricted to the set {μ:$w(xo)μ(dx) ^/ 0 } f° r
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any / 0 ,

{μ:PF(μ) £ /} = {μ: Jx o dμ = y and JF(μ) ̂  / +

= y and Jw(x0) ^ c0

Thus the set {μ: J£(μ) ̂  *f} is compact, because IF is a rate function.

Proof of Theorem 2.7. Step 1. We use Lemma 2.3, in order to show the inequality
(2.2) (i.e. the upper bound estimate) for the family {Py

FyntZn} For this, we need
to consider a suitable closed base for the topology of the weak convergence. Let
stf0 be the collection of the closed sets of the form

where Il9...9Ik are fixed closed subsets of R and Gί9...,Gk are in C\oc. We also
use the compact notation G = (Gl9..., Gk) in the sequel.

Note that if Aί9...,Ak are in s/0 then A1r\--nAm is also in s/Q. Let s/ be
the collection of all finite unions of the elements of s/0. That is,

some B1,B2, ,Bk in srf0).

It is easy to check that si is a topological closed base for ^ τ ( X ) . Since the space
Jίτ(X) is separable, then for any closed subset C oίJίt(X\ there exists a decreasing
sequence {An} in J / such that C = nnAn.

Step 2. Consider the continuous function Φ:Jίτ(x)->Rk defined as

Φ(μ) = $Gdμ.

For ease in notation, we set vy

n

n = vjr1^. Let θ = {θl9...,θk)eRk. We define

The last equality needs some explanation. From the definition of Py

Fy tZ we

obtain the last term with ^ G,τn,z_n

 B u t» after passing to limit, the contribution of

the boundary condition disappears. Now we use (2.15) to conclude

ξ(θ;y)= lim-l-

- lim
n->oo

ΘG + F)-Ψ(F).

Let ψ{ ,λ) be defined as in (2.13) and let h(-,y) be the convex conjugate of φ( ; λ)
in the variable λ. By Theorem 2.12,

ξ(θ;y)=- h(θ-G + F;y) + h(F;y)+Ψ(θ-G + F)- Ψ(F).
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Step 3. By Lemma 2.2, the family

has the upper bound large deviation property with rate

itey)

which is the convex conjugate of ξ(θ; y) in the variable θ. More precisely

I(t; y) = sup (θ t-ξ(θ;y))

= sup (θ-ί + sup (λy -φ{θ>G + F; λ)) -Ψ(ΘG + F) + Ψ{F)) - h(y)
Θ λ

= sup (θ-t + λy - φ(θ G + F; λ) - Ψ{F + g G) + Ψ(F)) - h(y).

Step 4. Let Φ(μ) = (jGdμ^xodμ). We have shown the Contraction Principle for
Φ in Lemma 2.4 (when G = 0). However, with the same argument, we have the
same result for Φ for any G in C\oc. We can also identify the rate function as in
Lemma 2.5. Thus the family {PFT z °Φ" 1} has the large deviation property with
the rate function

ΐfey) = inf {/F(μ):f Gdμ = t_ and \xodμ = 3̂}

= convex conjugate of φ(θ;λ) in θ and λ,

where

= lim -J-logίexpfA Σ ^ j v ^ ^ ^ d x ) - Ψ(F)+ Ψ(Θ-G + F)
n^oo I ln\ \ aeTn )

= φ{F + θ-G;λ)- Ψ(F) +Ψ(Θ-G + F).

Thus

Final Step. Let A = {μ:jGίdμeI1,...,$GkdμeIk} as in the beginning of the proof.
Then

limsup —logP£yπJ,4)^ -inl{l{t;y):t1ell9...9tkelk} by step 3,

= -M{ΐ(v,y):tιelί,...,tkelk} +h{y)

= - inf (IF(μ)-h(y))
μeA

jxodμ = y

= -m(PF(μ).
μeA

Since any set in s/ is a finite union of the sets in s/θ9 we also have the above
inequality for Aεst. Π
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Let FeCloc. For each λ, set Fλ(x) = F(x) + λx0. For simplicity we denote &F

by 9λ.

Theorem 2.14. Suppose that GeC}oc or G(x) = Gx(x) + φ'{x0) for some G^C^. Let
zn be a sequence in X, let yn be a sequence of real numbers such that lim yn = y, and
let FeCloc. Then the family

«n(dt) = ^ T l ^ - £ G(τax)edt
U 1n\ aeTn

has the upper bound large deviation property with rate

JG(t) = mi{IF(μ):$Gdμ = t}.

Moreover JG(t) = 0 if and only ift = $Gdμ for some μe^W{y) with \xodμ = y.

Proof. If GeCιoc, then the large deviation property is an immediate consequence
of the Contraction Principle and Theorem 2.7. If G(x) = Gi(x) + φ'(x0) for some
GίeCγoc, we may apply Lemma 2.1. For this we need to show that

lim sup lim sup - J - log v£y z (-J- X w(φ'(xj) ^ ) = - αo. (2.19)

Because the function Φ(μ) = jGί/μ, restricted to the set {μ:Jw((/>'(xo))μ(dx) ^ /} is
continuous.

Formula (2.19) follows from

lim sup - J - log j exp ( X u # ' ( x j ) jdvjf ^ ^ + oo (2.20)

and the Tchebychev inequality. For this, we can essentially repeat our argument
in the final step of the proof of Lemma 2.9 (see (2.18)).

If JG(t) = 0, then there exists a measure μ in Jίτ{X) such that

= ί; and Ip(μ) = h(y). (2.21)

On the other hand by (2.11) we have

IFλ(μ) = Hp(μ) - \Fdμ - λ\xQdμ + ψ(Fλ)

= IF(μ) ~ {λy ~(Ψ(Fλ) - Ψ{F))}. (2.22)

From the definition of the function h as the convex conjugate of φ, we have

h(y) = sup (λy - φ(F; λ)) = sup (λy - Ψ(Fλ) + Ψ(F)\
x λ

and the supremum is attained at λ = h'(y). Therefore

h(y) = h'(y)y-Ψ(FW(y))+Ψ(F).

From this, (2.21) and (2.22), we obtain

/ F > ) = 0 if λ = h'{y).

Finally, it follows from the Variational Principle (see Preston [10], p. 115) that
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Remark 2.15. We have assumed that h is differentiable. Since h is convex, this is
equivalent to strict convexity of φ(λ) or Ψ(Fλ) in λ. This also follows from the
Variational Principle. See Preston [10], p. 158 for more details.

Corollary 2.16. IfG0(x) = φf(x0) - (dJfJdxo)(x)9 where ̂ n = ̂ F,Tn, then JGo(t) = 0
if and only if t = h'(y).

Proof. Let μe&λ for some λeR. Then

$Godμ=-${—^-(x)-φ'(xo)\μ(dx)

(2.23)

where lim rn = 0. This is because
n-* oo

Fλ,Tn,zn

Σ *a\
aeTn )

where &n = JfF%Tn>v The last equality in (2.23) follows from integration by parts.
The error rn comes from the boundary condition z when we replace d3fjdxa with

Now let λ = h'(y) and pass to limit n -• oo in (2.23). •

Theorem 2.17. Let K be a bounded subset of R, and let Go be as in Corollary 2.16.

Then

lim sup J
1

\τn\ aeTn

G0(τax)-h'{y) (2.24)

yeK

Proof. It follows from Theorem 2.14 and its corollary that

lim
H-*0O

r ^ Σ G0(τΛx)-h'(y) = 0,

where yn^y,zn is an arbitrary sequence in X, and δ > 0. Therefore, for (2.24) we
only need to check the uniform integrability of the sequence

\ 1n\ aeTn

with respect to the measures vy

Fy z . For this, it suffices to show

—— Σ <CO.



464 F. Rezakhanlou

Since w is convex, it is enough to show

s u p j — - X w(0'(xj)dv»y < oo.
n I ln\ aeTn

But this is an immediate consequence of (2.20) and Jensen's inequality. •

Theorem 2.18. Let FeC\oc. Then

\τn\gn(y) w

uniformly in zeX and y in a compact subset of R, where

9n(y) = 9n(Fir,y).

Proof. This follows from Theorem 2.17 and (2.16). •

The function Go is of very special form. That is why we have an ergodic theorem
like Theorem 2.16 even when phase transition occurs (i.e. Ήλ for some λ is not
singleton). In general we do not expect to have such a result for any GeC°oc. If we
however assume that the space of Gibbs measures has a linear structure, we can
extend Theorem 2.16 to any GeC\oc. Note that this assumption does not exclude
phase transition.

Definition 2.19. We say that <$λ has linear structure if μι,μ1e
(S λ and \xQdμγ

 =

$x0dμ2,thenμί=μ2.

If &λ has linear structure for all λ, then, for any GeC®oc, we can define

AG{y) = \Gdμ,

where μ is the unique measure in ̂ h'iy) such that jxodμ = y.

Theorem 2.20. Under the above assumption,

lim sup J 4 τ Σ G(τax)-AG(y)
Tn\ aeTn

~yeK

where K is any bounded subset of R.

Proof. This follows from Theorem 2.14 and the proof to Theorem 2.17. Π

In Sect. 5 we will need the following estimate.

Lemma 2.21. There exists a constant c such that

\n(y)\ ^ c + h(y). (2.25)

Proof Let Go be as in Corollary 2.16, and let μe^h>iy) be such that j xodμ = y. Let
X = h'{y). Using the basic entropy estimate we have

J—— Σ \Φ'(χa)\dvFχjnZ^——-logJexpl Σ
I i n\ aeTn ' Mπl \αeTn
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By integrating both sides in z with respect to μ and passing to the limit, we obtain

+ λ\x0dμ- Ψ(Fλ)
n->oo \\ 1 n\ aeTn

= Cl+λ$xodμ-Ψ(Fλ)+Ψ(F)

where c1 is a suitable constant and λ = h'{y). On the other hand, by our calculation
in Corollary 2.16 we have

|/ί'ϋ>)i^c2 + limsupί(-^- X \φ'(xa)\)dμ
π->oo \ | i n\aeTn J

for some constant c2. This will give us (2.25) with c = c1+c2. Π

3. A Local Ergodic Theorem

Initially we start from a distribution having density /JJ with respect to the Gibbs
measure vN with periodic boundary condition (see (1.12)) The initial density / $
satisfies the entropy condition

Then the evolution governed by the generator S£^ (see (1.10)) gives us the density
f*N which satisfies the forward equation

Then for large N the measure f'NdvN locally looks somewhat like a Gibbs measure
with the interaction F and a chemical potential λ — h'{y\ where y corresponds to
the macroscopic charge density, coming from the averages mτ. To make this precise,
we first state Theorem 3.1 which is some kind of ergodic theorem.

Let QN be the law of the diffusion generated by JSf N on the space C([0, oo), XN)
where XN = R 5\

Theorem 3.1. Let Go be as in Corollary 2.16, and let T^a) = a+Tr Then

lim limsuplimsuplimsup—j £ EQN j
1

Σ G0(τux(s))

-ψk°h'(mTNεia)(x(s)))

where

ds = O, (3.1)

= { k x>k'>
— k x < — k.
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If we set

7J
t o

and

>/"(*) = 77d
eSd

N

for xeR5", then (3.1) can be written as

lim lim sup lim sup lim sup EηNdVN —
k-*σo

(3.2)

(3.3)

The proof of (3.3) is carried out in several steps. Let PN denote ηNdvN.

Theorem 3.2. For any <5 > 0,

lim li
N->co

τψi Σ Go(τu*) ~ h'(mτ(x))
I L AΎ

Before proving Theorem 3.2, we study the limit points of the sequence ηNdvN.
For this we follow [4]. First we define

for μ a measure on the space R N. Then

Lemma 3.3. (a)

1

N~d

(b)

<
= 4N2t'

(3.4)

(3.5)

We omit the proof, which follows the proof of Theorem 2.4 in [4].
Let Proj, denote the projection on the space RT/. Let 2Γ be the set of measures

μeJίτ{X) such that for each /, Proj^μ) is a weak limit point of the sequence
Proj,(P").

Lemma 3.4. (a)

(b)

(c)

s u p s u p £ μ — - X w(xa)< oo
μeίΓ ί \1(\a^T{

supsupE^—- X w(φ'(xa)) < oo;

cz <%
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Proof, (a) is an easy consequence of (3.4) and the basic entropy estimate, (b) also
follows from this estimate

^PNTψl Σ w(Φ'(Xa)) = EPN~ Σ "(Φ'iXa))

= ]^dlo%$ e x P (Σ MΦf(xa))dvN + j^ίrjN log ηNdvN.

This is uniformly bounded in N because of (3.4) and (2.6).
(c) Consider the following diffusion generator

For finite T g Zd, we define

where the sum is over bonds a,b (adjacent sites) in T. Corresponding to J ^ τ , we
associate the form

/τ(μ) = supΓf~y dμ\ (3.6)

where μeJΐ(Rs) for some S with T + A g 5 (Λ is the range of F). When μeJΐ(Rs)
then the supremum in (3.6) is over /eC°°(R s,R). Note that

where

From these considerations and Lemma 3.3, we obtain

^ C

= 4N2td

ent sites (this is because ηN is 1
This implies
for α, ί? adjacent sites (this is because ηN is translation invariant in the space R S N ) .

N\ <

(for the relation between #a%h and S^b in general see Stroock [12], Theorem 7.44).
Suppose that a + Λ,b + Λ<=Tr Then, in (3.6) with T = {a, b}, if we restrict the

supremum to functions /eC 0 0(RΓ ' ,R) and / > 0, we obtain
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Thus

Let μeZΓ. Then by lower semicontinuity of βah, we have

Thus

/r(Proj» = 0 (3.9)

for any finite set T g Zd. In Lemma 3.5, we will show that (3.9) implies (c) and this
completes the proof. •

Lemma 3.5. The following statements are equivalent:

(a) / τ (Pro j ,μ) = 0 for all large t such that T + A g Γ Λ and all finite sets T g Zd;
(b) J J^ Γ /dμ = 0, for allfeC£c and all finite sets T g Zd;
(c)

Proof (a o b) Consider the inequalities

S^jl (3.10)

for / e C £ c , / > 0 and T g Zd finite. By setting / = eίM with ueC£e and ίeR, and
then varying ί, it is easy to see that (3.10) is equivalent to

0 (3.11)

for all ueC£c and Γ g Z d finite.
( b o c ) Let 3F Ύ be the σ-field generated by the variables xa with α^T, and

mτ(x). Then, if f,geC£c and # is #"τ-measurable, we have

Given μ e ^ P Q , let μ\z denote the conditional probability distribution of μ
given 3Pτ. More precisely

μy

Tz{dx) = μ{dx\xa = za for aφT, and mΓ(x) = j;),

where j ; = mτ(z). From (3.12), we conclude that (3.11) is equivalent to

= 0 (3.13)

for all / e C £ c , and almost all z with respect to μ (here, we have used the fact that
we only need to verify (3.13) for a suitable countable family of functions / ) .

It is not hard to see that !£τ acting on the space of functions defined for the
variables xa, for all aeT and mτ(x) = yis elliptic with the unique invariant measure
vy

Tz. Thus (3.13) is equivalent to

and this completes the proof. •
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Proof of Theorem 3.2. On account of Theorem 2.16 and Lemma 3.4 (c), we only
need to check

lim sup lim sup sup J μ(dz) = 0.
p-αo ^ o o μeP \mT((z)\^p

But this is an immediate consequence of Lemma 3.4 (a), because w in this lemma
satisfies (2.6). •

What we have shown so far is an ergodic theorem for the averages of Go over
the microscopically large blocks of Zd. In Theorem 3.1, however, we need to show
that these averages are close to the chemical potential of a macroscopic charge
density. The gap between Theorems 3.1 and 3.2 is filled by the following result:

Theorem 3.6. For any δ > 0,

lim lim sup lim sup PN{x: \ h'(mτ (x) - h\mτ (x)\ > δ} = 0.

For this, we first link a block to a macroscopically close block by the following
lemma.

Lemma 3.7. For any δ>0

lim lim sup limsupsupPN{x: \h'(mTf(x) - h'(mTλv)(x))\ > δ} = 0,
ε~>0 /-KX) JV->oo v

where the supremum is over sites v such that T^(v) g TNε, and

(Λ is the range of F).

Proof Let dβN/v be the projection of ηNdvN on the space Rτ+Λ x Rτ^+Λ

9 where
v may depend on JV, t and ε. After a change of variable we view this measure as
a measure on the space RT/+Λ x R7>(vo)+/l

j where v0 is now a fixed site such that

We abuse the notation and denote this measure by βNίυ .
Let $( be any limit point of βNAvo as N goes to infinity. Then by (3.9) and its

consequence (3.11) we have

for all feC°"(RTί+Λ x R7>("o)+Λ,R). The proof of Lemma 3.5 implies that

dβf = ί ^A^uΎidy,, dy2, dz) (3.15)

for some probability measure y. We also consider if0 v and £*%„, where A £ Γ Λ

Tt(v) c TNε. Then, the proof of Lemma 2.3 in [4] implies that SQΛ^N) ^ Cε2d/4t.
Therefore

</θ,ιΛ/Wι>) =

<Cε2d

-~4Γ'

Cε2d
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Then by lower semicontinuity of fOv (or ^0,Vo\

Cε2d
0,v0 ( = 4 J

Let βe{dyudy2) be the distribution of mΎ{ a n d mT/{Όo) with respect to βr Our Theorem

2.18 and (3.15) allow us to follow the proof of Theorem 4.3 in [4] and conclude

that any β, a limit point of β( as { goes to infinity, satisfies

2Cρ2d
J \ht{y1)-h!{yύ\2β{dyl9dy2)^——. (3.16)

R2 r

Now let ε->0 in (3.16). This will prove (3.14). •

Proof of Theorem 3.6. Let

BNAε = {υeSd

N: 7 » g TNε and (T, -I- Λ)n(T,(v) + A) = 0 } .

Let MN/{v) denote the indicator function of the set

{x\(mτ^x\mTAv)(x))eAδ/2},

where

Aδ = {(x,y)eR2:\h'(x)-h'(y)\^δ}.

We simplify the notation by dropping indices N, ί and ε, from B and M(v). We will
also denote limlimsup limsup by 'Lims'. After these conventions, Lemma 3.7 says

ε-*0 ^-»oo N->ao

Lims sup EpNM{v) = 0.
veB

Since

£ P N l 4 τ Σ M x α ) ^ C (3.17)
I ί I aeT

for any T £ S^, we obtain

Therefore

From (3.19)

Lims sup E M(v) \ mτ {v) \ =
veB

1
Lims EpN — V M(υ) —

\B\ t?B

N 1

Lims Ep -—- 2] M(v) \ mτ {v)

\ B1 veB /

we conclude

Lims£ p N "•r.-jiiS l-Mω

= 0.

o,

= 0.

>»7X.> = 0.

(3.18)

(3.19)

(3.20)
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Denoting £ M(v) by M, we can write

Lims PN

471

>δf = 0
\B\-M

for any δf > 0 (because of (3.18)). This and the uniform integrabihty property (3.17)
imply

LimsP"
|β|5 (

1

\B\-MveB
i' = 0

for 5' > 0. Let W =
1

π Σ (1 ~ Λ φ ) ) m w Then by (3.20),
|B|-Af£i

Lims PN(\mTNt -W\> δ') = 0. (3.21)

Since W is a convex combination of random variables mτ ίtΛ such that

we have

This is simply because the set {y.(x,y)φAδ/2} is an interval for fixed xeR. Finally
(3.21) guarantees

Lims PN((mTf9 mτJeAδ) ^ Lims P " ( K ^ W)eΛδ/2) = 0,

and this is precisely the content of the theorem. •

Proof of Theorem 3.1. It follows from what we have just proved and Theorem 3.2

lim sup lim sup lim sup PN

ε->0
(pjn- Σ G0(tux))-φkoh'(mτjx)) >δ = 0 .

Since φk is bounded, we can replace the convergence in probability with the
convergence in expectation. Now all we need to complete the proof is the uniform
integrabihty of the sequence

7^ Σ Go(τ.ΐ) j

But this is just the role of Lemma 3.4 (b). •

If we assume that <$λ has linear structure for all λ (see Definition 2.19), then
we can improve Theorem 3.1 by replacing Go with any GeC®oc. Essentially, this is
because AG(y) is continuous in y and AG(y) is affine on the interval {y:h'(y) = h'(x)}
for each fixed x. These two properties of AG will be shown in Lemma 3.9.

Theorem 3.8. Let GeC?oc. Then

lim lim sup EηNdVN

ε-^0 N-oo Vεl aeTNε

G(τa(x)-AG(mτJ = 0.
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Proof If we go through the proof of Theorem 3.1, we will see that we only need
to verify

1
lim lim sup lim sup P N (
ε-0 ^ o o JV-oo \\\ΊNε\veTN

AG(mTΛv)) - A G ( m τ ) >δ = 0 (3.22)

for any δ > 0.

We continue to use our compact notations like B and Lims as in the proof of
Theorem 3.6. We can write the content of this theorems as

L i m s s u p PN( I h'(mTN) - h'(mm) \>δ) = 0
veB

(3.23)

for any δ>0. Let K denote the (may be degenerate) interval {y:h'{y) = h'(mτ

and let Cv be the closest point in K to mT(v). Since AG is affine on K, we have

1

It is not hard to see that (3.23) implies

# | veB

\B\k

Lims PN

LimsP*

=0,

>δ ) =

(3.24)

(3.25)

(3.26)

for any δ > 0. We omit the proof of (3.25) and (3.26) which is very much like the

proof of Theorem 3.6. Now (3.22) follows from (3.24), (3.25) and (3.26). •

Lemma 3.9. (a) AG is a continuous function, and
(b) AG is affine on the interval {y:h'{y) = h'(x)}.

Proof, (a) Using the basic entropy estimate, it is not hard to see

sup jw(xo)dμ< oo,

λeJ

where J is a bounded subset of R. This implies that Φ(μ) = \xodμ is a continuous

function on the space \J &\. Now let yn->y and yn = \xodμn for some μne[j^λ.
λeJ λ

Then if μ is any weak limit point of the sequence μw, we have

y = \xodμ and μ e ( J ^ Λ .

Thus
lim AG(yn) = lim J Gdμn = J* Gdμ = AG(y).

Λ-+0O Π-+00

(b) This follows from linearity of J Gdμ in μ. •

4. Large Deviations for Empirical Measures

In Sect. 5 we will use Theorem 3.1 to derive the hydrodynamic equation. This
requires to replace back φk with h'. This is the object of Theorem 4.1.
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Let fN be the density relative to dvN of a random variable on Rs" such that

i f

Let QN be the law of the empirical measure

ti = ^Jd LJ Xa°a/N>
aeSd

N

where xa are distributed according to fNdvN.

Theorem 4.1. For any limit Q of QN, we have

Q{μ:μ«dθ} = l

and

Here, dθ denotes the probability Haar measure on the d-dimensional torus.
The proof of this follows Lemma 6.3 in [4] which uses the large deviation

property of the empirical measures. When the interaction F is not present (i.e. vN

is a product measure), the large deviation property is shown in [13]. In Theorem 4.2
we show the upper bound large deviation property for empirical measures with
respect to vN. This is all we need to carry out the proof of Theorem 4.1.

Theorem 4.2. The family QN has the upper bound large deviation property with the
rate function

ί > ί ^ V if μ«dθ
J(μ)=\ \dθj

[ + oo otherwise '

We recall the function φ defined by

<p(λ)= l im—— logJexpU X xa )dvN.
n-*oo I ί n\ \ aeTn J

We first prove

Theorem 4.3. Let f be a continuous function on the d-dimensional torus. Then

lim - l l o g £ v " e x p ( £ f(a/N)) = f φ(f(θ))dθ. (4.1)

Proof Let ζ(f) denote the left-hand side of (4.1). The idea is dividing Sd

N into small
pieces on which of each f(a/N) is almost a constant. Then we can use φ to calculate

Let k be a fixed positive integer and let <&% be a collection of cubes of length
k, all separated by corridors of width /, where (is the length of A (Λ is the range of
F). Let JΓ denote the union of the cubes in #£ and let M^ be the total number of
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them. We may construct <£% such that

»m " £ ? - . . (4.2,

Since / and F are bounded and since J eclxlρ(dx) < oo for all ceR(p(dx) = e~φ{x)dx),
we may drop all terms with xa9 aeSd

N — Γ in (4.1), and obtain

C(/)= lim - ^ Σ f(a/N)xa + ̂ F,τ(x)\]pτ(dx)-φ(F). (4.3)

Let ω(<5) = sup \f(t + /z) —/(ί) |, where the supremum is over t and over \h\ < δ.
Let b(T) denote the center of T. In (4.3) we like to replace f{a/N) with f(b(T)/N).
Let 1 < p < oo and 1/p + 1/g = 1. Then by the Schwartz inequality

Σ r ( / ( 77 )X. + *F.ΛX) ) \dpTus4{N,T,p)®{N,T,p), (4.4)

where

(̂Λr,r,p) = μ« P (/(^)2>.

-Γf/

Furthermore jtf(N,T,p)^jtf'(N,T,p)exp(\T\(p-l)/p\\F\\J, where

Σ

'(ΛΓ, T,p) = Γjexpfp/( ^ ) Σ xfl + JTΛΓ(;

and

l i m s u p ^ l o g Γf ^ ( N , Γ,p) = lim sup—Λ—log fe ϊ<oV' ί/'V)| jc | p(rfx) = 0. (4.5)

Let (pΓ(/l) = —-log£ V F ' τ exp( λ Σ ^α )• Note that φτ(λ) only depends on k the

length of T. From (4.4) and (4.5) we conclude

^ lim sup lim sup lim sup —j £ log<s/'(N,T,p)— Ψ(F).
/7->l k-^oo Λί- -oo J V ΛT

On the other hand
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Thus

C(/)^ lim sup lim sup lim sup ]-- j £ φJpf(——)) + -1-±-logZFfT\-ψ(F)

= lim sup lim sup- j φτ{pf{θ))dθ
p->l k->oo P

= lφ(f(θ))dθ.

We can prove £(/) ̂  j φ(f(θ))dθ in the same way. First we apply the Schwarz
inequality to write

The rest of the proof is analogous to what we did in the above and we omit it.

Proof of Theorem 4.2. Let K be the convex conjugate of ζ. That is

K{μ) = sup(lfdμ-ζ(f))9 (4.6)

where the supremum is over all bounded continuous functions. We can obtain the
upper bound large deviation estimate (2.1) for the family {QN} when C is compact
by the same argument used in [14] (Lemma 11.3). To extend this to closed sets,
we have to establish some kind of exponential tightness (see Stroock [12], page
46). More precisely, we need to show that for any large ( there exists a compact
set Q,€ such that

lim lim sup —jlog QN(CC,) = - GO. (4.7)

Set Cf = {μ: \\ μ \\ S S}, where || μ || denotes the total variation of μ. C{ is compact, and

Now (4.7) follows from (2.4).
So far we have shown the upper bound large deviation property for the family

{QN} with rate K. We will show in Lemma 5.4 that K is equal to J and J is a rate
function. •

Lemma 4.4. K = J and J is a rate function.

Proof Step 1. Let / be a bounded measurable function. By Lusin's theorem, for
any ε > 0, there is a closed subset of torus Dε and a bounded continuous function
fε such that μ(Dc

ε) + \Dc

ε\ < ε ( | | denotes the Haar measure on torus) and fε\D = f\D .
From this we see that the supremum in (4.6) can be extended to all bounded
measurable functions.
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Step 2. Let dμ be absolutely continuous with respect to dθ, g = dμ/dθ. Set
gn = (~n)v(g Λή) and /„ = h\gn). If -n < g(x) < n, then gn(x) = g(x) and fn(x) =
h\g{x)). Therefore

ί Kg) = J [_gfn - φ{fn)-] g sup j(gf - φ(f)) = K(μ).
—n<g<n —n<g<n f

On the other hand, it is easy to see K(μ) ̂  J h(g). Thus

K(μ) = J(μ) if

Step. We will finish the proof by showing K(μ) < oo implies that μ «dθ.
Since K is convex and translation invariant, then

where {kε} is an approximation to identity. Therefore, if K(μ) < oo, then by step 2,

sup§h(kε*μ) < oo.
ε>0

On the other hand lim (Λ(x))/|x| = + oo. In fact if h{xn) ̂  Cxn for some sequence
|x|-oo

xn\ + oo, and some positive constant C, then h(x) ̂  Cx for large x, because h is
convex. But this implies that φ(y) the convex conjugate of h is infinite for y > C,
and this is impossible. Therefore the sequence {kε*μ} is uniformly integrable, and
this implies that μ is absolutely continuous.

J is a rate function because

lim -p-p= +oo. •
1*1

5. Hydrodynamic Limit

Let f% be the initial density with respect to the Gibbs measure vN. The measure
vN is the Gibbs measure with periodic boundary conditions corresponding to the
interaction field F, where F is bounded, continuously differentiable and has
bounded first derivatives. Then the evolution governed by ifN and starting from
f% at time t = 0, will give us a probability measure QN on the space C([0, oo), Riyd).
Let Jί£ denote the compact metric space (under weak convergence) of all signed
measures of total variation at most L For each N, and the set of trajectories
{xa(t):aeSd

N} we define

M0 = i Σ *a(t)δafN (5.1)

in the space \j£j(£. This, as a function of ίe[0, ίo], is an element of Ω =
u,C([0,ίo],.4^), where C([0, t^Jίe) is the space of weakly continuous maps
from [0, ί0] into Jί£. Then (5.1) introduces a probability measure QN on the space
Ω. It is not hard to see that the sequence* β^ is tight. This follows Lemmas 6.1
and 6.2 in [4] adapted to our setting. Let Q be any limit point of the sequence
QN. Then
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Theorem 5.1. Q is concentrated on the single path μ(t,dθ) = m(t9θ)dθ that is the
unique weak solution of

^ = ^Δh'(m)9 m(O,0) = mo(0) (5.2)

satisfying the estimates

S C 9 (5.3)

i f f \Vh'(m{s9θ))\2dsdθS: C. (5.4)

for all t ^ 0.

Proof Since the entropy is decreasing, we have

for all t ^ 0. Therefore, by Theorem 4.1 we have μ(ί, dθ) = m(ί, θ)dθ and

EQjh(m(t,θ))dθ^C.

This and the uniqueness result (Theorem 5.2) imply (5.3). The inequality (3.16)
allows us to follow the proof of Theorem 5.1 and Lemma 6.6 in [4] to conclude
(5.4). The uniqueness of the solution of (5.2) under the conditions (5.3) and (5.4)
will be shown in Theorem 5.2 below.

We now turn to the proof of (5.2). Let J be a smooth test function. Consider
the functional

V(t, N, ε, k; μ) = f J(θ)μ(t, dθ) - f J(θ)μ(0, dθ)

- i ί Σ ΔJ(a/N)ψkoh'(mTN(τax(s)))ds.

By Itό's formula

-L Σ J(a/N)xa(t) - - ^ Σ J(a/N)xa(0)

^ Σ ί ΔJ(a/N)GQ(τax(s))ds + MN(t) + rN,
0

Σ ί
a 0

where MN is a Martingale and lim rN = 0 in probability (see the proof of
Λί-oo

Lemma 3.4.(b) for the way we treated the unboundedness of Go). rN is an error
coming from replacing (1/ΛΓ2) ^ lJ(a/N + βj/N) + J(a/N - βj/N) - 2J(α/N)] with

j

ΔJ(a/N) in Itό's formula. An explicit calculation shows lim E°-N\MN(t)\2 = 0. This
N->oo

and Theorem 3.1 imply

lim lim sup lim sup EQN\ V(t, N, ε, k;μ)\ = 0.
fc-»oo ε-+0 N->ao
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Therefore

UmEQ\V(t,k;μ)\ = 0,

where

V(t, k;μ) = l J(θ)μ(t, dθ) - J J(θ)μ(0, dθ)

l ]h'{m(s,θ))dθds.

This is because when a/N is close θ0, then mTN(τax(s)) is almost the average of
μ(s, dθ) over the cube of side 2ε and center θ0 divided by its volume. This converges
to m(s,θ0) as ε tends to zero.

Finally, using Lemma 2.21 and Theorem 4.1 we can pass to the limit as k-+ oo
and yield

j J(θ)μ(t, dθ) - J J(θ)μ(0, dθ)-]-\] ΔJ(θ)h'(m(s, Θ))dsdθ = 0,

and this completes the proof. •

Theorem 5.2. The weak solution of (5.2) is unique within the class of functions m(ί, θ)
satisfying (5.3) and (5.4).

Proof. Consider the nonlinear operator A(m) = — Δh'(m) with

@(A) = {meH-1nLι:h'(m)eH1}.

The operator A is maximal and monotone in the sense that

<mx — m29Am1 — Am2yH-ι ^ 0

for m 1 ,m 2 e//~ 1 , and the graph of A as a subset of//"1 x H~1 is maximal within
the graph monotone operators (see Barbu [1] for more details). Thus we have
uniqueness of the solution of (5.2) in the H'1 -sense (this follows from the
monotonicity property). For the rest of the proof, we verify that if the weak solution
of (5.2) satisfies (5.4), then this solution is also a strong solution in the space of H~*.

ί

Let v(t) = J Vh'(m(s))ds. Then v is absolutely continuous as a function from
o

[0, oo) into L2, and v'(t) = Vh'(m(t)) for almost all t. Since m(ί, •) is a weak solution
of (5.2), we have j div v(t) = m(t) — m(0) in distribution. Therefore || m(t) — m(s) || \ -1 ^
(d/4) || v(t) — v(s) ||£2 and this implies that m: [0, 00] -> H~x is absolutely continuous
and dm/dt = \Δh'(m) for almost all ί, in the //"^sense. •

When h is not strictly increasing, the solutions of (5.2) might be singular. If,
however, m(0) = m0 is in a single phase (for example m0 is in a region on which h"
is uniformly positive), then m(t) will stay in that phase for all t ^ 0. This is evident
in the following theorem.

Theorem 5.3. (Maximum Principle). Suppose that mt(t) and m2(ή are two solutions
of (5.2) such that m^O), w2(0)eL°° and
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for almost all 0, then

) (5.5)

for all t and almost all θ.

Proof Let Aεu = - Aλε(u\ where

where /c:R->R+ is a smooth function with support in the interval [—1,1]. Then
λε(-) is smooth with (d/dx)λε(x) ^ ε for all x. We also have

λε(x)-+h'(x) (5.6)

uniformly in bounded subsets of R.
Let m (ί) be the unique solution (in H~ ^sense) of (dm/dt) + \Aεm = 0 such that

m*(0) = m^O) for i = 1 or 2. We then have

j t || m,.(ί) - mf(ί)||έ-1 = <ml(ί) - mf(ί), A(mt{t)) - A'(nή(t))>H-1

= <mί(ί) - mf(ί), Λ'ίmKί)) - λε{m\{t))}L2. (5.7)

On the other hand, we can use the maximum principle for solutions mε to obtain

t,θ) (5.8)

for all t and θ. We also have sup |mf(ί,0)| < oo for i = 1,2. Therefore, by (5.6),
t,β

limsup||/j'(m?(ί))-Aε(m?(ί)||L2 = 0.
ε-0 t

This allows us to replace λe(nή(ή) with h\m\{t)) in (5.7). So

lim sup sup — || mf(ί) - mf(ί) III-1 ^ 0

for ΐ = 1,2. Therefore m (ί) converges to mt(i) in H~ S for all ί. This and (5.8) imply
(5.5). •

It is of interest to study the asymptotic behavior of the solution m(ί) when t
goes to infinity. For an account of this problem, see [5], Lecture 26. Here, we
confine ourselves to the case moeL™, and we show that the limit of m(t) as t goes
to infinity, exists.

Theorem 5.4. // moeL°, then lim m(t) = m(oo) exists in i / " 1 , and we have
ί - OO

h'(m(oo,θ0)) = h'($m0(θ)dθ) (5.9)

for almost all θ0.

Proof Since moeL00, we have sup ||m(ί)||L» < oo. Therefore {m(ί):ί^0} is a
t

precompact subset of H~%. Taking into account the condition (5.4), we may choose
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a sequence of tn] oo, such that

m(tn)->m(oo) in//" 1, (5.10)

V/ι'(m(ίJ)-»0 inL 2, (5.11)

for some m(oo)e//~x. Since Jm(ίB, 0)d0 = $mo(θ)dθ, we have Jm(oo, 0)d0 = \mQ{θ)dθ
and (5.11) guarantees that we also have (5.9).

Finally || m(ί) — m(oo) ||H-1 is nonincreasing in t (because of (5.9), v(t) = m(oo) is
a steady solution of (5.2)), thus lim m(ί) = m(oo) in H~*.
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