Universal Schwinger Cocycles of Current Algebras in $(\boldsymbol{D}+1)$-Dimensions: Geometry and Physics

Kazuyuki Fujii ${ }^{1}$ and Masaru Tanaka ${ }^{2}$
${ }^{1}$ Department of Mathematics, Yokohama City University, 236 Japan
${ }^{2}$ Department of Physics, Kyushu University, 812 Japan

Abstract

We discuss the universal version of the Schwinger terms of current algebra (we call it the universal Schwinger cocycle) for $p=3$ (here p denotes the class of the Schatten ideal I_{p}, which is related to the $(D+1)$ space-time dimensions by $p=(D+1) / 2)$ in detail, and give a conjecture of the general form of the cocycle for any p. We also discuss the infinite charge renormalizations, the highest weight vector and state vectors for $p=3$. Last, we give brief comments on the problems caused by the difficulties to construct the measure of infinite-dimensional Grassmann manifolds.

1. Introduction

In particle physics, current algebra has been introduced in the study of strong interactions. It was assumed that the time-component of a current generates a closed algebra in the classical level. More explicitly, we consider a Dirac field in $D+1$-dimension coupled to an external Yang-Mills field A. Let G be a compact semi-simple Lie group and \underline{g} its algebra. The current is

$$
\begin{equation*}
J^{i}(x)=\Psi^{\dagger}(x) \lambda^{i} \Psi(x) \tag{1}
\end{equation*}
$$

We define

$$
\begin{equation*}
J(f) \stackrel{\text { def }}{=} \int d x f^{i}(x) J^{i}(x) \tag{2}
\end{equation*}
$$

where $f(x)=f^{i}(x) \lambda^{i}: X \rightarrow \underline{g}$, is a mapping valued in the Lie algebra.
This operator satisfies

$$
\begin{equation*}
[J(f), J(g)]=J([f, g]) . \tag{3}
\end{equation*}
$$

But, in the quantum level, this relation is modified as follows:

$$
\begin{equation*}
[J(f), J(g)]=J([f, g])+c(f, g ; A) . \tag{4}
\end{equation*}
$$

This $v(f, g ; A)$ is called the Schwinger term [F]. This requires the representations of the Abelian extension Map $(X ; \underline{g})$ of $\operatorname{Map}(X ; g)$,

$$
(0 \rightarrow \operatorname{Map}(A ; C) \rightarrow \widehat{\operatorname{Map}(X ; \underline{g}) \rightarrow} \operatorname{Map}(X ; \underline{g}) \rightarrow 0)
$$

In the present paper, we construct universal objects from the point of K-theory; Gr_{p}, Det_{p}, $\operatorname{Det}_{p}^{*}$, etc., for making the geometrical meaning of Schwinger terms and abelian extension. We discuss the two-cycle (universal Schwinger cocycle) for $p=3$ (the suffix p denotes a suitable class of the Schatten ideal, which is related to the $(D+1)$ space-time dimensions by $p=(D+1) / 2)$, the two-cocyle for general p, the infinite charge renormalizations, and the highest weight vector. We also give brief comments for the measure of infinite-dimensional Grassmann manifolds.

Our results are the generalization of the work by Mickelsson and Rajeev [MR].

2. Embedding of $\operatorname{Map}(X ; G)$ into the Infinite-Dimensional Group

Let X be the D-dimensional compact spin manifold, (for example, the D-dimensional torus), and define

$$
\begin{equation*}
\operatorname{Map}(X: G)=\{g: X \rightarrow G, \text { smooth maps }\}, \tag{5}
\end{equation*}
$$

then this space becomes a group by pointwise multiplication.
In the previous section, we considered the current algebra in the level of a Lie algebra. But, for our purpose, it is better to consider the same things in the level of a Lie group. Then, instead of $\operatorname{Map}(X ; G)$, we treat a larger group which acts on a Hilbert space.

Now we consider the Hilbert space H consisting of free fermion fields Ψ carrying a unitary representation ρ of G.

Since a Dirac operator D on X has discrete eigenvalues, let H_{+}be the space of the eigenstates with positive eigenvalues of the operator D, and H_{-}the space of the eigenstates with its non-positive eigenvalues. Let the basis of each eigenspace of D be

$$
\begin{array}{r}
\left\{e_{1}, e_{2}, \ldots\right\} \text { :orthogonal basis of } H_{+}, \\
\left\{e_{0}, e_{-1}, \ldots\right\} \text { :orthogonal basis of } H_{-} . \tag{7}
\end{array}
$$

Then $H=H_{+} \oplus H_{-}$. We define the sign operator ε,

$$
\begin{equation*}
\varepsilon \stackrel{\text { def }}{=} \frac{D}{|D|} . \tag{8}
\end{equation*}
$$

(If D has a zero eigenvalue, we set $\varepsilon=-1$.)
We define the operator $M(f): H \rightarrow H$ such that

$$
\begin{equation*}
[M(f) \Psi](x) \stackrel{\text { def. }}{=} \rho(f(x)) \Psi(x) \tag{9}
\end{equation*}
$$

$M(f)$ is decomposed as follows,

$$
M(f)=\left(\begin{array}{ll}
a & b \tag{10}\\
c & d
\end{array}\right)
$$

where

$$
\begin{cases}a: H_{+} \rightarrow H_{+}, & d: H_{-} \rightarrow H_{-} \tag{11}\\ b: H_{-} \rightarrow H_{+}, & c: H_{+} \rightarrow H_{-}\end{cases}
$$

We define the Schatten Ideal

$$
\begin{equation*}
I_{2 p}=\left\{A \in B(H) \mid\|A\|_{2 p}=\left[\operatorname{tr}\left(A^{+} A\right)^{p}\right]^{1 / 2 p}<\infty\right\}, \tag{12}
\end{equation*}
$$

where $B(H)$ is the space of all bounded operators on H [S], [C].
We also define

$$
\begin{equation*}
G L_{p} \stackrel{\text { def }}{=}\left\{A \in G L(H) \mid \operatorname{tr}[\varepsilon, A]^{2 p}<\infty\right] \quad(p=1,2, \ldots), \tag{13}
\end{equation*}
$$

where $G L(H)$ is the set of all invertible operators on H.
We note each $g \in G L_{p}$ can be written as

$$
g=\left(\begin{array}{ll}
a & b \tag{14}\\
c & d
\end{array}\right) ; \quad a, d \in \text { Fredholm and } b, c \in I_{2 p}
$$

If $2 p>d$, there exists a continuous injective homomorphism [MR]

$$
\begin{equation*}
M: \operatorname{Max}(X ; G) \subsetneq G L_{p} \tag{15}
\end{equation*}
$$

3. Properties of Generalized Determinant [S]

We define the generalized determinant. For $A \in 1+I_{p}$,

$$
\begin{equation*}
R_{p}(A)=-1+(1+A) \exp \left\{\sum_{j=1}^{p-1}(-1)^{j} \frac{A^{j}}{j}\right\} \in I_{1}, \tag{16}
\end{equation*}
$$

and therefore $\operatorname{det}_{p} A$ is defined as

$$
\begin{equation*}
\operatorname{det}_{p} A \stackrel{\text { def }}{=} \operatorname{det}\left(1+R_{p}(A)\right) . \tag{17}
\end{equation*}
$$

This form is a bit abstract. However, if A satisfies the condition $\|A-1\|<1$, then we find [MR],

$$
\begin{equation*}
\operatorname{det}_{p} A=\exp \operatorname{tr}\left\{(-1)^{p-1} \frac{(A-1)^{p}}{p}+(-1)^{p} \frac{(A-1)^{p+1}}{p+1}+\cdots\right\} . \tag{18}
\end{equation*}
$$

This determinant satisfies the following properties $\left(A, B \in 1+I_{p}\right)$:
(i) A is invertible off $\operatorname{det}_{p} A \neq 0$.
(ii) If $A \in 1+I_{p-1}$, then

$$
\begin{equation*}
\operatorname{det}_{p} A=\operatorname{det}_{p-1} A \cdot \exp \left[(-1)^{p-1} \operatorname{tr} \frac{(A-1)^{p-1}}{p-1}\right] \tag{19}
\end{equation*}
$$

(iii) There exists a symmetric polynomial $\gamma_{p}(A, B)$ such that

$$
\begin{equation*}
\operatorname{det}_{p} A B=e^{\gamma_{p}(A, B)} \operatorname{det}_{p} A \cdot \operatorname{det}_{p} B . \tag{20}
\end{equation*}
$$

We list first a few examples:

$$
\begin{align*}
& \gamma_{1}(A, B) \equiv 0 \quad\left(A, B \in 1+I_{1}\right) \tag{21}\\
& \gamma_{2}(A, B)=-\operatorname{tr}(A-1)(B-1) \quad\left(A, B \in 1+I_{2}\right), \tag{22}
\end{align*}
$$

$$
\begin{align*}
\gamma_{3}(A, B)= & \operatorname{tr}\left\{\frac{1}{2}(A-1)(B-1)(A-1)(B-1)+(A-1)(B-1)(A-1)\right. \\
& +(B-1)(A-1)(B-1)\} \quad\left(A, B \in 1+I_{3}\right) . \tag{23}
\end{align*}
$$

Now, if we define

$$
\begin{equation*}
\omega_{p}(A, B) \stackrel{\text { def. }}{=} \operatorname{det}_{p} B \cdot e^{\gamma_{p}(A, B)} \tag{24}
\end{equation*}
$$

then [MR],

$$
\begin{equation*}
\omega_{p}(A, B C)=\omega_{p}(A B, C) \cdot \omega_{p}(A, B) \tag{25}
\end{equation*}
$$

where $A, B, C \in 1+I_{p}$.

4. Construction of Abelian Extension of $\boldsymbol{G} \boldsymbol{L}_{\boldsymbol{p}}$ [MR]

We define the subgroup B_{p} of $G L_{p}$,

$$
B_{p} \stackrel{\text { def. }}{=}\left\{\left.\left(\begin{array}{ll}
a & b \tag{26}\\
0 & d
\end{array}\right) \in G L_{p} \right\rvert\, a, d \in \text { Fredholm, } b \in I_{2 p}\right\}
$$

and define the homogeneous space $G L_{p} / B_{p}$. This space is identified with the Grassmann manifold Gr_{p},

$$
\begin{equation*}
\operatorname{Gr}_{p}=\left\{W \subset H \mid W=g \cdot H_{+}, g \in G L_{p}\right\} . \tag{27}
\end{equation*}
$$

We also define the orthogonal projections $\mathrm{pr}_{ \pm}$,

$$
\begin{equation*}
\mathrm{pr}_{ \pm}: W \rightarrow H_{ \pm} . \tag{28}
\end{equation*}
$$

Since the diagonal block of $g \in G L_{p}$ is Fredholm, pr_{+}is Fredholm. The off-diagonal block of g is in the class of $I_{2 p}$, so pr_ is in the class of $I_{2 p}$.

We set $G L^{p}$ as

$$
\begin{equation*}
G L^{p} \stackrel{\text { def. }}{=} G L\left(H_{+}\right) \cap\left(1+I_{p}\right) \tag{29}
\end{equation*}
$$

where $G L\left(H_{+}\right)$is the set of all invertible operators on H_{+}.
We define a group

$$
\begin{equation*}
\varepsilon_{p}=\left\{(g, q) \in G L_{p} \times G L\left(H_{+}\right) \mid a q^{-1}-1 \in I_{p}\right\}, \tag{30}
\end{equation*}
$$

whose group multiplication is

$$
\begin{equation*}
\left(g_{1}, q_{1}\right) \cdot\left(g_{2}, q_{2}\right)=\left(g_{1} g_{2}, q_{1} q_{2}\right) \tag{31}
\end{equation*}
$$

The group $G L^{p}$ acts from the right on ε_{p} by $(g, q) \cdot t=(g, q t)$, so we have $G L_{p}=\varepsilon_{p} / G L^{p}$.
Since B_{p} acts on ε_{p} by $(g, q) \cdot k=(g k, q \alpha)$, where $k=\left(\begin{array}{ll}\alpha & \beta \\ 0 & \gamma\end{array}\right) \in B_{p}$, we can define
Stiefel manifold the Stiefel manifold

$$
\begin{equation*}
\mathrm{St}_{p} \stackrel{\text { def. }}{=} \varepsilon_{p} / \boldsymbol{B}_{p} \tag{32}
\end{equation*}
$$

which has the canonical projection π : $\mathrm{St}_{p} \rightarrow \mathrm{Gr}_{p}$.
Let $w=\left\{w_{1}, w_{2}, \ldots\right\}$ be the basis of $W \in \mathrm{Gr}_{p}$. Then

$$
\begin{equation*}
\operatorname{pr}_{+}\left(w_{i}\right)=\sum_{j=1}^{\infty}\left(w_{+}\right)_{j i} e_{j} . \tag{33}
\end{equation*}
$$

We call the basis w admissible if $w_{+} \in 1+I_{p}$. Then we can show that every $W \in \mathrm{Gr}_{p}$ has an admissible basis.

From now on, we set

$$
\begin{equation*}
w \stackrel{\text { def }}{=}\binom{w_{+}}{w_{-}}, \quad w_{ \pm}=\mathrm{pr}_{ \pm}(w), \tag{34}
\end{equation*}
$$

where $w_{+} \in 1+I_{p}$ and $w_{-} \in I_{2 p}$.
The right action of $t \in G L^{p}$ is the basis transformation $w_{i}^{\prime}=\sum_{j} w_{j} t_{j i}$.
This action of $G L^{p}$ on St_{p} is written shortely as

$$
\begin{equation*}
\binom{w_{+}}{w_{-}} \mapsto\binom{w_{+} t}{w_{-} t} \tag{35}
\end{equation*}
$$

and induces the right action on $\mathrm{St}_{p} \times C$ as follows,

$$
\begin{equation*}
(w, \lambda) \cdot t \stackrel{\text { def. }}{=}\left(w t, \lambda \omega_{p}\left(w_{+}, t\right)^{-1}\right) \tag{36}
\end{equation*}
$$

Then we have the homogeneous space,

$$
\begin{equation*}
\operatorname{Det}_{p} \stackrel{\text { def }}{=}\left(\mathrm{St}_{p} \times C\right) / G L^{p} \tag{37}
\end{equation*}
$$

which is the line bundle over the Grassmannian Gr_{p}, whose projection is

$$
\begin{equation*}
[(w, \lambda)] \mapsto \text { the space spanned by the basis }\left\{w_{1}, w_{2}, \ldots\right\} . \tag{38}
\end{equation*}
$$

Let $F=F(w)=\left(\begin{array}{ll}F_{11} & F_{12} \\ F_{21} & F_{22}\end{array}\right)$ be the linear operator in $H=H_{+} \oplus H_{-}$such that $\left.F\right|_{W}=+1,\left.F\right|_{W^{\perp}}=-1$, and $F^{2}=1$ on H, where W is the plane determined by the basis $w=\left\{w_{i}\right\}\left(\right.$ we can set $F=2 w\left(w^{\dagger} w\right)^{-1} w^{\dagger}-1$, especially $F=2 w w^{\dagger}-1$ for $w^{\dagger} w=1$).

We consider smooth functions $\alpha(g, q ; w)$ on $\varepsilon_{p} \times \mathrm{St}_{p}$ such that

$$
\begin{equation*}
\frac{\alpha(g, q ; w t)}{\alpha(g, q ; w)}=\frac{\omega_{p}\left(w_{+}, t\right)}{\omega_{p}\left(\left(g w q^{-1}\right)_{+}, q t q^{-1}\right)} \tag{39}
\end{equation*}
$$

for $t \in G L^{p}$. A general solution of this equation is given by

$$
\begin{equation*}
\alpha(g, q ; w)=f(g, q ; W) \frac{\operatorname{det}_{p} w_{+}}{\operatorname{det}_{p}\left(g w q^{-1}\right)_{+}} \cdot \frac{\operatorname{det}_{p} \frac{1}{2}\left(q^{-1} a\left(F_{11}+1\right)+q^{-1} b F_{21}\right)}{\operatorname{det}_{p} \frac{1}{2}\left(F_{11}+1\right)}, \tag{40}
\end{equation*}
$$

where $f: \varepsilon_{p} \times \mathrm{Gr}_{p} \rightarrow C^{\times}$is an arbitrary smooth function [MR].
We define a group $\varepsilon_{p} \times \operatorname{Map}\left(\mathrm{Gr}_{p}, C^{\times}\right)$, whose group structure is defined by

$$
\begin{align*}
\left(g_{1}, q_{1}, \mu_{1}\right)\left(g_{2}, q_{2}, \mu_{2}\right)= & \left(g_{1} g_{2}, q_{1} q_{2}, \mu_{1}\left(g_{2} \cdot F\right) \mu_{2}(F)\right. \\
& \left.\cdot \alpha\left(g_{1}, q_{1} ; q_{2} w q_{2}^{-1}\right) \alpha\left(g_{2}, q_{2} ; w\right) \alpha\left(g_{1} g_{2}, q_{1} q_{2} ; w\right)^{-1}\right) \tag{41}
\end{align*}
$$

$\varepsilon_{p} \times \operatorname{Map}\left(\operatorname{Gr}_{p}, C^{\times}\right)$acts on Det_{p} by the formula

$$
\begin{equation*}
(g, q, \mu) \cdot(w, \lambda)=\left(g w q^{-1}, \mu(\pi(w)) \cdot \lambda \cdot \alpha(g, q ; w)\right) \tag{42}
\end{equation*}
$$

There is an Abelian extension $\widehat{G L_{p}}$ of $G L_{p}$ by $\operatorname{Map}\left(\mathrm{Gr}_{p}, C^{\times}\right)$,

$$
\begin{equation*}
\widehat{G L_{p}}=\left(\varepsilon_{p} \times \operatorname{Map}\left(\mathrm{Gr}_{p}, C^{\times}\right)\right) / N_{p} \tag{43}
\end{equation*}
$$

where N_{p} is the kernel of this action (the normal subgroup) consisting of elements $\left(1, q, \mu_{q}\right)$, where

$$
\begin{align*}
\mu_{q}(w) & =\alpha(1, q, w)^{-1} \cdot \omega_{p}\left(w_{+}, q^{-1}\right)^{-1}, \quad q \in G L^{p}, \tag{44}\\
(1 & \left.\rightarrow \operatorname{Map}\left(\operatorname{Gr}_{p}, C^{\times}\right) \rightarrow \widehat{G L_{p}} \rightarrow G L_{p} \rightarrow 1\right) .
\end{align*}
$$

We note that if $p=1$, the above sequence is

$$
1 \rightarrow \operatorname{Map}\left(\mathrm{Gr}_{1}, C^{\times}\right) \rightarrow \widehat{G L_{1}} \rightarrow G L_{1} \rightarrow 1
$$

which seems an Abelian extension but is reduced to a central extension [PS],

$$
1 \rightarrow C^{\times} \rightarrow \widehat{G L_{1}} \rightarrow G L_{1} \rightarrow 1
$$

Here we list various bundles constructed by [MR].
(i) $p>1$:

(ii) $p=1$:

(Avoiding confusions, two kinds of lines are used, and they stand for the bundle maps.)

Near the unit element $g=1$, we can define the local section $\Gamma: \widehat{G L_{p}} \rightarrow G L_{p}$ by

$$
\begin{equation*}
\Gamma(g)=(g, a, 1) \bmod N_{p} . \tag{45}
\end{equation*}
$$

The extension is in general determined by the two-cocycle. In this case, the two-cocycle is computed by

$$
\begin{equation*}
\Gamma\left(g_{1}\right) \cdot \Gamma\left(g_{2}\right)=\Gamma\left(g_{1} g_{2}\right) \cdot\left(1,1, \xi\left(g_{1}, g_{2}\right)\right) \tag{46}
\end{equation*}
$$

where $\xi\left(g_{1}, g_{2}\right) \in \operatorname{Map}\left(G L_{p}, C^{\times}\right)$.
By the associativity, ξ satisfies the following condition:

$$
\begin{equation*}
\xi\left(g_{1}, g_{2} g_{3} ; \pi(\omega)\right) \cdot \xi\left(g_{2}, g_{3} ; \pi(\omega)\right)=\xi\left(g_{1} g_{2}, g_{3} ; \pi(\omega)\right) \cdot \xi\left(g_{1}, g_{2} ; \pi\left(g_{3} \omega\right)\right) \tag{47}
\end{equation*}
$$

It is, in general, complicated to treat the group extension, but the corresponding Lie algebra is rather simpler. So we consider the infinitesimal version of the group extension,

$$
\left(0 \rightarrow \operatorname{Map}\left(\operatorname{Gr}_{p}, C\right) \rightarrow \widehat{g l_{p}} \rightarrow g l_{p} \rightarrow 0\right)
$$

The Lie algebra $\widehat{g l_{p}}$ of $\widehat{G L_{p}}$ is equivalent to $g l_{p} \oplus \operatorname{Map}\left(\mathrm{Gr}_{p}, C\right)$ as a vector space, where $g l_{p}$ is the Lie algebra of $G L_{p}$.

The commutator in $g l_{p}$ is

$$
\begin{equation*}
[(X, \mu),(Y, v)]=([X, Y], X \cdot v-Y \cdot \mu+\eta(X, Y ; F)) \tag{48}
\end{equation*}
$$

where η is an antisymmetric bilinear form on $g l_{p}$ taking values in $\operatorname{Map}\left(\operatorname{Gr}_{p}, C\right)$ and $X \cdot v$ is a Lie derivative of a function v on Gr_{p} to the direction of the vector field X defined by the $G L_{p}$ action on Gr_{p}.

From the Jacobi identity, we have

$$
\begin{align*}
& \eta([X, Y], Z ; F)+\eta([Y, Z], X ; F)+\eta([Z, X], Y ; F) \\
& \quad-Z \cdot \eta(X, Y ; F)-X \cdot \eta(Y, Z ; F)-Y \cdot \eta(Z, X ; F)=0 . \tag{49}
\end{align*}
$$

Now let's compute the two-cocycle. By Eq. (41), we have

$$
\begin{align*}
& \left\{\Gamma\left(g_{1}\right) \Gamma\left(g_{2}\right) \Gamma\left(g_{1}^{-1}\right) \Gamma\left(g_{2}^{-1}\right)\right\}(w, \lambda) \\
& \quad=\left(g_{1}, g_{2} g_{1}^{-1} g_{2}^{-1}, a\left(g_{1}\right) a\left(g_{2}\right) a\left(g_{1}^{-1}\right) a\left(g_{2}^{-1}\right), \mu\right)(w, \lambda) \tag{50}
\end{align*}
$$

where μ is

$$
\begin{align*}
\mu(\pi(w))= & \alpha\left(g_{2}^{-1}, a\left(g_{2}^{-1}\right) ; w\right) \\
& \cdot \alpha\left(g_{1}^{-1}, a\left(g_{1}^{-1}\right) ; g_{2}^{-1} w a\left(g_{2}^{-1}\right)^{-1}\right) \\
& \cdot \alpha\left(g_{2}, a\left(g_{2}\right) ; g_{1}^{-1} g_{2}^{-1} w a\left(g_{2}^{-1}\right)^{-1} a\left(g_{1}^{-1}\right)^{-1}\right) \\
& \cdot \alpha\left(g_{1}, a\left(g_{1}\right) ; g_{2} g_{1}^{-1} g_{2}^{-1} w a\left(g_{2}^{-1}\right)^{-1} a\left(g_{1}^{-1}\right)^{-1} a\left(g_{2}\right)^{-1}\right) \\
& \cdot \alpha\left(g_{1} g_{2} g_{1}^{-1} g_{2}^{-1}, a\left(g_{1}\right) a\left(g_{2}\right) a\left(g_{1}^{-1}\right) a\left(g_{2}^{-1}\right) ; w\right)^{-1} . \tag{51}
\end{align*}
$$

To obtain the two-cocycle $\eta_{p}(X, Y ; F)$, we set $g_{1}=e^{t X}$ and $g_{2}=e^{s Y}$, and compute

$$
\begin{equation*}
\left.\frac{\partial^{2}}{\partial s \partial t} \mu(\pi(w))\right|_{s=t=0}=\eta_{p}(X, Y ; F) \tag{52}
\end{equation*}
$$

We can get the two-cocycle $\eta_{p}(X, Y ; F)$ with the suitable choice of $f(g, q ; W)$ in Eq. (40). (In is not easy to choose $f(g, q ; W)$ for each p.)

We must note that the calculations below are based on \hat{U}_{p} (the unitary group) rather than $\widehat{G L_{p}}$ and, moreover, the only connected component of the unit element is exploited. The situation is the same as [MR] essentially.

5. Results

The results are as follows,
(i) $p=1: \mathrm{Kac}-$ Peterson $[\mathrm{KP}]$ (or [PS])

$$
\begin{align*}
\alpha(g, q ; w) & \equiv 0, \tag{53}\\
\eta_{1}(X, Y ; F) & =-\frac{1}{8} \operatorname{tr}[[\varepsilon, X],[\varepsilon, Y]] \varepsilon \\
& =\operatorname{tr}(b(X) c(Y)-b(Y) c(X)) . \tag{54}
\end{align*}
$$

(ii) $p=2$: Mickelsson-Rajeev [MR]

$$
\begin{align*}
\alpha(g, q ; w)= & \exp \left[-\operatorname{tr}\left\{\left(1-q^{-1} a\right)\left(w_{+}-1\right)+q^{-1} b\left(\frac{1}{2} F_{21}-w_{-}\right)\right\}\right], \tag{55}\\
\eta_{2}(X, Y ; F)= & \frac{1}{8} \operatorname{tr}[[\varepsilon, X],[\varepsilon, Y]](F-\varepsilon) \\
= & -\frac{1}{2} \operatorname{tr}\left\{(b(X) c(Y)-b(Y) c(X))\left(F_{11}-1\right)\right. \\
& \left.-b(X)\left(F_{22}+1\right) c(Y)+b(Y)\left(F_{22}+1\right) c(X)\right\} . \tag{56}
\end{align*}
$$

(iii) $p=3$:

$$
\begin{equation*}
\alpha(g, q ; w)=\exp \left[\frac{1}{2} \operatorname{tr}\left\{\tilde{\gamma}(g, q ; w)+2\left(q^{-1} a-1\right)\left(\frac{F_{11}-1}{2}\right)^{2}\right\}\right], \tag{57}
\end{equation*}
$$

where

$$
\begin{align*}
& \tilde{\gamma}(g, q ; w)=\left\{\left(\left(q^{-1} a-1\right) w_{+}+q^{-1} b w_{-}+w_{+}-1\right)\left(w_{+}^{+}-1\right)\right. \\
& \cdot\left(\left(q^{-1} a-1\right) w_{+}+q^{-1} b w_{-}+w_{+}-1\right)\left(w_{+}^{+}-1\right) \\
&+2\left(\left(q^{-1} a-1\right) w_{+}+q^{-1} b w_{-}+w_{+}-1\right)^{2}\left(w_{+}^{+}-1\right) \\
&+2\left(\left(q^{-1} a-1\right) w_{+}+q^{-1} b w_{-}+w_{+}-1\right)\left(w_{+}^{+}-1\right)^{2} \\
&-\left(w_{+}-1\right)\left(w_{+}^{+}-1\right)\left(w_{+}-1\right)\left(w_{+}^{+}-1\right) \\
&\left.-2\left(w_{+}-1\right)^{2}\left(w_{+}^{+}-1\right)-2\left(w_{+}-1\right)\left(w_{+}^{+}-1\right)^{2}\right\}, \tag{58}\\
& \eta_{3}(X, Y ; F)=\frac{1}{64} \operatorname{tr}\left\{2[[\varepsilon, X],[\varepsilon, Y]](F-\varepsilon)^{3}\right. \\
&\left.-[\varepsilon, X](F-\varepsilon)[\varepsilon, Y](F-\varepsilon)^{2}+[\varepsilon, Y](F-\varepsilon)[\varepsilon, X](F-\varepsilon)^{2}\right\} \\
&=\frac{1}{4} \operatorname{tr}\left\{(b(X) c(Y)-b(Y) c(X))\left(F_{11}-1\right)^{2}\right. \\
&+b(X)\left(F_{22}+1\right)^{2} c(Y)-b(Y)\left(F_{22}+1\right)^{2} c(X) \\
&-b(X)\left(F_{22}+1\right) c(Y)\left(F_{11}-1\right) \\
&\left.+b(Y)\left(F_{22}+1\right) c(X)\left(F_{11}-1\right)\right\} . \tag{59}
\end{align*}
$$

(iv) $p \geqq 4$: It is not easy to calculate.

From the above local formula of $\eta_{p}(X, Y ; F)(p=1,2,3)$, we can guess the general formula $\eta_{p}(X, Y ; F)$ as follows:
(v) p : any natural number

$$
\begin{align*}
\eta_{p}(X, Y ; F)= & c_{p} \operatorname{tr}\left\{\sum _ { l = 0 } ^ { p - 1 } (- 1) ^ { (p - 1) - l } \left(b(X)\left(F_{22}+1\right)^{l} c(Y)\left(F_{11}-1\right)^{(p-1)-l}\right.\right. \\
& \left.\left.-b(Y)\left(F_{22}+1\right)^{l} c(X)\left(F_{11}-1\right)^{(p-1)-l}\right)\right\}, \tag{60}
\end{align*}
$$

where c_{p} is a constant which only depends on p.
In fact, we can show that this satisfies the Jacobi identity (Eq. (49)) (see Appendix). Therefore, $\eta_{p}(X, Y ; F)$ above becomes the two-cocycle. (Of course, $\eta_{p}(X, Y ; F)$ coincides each case (i), (ii), and (iii) with suitable $\left.c_{p}\right)$.

We conjecture that η_{p} (Eq. (60)) gives all of the cocycles.

6. Infinite Charge Renormalization

We establish the relation $\eta_{p}(X, Y ; F)$ and $\eta_{p+1}(X, Y ; F)$ in this section. Consider the $\eta_{p}(X, Y ; F)$, where $X, Y \in g l_{p+1}$ and $F \in \mathrm{Gr}_{p+1}$. Then this is a two-cocycle but divergent. So we must subtract the divergence in order to get the well-defined two-cocycle: we must find a one-cocycle $\beta_{p}(X ; F)$ such that

$$
\begin{equation*}
\left(\eta_{p}+\delta \beta_{p}\right)(X, Y ; F)=\eta_{p+1}(X, Y ; F), \tag{61}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta \beta_{p}(X, Y ; F)=\delta_{X} \beta_{p}(Y ; F)-\delta_{Y} \beta_{p}(X ; F)+\beta_{p}([X, Y] ; F) . \tag{62}
\end{equation*}
$$

In [MR] $(p=1),(61)$ is interpreted as the "infinite charge renormalization." Here we generalize their interpretation to arbitrary p. The results are stated as follows:
(i) $p=1$ [MR]

$$
\begin{equation*}
\beta_{1}(X ; F)=\frac{1}{16} \operatorname{tr}[X, \varepsilon][F, \varepsilon] . \tag{63}
\end{equation*}
$$

(ii) $p=2$

$$
\begin{equation*}
\beta_{2}(X, F)=-\frac{1}{64} \operatorname{tr}[X, \varepsilon][F, \varepsilon](F-\varepsilon)^{2} . \tag{64}
\end{equation*}
$$

We conjecture the form of β_{p} for any natural number p,
(iii) p : any natural number

$$
\begin{equation*}
\beta_{p}(X, F)=d_{p} \operatorname{tr}[X, \varepsilon][F, \varepsilon](F-\varepsilon)^{2(p-1)} \tag{65}
\end{equation*}
$$

where d_{p} is constant only depending on p.

7. The Highest Weight Vector and State Vectors

We define holomorphic cross sections of $\operatorname{Det}_{p}^{*}$ (the dual bundle of Det $_{p}$). These are identified with functions

$$
\begin{equation*}
\Psi: \mathrm{St}_{p} \rightarrow C, \quad \Psi(w t)=\Psi(w) \omega_{p}\left(w_{+}, t\right) . \tag{66}
\end{equation*}
$$

For example, $\Psi_{0}(w)=\operatorname{det}_{p} w_{+}$, which is the "highest weight vector" [MR]. Let $\Gamma\left(\right.$ Det $\left._{p}^{*}\right)$ be the set of all cross sections Ψ.

We define $(i)=\left\{i_{1}, i_{2}, \ldots, i_{n}, \ldots\right\} \in N$, which is any finite set [M], and put $S=\{(i)\}$.

Then we define the matrix $w(i)$ by exchanging the rows labeled by (i) of w_{+}for the corresponding rows of w_{-}:

$$
w(i)=\left(\begin{array}{c}
w_{+}^{(1)} \tag{67}\\
\vdots \\
w_{-}^{\left(i_{1}\right)} \\
\vdots \\
w_{-}^{\left(i_{n}\right)} \\
\vdots
\end{array}\right) .
$$

It is trivial that $w(i)-w_{+} \in I_{1}$ and $w(i)=w_{+}$if (i) is the empty set.
Now we define

$$
\begin{equation*}
\Psi_{(i)}(w) \stackrel{\operatorname{def} .}{=\operatorname{det}_{p} w(i) \cdot e^{\alpha_{p}(w(i), w+)} .} \tag{68}
\end{equation*}
$$

Since $\Psi_{(i)}(w)$ should satisfy $\Psi_{(i)}(w t)=\Psi_{(i)}(w) \cdot \omega_{p}\left(w_{+}, t\right)$, we have

$$
\begin{equation*}
\gamma_{p}(w(i), t)-\gamma_{p}\left(w_{+}, t\right)=-\left\{\alpha_{p}\left(w(i) t, w_{+} t\right)-\alpha_{p}\left(w(i), w_{+}\right)\right\}, \tag{69}
\end{equation*}
$$

see Eqs. (21)-(23).
We state our result.
(i) $p=2[\mathrm{M}]$,

$$
\begin{equation*}
\Psi_{(i)}(w)=\operatorname{det}_{2} w(i) \cdot e^{\operatorname{tr}(w(i)-w+)} . \tag{70}
\end{equation*}
$$

(ii) $p=3$,

$$
\begin{equation*}
\Psi_{(i)}(w)=\operatorname{det}_{3} w(i) \cdot e^{\left.-\operatorname{tr}(1 / 2) w(i))^{2}-2 w(i)-(1 / 2) w_{+}^{2}+2 w+\right)} \tag{71}
\end{equation*}
$$

Therefore, we have shown that $\Psi_{(i)}$ is a holomorphic section for each $(i) \in S$. We conjecture that $\left\{\Psi_{(i)} \mid(i) \in S\right\}$ is a holomorphic basis of $\Gamma\left(\operatorname{Det}_{p}^{*}\right)$:

$$
\begin{equation*}
\forall \Psi \in \Gamma\left(\operatorname{Det}_{p}^{*}\right) \Rightarrow \Psi=\sum_{(i)} c_{(i)} \Psi_{(i)} \tag{72}
\end{equation*}
$$

8. Discussion

We note again that all the above discussions were based on the \hat{U}_{p} (the unitary subgroup of $\widehat{G L_{p}}$) rather than $\widehat{G L_{p}}$. We want to construct the representation of the $\widehat{G L_{p}}$ (or \hat{U}_{p}) on a "Hilbert space," (for the general discussion, see [MR]).

We can define an inner product on $\Gamma\left(\operatorname{Det}_{p}^{*}\right)$ as follows:

$$
\begin{equation*}
\left\langle\Psi_{1}, \Psi_{2}\right\rangle=\int_{\mathrm{G}_{p}} d m \bar{\Psi}_{1}(w) \Psi_{2}(w) l(w)^{-2}, \tag{73}
\end{equation*}
$$

if the quasi-invariant measure $d m$ on Gr_{p} exists (in general, for $p \geqq 2$, the measure $d m$ is unknown, but for $p=1$, the measure may be given by [P1]), where

$$
\begin{equation*}
l(w)=\exp \left\{-\frac{1}{2} \gamma_{p}\left(w_{+}, w_{+}^{+}\right)\right\} . \tag{74}
\end{equation*}
$$

Given the inner product on $\Gamma\left(\operatorname{Det}_{p}^{*}\right)$, we can construct the representation:

$$
\begin{gather*}
T: \widehat{G L_{p}}\left(\text { respectively } \hat{U}_{p}\right) \rightarrow \Gamma\left(\operatorname{Det}_{p}^{*}\right), \tag{75}\\
(T(g, q, \lambda) \Psi)(w)=\lambda\left(g^{-1} F\right)^{-1} \alpha\left(g, q ; g^{-1} w q\right)^{-1} \Psi\left(g^{-1} w q\right) . \tag{76}
\end{gather*}
$$

Then we can shown this representation is unitary.
But unfortunately, Pickrell [P2] has shown that the unitary subgroup of the group extension $\widehat{G L_{p}}(p>1)$ does not have separable Hilbert space representations which are nontrivial on the extension part. So there may be no quasi-invariant measure on $\operatorname{Gr}_{p}(p>1)$.

Last we note that the results of [MR] and ours are deeply related to "Universal Yang-Mills Theory" proposed by Rajeev [R] and developed by us [TF]. We will discuss this point in another paper.

Appendix

In this appendix, we show that Eq. (60) satisfies the Jacobi identity (Eq. (49)). First of all, we list some useful formulas,

$$
\begin{align*}
b([X, Y]) & =a(X) b(Y)-a(Y) b(X)+b(X) d(Y)-b(Y) d(X), \tag{a1}\\
c([X, Y]) & =c(X) a(Y)-c(Y) a(X)+d(X) c(Y)-d(Y) c(X), \tag{a2}\\
([Z, F])_{11} & =a(Z)\left(F_{11}-1\right)+b(Z) F_{21}-\left(F_{11}-1\right) a(Z)-F_{12} c(Z), \tag{a3}\\
([Z, F])_{22} & =c(Z) F_{12}+d(Z)\left(F_{22}+1\right)-F_{21} b(Z)-\left(F_{22}+1\right) d(Z), \tag{a4}\\
F_{12}\left(F_{22}+1\right) & =-\left(F_{11}-1\right) F_{12}, \quad F_{21}\left(F_{11}-1\right)=-\left(F_{22}+1\right) F_{21}, \tag{a5,6}\\
Z \cdot\left(F_{11}-1\right)^{n} & =\sum_{k=0}^{n-1}\left(F_{11}-1\right)^{k}(-[Z, F])_{11}\left(F_{11}-1\right)^{(n-1)-k}, \tag{a7}\\
Z \cdot\left(F_{22}+1\right)^{n} & =\sum_{k=0}^{n-1}\left(F_{22}+1\right)^{k}(-[Z, F])_{22}\left(F_{22}+1\right)^{(n-1)-k} . \tag{a8}
\end{align*}
$$

Now we consider the Lie derivatives, $Z \cdot \eta_{p}(X, Y ; F)$

$$
\begin{gathered}
=\left.\frac{d}{d t} \eta_{p}\left(X, Y ; e^{-t Z} F e^{t Z}\right)\right|_{t=0}=c_{p} \operatorname{tr}\left\{\sum_{l=0}^{p-1}(-1)^{(p-1)-l}\right. \\
\cdot\left(b(X)\left(\sum_{k=0}^{l-1}\left(F_{22}+1\right)^{k}(-[Z, F])_{22}\left(F_{22}+1\right)^{(l-1)-k}\right) c(Y)\left(F_{11}-1\right)^{(p-1)-l}\right. \\
+b(X)\left(F_{22}+1\right)^{l} c(Y)\left(\sum_{k=0}^{(p-1)-(l-1)}\left(F_{11}-1\right)^{k}(-[Z, F])_{11}\left(F_{11}-1\right)^{(p-1)-k-(l+1)}\right) \\
-c(X)\left(\sum_{k=0}^{(p-1) / l+1)}\left(F_{11}-1\right)^{k}(-[Z, F])_{11}\left(F_{11}-1\right)^{(p-1)-(l+1)-k}\right) b(Y)\left(F_{22}+1\right)^{l} \\
\left.\left.-c(X)\left(F_{11}-1\right)^{(p-1)-l} b(Y)\left(\sum_{k=0}^{l-1}\left(F_{22}+1\right)^{k}(-[Z, F])_{22}\left(F_{22}+1\right)^{(l-1)-k}\right)\right)\right\}
\end{gathered}
$$

$$
\begin{align*}
= & c_{p} \operatorname{tr}\left\{\sum _ { l = 0 } ^ { p - 1 } (- 1) ^ { (p - 1) - l } \left(\left(c(X)\left(F_{11}-1\right)^{(p-1)-l} b(Y)-c(Y)\left(F_{11}-1\right)^{(p-1)-l} b(X)\right)\right.\right. \\
& \cdot\left(\sum _ { k = 0 } ^ { l - 1 } (F _ { 2 2 } + 1) ^ { k } \left(c(Z) F_{12}+d(Z)\left(F_{22}+1\right)-F_{21} b(Z)\right.\right. \\
& \left.\left.\left.-\left(F_{22}+1\right) d(Z)\right)\left(F_{22}+1\right)^{(l-1)-k}\right)-b(X)\left(F_{22}+1\right)^{l} c(Y)-b(Y)\left(F_{22}+1\right)^{l} c(X)\right) \\
& \cdot\left(\sum _ { k = 0 } ^ { (p - 1) - (l - 1) } (F _ { 1 1 } - 1) ^ { k } \left(a(Z)\left(F_{11}-1\right)+b(Z) F_{21}-\left(F_{11}-1\right) a(Z)\right.\right. \\
& \left.\left.\left.\left.-F_{12} c(Z)\right)\left(F_{11}-1\right)^{(p-1)-(l+1)-k}\right)\right)\right\} \tag{a9}
\end{align*}
$$

Using (a3)-(a8), we have following results after simple but tedious calculations:

$$
\begin{align*}
Z \cdot \eta_{p} & (X, Y ; F) \\
= & c_{p} \operatorname{tr}\left\{\sum _ { l = 0 } ^ { p - 1 } (- 1) ^ { (p - 1) - l } \left((a(Z) b(X)-b(X) d(Z))\left(F_{22}+1\right)^{l} c(Y)\left(F_{11}-1\right)^{(p-1)-l}\right.\right. \\
& -(a(Z) b(Y)-b(Y) d(Z))\left(F_{22}+1\right)^{l} c(X)\left(F_{11}-1\right)^{(p-1)-l} \\
& +(c(X) a(Z)-d(Z) c(X))\left(F_{11}-1\right)^{(p-1)-l} b(Y)\left(F_{22}+1\right)^{l} \\
& -(c(Y) a(Z)-d(Z) c(Y))\left(F_{11}-1\right)^{(p-1)-l} b(X)\left(F_{22}+1\right)^{l} \\
& +\sum_{k=0}^{(p-1)-l-1}\left(P_{k}(Z, X, Y)-P_{k}(X, Y, Z)+P_{k}(Y, X, Z)-P_{k}(Z, Y, X)\right. \\
& \left.\left.\left.+Q_{k}(Z, X, Y)-Q_{k}(X, Y, Z)+Q_{k}(Y, X, Z)-Q_{k}(Z, Y, X)\right)\right)\right\} \tag{a10}
\end{align*}
$$

where

$$
\begin{align*}
& P_{k}(X, Y, Z)=\left(F_{11}-1\right)^{(p-1)-l-1-k} b(X)\left(F_{22}+1\right)^{l} c(Y)\left(F_{11}-1\right)^{k} b(Z) F_{21} \tag{a11}\\
& Q_{k}(X, Y, Z)=c(X)\left(F_{11}-1\right)^{(p-1)-l-1-k} b(Y)\left(F_{22}+1\right)^{l} c(Z)\left(F_{11}-1\right)^{k} F_{12} \tag{a12}
\end{align*}
$$

The others are given by the cyclic permutations of X, Y, and Z. Using the fact that $P_{k}(Z, X, Y)+($ cyclic permutations $)+Q_{k}(Z, X, Y)+($ cyclic permutations $)=0, \quad(a 13)$ we have,

$$
\begin{aligned}
Z \cdot \eta_{p}(& X, Y ; F)+X \cdot \eta_{p}(Y, Z ; F)+Y \cdot \eta_{p}(Z, X ; F) \\
= & c_{p} \operatorname{tr}\left\{\sum_{l=0}^{p-1}(-1)^{(p-1)-l}\right. \\
& \cdot\left((a(X) b(Y)-a(Y) b(X)+b(X) d(Y)-b(Y) d(X))\left(F_{22}+1\right)^{l} c(Z)\left(F_{11}-1\right)^{(p-1)-l}\right. \\
& +(a(Y) b(Z)-a(Z) b(Y)+b(Y) d(Z)-b(Z) d(Y))\left(F_{22}+1\right)^{l} c(X)\left(F_{11}-1\right)^{(p-1)-l} \\
& +(a(Z) b(X)-a(X) b(Z)+b(Z) d(X)-b(X) d(Z))\left(F_{22}+1\right)^{l} c(Y)\left(F_{11}-1\right)^{(p-1)-l}
\end{aligned}
$$

$$
\begin{align*}
& -(c(X) a(Y)-c(Y) a(X)+d(X) c(Y)-d(Y) c(X))\left(F_{11}-1\right)^{(p-1)-l} b(Z)\left(F_{22}+1\right)^{l} \\
& -(c(Y) a(Z)-c(Z) a(Y)+d(Y) c(Z)-d(Z) c(Y))\left(F_{11}-1\right)^{(p-1)-l} b(X)\left(F_{22}+1\right)^{l} \\
& \left.\left.-(c(Z) a(X)-c(X) a(Z)+d(Z) c(X)-d(X) c(Z))\left(F_{11}-1\right)^{(p-1)-l} b(Y)\left(F_{22}+1\right)^{l}\right)\right\} \\
= & c_{p} \operatorname{tr}\left\{\sum _ { l = 0 } ^ { p - 1 } (- 1) ^ { (p - 1) - l } \left(b([Z, Y])\left(F_{22}+1\right)^{l} c(Z)\left(F_{11}-1\right)^{(p-1)-l}\right.\right. \\
& +b([Y, Z])\left(F_{22}+1\right)^{l} c(X)\left(F_{11}-1\right)^{(p-1)-l} \\
& +b([Z, X])\left(F_{22}+1\right)^{l} c(Y)\left(F_{11}-1\right)^{(p-1)-l} \\
& -c([X, Y])\left(F_{11}-1\right)^{(p-1)-l} b(Z)\left(F_{22}+1\right)^{l} \\
& -c([Y, Z])\left(F_{11}-1\right)^{(p-1)-l} b(X)\left(F_{22}+1\right)^{l} \\
& \left.\left.-c([Z, X])\left(F_{11}-1\right)^{(p-1)-l} b(Y)\left(F_{22}+1\right)^{l}\right)\right\} . \tag{a14}
\end{align*}
$$

Since $b(), c() \in I_{2 p}$ and $F_{11}-1, F_{22}+1 \in I_{p}$, we can easily see that each term of (a14) is in trace class, and we can modify (a14) as follows:

$$
\begin{align*}
& Z \cdot \eta_{p}(X, Y ; F)+X \cdot \eta_{p}(Y, Z ; F)+Y \cdot \eta_{p}(Z, X ; F) \\
&= c_{p} \operatorname{tr}\left\{\sum _ { l = 0 } ^ { p - 1 } (- 1) ^ { (p - 1) - l } \left(b([X, Y])\left(F_{22}+1\right)^{l} c(Z)\left(F_{11}-1\right)^{(p-1)-l}\right.\right. \\
&\left.-c([X, Y])\left(F_{11}-1\right)^{(p-1)-l} b(Z)\left(F_{22}+1\right)^{l}\right\} \\
&+c_{p} \operatorname{tr}\left\{\sum _ { l = 0 } ^ { p - 1 } (- 1) ^ { (p - 1) - l } \left(b([Y, Z])\left(F_{22}+1\right)^{l} c(X)\left(F_{11}-1\right)^{(p-1)-l}\right.\right. \\
&\left.\left.-c([Y, Z])\left(F_{11}-1\right)^{(p-1)-l} b(X)\left(F_{22}+1\right)^{l}\right)\right\} \\
&+c_{p} \operatorname{tr}\left\{\sum _ { l = 0 } ^ { p - 1 } (- 1) ^ { (p - 1) - l } \left(b([Z, X])\left(F_{22}+1\right)^{l} c(Y)\left(F_{11}-1\right)^{(p-1)-l}\right.\right. \\
&\left.\left.-c([Z, X])\left(F_{11}-1\right)^{(p-1)-l} b(Y)\left(F_{22}+1\right)^{l}\right)\right\} \\
&= \eta_{p}([X, Y], Z ; F)+\eta_{p}([Y, Z], X ; F)+\eta_{p}([Z, X], Y ; F) . \tag{a15}
\end{align*}
$$

Thus we have just the Jacobi identity (Eq. (49)).
Acknowledgements. We would like to thank Profs. Shoichiro Otsuki and Masahiro Imachi for a careful reading of the manuscript. We also thank the referee for useful suggestions.

References

[F] Faddeev, L.: Operator anomaly for the gauss law. Phys. Lett. 145B, 81-84 (1984)
[S] Simon, B.: Trace ideals and their applications. Cambridge: Cambridge University Press 1979
[C] Connes, A.: Non-commutative differential grometry. I.H.E.S. Publ. Math. 62, 41-144 (1985)
[MR] Mickelsson, J., Rajeev, S. G.: Current algebras in $d+1$-dimensions and determinant bundles over infinite-dimensional Grassmannians. Commun. Math. Phys. 116, 365-400 (1988)
[KP] Kač, V. G., Peterson, D. H.: Lectures on the infinite wedge representation and the MPP hierarchy. Proceedings of the Summer School on Completely Integrable Systems Montreal, Canada, August, (1985)
[PS] Pressley, A., Segal, G.: Loop groups. Oxford, UK: Oxford University Press 1986
[M] Mickelsson, J.: Current algebra representation for the $3+1$ dimensional Dirac-Yang-Mills theory. Commun. Math. Phys. 117, 261-277 (1988)
[P1] Pickrell, D.: Measures on infinite-dimensional Grassmann manifolds. J. Funct. Anal. 70, 323-356 (1987)
[P2] Pickrell, D.: On the Mickelsson-Faddeev extension and unitary representations. Commun. Math. Phys. 123, 617-625 (1989)
[R] Rajeev, S. G.: An exactly integrable algebraic model for $(3+1)$-dimensional Yang-Mills theory. Phys. Lett. B209, 53-58 (1988)
[TF] Tanaka, M., Fujii, K.: Note on algebraic analogue of Yang-Mills-Higgs theory. (preprint) KYUSHU-88-HE-7

Communicated by L. Alvarez-Gaumé

Received July 25, 1989; in revised form November 13, 1989

