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Abstract. In this paper we will show that piecewise C> mappings f on [0,1]
or S! satisfying the so-called Misiurewicz conditions are globally expanding
(in the sense defined below) and have absolute continuous invariant probability
measures of positive entropy. We do not need assumptions on the Schwarzian
derivative of these maps. Instead we need the conditions that f is piecewise
C?, that all critical points of f are “non-flat,” and that f has no periodic
attractors. Our proof gives an algorithm to verify this last condition. Our result
implies the result of Misiurewicz in [Mi] (where only maps with negative
Schwarzian derivatives are considered). Moreover, as a byproduct, the present
paper implies (and simplifies the proof of) the results of Maifié in [Ma], who
considers general C? maps (without conditions on the Schwarzian derivative),
and restricts attention to points whose forward orbit stay away from the critical
points. One of the main complications will be that in this paper we want to
prove the existence of invariant measures and therefore have to consider points
whose iterations come arbitrarily close to critical points. Misiurewicz deals
with this problem using an assumption on the Schwarzian derivative of the
map. This assumption implies very good control of the non-linearity of £,
even for high n. In order to deal with this non-linearity, without an assumption
on the Schwarzian derivative, we use the tools of [M.S.]. It will turn out that
the estimates we obtain are so precise that the existence of invariant measures
can be proved in a very simple way (in some sense much simpler than in [Mi}]).
The existence of these invariant measures under such general conditions was
already conjectured a decade ago.

Introduction

There are a large number of papers on iterations of piecewise smooth one-
dimensional mappings f:M — M, where M = [0, 1] or S*. Initially all metric results
for these maps assumed that f is piecewise expanding, see for example [La,Y.].
Later the condition that f needs to be expanding was somewhat relaxed. This was
done by considering expanding maps which are induced from special maps, see
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[Ru, Ja, Bo, Pil and Pi2, Sz]. Only when D. Singer introduced the concept of
Schwarzian derivative in the study of these maps it became possible to study more
general maps. Misiurewicz [Mi], Collet-Eckmann [C.E.] and others proved
hyperbolicity and measure properties for these maps assuming that the Schwarzian
derivative of these maps is negative.

However the condition that the Schwarzian derivative of f is negative can be

expressed as a convexity condition on 1/ \/7 . So this condition is not preserved
under smooth coordinate changes, is not very natural and has no dynamic
interpretation. Moreover it excludes a large class of maps.

Maiié managed to drop this condition in his paper [Ma] for general C? maps.
He considers points whose forward orbits stay away from the set of critical points
C(f). The idea of his proof is to construct certain intervals I so that for some n >0
the intervals I, f(I),..., f" !(I) are disjoint and so that f"(I) is much longer than
I. Using a C? theorem of Schwartz ( # Schwarz) he then proves that any compact
set K not containing any critical points or non-hyperbolic periodic points is
hyperbolic. His proof does not give any way to decide whether or not all periodic
points are hyperbolic or not.

In the same direction W. de Melo and I proved that general smooth unimodal
maps, having no flat critical points, can have no wandering intervals, see [M.S.].
The main problem is that if one studies orbits which pass close to critical points,
then one gets a lot of non-linearity: the bounded non-linearity tools of Schwartz
completely break down. So one needs new tools. In [M.S.] it was shown how
iterates of a C? map f expand or contract cross-ratios of points and how to apply
this type of information. The bounds on the contraction of cross-ratios give control
on the type of non-linearity that can occur.

Refining techniques of Maifé and [M.S.], this paper gives a very precise
description of (piecewise) smooth mappings satisfying the Misiurewicz condition
that each critical point of f is either periodic or has a forward orbit which stays
away from the critical set. More precisely, there exists a neighbourhood W of C(f)
such that

< U f"(C(f)))f\ W< C(f),

()

f is not injective,
where C(f) is the set of points which are critical points of f. Of course the
condition that f: M — M is not injective is not very restrictive: if f is injective then
the theorems below are either trivially true, trivially false or follow from [He] and
(Yl

We will also sometimes need the following condition
(ii) all periodic points of f are hyperbolic and repelling.

Below we will give precise definitions, but let us summarize the main results here
already for C® maps. (For C? maps we will need to be more precise about what
it means for a critical point to be non-flat.)

Theorem. Let f:M — M be a C® map without flat critical points. Assume that f
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satisfies condition (1). Then
—the period of periodic attractors and non-hyperbolic periodic orbits of f is
uniformly bounded.
Moreover, if (ii) holds then
—f has an absolutely continuous invariant probability measures of positive
entropy;
—f is globally expanding, i.e., there exists A >1 and K >0 such that for any
maximal interval I, on which f"|1, is a diffeomorphism one has

|f"(L)]

= KA
1]

Remark. Our proof gives a finite algorithm to check whether condition (ii) is
satisfied, provided dist( () f™(C(f)\C(f),C(f)) is known (which is for example

nz1
the case if all critical points are eventually periodic). This algorithm is sketched
during the proof of the theorem.

Statement of Results. Let M be either S' or [0,1]. Furthermore assume that
f:M—M is a C? map. We say that c is a critical point of f if f’(c)=0 and that
ceC(f) if ¢ is a critical point or a boundary point of M. A critical point is said to
be non-flat if there exists a neighbourhood of ¢ and 2 <k < oo, such that f is
C™x(3: on this neighbourhood and such that the k'™ derivative at ¢ is non-zero,
f®(c) #0. (It will not suffice for our purposes that f is C? near critical points, see
the proof of Lemma 1.2.) Clearly this non-flatness condition is satisfied for analytic
maps which are not constant.

We should remark that, just as in [Mi], the results we shall state presently also
hold for maps which are piecewise C2. In this case the notion of critical point has
to be somewhat extended. We shall go into this at the end of this section.

For peM let O(p) = | ) f*(p) be the forward orbit of p. It is said to be a periodic

kz0
point of period n if the orbit O(p) consists of n points. We say that a periodic point
p of period n is hyperbolic if |(f") (p)| # 1. If f"(p) = p one has (f")(p) = (/") (f(p)) =
< =(f"(f"" (p)), and in particular if p is a hyperbolic periodic point then each
of the points f(p),i = 01is also hyperbolic. So if | (f")(p)| # 1 we call O(p) a hyperbolic
periodic orbit.

Suppose f"(p) = p. If |(f")'(p)| < 1 then O(p) is said to be a hyperbolic attracting
periodic orbit. If [(f")'(p)| > 1 then O(p) is a hyperbolic repelling periodic orbit.
The basin B(O(p)) of a periodic orbit O(p) is the set {x; f"(x) > O(p) as n— oo}. The
immediate basin B,(O(p)) of O(p) consists of the union of the components of B(O(p))
which intersect O(p). We say that periodic orbit O(p) is an attractor if B,(O(p))
contains an interval. It is not hard to show that an attracting periodic orbit is
either hyperbolically attracting or is non-hyperbolic.

We say that a set K is invariant if f(K) = K. An invariant set K is called
hyperbolic if there exist C >0 and 4> 1 such that for each xeK one has either
|IDf*(x)| = C-A*foreachn=0,1,2,...,0or|Df"(x)| £ 1/C-1/A"foreachn=0,1,2,....

Furthermore we say that f satisfies the Misiurewicz condition if there exists a
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neighbourhood W of C(f) such that

( U f"(C(f)))ﬁ W< C(f);

® f nii lnot injective.

Sometimes we will also need the following condition:

(i) all periodic points of f are hyperbolic and repelling,
or the following weaker version of this:

(i") all periodic orbits of f are hyperbolic.

Let us now state the main results of this paper.

Theorem A. “Periodic attractors have low periods”. Let f:M —M be a C* map
without flat critical points satisfying the Misiurewicz condition (i). Then there exists
N < o0 such that the minimal period of each periodic attractor or non-hyperbolic
orbit is less than N.

From Theorem A the period of periodic attractors or non-hyperbolic orbits is
uniformly bounded. (The boundedness of the period of periodic attractors has
recently been proved for general C? maps without flat critical points, see [M.M.S.].)
Let B, be the union of the immediate basins of periodic attractors. From
Theorem A it follows that Clos(B,) is a finite union of intervals.

Theorem B. “Hyperbolic structures and quasi-polynomial non-linearity”. Let f:M — M
be a C? map without flat critical points. Assume that f satisfies the Misiurewicz
condition (i) and also (ii'). Then f is globally expanding, i.c., there exist constants
A>1 and K>0 such that for any maximal interval I, such that f"|I, is a
diffeomorphism and f"(1,)n B, = (J one has

L/l

= K-A"
Ual  —

(*)

Also there is a hyperbolic structure on the set of periodic points: there exist constants
A>1 and K >0 such that if p is a periodic point of (minimal) periodic n then

) IDf" () 2 K-
Moreover, f"|1, is quasi-polynomial in a sense which is defined in Proposition 10.1.

Once we have the estimates from Theorem B it turns out that one can prove
the following two results almost immediately.

Theorem C. “Hyperbolicity, measure and ergodicity”. Let f:M — M be a C* map
without flat critical points. Assume that f satisfies the Misiurewicz condition (i). Let
K be a compact set such that f(K) = K and which does not contain any non-hyperbolic
periodic points.

i) If (C(f)uBy)nK = & then K is a hyperbolic set.
ii) If K is a Borel set with positive Lebesgue measure such that B,nK = & and
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K # M, then C(f)# & and K contains an interval which has at least one critical
point in its interior.

Statement i) of Theorem C was already proved by Maii¢ in [Ma]. Maii€’s proof
is rather indirect: a certain non-hyperbolic compact invariant set is constructed
using the Lemma of Zorn, and then it is shown that this leads to a contradiction.
An advantage of our proof is that it is constructive and gives a finite and effective
way to check the assumption that K does not contain any non-hyperbolic periodic
points.

Theorem D. “Invariant measures.” Let f:M — M be a C? map without flat critical
points. Assume that f satisfies the Misiurewicz conditions (i) and (ii). Then f has an
absolutely continuous invariant probability measure of positive entropy.

From Theorem C the support of each of these absolutely continuous measures
is a finite union of intervals. If C(f)= J then the support of each absolutely
continuous invariant measure is equal to S* (and in particular there exists just one
absolutely continuous invariant measure). If C(f) # & then the support of each
absolutely continuous invariant measure contains at least one critical point in the
interior of its support (and in particular the number of ergodic components of
absolutely continuous invariant measures is at most C(f)).

The results stated above also hold for maps which are piecewise C2 and have
no flat critical points. Let us define these notions. We say that f is piecewise C?
if there exists a finite set of points F such that f extends to a C? map on the closure
of each component of M\ F and such that f'(x) # (J for all xe M\ F. (So the points
in F can be discontinuities of f.) In this case we say that ce K(f) if ceF or if ce M.
We say that f is non-flat at K(f) if for each ceK(f) and each component U of
M\{c} there exists ke{1,2,3,...} such that f|U is C**! near ¢ and (f|U)*(c) #0.
(Here a one-sided derivative is meant.) Now replace the Misiurewicz condition (i)
by: there exists a neighbourhood W of K(f) such that

( U f"(K(f))>ﬁ W< K(f),

n21
fis not injective.
For each n, f* is continuous on a neighbourhood of Clos(By).

Theorems A-D are valid for maps f:M — M which are piecewise C?, satisfy (i')
and have no flat critical points. The proofs in this more general setting go through
without much change if one replaces C(f) everywhere by K(f). In particular the
results in this paper imply the results on piecewise C2 expanding Markov maps
from [La.Y.].

Comparison with Results on Collet—Eckmann Maps. After this paper was written,
Tomasz Nowicki and I considered C? mappings without flat critical points
satisfying (i) and the Collet—-Eckmann conditions. These conditions say that there
exists K >0 and 4> 1 such that

(CE1) IDf'(f(e)| 2 KA", Vnz0, VceC(f),
(CE2) n>0 and f"(2)eC(f)=|Df"(z)| = K"

(1)
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From Mafié’s result follows that, for C? maps, Misiurewicz condition (i) implies
(C.E.1). So the difference between the Misiurewicz case and the Collet—-Eckmann
condition is that (i) is replaced by the weaker condition (C.E.1) and that one adds
condition (C.E.2). In [N.S.1] and [N.S.2] it was proved that these maps satisfy
the assertions of the theorem above.

The proof of the existence of an absolutely continuous invariant measure
depends on f being globally expanding. To show that globally expanding maps
satisfying the Collet—Eckmann condition have good invariant measures is much
more subtle than to prove the corresponding result for globally expanding maps
satisfying the Misiurewicz conditions. This is because branches of /" can be short
for Collet—-Eckmann maps. It is shown in [N.S.2] that in order to prove the
existence of these measures one only needs condition (C.E.1) and the technical
condition that there exists C < oo such that for any n =0 and for any interval I,
for which f"|1, is a difffomorphism one has

n—1
*) ;O |fI)IsC.

In [N.S.1] it is shown that (%) follows from (C.E.1) and (C.E.2).

On the other hand, to show that a map f is globally expanding (or satisfies
(*)), is for essential reasons much harder in the present case. This is because
condition (C.E.2) gives a uniform contraction in backward time (and uniform
hyperbolicity on the set of periodic points of high period). In the present paper one
does not have condition (C.E.2) but only the condition that all periodic orbits are
hyperbolic and repelling. This last condition does not give a uniform hyperbolic
structure on the set of hyperbolic periodic points. Therefore the proof is much
more indirect, and not based on induction.

For unimodal maps satisfying the negative Schwarzian derivative condition
T. Nowicki proved that (C.E.1) implies (C.E.2), [No3]. More generally I would
like to make the following

Conjecture. Let f be C® and have no flat critical points. If satisfies the (C.E.1)
condition and if all periodic orbits of .f are hyperbolic and repelling then f also
satisfies condition (C.E.2).

Organization of this Paper. Because no assumptions are made on Sf one has no
a priori estimates on the nonlinearity of f”. In Sects. 1,2, and 3 we give some very
general tools which enable us for any n = 0 and any smooth map f to get control
on the non-linearity of f" on intervals I,. These intervals I, have to have the

n—1
property that Y, | f(I,)|is universally bounded. In Sects. 4, 5 and 6, the disjointness
i=0

of certain orbits of intervals and the Misiurewicz condition are combined to show
that expansion is big along periodic orbits with high periods an in particular
Theorem A is proved. In Sects. 7,8 and 9 this big expansion along periodic orbits

n—1

is used to show that Y. | f(I,)| is universally bounded for all n > 0 and all intervals
i=0

I, such that f"|I, is a diffeomorphism and f"(I,)n By, = &. Once this is known,
Theorems B—D are quite easy to prove. This is done in Sects. 10-13.
In fact, using the ideas from Sects. 7,8 it is possible to give a very short proof
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of the results of [Ma]. This proof will be published in a book entitled “One-
dimensional dynamics” which is being written by W. de Melo and myself.

For convenience we will use the following notation: Let (x,y) (respectively
[x, y]) be the smallest open (respectively closed) interval containing both x and y.
The Lebesgue measure of a measurable set of I = M is denoted by |I|.

Also we will use the following notation. We say that an interval I is wandering
if ()N fi(I)= & for all 0 <i< j and if no point of I is contained in the basin
of a periodic attractor.

Finally we shall use the convention that a(t) (respectively O(t)) denotes a function
such that o(t) >0 as t - 0 (respectively such that O(t)/t is bounded) as 1 — 0.

1. How Does a Map Distort Cross Ratios?

Later in this paper we need to get good estimates on, for example, the size of f ~"(I)
for large n and small intervals I = M. Since f has critical points we cannot hope
to get a bound for the non-linearity of f”. So instead of the affine structure, we
will use the projective structure on R. In this section we will make this precise by
using the smoothness of f to measure the distortion of the cross-ratio of a pair of
intervals.

Let M be either the circle S' or the interval [0,1], and T < M be an open
interval. Let g:M — M be a C' map with ¢g| T a diffeomorphism onto its image.

1.1 Definition. Let J = T be open and bounded intervals such that T — J consists
of two non-trivial intervals L and R. Define two cross ratios of intervals as

IJIITI T
CTJ))=—————, D(TJ)=———, .
(.J) |[ILUJ[|JUR| (T.J) |L||R| (1.1)
where |I| denotes the length of an interval I. If g is monotone on T we define
C(g(T).9(J)) D(yg(T),g())
== T B —— 1.2
A(g, T,J) Ty B(g, T.J) D(T.J) (1.2)

In Sect. 3 it will turn out that monotone maps g:[0,1]—R such that
A(g, T,J)= 1 (respectively =c¢>0) for all intervals J = T <[0,1] have many
properties similar to those of conformal (respectively quasi-conformal) maps in the
complex case. The main aim in Sects. 1-9 will be to estimate A(f", T,,J,) from
below for large n and appropriate intervals T, and J,. As pointed out in [M.S.]
the operators A and B are related to the Schwarzian derivative of f:

S 2 (f"'(x) )
0 3\ rw )

In the following two results we give estimates for the distortion of these operators
if fis C2. In many papers on one-dimensional dynamics one only considers maps
f:M — M such that Sf(x) < 0 for all xe M. The main motivation for this assumption
is that the class of maps with Sf < 0 is closed under iteration: if Sf < 0 then Sf" <0
for all n> 0. As we will see in the next lemma this implies that " expands cross
ratios. So if we have assumed that Sf < 0 then there would have been no need for
most of the results from Sects. 1-9. The next lemma also says that Sf <0 near a
non-flat critical point.

Sf(x)=
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1.2 Lemma. Let J< T be intervals such that T —J consists of two non-trivial
intervals and f:T— R be a C* map.

a) If f|T is a diffeomorphism and Sf(x) <0 for all xeT then A(f,T,J)>1 and
B(f,T,J)> 1.

b) If ceT is a non-flat critical point of f then there exists a neighbourhood U of ¢
such that Sf(x) <0 for every xeU — {c}.

Proof. Statement a) is well known and proved in for example [M.S.]. The proof
of b) is elementary. Since f is non-flat at c, there exists k = 2 such that f?(c)=0
for i=1,...,k—1, f®()#0 and f is C™*3:¥) near c. Therefore there exists
a #0such that f(x)=a:(x — )+ o(|x —c|*), f' (x) =ka (x — ) "1+ o(|]x —c|™1),
f"(x) = k(k — Da-(x — c)* 2 + o(]x — c|*~2). Moreover since f is C™**3H), " (x) =
k(k — 1)(k — 2)a-(x — ¢} * + a(|x — c[*?). Hence (f'(x))*-Sf(x)=f'(x)f"(x)—
() =a* (K (k—1)(k—2) = 3k*(k— 1)*)-(x—)* * +a(|x —c|)* " *=a’k*(k— 1)
(k=2)=3(k— 1)) (x—c)**+a(]x—c|**~*). Since k = 2, it follows that Sf(x) <0
for x near ¢ (and x #¢). Q.E.D.

Remark. If f is just C* outside c, but just C? at ¢ and f‘®(c) # 0 then statement
b) of Lemma 1.2 is not true in general. Take for example the function f defined
for x >0 by f(x) = x2 + sin(1/x)-x°/? and let f(0) = 0. Then an explicit calculation
shows that fis C? on [0, c0) and that for x > 0, (f'(x))*Sf(x) = 2 cos(1/x)-x ™1/ —
3/2-:4 + O(x'/?). In particular there exists a sequence of points x,|0 such that
Sf(x,)— 0.

The next proposition gives estimates for A(f, T,J), B(f, T,J) also when T is
not close to some critical point.

1.3 Proposition. (Bounded distortion from “projective maps” in the C* case.) Let
f:M — M be a C? map and have no flat critical points. Then there exists a constant
Cy€(0, o0) and an increasing function ¢:[0, 00)— (0, C,) with lim o(t) = 0 such that
if T>J are intervals and Df(x) #0 for all xeT then =0

A(f, T,Jyzexp{—|L|-a(|R])}, B(f, T,J) Zexp{ — | T|-a(| T|)}, (1.3)
where L and R are the connected components of T\J.

Remarks

1. Tt is really essential in this proposition that f is C2. It is not sufficient that f”
is Lipschitz. (Below the proof of Theorem 2.3 an example is given.) This
is in contrast with the usual bounded non-linearity results, see for example
Proposition 1.4.

2. If in addition f"” is Lipschitz then one can prove under the same assumptions
that there exists C, such that

A(f,T.J)zexp{— Co|LI'|RI}, B(f, T,J) 2 exp { — Co| TI*}, (1.4)

see [M.S.]. Although not necessary, these improved estimates make some of the
estimates in this paper more explicit.

Proof of Proposition 1.3. Let us prove (1.3) only for the operator A. The proof for
the operator B is in fact easier. Let K, =sup|Df(x)|. Let T be an interval such
xeM
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that f| T is a diffeomorphism. Let J = T and write T = [a,d], J =[b,c], L=[a,b]
and R =[c¢,d].

Take ¢>0. If [L|,|R|=¢ then dist(J,C(f))=¢ and from the mean-value
theorem there exists a constant K (¢) > 0 such that for any such intervals J and
T one has | f(J)I/IJ] 2 K,(¢) and | f(T)I/IT| 2 K (¢). Now

O LD
T ITl
A(f, T,J)= . .
T = RO HT RO (1.3)
ILoJ[ RG]
Hence if |L|,|R| = ¢, then
K, ())?

So (1.3) follows if there exists a constant C, < co and an increasing function
0:[0,diam (M))—(0, Cy)

with lim a(t) = 0 such that for any pair of intervals J and T as above
t—0

A(f,T.J)— 12 —|L|-o(|R]). (1.6)

From Lemma 1.2b there exists a neighbourhood U of C(f) such that Sf(x) <0
for all xe U\ C(f). For later use assume that each component of U contains a point
of C(f). From the non-flatness condition we may also assume that U is chosen
sufficiently small so that f’ is monotone on each component of U\ C(f).

Let us deal with several cases separately.

Case 1. First assume that T < U.

Then from Proposition 1.2a implies that A(f, T,J)>1forany J < T.

So we may from now on assume that T is not completely contained in U.
Choose a neighbourhood V of C(f) with Clos (V) < int(U) and K; > 0 so that any
interval I such that f|I is a difffomorphism and such that |f(I)|/|I| < K; is
contained in V. Let K,€(0, 1) be so that the diameter of each of the components
of U—V is at least K,.

Case 2. Now assume that | f(c) — f(a)|/|c — a] £ K5 and that T is not a subinterval
of U.

From the definition of K ; and V, since we have assumed that T is not completely
contained in U, and since | f(c) — f(a)|/|c —a| £ K; we have that a,b,ceV and
d¢ U. Therefore there exists ¢'e C(f)n U such that |[a— ¢'| < |b—¢'| <|c — ¢'|. Since
we had assumed that the function ¢ — f’(t) is monotone one each component of

U\C(/f),

Sfle)—f(b)
c—b {
f—fl@="

c—a
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Hence
&)~ f(b) f(d)— f(a) f@d)—f(a)
c—b d—a d—a
) —1= -12 ~1
AL = @ f@ =6 =)
c—a d—b d—b
_(/@)—f@)@d—b)—(fd)— fB)d—~a) d—b
(d — a)(d —b) fd)—£(b)
_U)— f@)b—a)+(@d—b)(fB)—fa) d—b
(d— a)(d —b) fd— f(b)
__(b-a @-b(b)- /@)
d—a) " (d—a)(fd)— f(b)
b—a
z-—. (1.7)
Since, a,b,ceV and deU, we have |d —a|, |d —c| > K, and it follows that
ALTH-1_ b-a 1 S 1 .
ILIIR| = d—a®-ad-—c~ @—ad-—0o~ (K)*

So (A(f, T,J)—1)/|L| |R| is bounded away from below. This completes the proof
of (1.6) in this case.

Case 3. Now assume that (|f(d)— f(b)|)/(|d —b|)< K; and that T is not a
subinterval of U.

By interchanging the role of L and R one proves as in Case 2 again that
(A(f, T,J) — 1)/|L| | R| is bounded away from below. Again this completes the proof
of (1.6) in this case.

Case 4.
|f(c)— f(a)] |.f(d)— f(b)|
W2K3>0 and —T_—bl—gK3>0
For xeM such that x + aeM, define u(a, x) by
fla+ x)= f(a) + ula, x)-x. (1.8)

Since f is C? the function y is uniformly continuous. We claim that

ﬂ(a’ x) - ll(a, y)
xX=Yy

, a+x,a+yeM, x#y
Y(a,x,y)=
0 at+x,a+yeM, x=y

is continuous. Indeed, using the convention that o(t) stands for some bounded
function such that (1) >0 as 1 — 0, and using (1.8) we have for x # y,

y(fla+x)— f(@)—x(fla+y) — f(a)
Xy (x—y) '

Y(a,x,y)=
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Since f is C?, we get from Taylor’s theorem
xz ! 4 2
y'[f’(a)x +S @5+ a(x)x’] - x-[f @y +f"(@% + o)y
xy(x—y)
_f"(@ | (e(x)x—a(y)y) _f"(a)
= + =
2 xX—y 2
This proves that ¥(a, x, y) is continuous on R, where R = {(a, X, y);a,a + x,a + ye M

and |y|/|x — y| < 1}. Moreover, ¥(a, x,y)— f"(a)/2 as (x, y)eR and (x, y)—(0,0). If
|x —yl/ly| £1 then write x =(t + 1)y and one has

¥(a,x,y)=

+o(x)+ }i—y{a(x) —o(y).

2
fla+ )+ lat iy + £a+ 0+ s - 0

1+ 0)ty?

(A +9ylfa+y) - fa)]
1+ ey’

|
¥(a,x,y)=

2
S@ = fa+ )+ [ @+ )y +f'@+ )%+ o)y’

1 +0)y?

Simplifying this, using f(@)=fla+y—y)=fla+y)—f(a+yy+["a+y)y*/2+o()’,
gives

ffa+ys+oy+ f'a+ y)% + o(ty)t

Y(a,(1+0y,y)=

1+t
_fla+y) o) +o(ty)
2 1+t

It follows that (a,t,y)— ¥(a,(1 + t)y, y) is a continuous function on
{@tyyaa+(+t)y,a+yeM}
and that ¥(a,0,0) = f"(a)/2. All this together implies that ¥(a, x, y) is continuous
(and even imiformly continuous). _
Write b=b—a, =c—a and d=d —a. Let us estimate A(f,T,J)—1 from
below. Since (| f(c) — f(a)l/|c —al) = K3 > 0 and (| f(d) — f(b)|/d —b|) = K5 > 0 one

has
S —fb) fd)—fa) [fl)—fla) f(d)—fb)
c—b d—a c—a d—b
AT ~1= FO—f@ 7@ 1)
c—a d—b
—1 |f©)—f®) fd)—fla) [flc)—f(a) f(d)— f(b)
“(K3)?| c—b d—a c—a d—b

— — 1 .
T (K,)?

pa, )¢~ pa,b)-bY . Ma,d)-d— p(a, b)-b
( = )u(a,d)—u(a,c)< b ){
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-1 ,<,,(a,c)+ﬂa_’£c)___ﬂ(“_b) ) u(a,d) — p(a, c)

T (K b
, ua,d)— wab) -
("‘“’ D+ ”)l
Ha,c) — pa,b) u(a,d) — p(a,b)
(K )2 Ibl _b u(a,d)_T u(a,c).
Hence
A(f’ T’J)— 1 > -1 “(asc)_#(a’b)_ ﬂ(a,d)“#(a,b)
L] =(K3)2 c—b ,U(a,d)———d_—b-— ua, c)
(K )2 ‘| ¥(a, ¢,b) ula,d) — ¥(a,d,b) u(a,c)|.
Since p(a,x) and ¥(a, x, y) are uniformly continuous it follows that the function

a(t) = sup | Y(a,c,b) u(a,d) — ¥(a,b,b) ua,c)|

{a,b,c,d;|ld—c| =t}
is monotone increasing, uniformly bounded and a(t)—»O as t—0. It follows that
A(f,T,J)—1z —|L|-6(IRI)
f (K 3)2
Again this completes the proof in this case. Since we have dealt with all cases the
proof of Proposition 1.3 is completed. Q.E.D.

So f cannot contract the cross-ratio too much. Similarly we will also use that
f cannot be too non-linear away from the critical points.

1.4 Proposition. (Bounded distortion from “linearity”.) Let f be C? and let U be a
neighbourhood of the set of critical points C(f). Then there exists C < co such that

a) for any interval J with JnU = J one has

IDf()|
IDf)I~

<exp{C-|J|},

for all x,yelJ.
b) for any interval J such that f|J is diffeomorphism and any xeJ\U and one has

IS

IDf(x)| 2 exp{—C-|J|}-=— BN

Proof. The proof is elementary.

2. The Distortion of Cross-Ratios and Non-linearity under Iterates

In the last section we obtained lower bounds for A(f, T,J), B(f, T,J). In this we
also aim to get lower bounds for A(f", T, J), B(f", T, J ) for any n and for appropriate
intervals J = T. (If we had assumed that Sf(x) <0 for all xeM, then one would
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immediately have A(f", T,J)=1 and there would have been no need for this
section.)

In this section we prove that f” cannot contract the cross-ratios C and D too
much.

2.1 Theorem. Let f:M — M be a C? map those critical points are non-flat. Then
there exists a bounded increasing function ¢:[0, c0) = R, such that a(t)—0 as t -0
with the following property. If T is an interval such that f™ is a diffeomorphism on
T then:

AT ) ;exp{—a(r)-iio If"(T)l},

m-1
B(f™, T,J)ECXP{—U(T)' 'Zo |fi(T)|}' (2.1)
Here t=max;_q, .11 /(7).

m-—1

Proof. Since A(f™, T,J)= [] A(f, f(T), f(J)) this theorem is an immediate
i=0

corollary of Proposition 1.3. Q.E.D.

2.2 Theorem. Let f be a C? map with no flat critical points. There exists a bounded
increasing functions ¢:[0, 0) - R with a(t)—0 as t > 0 with the following property.
Let T > J be intervals such that f"|T is a diffeomorphism and such that T\J consists
of two components L and R. Then

AT ) ;exp{—a(r)-"; |f*'(L)|}, @2

where T =max;_o, . ,—1|f(R)|.

Proof. From Proposition 1.3 one gets

A(f",T,n;exp{—"Z;(lf"(L)n-a(lf"(Rm}zexp{—a(r };:lfi(L)l}-
Q.ED.

Remark. If f is C? there exists C < oo such that the function o(t) from Theorems
2.1 and 2.2 satisfies o(1) < Cr, see the remark below the statement of Proposition 1.3.
The next result tells us roughly speaking the following. Assume that J< T are

intervals such that | T| £2|J|, f"|T is a difffomorphism and Z | fi(J)I <1 and let

T! and T? be the components of T\J. Then | f%(T")| and | f (T?)| cannot both
be much bigger than | f*(J)|.

2.3 Theorem. “Macroscopic Minimum Principle.” Let f be a C* map with no flat
critical points. Then for every pe(l, ), p; > 2p and S < o there exists t1€(0, 1) with
the following property. Take n> 0 and let J be an arbitrary interval with

pRGIEN
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Then there exists an endpoint x of J such that for any interval T > J having x as
one of its boundary points such that i) f"|T is a diffeomorphism, i) | T| < p*|J| and
iii) | f{(T\J)| £1,Yi=0,1,...,n— 1 one has

(M= pyl SO 2.3)

Proof. Choose p; > 2p and S as above. Let a(t) be the function of Proposition 1.3.
Assume that 7> 0 and g, > 0 be so small that o(t) < 6, for all te[0, 7] and

2p—04°S2p

52, <P 2.4)

Since a(t) -0 as t — 0 this is possible.
Take the point y in the middle of int(J) = (a, b). Either:

|f"(b) —fq?ﬁg]f"(b) —f"(a) (2.52)
|b—yl |b—al
or
S0 =@l 1) = ["(@)] (2.5b)
|y —al |b—al

(or both). Let us assume that (2.5a) holds. Then choose x =a and let T = J be an
interval having x = a as its boundary point and satisfying i)—iii). Write T = [a,u],
Jo=(y,b), L=[a,y] and R =[b,u]. Let p, be so that

IT|=ps I
Then p, < p and therefore (2.4) implies

2p;—00'8°2p,
—_— . 2.6
1—0o'52p, <p1 (2.6)

Assuming that max;_q ;.. ,-1|f*(R)| <1 we will show that (2.3) holds.
One has T\J, = LUR and since we are in the case a),

/"Gl 1fB)— ")

7ol =1

= <1. 2.7

FLoTol 176 — @] = @7)
Lodol Ib—al

Using Proposition 1.3 one has
n—1 n—1
log A(f", T,J o) 2 — .;Oﬂfi(L)l)‘U(lfi(R)l)é _00";0 If{L)Z —00'S. (2.8)

On the other hand |J,UR|/|T| = (2p, — 1)/2p, and therefore, using (2.7),
A(f"9 T;']O)_ 1

TRCANTALA] |f"(T)]
N I R |
[[LOIIf" ORI 1T UR)]

ILoJol  1JoUR] [JoUR|
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é{lJouRl,lf"(J)l +|f”(R)I}_ : g{(zpz— 1),(1 L) )}_1

T | /"(R)| 20, | /(R)]

_1{ o)

_2/’2{ L+ G0 D) } )
Combining (2.8) and (2.9) one gets

ISR 20,1
"D~ 1- °'o'S’2Pz’

and hence
|/"(T)| 14 | /"(R)] < 1—09'S2p,+2p,— 1 =2P2 —00°8°2p,
[ f"(D)I "D~ 1—0y'82p, 1—04S2p,

From (2.6) it follows that this last expression is at most p,. Q.E.D.

Remark. In Theorems 2.1-2.3 it is essential that f is C2. Indeed, if Df is
only Lipschitz then Proposition 1.3 is not valid anymore. Take for example
f(xX)=x+x|x|, L=[—4¢, —¢), J =[—¢,¢], R=(¢,4¢]. Then

(1 +¢)(1 +4e) _
B(f,T,))—1 _ (1+5) _—5e—212 5
T 8¢ =it 57 g0 3 0

2.4 Corollary. Let f:M — M be a C? map without flat critical points. If f is unimodal
or f satisfies the Misiurewicz condition then f does not have wandering intervals.

Proof. The corollary is an immediate corollary of the proof in [M.S.] and the
theorem above. Q.E.D.

Remark. Corollary (2.4) was first shown for maps with negative Schwarzian
derivative and one critical point (without the Misiurewicz condition) by J.
Guckenheimer, [Gul]. Very recently A.M. Blokh and M. Ljubich [Lj] and [B.L.]
have shown that C? maps f:M — M without flat critical points (and such that all
critical points of f are local maxima or minima) have no wandering intervals.
Their proofis based on very precise topological analysis of the dynamics of intervals
maps and comined with the analytical tools of [M.S.]. (In [M.M.S.] this result
has been generalized to general C2 maps without flat critical points.)

We also will need a result to deal with the case “away from the critical points.”
In this case we get bounded distortion from non-linearity.

2.5 Theorem. Let f :M—M be a C?> map and let U be a neighbourhood of C(f).
There exists C, < oo with the following property. Let J be an interval and let n be
such that f"|J is a diffeomorphism.

a) If fi{J)nU=,Vi=0,...,n—1, then

|DS"() e

for all x,yeJ.
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b) If xeJ and fi(x)¢U for all i=0,1,2,...,n— 1, then

/()] (2.11)
-

IDS"()] gexp{ —cl-'_'zi; lf"(J)l}-

Proof. The proof of this theorem is an immediate consequence of Proposition 1.4.
Q.E.D.

This theorem is the main analytic tool in Maiié¢’s paper [Ma]. As in Lemma
.2.1 one can extend bounded non-linearity results to larger intervals. This is
formulated in the following theorem, which is due to Schwartz [Sch], see also [Ni].

2.6 Theorem. Let f:M — M be a C*> map and U be a neighbourhood of C(f). Then
for every S < oo there exists p >0 and C, < oo with the following property. Take
n<0 and let J be an arbitrary with

SUFODISS and fU)NU=@, Vi=0,....n—1.
i=0

Then for any interval T > J such that |T| < (1 + p)-|J| one has

DS A

for all x,yeT.
Proof. See [Sch, M.S.1 or Str2].

3. A Koebe Inequality for Bounded Cross-Ratio Maps
In the last section we got a lower bound for A(f", T,J), B(f", T,J) provided upper
bounds for Z | f{(T)| or z | £1(J)| are available. In this section we will show that

a lower bound for A( f " T J) and B(f", T,J) gives bounds on the type of
non-linearity of f"|T. Slightly shorter proofs of the results in this section can be
given when one argues by contradiction, but then no explicit estimates are obtained.

3.a. Generalizing the “Minimum Principle.” For maps with S(f|T) <0 such that
f|T be a diffetomorphism, the derivative of f|T is bounded from below by the
derivative of f on 0T. For C* maps which satisfy lower bounds on the cross-ratio
operators a similar result is true. This result is the analogue of the maximum
principle for conformal mappings.

3.1 “Minimum Principle.” Let g:T - M be a C* diffeomorphism with T = [a,b].
Let xe(a,b). If for any J* = T* < T,

B(g, T*,J*) = C, >0,
then
|Dg(x)| Z C3-min (| Dg(a)|, | Dg(b)|).
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Proof. The proof of this lemma can be found in [M.S.1]. Q.E.D.

Remark. This result is a infinitesimal version of the Macroscopic Minimum
Principle from Sect. 2.

3.b. Generalizing the “Koebe Distortion Principle.” The next result shows that
having good bounds for the cross-ratio operator is almost as good as having
bounded distortion. It is the analogue of the Koebe inequality for conformal
mappings f|T which gives an estimate of D f(x) for points x such that f(x) stays
away from the boundary of f(T). For maps with S(f)<0 a version of the
corresponding property was first proved and used in [Strl] and reinvented in
[Gu2].

3.2 “Koebe Distortion Principle.” For each C,,0 <1 <% there exists K < oo with
the following property. Let g:T—M be a C* diffeomorphism on some interval T.
Assume that for any intervals J* and T* with J* =« T* = T one has

B(g, T*,J*)= C,>0.
For an interval J* < T let L* and R* be the components of T\J*. Assume that

(L] 19(R®)]
o = M g =T

Then
1 _|g'(x)
* —<=——<K, Vx,yeJ¥
) K =lg0)l
1
(**) —max|g'(z)| =|g'(x)|, VxeJ*,
K zeT

and for every xeL* UJ* one has

lgee )l 1 19(T)I
)l TK T’

* *
(sans) lg, )l S 1 lgd*oJ )I, Vye*.
)l — K [L*oJ*|

Proof. After scaling we can assume that T =[0,1], g(T)=[0,1] and that g is
orientation preserving. Let us consider the following operators:
_lgE 1

|T|*> |Dg(@)||Dg(b)|

VyeJ* UR¥*,

(k%)

Bo(g’ T)

where T =[d4,b] = T and

19(T)|

|Dg£x)|_ﬁ:|—

lg(L)| 1g(R)| *
IL| IR

Bl(g) T’ x) =
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where L and R are the connected components of T — {x}. Observe that

J-T

B,(g, T, x)= l_im B(g, T, J).

Jox

Hence,
BO(ga T)a Bl(g’ Ta X) ; C2 > 0:
for every xeT < T.

Step 1. Lett' =4t. Let a,beT =[0,1] be such that ga)=1, g(b)=1—1". Let
L=1[0,a], J=[a,b] and R =[b,1]. (Notice that J* < J.) Furthermore let

oDl 1o, _lg®)
MEALC P BT TR
LoDl lgRUD)

Uk at L Lt A 3.1
M=007 2T ROT G1)

In this step we obtain an estimate for |g’(a)| and |g’(b)| in terms of p. First of all,
using By(g,J) = C, we get

1
lg'(@)|lg'(b)| = C—‘pz- (3.2
2
Also B,(g,LuJ,a) = C,, and hence
/1 .
9@z c, L. (3.3)
Hq
]
1-7
1-7
: ]
A
0 a b 1
——— ————
L J R

Fig. 1. The intervals L,J and R
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Moreover
Ay, LOJ| L+ 1L T
A - > .- = i )
Uy 1 lg(LuJ)| e 1—7 ="' 1—7v 1-7 (3.4)
From (3.3) and (3.4) (and the corresponding estimate for b) we get
T,
19@|2 Cr——p, (35
’ T,
92 C 0. (36)

From (3.2), (3.5) and (3.6) that there exists K’ < oo, which only depends on 7" and
C, and not on g, such that

1

g PE19@LLIgB)I=Kp. 3.7
Step 2. Let us estimate |g'(x)| for xeJ. From Lemma 3.1 one gets a lower bound
for |g'(x)|:

(C)*
K’

19'(x)| = (C2)* min {|g'(a)l,|g’ b)I}_ (3.8)
Here the last inequality follows from (3.7). One obtains an upper bound for |g'(x)|
as follows. Let U=[a, x], V =[x, b]. Since UuV =J,UnV ={x}, and (|g(J)|/|J])=
p, we have either (|g(U)|/lU]) = p or (lg(V)I/IV]) = p. Suppose the former holds.
(The second case is similar.) Then using By(g, U) = C, one gets

lg(U)I
lg'(a)llg'(x )l<_{W} _C2p2 (3.9)
With inequality (3.7) this gives
p? /
— 3.10
Ig()I_CZl (a)l‘ Ne (3.10)

Together with (3.8) this proves that there exists K” < oo which only depends on
7 and C, (and not on g) such that

Ii,, p=lgx)I=K"p, (3.11)
for all xeJ. Therefore
lg'()|
3.12
<K”> <o =& (3.12)

for all x, yeJ. Since J* = J inequality (*) follows.

Step 3. Now we prove inequality (#*). Let ueT be so that max,.r|g'(z)| =|g'(u)|-
If ueJ then (%) easily follows from (3.12). So we may assume that u¢J. To
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be definite assume that ueL. Then using By(g, [u,b]) = C, one gets
, 1 lg[u,b]l>2 1 < 1-7 )2 <|g[a,b]l)2
u)l1g'(b)| £ — <. .
gwlel=g, <1[u,b]| =c, \1=2¢) Ultatli
_t(1=7 z.pz
C, \1-27¢ ’

Hence, using (3.7), there exists a constant K” not depending on g but just on C,
and 7’ such that

max lg'(2)| =1g'(w)] = K" p. (3.13)
Combining (3.11) and (3.13) implies
1
K max lg'(2)| £ 1g'(x)| for all xeJ (3.14)
xeT

where K = K”-K". Since J* < J,(*x) follows.
Step 4. Let us now prove (*xx) and (***x). If |g(x, y)| = 7' = 41 then

gl S, 19(T)]

(x, )] |T|
and if moreover (x,y) c L¥*UJ*,
gl o lgbo)l o T lglrusn)l v
lx,y| TILX*OJ*| TL*OJ*| T |L*OJ*| 1-1"
On the other hand if |g(x,y)| <7 =1t then since g(x)e[0,1—1]=[0,1—21],

g(y)e[r,11=[27,1] and 7<% this implies g(x),g(y)e[7,1—1] and therefore
[x,y] < J. But then (3.14) and the mean value theorem imply that

lgx, »)| _ 1 , 1 1¢(T)]
1(x, )| ganlEaTxlg(z)l_?:K |T|

1\

and

lgGe )l _ 1 1 lg(L* UJ%)|
> Q)| =2 2
)] = K maxlg @l 2 = o

So in either case we have proved (##*) and (*x**%). Q.E.D.

3.c. Preimages of Sets. The Minimum Principle can be used to prove the following
reult. The proof of this result is not difficult and can be found in [N.S.2].

3.3 “Preimage Lemma.” For each C, there exists K < oo with the following
property. Let g:T — M be a C! diffeomorphism on some interval T = [a, f]. Assume
that for any intervals J* and T* with J* =« T* = T one has

B(g’ T*5 J*) g C2 > 0.

Let ¢>0 and A, = M a measurable set with |A,|=¢. Let 1, and I, be the maximal
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intervals of length <¢ which are contained in g(T) and which contain g(o) and g(p)
respectively. Then

197 HA) S K-1g™ N1y

Proof. The proof follows from the Minimum Principle, see Lemma 6.1 of
[N.S.2]. Q.ED.

4. Orbits of Intervals with Disjointness Properties

In Sect. 2 it was shown that we could find a lower bound for B(f", T, J) provided
there is an upper bound for Z | f{(T)|. If the intervals f* (T) 1—0 L2,...,n—1
are all disjoint then we have a very obvious upper bound: Z | f{(T)| £|M]|. So

let us give a sufficient condition for T, f(T),..., " (T) to be d1s101nt
Let I and J be subsets of M and f:M —»M some mapping. Let

r(n) = card {i| f{(I)nJ # J,0<i<n—1}.
We need the following set-theoretic lemma.
4.1 Lemma. If f*(I) = J then each point in M is contained in at most r(n) of the sets
LW, f2A),..., f7 D).
Proof. Suppose some point x of M is contained in [ intervals
IO, £1A),..., f1O),

where 0 <i(1)<i(2) < --- <i(l)<n. Let j=n—i(l). Then f/(x) is contained in the
fi-images

SO, O, 1)
of all these intervals. Since
O<j+i)<j+iR)<--<j+i(l)=n,
and f9(x)e f"(I) < J this implies that [ < r(n). Q.E.D.

From this last lemma we can get the following result. Let p be a repelling
periodic point of period n. Let

P L if Df"(p)>0,
“\2n, if Df*(p)<O.

Let I be the maximal interval such that pel, f"|I is a dlffeomorphlsm and
f"(I)nO(p) = {p}. Similarly let T be the maximal interval such that pel, f|Tis a
diffeomorphism and such that f*(I)nO(p) = {p}.

4.2 Lemma. Let p,n,fi,I and T be as above. Then each point of M is contained in
at most three of the intervals

L., f" 1),
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and in at most six of the intervals

Lfady,..., 1)

Proof. Let us just prove the second statement. Since f "T)nO(p) = {p}, we have

fiHnom={rp} @.1)
for every 0<i<n. Let J be the maximal interval containing {p} such that
JNnO(p)={p}. Notice that if some interval L intersects J but is not con-
tained in J then it has to contain an endpoint of J which belongs to O(p)
(otherwise J would not be maximal). Therefore if 0 <i <7 and fi(I)nJ # & then
fiTNClos(J)nO(p) # &, and therefore, using (4.1),

fi(p)eClos (J)n O(p) = 8J L {p}.

From the choice of 7i there are at most six i’s with 0 < i < 7 for which f(p)edJ U {p}.
Applying Lemma 4.1 completes the proof. Q.E.D.

5. Branch-Intervals of /" and Wandering Intervals

We say that an interval I is a wandering interval if I, f(I), f2(I),... are all disjoint
and if I is not contained in the basin of a periodic attractor. In [M.S.1] it was
shown that C? maps satisfying the Misiurewicz condition (i) such that all of its
critical points are non-flat cannot have wandering intervals. More recently, based
on the analytic techniques in [M.S.1], A. M. Blokh and M. Ljubich, [Lj] and
[B.L.2], have shown that general C? interval and circle maps without flat critical
points (and such that all critical points are local extrema) cannot have wandering
intervals. In this section we will show that for large n, many intervals I, exist which
are extremely small and such that | f*(I,)| is not too small. Later this will be used
to show that f is globally expanding. The conclusions in this section are based on
the non-existence of wandering intervals and on the Misiurewicz condition, without
using properties related to the smoothness of the map f.
As before the basin B(K) of an invariant set K, f(K) < K, is the set

B(K) = {x; f"(x)—> K as n— o0}.

The union of the components By (K) of B(K) containing points of K will be called
the immediate basin of K. Notice that f(B(K)) = B(K). We say that a periodic point
is a (possibly one-sided) attractor if B,(O(p)) contains an interval. Let B be the
basin of periodic attractors and B, be the immediate basin of periodic attractors.
More precisely, B= B(A4) and B, is the union of the components of B(4) which
contain points of A, where A is the set of all periodic attractors of f. Let I be a
component of B,. Then for some k, f*(I)= 1. Moreover if IndM = & then
Sf*(@I) = 41 and in particular one of the boundary points of I is a fixed point of f*
and the other boundary point I is either a fixed point of f* or mapped by f* on
the first boundary points. If I " dM consists of one point then the other boundary
point of I is a fixed point of f*.

If M =[0, 1], by extending f to a slightly bigger interval, we may assume that

f(OM) < oM,
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and so at least one of the boundary points of M is periodic with period <2.
Without loss of generality we may also assume that the periodic point(s) of f in
0M are hyperbolic. (Notice that we can choose this extension in such a way that
all points in the interior of the bigger interval will eventually be mapped into the
original interval. From this it follows that it suffices to prove Theorems A-D for
the extended map.) From now on we will make these assumptions if M = [0, 1].
We say that I, is a branch-interval of /" if I, is a maximal interval for which f"|I,
is a diffeomorphism.

If M = S* then, in order to make sure that branch-intervals of f” either coincide
or are disjoint, we have to be a bit more precise. If #C(f) > 0, then choose and
fix some arbitrary point x,eC(f). If C(f)=J then, since f is not a circle
diffeomorphism, |deg(f)| > 1 and we can choose some fixed point x,€S* of f. Then
I, is a branch-interval of f" if it is a maximal interval such that f"|I, is a
difftomorphism and x,¢ f"(I,). Notice that if I, is a branch-interval of f" then

Xo#fil,), Vi=0,1,...,n—1. (5.1)

In fact if C(f) = ¢ this is true since x, is a fixed point of f. If C(f) # & this holds
since f"|I, is a diffeomorphism and since x,eC(f).

Similarly we say I, is a *-branch-interval for f" if it is a maximal interval such
that I, is contained in a branch-interval of f" and such that furthermore
S"d,)NClos (B,) = .

For simplicity of notation let C,(f)=C(f)udM if M=[0,1] and C.(f)=
C(f)u{xy}if M =S'. (Remember that we had assumed that f(0M) = dM.) Notice
that I, is a branch-interval of f” if and only if it is a maximal interval with the
property that int(f(I,))nC,(f)= & for i=0,...,n— 1. So from the assumption
on f it follows that either

FIUC(N) e FC)uaM, Vjz0 (5.22)
or
C(N=@ and fIC.(f)=1{xo}, VjZ0. (5.2b)

5.1 Lemma. Assume that f:M — M is not injective and has no wandering intervals.
For each 6 > 0 there exist kg,l,eN such that for any interval T such that |T| 2= 6
and such that f*| T is a diffeomorphism for all n = 1, there exist 1 £k <k,, 011,
and an interval L such that f*|L is a diffeomorphism, f*(L)< L, f(T)< L (and
therefore each point of T is in the basin of a fixed point of f*|L or f**|L).

Proof. If T is contained in the basin of a periodic attractor then this lemma is
trivially true. So assume that T is not (completely) contained in the basin of a
periodic attractor.

First we claim that there exist k, < 00 and I, < oo such that for any interval T as
above, and which is not (completely) contained in a basin of a periodic attractor,
there exist ke{l1,2,...,ko} and le{0,1,...,1,} such that f{(T)n f'*¥T)# Q.
Indeed, otherwise there exist a sequence of intervals T; with | T;[ = d, and n(i) - co
such that fY(T)nf™(T,)= for all 0<I, m<n(i) with [#m. By taking a
subsequence we get an interval T such that T;> T for infinitely many i’s and
therefore f{(T)n f™(T) = & for all I,m =0, [ # m. But since T is not contained in
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the basin of a periodic attractor this implies that T would be a wandering interval, a
contradiction.

So there exists k, and [, such that for any interval T which is as above and
not contained in the basin of a periodic attractor, there are integers | and k with
1121, 0<k=Zk, such that f{T)nf'"*%T)# &. Write T, = f'(T). Then
fMTo)n fUTDKT,) # &, ¥j20. Hence L= | ) f™*(T,)is an interval and f* maps

j=20
L diffeomorphically into itself. Since f is nojthinjective, L is a proper subinterval
of M. The lemma follows. Q.E.D.

Remark. Tt is not hard to give a finite algorithm which, given a map f as in
Lemma 5.1, finds an upper bound for k, and [,.

5.2 Lemma. Assume that f:M — M is not injective and has no wandering intervals.
For each 6 > 0 there exist k,eN and 6'€(0, 6) with the following property. Let T be
an interval with |T| = é and f"| T a diffeomorphism. Suppose that one of the following
holds:

a) f"(T)" By = 5
b) all periodic orbits of f of period < k, are hyperbolic and f"(T) is not (completely)
contained in B;

¢) T contains a periodic point of period greater than k, and f*(T) contains no
periodic point of period less than k;

d) n<7k,.

Then
M) zd.

Proof. Let k, and I, be the integers from Lemma 5.1 corresponding to 4. Let
k, =2kq + l,. Assume by contradiction that we can take a sequence of intervals
T: satisfying a), b) or c) and integers n(i)—> co such that for every i=0, | T;| > 4,
f"|T, is a diffeomorphism and such that lim | f"?(T;)| =0. By taking a sub-
sequence we may assume that there exists a limit T of T; such that |T| =4, f"|T
a difffomorphism for all n > 0, and finally | f"?(T)| - 0 for some sequence n(i) — co.

From Lemma 5.1 it follows that there exists an interval L and k <kg, [ <],
such that f*|L maps L diffeomorphically into itself, f*(L) < L, and such that

T' = f'(T) c L. By assumption
|/"@~KT")| -0 as i-oco. (5.3)

This implies that T* is contained in the immediate basin of an attracting fixed
point of f*:L— L. Hence f'(T)= T’ = B, and we get a contradiction if a) holds.

If b) holds then f*:L— L has only hyperbolic fixed points, and therefore (5.3)
implies that Clos(T") is contained in the basin of some (hyperbolic) attracting fixed
point of f*|L. But this would imply f/(T)= T’ < int(B,), a contradiction.

If ¢) holds then notice that L contains at least one periodic point of period k
and no periodic points of other periods. Since T; contains a periodic point of period
greater than k, = 2k, + I, and since f*(T;) = f(T) < L, it follows that f*(T;) contains
one of the boundary points a of L (and a¢dM). But by assumption, f*(T;) contains
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no periodic points of period less than k,. Since a¢dM, f*(a) has period k and we
obtain a contradiction.
If d) holds then the resuit is trivial. Q.E.D.

Remark. Again there exists a finite algorithm which, for each é > 0, gives a lower
bound for &".

The following corollary tells us that we can shrink branch-intervals I, of /" so
that | f9(1,)| is not too big for all 0 < j < n and so that at the same time | f"(I,)| is
not too small

5.3 Corollary. Assume that f:M — M is not injective and has no wandering intervals.
Take 6 > 0 and let koeN and &' €(0, 8) be the corresponding numbers from Lemmas 5.1
and 5.2 respectively. Take an interval I, such that f"|1, is a diffeomorphism and such
that | f"(I,)| =2 0. Let I, = I, be a maximal interval such that |f/(I,)| =6 for all
0 < j < n. Assume one of the following holds:.

a) ["U)N By = ;
b) f*(I,) is not (completely) contained in B, and all periodic orbits of f of period
< ky are hyperbolic.

Then

/(L) =z 6
Proof. By maximality | f/(I,)| = 6 for some 0 < j < n. Taking T = f#(l,) the result
follows from Lemma 5.2. Q.E.D.

In the next two results we will require that f is C2, has no flat critical points
and satisfies the Misiurewicz condition (i). Then Corollary 2.4 implies that f has
no wandering intervals. (The Misiurewicz condition (i) implies that f is not injective
and therefore we can apply Theorem 5.2 to f.) If the Misiurewicz condition (i)
holds then (5.2) implies that we can choose d, >0 such that if I =[x,y] is a
(non-trivial) interval then

xe ) fHCL (), yeCu(f)=II1240,. (5-4)

k20

For later use let N, be so that ceC(f) and f(c)e C(f) implies that either i < N,
or that ¢ has period < N,,. If C(f) # & we choose neighbourhoods U, < V, < W,
of C(f) such that each component of W, contains precisely one point of C(f), such
that each component of Wy\V,, Vo\U,, Uy\C(f) has at least length d, and such
that

fUCfNnWycC(f), Yn>0. (5.5a)

Moreover, choose these neighbourhoods (and é, > 0) so that if ¢ is a non-periodic
point of f such that fi(c) = ¢’e C(f) for some i > 0 then

S/ maps a component of I\{c} diffeomorphically onto a component of I\{c'}
(5.5b)

for I =U,,V, or W,. Because i £ N, this last condition can easily be satisfied.
(Condition (5.5b) is later needed to take care of additional complications that arise
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when () fU(C(f))nC(f) # &) Let 5,€(0,9,) be equal to the number & cor-
iz1
responding to 6 = J, from Lemma 5.2. We will keep these numbers J,, 55, fixed
throughout the remainder of this paper.
In the next corollary we will show that images under f” of branch-intervals

of f" cannot be too small.

5.4 Corollary. Assume that f:M — M is C2, has no flat critical point and satisfies
the Misiurewicz condition (i). Furthermore assume that all periodic orbits of f are
hyperbolic. Let I, be a branch-interval of f" such that f"(I,)) is not completely contained
in By. Then | f™(1,)| = 5.

If additionally Clos(B,) consists of at most a finite number of intervals then
there exists a number 5’0 > 0 such that | f*(1,)| = 52) for every x-branch-interval I,
of f.

Proof. Let us first prove the result if I, is a branch-interval. Let 0I, = {a,,b,}.

From the maximality of I, there exists i < j<n such that fi(a,)eC,(f) and

fib,)eC.(f). If i=j then fi(I,) contains two distinct points of C,(f). Hence

|f7I,)] = 60. If i < j then f(a,)e () f*(C.(f))and also f/(b,)eC . (f). Again from
k=1

the choice of J, this implies that | f9(I,)| = 8,. From Lemma 5.2 it follows that in

both cases | f*(1,)| = J5.

Let us now prove the result for x-branch-intervals of f". So suppose that
Clos(B,) consists of a finite number of intervals. Let N be a multiple of the period
of each of the periodic points in Clos(B,). Let I be the finite union of intervals
such that each boundary points of Clos (B,) is contained in precisely one component
of I and such that I is the maximal set in M\Clos(B,) such that fV is a
diffeomorphism on each component of I. If for ce C(f) there exists an integer ieN
and a one-sided neighbourhood J of ¢ such that fi(c)el, f'|J is a diffeomorphism,
and f'(J) is contained in I and contains the boundary point of I which is in
Clos (B,), then let i(c) be the minimal such integer. Choose d,€(0, 8,) such that the
distance between endpoints of Clos(B,), C(f) and {f*“(c); ce C(f) such that i(c)
ex1sts} is at least &,. Let 8,&(0,5,) be equal to the number & corresponding to
0 =0, from Lemma 5.2.

Now let I, =(a,, b,) be a x-branch-interval of /. Then from maximality there
exist 0=<i, j<n such that f*(a,)eC, (f)ud(Clos(B,)), f(a,)eC , (f)vd(Clos(B,)).
If fi(a,), f f(a eC, (f) then the proof goes as in the case that I, is a branch-interval
of f". If f*(a,), f/(b,)edClos(B,)) then f"(a,), f"(b,)€d(Clos(B,)) and |f"(1,)| =
50 &,. Now assume [(a,)eC.(f) and fi(b )e@(Clos(Bo)) If j<i then fi(b, )€
d(Clos (B,)), and since fi(a,)eC . (), |f* (I )| = 8,. Using Lemma 5.2, | f*(I,,)| = > 5.
Finally if i < j then from the choice of J, and since f f(b )ed(Clos (B,)) one gets
| AU 260 Again using Lemma 5.2 one gets | f"(I,)| = 5. Q.E.D.

Now we will show that branch-invervals containing critical values of f have
images which are not too small in “both directions.”

5.5 Corollary. Assume that f satisfies the Misiurewicz conditions (i), has no
wandering intervals and that f and that all periodic orbits of f are hyperbolic and
let &, be as above. Take ceC(f), n2 0, and the branch-interval I, of f" containing
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f(e). If f* (I,) is not (completely) contained in B, then one has
")z 0, i=1,2

here I are the components of I,\ f(c).

If, additionally, Clos (B,) consists of at most a finite number of intervals then let
5y >0 be the number from Corollary 5.4. Then for any *-branch-interval 1, of f"
containing f(c) one has | f"(I})| = 6 i=1,2 for every *-branch-interval 1,. Here
I}, I? are the components of 1,\ f(c).

Proof. Let us just prove the corollary if I, is a branch-interval of f”. Consider for
example I} = (a,,b,) = (a,, f(c)). Then there exists 0 <i< nsuch that fi(a,)eC.(f).

Since fi(a,)eC.(f) and fi(b,) = f"“(c U fHC(f)) one gets | fi(I})| = 6,. From
Lemma 5.2 the result follows for I} = (a,, f (c ) The proof for I?isthe same. Q.E.D.

5.6 Remark. In the results 5.1-5.3, the assumption that f is not injective and does
not have wandering intervals can be replaced by the assumption that f is C2, has
no flat critical points and satisfies the Misiurewicz condition.

Proof. In [M.S.1] it was shown that C2 maps satisfying the Misiurewicz condition
and having no flat critical points, cannot have wandering intervals. Q.E.D.

6. The Proof of Theorem A: The Finiteness of the Period of Attractors

In this section we prove that expansion along periodic orbits increases as the
period increases. In later sections we sharpen this in an essential way.

6.1 Theorem. Let f be a C? map such that all critical points of f are non-flat.
Furthermore suppose that f satisfies the Misiurewicz condition (i). Then there exists
a sequence K, with K,— o0 as n— oo such that if p is a periodic point and n the
period of p, then

[Df"(p)| Z K, 6.1

Let p be a periodic point of period n. Then choose k=n if Df"*(p)=0 and
k=2nif Df"(p) <0. Then Df*(p)=0. Let J be a maximal interval containing p
such that f*|J is a diffeomorphism and such that f*(J)nO(p) = { p}. From Lemma
4.2 we know that each point of M is contained in at most six of the intervals
J, f(J),..., f* }(J) and therefore

T 1S s61m.

Notice that this disjointness also implies that for 0 < i < k, f(J) contains no periodic
points of period less than (k — i)/6.
First we will prove two lemmas related to the results from Sect. 5.

6.2 Lemma. For each > 0 there exists ky < 00 such that for any interval J as above
|J| = & implies k < kq. In particular there exists a sequence K; with K — 00 as k — oo
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such that for any k and any interval J as above

1 ’
] = K;. 6.2)
Proof. Let kg, eN be the integers from Lemma 5.1 corresponding to é. Let |J| = 9.
From Lemma 5.1 there exists 0</</,and 1 < k< k, such that f'(J) is contained
in an interval L and f*|L maps L diffeomorphically into itself; in particular each
periodic point in L has at most period k. Since f(p) is a periodic point of period
k and since f'(p)ef'(J) < L it follows that k<k,. Q.E.D.

6.3 Lemma. Let 6 >0 and 6'€(0,6) be the number corresponding to 6 from
Lemma 5.2. Then for any interval J as above and any J, for which peJ, c J and
with | f(J,)| 2 8 for some 0 < i<k one has | f*(J )| = 5"

In particular, if | f*(J)| 2 8, then for any maximal interval J, < J such that peJ
and | fi(J ) <6 for all i=0,1,...,k, one has | f*(J )| = 6"

Proof. Let k, be the number from Lemma 5.2 corresponding to . If k —i £ 7k,
then Lemma 5.2d implies | f*(J,)| 2 ¢". If k —i> Tk, then f'**(J,) contains no
periodic point of period less than (k — (i + k,)/6) > k,. Since fi(J,) contains a
periodic point of period k = k, Lemma 5.2c implies again | f*(J,)|=¢". Q.E.D.

Next we state and prove a lemma which gives sufficient conditions for
(1.f*(J))/|J] to-be big for large k. Let 8, and &, be the numbers which are chosen
in Sect. 5 (above Corollary 5.4).

6.4 Lemma. For each f as above, there exists a function p”(t) such that p"(t) -
as t—0 with the following property. Let J and k be as above and let J' be the
components of J\{p}. Let T be an interval containing p such that f*|T is a
diffeomorphism and such that for the components T' of T\{p} one has T'>J',
f¥IY> T and | fX(T?)| = 6, for i=1,2. Then

Lf¥DI_
g 2P I, (6.3)

Proof. If | f*(J)| 2 15,, then
|fk(J)|_>-%ﬁ_
i = JI

So for the remainder of the proof assume that | f*(J)| <45,. Let L= T'\J!
and R = T*\J2. Since f¥J)o T,

DI IT]
MV

(6.4)

(6.5)

Choose 7(p)e(0, 49,) corresponding to Theorem 2.3 for S = 6:|M|, p=|T|/|J| and
p1 =1+ 2p. From (6.5),

PROIN (6.6)

2p.
11
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Let 7'(p)e(0, 7(p)) be less or equal to the number 6'€(0, §) corresponding to 6 = t(p)
from Lemma 6.3. We may assume that p — 7'(p) is non-increasing. Since | f*(T)| =,
for i=1,2, and since we have assume that |fJ) <1d,, one has |f*(L)],
| f*(R)| =46, = (p). Hence from Lemma 6.3 we can shrink T such that still T>J
and such that

(DI RIS t(p), Vi=0,1,....k
and

LD LR Z 7' (p). (6.7)

Since lfil|f"(J)| <6:|M|=S we get from Theorem 2.3 either |f*(L)|/|f*(J) =

(If"(T)l|7|0f"(J)]) —1Z2por (| f4R)/| f4(J)]) < 2p. From (6.7) we get in either case
|f*(J)| = (t'(p)/2p) and therefore

DI T) 1
I =20 1T

v

(6.8)

So, from (6.8),

“(p) VRO

—=/|J|= >—. (6.9
2p M= 1 :
But since 7'(p) > 0 and 7’(-) is non-increasing, there exists a function g:R, - R,

such that (t) - oo as t -0 and such that (t'(p)/2p) < \/|J| implies p = 5(|J|). In

particular inequality (6.6) gives that

, k
20 ¢ JaT= L 5, .10

Combining (6.4), (6.9) and (6.10) one has

/1)) ( ;i>
g 2min(P0D— 35t )

This finishes the proof of Lemma 6.4. Q.E.D.

Proof of Theorem 6.1. If C(f) # J, then take the neighbourhoods U,, V, and W,
from Sect. 5. If C(f) = & simply take Uy, =V, = &.

Let O be a periodic orbit with period n. Without loss of generality we may
assume that the period of O is bigger than #C(f) and therefore that 0N C(f) = &.
Let k=n or 2n as before. Then Df*(p)>0. We will subdivide the proof of
Theorem 6.1 in some cases.

Proof of Theorem 6.1 if ONnU,= . Consider a periodic orbit O such that
0nU, = & and take some point peO. Let J! and J? be the components of J\{p}.
Lemma 4.2 gives

k-1
T IS DI=61m].
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From this and since O0nU,= (J, we can apply Theorem 2.5b and there exists
K < oo such that for any periodic point peO, as above,

L (IO LA L)
|ka(p)|zfmax< AL L ) 6.11)

Case I. Let us first assume that C(f) # & (and that 0 n U, = ¥). Of course D f*(p)
is the same for each pe0. So we may estimate D f*(p) at a convenient point p in
the orbit 0. Since C(f) # &, we assume that p is “closest to C(f),” i.e.,, that p is
chosen on the orbit O such that there exists ce C(f) such that

(c,pnO0=Q. (6.12)

Let J! be the component of J\{p} such that f*(J') contains points from (c, p). We
claim that

If4UM)] = 0%.

Indeed, from the maximality of J either the interval Clos (f*(J!)) contains another
point of O(p) and therefore, from (6.12) and the definition of J*, f*(J!)>(c,p) or
there exists 0 < i < k such that Clos (£ (J!))nC(f) # &. In the first case | f¥J )| =
do = 0p, because O(p)nU,= & and because each component of U,\C(f) has
length > §,. In the second case this gives | f(J')| = 8, and therefore from Lemma
6.3, | f*(J')| = J;,. Hence (6.11) implies that

1Y 1 5

KT 22 Tt (6.13)

IDf4(p)l 2

From Lemma 6.2 it follows that | D f*(p)| —» oo as k — co. This completes the proof
of Theorem 6.1 in the case that C(f)n U, = & and C(f) # .

Case I1. Let us now assume that C(f)= . In this case f is an immersion of the
circle with degree =2 (or < —2). In this case there is no uniform lower bound for
| f*(J)| and we cannot use the same argument as in the previous case. Define for t > 0,

1
p"(t) = min (“”t” | , p"(t)), (6.14)
where p” is the function from Lemma 6.4. Clearly p”(t)—» oo as t | 0. Let T be the
interval containing p such that f*|T is a diffeomorphism and such that for the
components T' of T\{p} one has |f*(T%)|=4%|S"| for i=1,2. Let J' be the
components of J\{p}, and let J! be the interval such that J! and T' are on the
same side of {p}. From Lemma 6.2 it follows that (in the case that C(f) = ) the
proof of Theorem 6.1 is completed once we show that for any periodic point p of
period k, and any J as above,

LW
1]

zp"(1J])- (6.15)

If | ()] 2 M|, then
k 1
|f(J)|gz|M|g
1] I

p"(1J1) (6.16)
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and the required estimate holds. So assume that |f*(J)|<%|M|. Let T be the
interval containing p such that f*|T is a diffecomorphism and such that for the
components T of T\{p} one has |f*(T)| =4|S"| for i=1,2. As before let J* be
the components of J\ {p} so that J', T* are on the same side of p. Since | /*(J)| < 1| M|
and |f*(T)| = 4|S!|, this implies J; = T;. By definition of J and since C(f)= ¢,
Clos (f*(J")) contains a periodic point p‘eO(p), p’ # p. (Unless O(p) = {p} in which
case there is nothing to prove.) Since p‘eClos(f*(J%)), and only one point of the
orbit O(p) can be contained in T (since f is a circle immersion and f*|T is a
diffeomorphism),

fHIH> T
So applying Lemma 6.4 gives

| S
11

Combining (6.14), (6.16) and (6.17) inequality (6.15) follows. Thus the proof of
Theorem 6.1 is completed in the case that C(f)= (7.

Combining Cases I and II it follows that Theorem 6.1 holds for periodic orbits
O such that 0OnU,= . Q.E.D.

Now we will consider periodic orbits O with period k such that 0N U, # .

Proof of Theorem 6.1 for Periodic Orbits O such that 0NnU, # &. Take k' so big
that if a point in C(f) is in the basin of a periodic attractor then the period of this
periodic attractor is at most k’. Without loss of generality we may assume that O
is a periodic orbit whose period is bigger than 2k’. Define k to be the period or
twice the period of O as before. Since k = 2k’, for each pe0 one has D f*(p) # 0 and
therefore, from the choice of k, that D f*(p) > 0.

Of course D f¥(p) is the same for each pe0. So we may estimate Df*(p) at a
convenient point in the orbit O. If there exists no ceC(f) and i> 0 such that
fi(c)eC(f) then simply choose some point peU,NO. In the general case we claim
that there are two possibilities:

Zp"(IJ1). (6.17)

a) one can choose pe0n U, such that it is impossible to find i > 0, p'€0, ¢, ¢'e C(f)
and segments (p’, ¢), (p, ¢) such that f maps (p’, ¢’) diffeomorphically onto (p, c), or
b) for each peO there exists ce C(f) such that f* maps (p, c) diffeomorphically into
itself.

Indeed assume that peOn U, and does not satisfy a). Then let i be the maximal
number 0 < i < k such that there exists p'eO, c,c’eC(f) and segments (p’, ¢'), (p,c)
such that f* maps (p,c’) diffeomorphically onto (p,c). If i = k then we are in case
b). If i < k then one gets from (5.5b) that p’eO N U,. So replacing p by p’, one has
that the new point p satisfies the conditions in a). This completes the proof of the
claim.

Now condition b) contradicts our assumption that k = 2k’. So we may assume
that p is as in case a). Let T be the maximal interval containing p such that f*|T
is a diffeomorphism. Therefore Clos (f*(T)) contains two critical values of f*. Now
the Misiurewicz condition (5.5a) implies that all critical values of f* are outside
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W, or coincide with one of the critical points Uy, C(f). If the last possibility
occurs then there exists 0 <i <k and a€dT such that f(a)eC(f) and f¥a)eC(f).
This clearly contradicts the fact that we are in case a). It follows that both endpoints
of f¥(T) lie outside W, and, since f*(p)=peU,, that f(T)> W,.

Let T' > J'and T? > J? be the two components of T\ {p}. From the maximality
of J it follows that either

T =J} (6.18a)
or,
df%J) contains a point of O(p)\{p} say p'. (6.18b)

If (6.18a) holds then one has f%(JY) > J'= T because otherwise the critical point
of f*|Clos(T") would be attracted to a periodic point with period k. But since
k> 2k’ this is impossible. If (6.18b) holds then f%(J" = (p, p’), and since f*|(p, p’)
cannot be monotone (otherwise f would be a circle homeomorphism) (p, p') o T'.
So in either case one has

ffIH> T (6.19)

Since both endpoints of f*(T)> W, and f*(p)=peU,, f¥T") and f*(T?) both
contain a component of V\U,. In particular | f*(T")| 2 ,, i = 1,2. From Lemma
6.4 it follows that

L4
I/

SO I
e 1

If (6.21) holds for J! instead of J2 then we proceed similarly. Let R be the component
of T\J? which is contained in T2. From Lemma 4.2 one has that

2 p"(IJ]). (6.20)
Now let
(6.21)

.';Zo WA _ZO | fi(D)] £ 6:|M|. (6.22)

Let
C=exp(—oa(|M])-6:|M|)>0,

where ¢ is the minimum of the functions from Theorems (2.1) and (2.2). (In particular,
C is independent of J and k.) From (6.22), the choice of C >0 and Theorem 2.2,
it follows that A(f* T’,J)=C for all intervals J'c T’ such that f*|T" is a
difffomorphism and such that one of the components of T"\J’ is contained in J*.
In particular if we take T'=RuJ, J'=J% L' =J! and R’ =R, then

AT J)2C (6.23)
On the other hand,
SO T 1LV RO

AR O ML) T

U LT[RV

= I RO IO IT

AT, ) =

(6.24)
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In this last line, the second factor is at most | M|/6, since | f¥(R' U J")| = | fX(T?)| = 6,
and the last is at most one. That is,
IM| |f5I*)] 1]

k o pne! 1
AT D=5 250 o

This and (6.23) gives
/U] Coo |£4V)]

> 6.25
TR TIRRY] (62
In particular from (6.21) and (6.20),
k( i k.
min /1 5 CBo 11D 5 CBo e 11 626)

=1z [ TIM ] T IM|

Now we can finish the proof of Theorem 6.1. Take a p,J*,J2,J2 and k as above.
As before from (6.22) and the choice of C it follows that

B(f5, T*,J%zC

for all J* = T* = J. Therefore Lemma 3.1 implies that for every aeJ! and every
beJ? one has

IDf*(p)| 2 C*min {|DfXa)|,|Df4b)I}. (6.27)
Using this, the mean-value theorem and inequalities (6.26) one gets

C*8,
IDf*(p,))| 2~ p"(I]).
f )’
From this and Lemma 6.2 it follows that the proof of Theorem 6.1 is completed.
Q.E.D.

Sketch of Algorithm. From the proof above it follows that there exists an algorithm
which gives lower bounds for the functions p” and p”. In particular it follows that
there exists an algorithm which gives some ¢ such that if we choose N so big so
that |J| < ¢, for every interval J as above corresponding to periodic orbits of period
k = N, and if every periodic orbit of f of period k < N is hyperbolic then all periodic
orbits of f are hyperbolic. In particular there exists a finite algorithm to check
whether all periodic orbits of f are hyperbolic and repelling.

6.5 Corollary. Let f:M — M be a C* map satisfying the Misiurewicz condition (i).
Then the closure of the immediate basins of f, Clos(B,), consists of a finite union of
intervals. Furthermore there is a neighbourhood V of C(f) such that for each
component V; of V either

—all periodic points of f in V; are hyperbolic and repelling, or
— Vl' c Bo.

Proof. Theorem 6.1 tells us that the period of all attracting periodic orbits is
uniformly bounded. From this it follows that Clos(B,) consists of a finite union
of intervals. Also the uniform bound on the period of attractors implies that if
there exists a critical point which is accumulated by attracting or non-hyperbolic



470 S. van Strien

periodic points then this critical points is also periodic. But this contradicts the
Misiurewicz condition. Q.E.D.

6.6 Corollary. Let f be an analytic map satisfying the Misiurewicz condition (i) from
above. Then f has only a finite number of non-hyperbolic or attracting periodic
points. (Recently this corollary has been proved for arbitrary analytic maps f:M — M,
see [M.M.S.]))

Proof. Let N < oo be such that all attracting or periodic points of f have period
less than N. (This N exists from Theorem 6.1.) If there are infinitely many such
points then they are all fixed points of f*'. Since f is analytic this implies that
f¥' =id. This implies that f is a diffeomorphism contradicting the Misiurewicz
condition (i). Q.E.D.

7. Compatible Intervals

As before we say that I, is a *-branch-interval for f" if I, is a maximal interval
such that |1, is a difffomorphism and such that f*(I,)n B, = . We know from
Sect. 6 that Close (B,) consists of a finite union of intervals. We want to show that
there exists a constant S < co such that for any -branch-interval I, of f" we have

n—1

Y IfiI)I £S. In this section we will simplify this question by showing that it

i=0

suffices to consider special intervals I,. In Proposition 7.1 we will give a condition
n—1 n—1

which gives a uniform bound for Y | f"~*"'(I,)|= ). | f'(I,)|. This condition does
i=0 i=0

not require that |f"~¥(I,)| goes down exponentially with i. Instead this condition

requires roughly speaking that there exists a constant 4 <1 such that for any

x-branch interval I, for f* and any 0 <i <j <n such that fi(I,) < f/(I,) one has
n—1

|f'I) < 4| f7(1,)|. Clearly this is not quite enough in order to show that Y | f¥(I,)|
i=0
is uniformly bounded: one also needs to be able compare the length of intervals
FHE), f(E) = fX(E) for which f{(E)n fI(E)= &
n—1 n—1
To estimate Y [/ 17 I)l= Y |f'U,)l it will be useful to have that the
i=0 i=0

iterates of intervals can be split up in disjoint groups of nested intervals. More
precisely introduce the following notations. We say that an interval E is
m-compatible if E is open and if the following three conditions are satisfied.

i) f™|E is a diffeomorphism; . .
ii) fY{E) fI(E) # ¢, for some i <j < m, implies that f*(E) = f/(E);
iii) f"E)nBy= .
Similarly we say that E is strongly m-compatible if E is m-compatible, and if
moreover

iv) f(E), f/(E) = f4(E), for some i <j <k <m, implies that there exists E> f{(E)
which is (j — i)-compatible such that f7~{(E) = f*(E).

Let Uy < Vo < Wy, 80 and 95€(0, &) be as in Sect. 5. As in Sect. 6 we will subdivide
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)

fi

f'(E)
N—

E

Fig. 2. Compatible intervals

intervals in two cases: those whose orbit stays away from C(f) and those whose
orbit comes close to C(f). To be more precise, we will introduce two new conditions.
If I is contained in a *-branch-interval of f™ then we say that I satisfies condition
A, if
fihnUy=, forall 0<i<m—1.
We say that [ satisfies condition B,, if
f™() is contained in some component of V,\C(f)

and if there exists no 0 < i < m such that f(E) = V,\C(f) and such that f™ ¢ maps
the component of V,\ C(f) containing f*(E) diffeomorphically onto the component
of Vo\C(f) containing f™(E). (This last condition is needed when there exists i >0

such that fi(C(f))nC(f) # &)

7.1 Proposition. Let f:M — M be a C*> map without flat critical points satisfying
the Misiurewicz condition (i). Then for each A€(0, 1) and 5€(0, d;) there exists S < oo
with the following property. Assume that for any strongly m-compatible interval E
satisfying either condition A,, or condition B, and such that |f{(E)| <6 for all
i=0,...,mone has that 0<i<j<k <m and

fHE), f(E) = fXE)
implies that
IfE)N < A fUE). (7.1)
Then for each *-branch-interval I, of f" one has
PAAES (12)

Remark. The proof of Proposition 7.1 will show that for each 6€(0,d5) and each
4€(0,1) one can give an effective algorithm which gives an upper bound for S.
For the proof of this proposition we need three lemmas. We also recall that a
x-branch-interval I, for f"is a maximal interval such that f"|I, is a diffeomorphism,
f*I,)nBy= & and if M = S* such that also f"(I,)n{x,} = &.
In the next lemma we give conditions for a *-branch-interval to be compatible.
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7.2 Lemma. Let I, be a *-branch-interval of f" and 0 <m < n.

a) Iffor each acdl, there exists keN such that m<k <n and f*(a)eClos(B,)u C .(f)
then I, is m-compatible.
b) IfClos(fi(I,,))mC(f)= G forall 0<i<m—1=Zn—1 then I, is m-compatible.

Proof. Let us first prove a). Assume by contradiction that for some 0<i<j<m
fid)nfid,) # & and fi(l,) ¢ fi(I,). Then there exists aedl, such that fi(a) is
contained in fi(I,). Let k be so that m <k <n and f*(a)eClos(By)u C,(f). Then
f¥i*i(1,) contains f*(a)eClos(B,)u C . (f) (in its interior). Since k —j + i < n this
either implies that f"|I,, is not a diffefomorphism, x,ef™(I,) or that f"(I,)nClos (B,) #
. This contradicts that I, is *-branch-interval for f".

Let us now prove b). If Clos(f{I,)NnC(f)= for all 0<i<m—1<n—1
then the maximality of the interval I, implies that the condition in the statement
of Lemma 7.2a is satisfied. Q.E.D.

Let us now give conditions for an interval to be strongly compatible.

7.3 Lemma. Assume f satisfies the Misiurewicz condition (i) and has no wandering
intervals. Let I, be a x-branch-interval of f". Assume that for that some 0 <m <n, I,
satisfies |f™(I,)| <, and condition A, or condition B,. Then I, is m-strongly
compatible.

Proof. Case I. Assume that I, satisfies condition 4,,. Since Clos(f*(I,))nC(f) <
Clos(fi(I,))NnUy= &, for0<i<m—1, Lemma 7.2b implies that I, is m-compatible.

Let us show that I, is m-strongly compatible. So assume that f(I,), fi(I,) < f*(I,)
for some i < j < k <m. Write E = f(I,) and take E > E = f(I,) to be the maximal
interval such that (i), f7~'| E is a diffcomorphism and (ii) such that f/~}(E) = I k(1,).
If fi~{(E)# f*(E) then it follows from the maximality of E that Clos( f (E)n
C(f)# & for some 0<I< j—i. Thus, E > E and f'(E)nU,= & implies | f{(E)| = J,.
Since f'7Y|E is a diffeomorphism, fi~{(E)c f*(1,), m—k<n—k, "I, is a
diffeomorphism and m—k+ j—i>1 one has that f™ **i=i~!| f(E) is a dif-
feomorphism. f"(I,) B, = & implies f™~**i~i~}(f{(E))n B, = &. Hence we can
apply Lemma 52a and obtain |f™ **I"{(E)| = 8;. But also |f™ **~{(E)| <
Lf™ % (f*I,))=f™(,)| <8,. Thus we have proved by contradiction that f/~{(E)=
f*(1,) and also that Clos (fY(E))nC(f)= & forall 0 < I < j —i. From Lemma 7.2b
it follows that E is (j — i)-compatible. Therefore I, is m-strongly compatible.

Case I1. Assume that I, satisfies condition B,,. Suppose by contradiction that
I, is not m-compatible. Then the assumption of Lemma 7.2b is certainly
not satisfied. Then for some 0 <i <m and some aedl,, one has f*(a)eC(f). But

then f™(a)e U FHC(f)) and also f™(I,) < V. Since U f1(C(N))n Vo = C(f) this

rz1
implies that f "‘(a)eC( f). It follows that the condition in Lemma 7.2a is satisfied.
It follows that I, is m-compatible.

Let us show that I, is also m-strongly compatible. Again write E = fi(I,)
and take E>E = fi(I,) to be the maximal interval such that (i} f/ /|E is a
diffeomorphism and (ii) such that f/~{(E) = f*(1,). If f7~%E) # f*(E) then it follows
from the maximality of E that Clos(f%(E))n C(f)# & for some 0<[< j—i. But
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then f/~/(E) contains a point of U fM(C(f)) = (M\W,)UC(f) and therefore

rz1

froRHImE) < fmR(f4U,)) = f™(,) also contains a point of U fT(C(f)). Since

f™(,) is contained in some component of V,\C(f) this is 1mp0551ble Again we
have proved by contradiction that {7~ (E) = f "(I ) and Clos (f'(E))n C(f) = & for
all0 << j—i. Again Lemma 7.2 implies that E is (j — i)-compatible and therefore
I, is m-compatible. Q.E.D.

n—1
Now we will reduce the problem of whether ) |f%(I,)| is uniformly bounded
i=0

for all *-branch-intervals I, of /" to one where we just have to consider strongly
compatible intervals satisfying either condition A,, or condition B,,.

7.4 Lemma. Let f:M—M be C? without flat critical points and satisfy the
Misiurewicz (i) condition. Take U, V,, 6, and &, as above. For each 0 < 6 < é, and
S < oo there exists S < oo such that the following holds. Assume that for each
m-strongly compatible interval E such that |f'(E)| <0 for all i=0,...,m, which
satisfies condition A,, or condition B,, one has

m—1 X

.ZO If{(E)£S. (7.3)
Then for any *-branch-interval I, of f" one has

n—1 . -

,_ZO [f{UL) 8. (7.4)

Proof. Let 1 <N < oo be so that for any interval T and any m =0 with |T| >4,
f™T is a difftomorphism and f™(T)nB,= & one has m < N. This number N
exists from Lemma 5.1. (As we noted before, the assumptions of Lemma 5.1 are
satisfied for any C? Misiurewicz maps without flat critical points.) Hence 0 <i <n,
| fiI,)| = 6 implies n — i < N. Let m be the largest integer such that 0 Sm<n—N
and such that f™(I1,)n U, # . If there exists no such m then define m = — 1. From
the fact that every component of V,\ U, has length at least 6, since f™(I,)n Uy # &
and since |f(I,)|£8<6,<d, for 0<i<n—N it follows that f™(,) <V,.
Moreover f*|1,is a deffeomorphism. Therefore, and since m < n, f™(I,) N C(f) =

So f™(I,) is contained in some component of V,\C(f). Let m’ be the smallest
number such that 0 <m’' <m, such that f™(E) < V,\C(f) and such that f™ ™
maps the component of V,\C(f) containing f™(E) diffecomorphically onto the
component of V,\C(f) containing f™(E). (If there exists no i>0 such that
FUC)NC(S) # & then m' = m.) It follows that I, satisfies condition B,,. From
the choice of m, fi(I,)nUy,= for m<i<n—N and so f™*!(I,) satisfies
condition A, _ y_,,- ;- Since | fi(I,)| £ <, for all i=0,1,...,n— N, Lemma 7.3
implies that I, and f™*!(l,) are respectively m’- and (n — N —m — 1)-strongly
compatible.

From the definition of N, (and the choice-of V, in (5.5b)) there are two
possibilities: a) m—m’ < N, or b) the critical point ¢ in the boundary of the
component of V,\C(f) which contains f™ (E) is periodic (with period N, < N,).
Because f™(E) = V,\ By, and because of the choice of V,, in (5.5¢c) case b) this implies
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that all the iterates f™(E),..., f™(E) are disjoint (f™~™ maps the segment (c, f™ (E))
connecting ¢ and f™(E) is diffeomorphically onto the segment (c, f™(E)) and the
point c is a periodic point of f).

It follows that in both cases Z E)|< Ny |M|. Hence

n—1 . m . n—N X n—1 X

Y |f'(1n)|§ f(I N+ Y 1S AN+ Y A+ Y 1)
i=0 i=m'+1 i=m+1 i=n—N+1

n-=N-m-1
IS U+ No IMI+ Y [ (" T))]+ N-IM].

i=0

lIA

gM 3 u'Ms

i

From (7.3) and since I, and f™*!(I,) are respectively m’- and (n— N —m — 1)-
strongly compatible the last inequality completes the proof of the lemma. Q.E.D.

Proof of Proposition 7.1. From Lemma 7.4 it follows that if suffices to prove that
we can find S < oo such that

m-—1
2 If(Bl=s (7.5)

holds for all strongly m-compatible intervals E with | f'(E)| < é which satisfy either

condition A4,, or condition B,,.
-1

So choose the set I = {0,...,m — 1} such that | ) f*(E) contains U fE) and

lel
that there is no smaller subset I = I with this property. Then from the mlmmallty

of I and the fact that E is m-compatible one gets that the intervals f'(E), lel are
all disjoint, i.e.

YIfE)N=IMI. (7.6)

lel

Moreover each interval f(E) is contained in one of the intervals f'(E), lel. So

OSZ |f(E)l<Z< D lfi(E)|>. (1.7)

leI \ (i. /By f'(E))

Let {i; f(E) < fYE)} = {i},i5,-..,ix) and i, <i, <--- <i,. For each lel one gets
from (7.1), | f4(E)| £ A-|fY9**(E)|, j=1,2,...,k — 1 and therefore

. 1 '
Y IfUE) é(Z lf>-lf’(E)I =ﬁ-|f‘(E)|. (7.8)
{if By = f1B) iZ0 -
Combining (7.6)—(7.8) one gets (7.5). This completes the proof of this proposition.

QED.

8. Expansion of the Return-Map on Strongly Compatible Intervals

In this section we will check the conditions of Proposition 7.1 for strongly
compatible intervals. We will prove the following proposition.

8.1 Proposition. Let f:M — M be a C* map having no flat critical points. Assume
that f satisfies the Misiurewicz conditions (i) and (ii'). (Condition (ii') requires that



Hyperbolicity and Invariant Measures for Interval Maps 475

all periodic orbits of f are hyperbolic.) Then there exist 6€(0,5,) and 1€(0,1) such
that for any strongly m-compatible interval E satisfying either condition A, or
condition B,, and such that | f*(E)| £ 8, VO < i £ m, one has the following. If for some
i< j<k=mone has

FHE), fU(E) = f4E), (&.1)
then .
|f{E) < 2| fU(E). (8.2
Remark. From the proof of this proposition it follows that there exists an effective
algorithm which gives an upper bound 4,€(0, 1) for 4.
In the proof of Proposition 8.1 we need to distinguish between the case where
E satisfies condition 4,, or condition B,,.

8.a. E Satisfies Condition A,,. Let E be a m-compatible interval such that for some
neighbourhood U of C(f) one has

fE)nU=@, Vi=0,..,m—1, 8.3)

Assume fi(E) c f(E). In Sect. 6 we proved that the expansion along periodic orbits
grows as the period of these periodic orbits grows. In the following lemma we will
use this to get expansion for the map f/~!| f{(E): f*(E) - f(E).

8.2 Lemma. Let f:M — M be C>. Then there exists a sequence of numbers K, such
that K, — oo as k — oo with the following property. Let E be an r-compatible interval
satisfying (8.3) such that

E < f'(E),
fUEnffE)=g, 1=0,...,r—1,
then
IDf"(x)| = K,, VxeE. 8.4)

Proof of Lemma 8.2. Since fY(E)n f"(E)= for all [=0,1,2,...,r—1 it follows
from Lemma 4.1 that E, f(E),..., f*~ }(E) are disjoint and therefore

r-1
2 S EN=1M]. (8.5)

Now remark that formulas (8.3) and (8.5) imply that we can apply Theorem 2.5
and get a constant K < oo such that

1D ()l
<K, Vx,yeE. 8.6
D)~ ®6)
Since f"(E) > E, f":E — f"(E) has a fixed point p,. Moreover the disjointness implies
this point p, is a periodic point of minimal period r. According to Theorem 6.1
there exists a sequence K, (which only depends on f) such that K, - co as k— oo
such that

IDf"(p) 2 K.
This and (8.6) implies that (8.4) holds with K, = K,/K. Q.E.D.
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8.b. E Satisfies Condition B,,. Take neighbourhoods U, < V, = W, of C(f), d,>0
and J; > 0 as before such that each of the components of Uy\C(f), W,\V, and
Vo\U, has at least length 8, and such that

S(CL(fNnWoc=CL(f)
foralln>1.

8.3 Lemma. Let f:M — M be a C? map without flat critical points satisfying the
Misiurewicz condition (i) and (ii'). Let U, V,y, W, be as above. There exists 6, >0
with the following property. Assume E is a r-compatible interval such that E satisfies
condition B,, f{E)n f"(E)= forall 0<i<r and | f(E)| <8y, foralli=0,...,r.
Then there exists a neighbourhood F of Clos(E) such that f"|F is a diffeomorphism
and such that for both components F, and F, of F\E one has

[ffF)I=1f"(F)=f"(E)l (8.7)
and

I FILISF)I S4B, Vi=0,1,....r. (8.8)

Proof. Let I, be the branch-interval of f" containing E. By maximality, both
boundary points of f7(I,) are in ) f(C.(f)) =(M\Wo)uC(f). If f"(1,)eC(f)

nz1

then from the maximality of I,, these exists 0 <i<r such that fi(01,)eC(f). But
then /"' maps the component of V,\C(f) which has a non-empty intersection
with f¥(1,) diffeomorphically onto the component of V,\ C(f) which contains f"(E).
It follows that f(E) is also contained in a component of V,\ C(f). So f"(I,)eC(f)
contradicts the assumption that E satisfies condition B,. It follows that f"(I,) > W,,.
So choosing ¢, sufficiently small gives that there exists an interval FEc Fc,
so that f"|F is a diffefomorphism and such that for both components F, and F,
of F\E one has | /'(F)| =|/"(F;)| = | /"(E)!

Let us prove that | f*(F,)| < 4| f(E)|foralli=0,1,...,r — 1. The corresponding
statement for F, is proved similarly. Choose t€(0,15,) such that for the function
() of Theorem 2.2, exp { — a(t)-|M|} =3, for all t&(0, 7). Since lim o(¢) = 0 this is

. 10
possible. Take t'€(0,7) be equal to the number ¢’ corresponding to 6 =7 from
Lemma 5.2. For the moment choose J,€(0,%5,). Later on we may have to shrink
0, further but we will keep 7 fixed throughout the remainder of the proof. Assume
that E satisfies | f/(E)| <, for all i=0,1,...,r.

Let T* be the component of I,\ F, containing F, UE and let L* = T*\(F, UE).,
Since | f"(F,)| =|f"(E)| £ 6, £48,, f7(E) is contained in V, and since the length
of each of the component of W\ V, is at least d, one has f"(EUF;) = W,; in fact
dist(f"(EUF;),0W,) = 46,. Therefore, since f"(L*) contains critical values of f*
and therefore points of M\W,, it follows that |f"(L*)|=4d,. In particular
/L=

We may need to shrink T* slightly on one side. More precisely choose T with
EUF, c T < T* such that for L= T\(F, UE) one has

Iffilze, 1fD)lse j=i...,r—1L
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A

Fig. 3. The intervals I,, T*,L* F, and E

Indeed, since f has only hyperbolic periodic points we can apply Corollary 5.3b
and it follows that this is possible. For simplicity write

L=T\(F,UE), R=E, J=F,.

Since f{E)nf"(E)= for all I=0,1,...,r—1 it follows from Lemma 4.1 that
E, f(E),..., fT"Y(E) are disjoint and therefore

r—1 r—1
IS ®I= 3 11(B) <M
Therefore from Theorem 2.2 one gets that for each i=0,1,...,r—1,
A5 fUT), fiJ)) 2 exp{ —a(t):| M|},

where t= max |f‘(R)| <t. From the choice of 7 this gives
= .

1=i,..., r—
AL, i) 23 (8.9)
Using this notation we have from (8.7)

i per pm = OO S ROI L)
AT IS m OB PRON @ T

D 1RO
SFLon 2 1fO) (8.10

Using | f"(L)] = " and | f"(E)| £ d,, one gets

|/(T)] Lf (R B _T+6
o=t T E @1
Combining (8.9)—(8.11) gives
fRUDI_4 <
il T37+6,

Hence for 4, is sufficiently small
|fH(E)| =lfi.(R)I 5 T =39, 1
IffFDl 11D T30 +6,) 4
This proves (8.8). Q.E.D.

Now we will prove that the return-map on compatible intervals is expanding.
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8.4 Lemma. Under the assumptions of Lemma 8.3, there exists a sequence K, — oo
and 8, > 0 such that for any m-compatible interval E for which f™(E) is contained in
a component of Vo\ C(f), and for which | f{(E)| £, foralli=0,1,...,m, the following
holds. If for some 0<r=<m

Ec f7(E)
and
fUEnf(Ey=¢, 1=0,1,...,r—1,
then one has
IDff(x)| 2 K,, VxeE. (8.13)
Proof. Choose §, as in Lemma 8.3. We will need the following.

Claim. Assume that E satisfies condition B,. For 4, sufficiently small, there
exists K < oo (which is independent of E and r) such that for any interval E as
above,

|Df"(x)|
<K, Vx,yeE. 8.14
D)) y &1
Proof of Claim. Furthermore | f*(E)| £, for every i=0,1,...,m. It follows from
Lemma 8.3 that there exists an interval F o E such that the two components F,
and F, of F\E satisfy

LIF(EDI=1f"(F)l =S (E)l; (8.15)

Sf'|F is a diffecomorphism and
If(F)|£@+4+1)|fYE), I=0,...,r (8.16)

From Lemma 4.1, and f'(E)n f"(E)= & for all [ =0, 1,...,r — 1, one gets that the
intervals E, f(E),..., f"(E) are disjoint and so, using (8.16),

I MBS M 8.17)

Therefore Theorem 2.1 can be applied and one gets a constant C; > 0 which only
depends on f (and not on E and r), such that B(f", F*,J*) = C, for all intervals
J*¥* c F*c F. From (8.15) and the Koebe Distortion Principle 3.2 it follows that
one has bounded non-linearity on f"|E. More precisely there exists K < co which
only depends on C, > 0 (and not E and r) such that (8.14) holds. This proves the
claim.

Let us now continue with the proof of the lemma.

Case I. Assume that E satisfies condition B,. Since f'(E)n f"(E)= & for all
I=0,1,...,r—1 the fixed point p,ef(E) o&f’:E—»f’(E) has minimal period r.
From Theorem 6.1 there exists a sequence K, — oo as k— co such that

IDf"(p,)| = K, (8.18)



Hyperbolicity and Invariant Measures for Interval Maps 479

From this and (8.14) one gets
IDf"(x)| 2 K,, VxeE, (8.19)
where K, = K, /K.

Case I1. If f"(E) does not satisfy condition B, then r < m and we proceed as follows.
Let m, be the smallest integer with r < my < m such that f™°(E) satisfies condition
B,,,. Since the intervals E, f(E),..., f™(E) are either disjoint or the one with the
smaller index is contained in the one with the larger index, this implies that
fUE)N fm(E)= &, foralll=r,r+1,...,my— 1. This and Lemma 4.1 implies that
fT(E), fr*Y(E),..., ™ Y(E) are disjoint. Since f™ ~"(f"(E)) = f™(E) < V, we can
apply the claim for the map f™ ~"| f"(E). In particular

|Df™ " ()| "E) 5
Dy = K Vx,yef"(E)> E. (8.20)

Now
™ EN(STIE)=(f1 ™ (E))e(f™ | E).
Apply the chain-rule to this. Then (8.20) implies that
inf | Df"(x)| g-l—z inf  |Df"(x)]. (8.21)
xeE K xefM ()

Since E c f"(E) one has f™~"(E) c f™"(f"(E)) = (f™(E). So we can apply Case
I and get

IDff(¥)| 2 K,, Vxef™ "(E). (822)
This and (8.21) prove

K
|Df’(x)|zE§, VxeE. Q.ED.

8.c. Conclusion of the Proof of Proposition 8.1.

Proof of Proposition 8.1. Assume that E is a strongly m-compatible interval E such
that | f{(E)| £ 6, VO < i <m and such that either

fA(E)NUy= forall i=0,1,....m—1, (8.23a)

or

fME)= V. (8.23b)

We need to show that if for some 0 < i < j < k < m one has f(E), f/(E) = f*(E) then
Lf{(E) < A1 fUE).

Let K, be a sequence of numbers tending to infinity as k — oo so that the estimates
(8.4) from Lemma 8.2 and (8.13) from Lemma 8.4 are both satisfied for this sequence
of K,. Choose N < oo so large such that K, =2 for all k = N. Then let

Py={g;q is a repelling periodic orbit with period I < N}.
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Denote the (minimal) period of a periodic orbit ge Py by per(q) and define

_ 1+ min {|Df*"“(q)|;qe Py}
= 5 ,

All periodic orbits of f are hyperbolic and the period of periodic points in Py is
uniformly bounded and therefore uy > 1. (Otherwise f would have a non-hyperbolic
periodic point.) Let d,€(0,3d,) be equal to the number &' corresponding to § =6,
from Lemma 5.2.b where 8, = 36,. Choose § such that 0 < & < min(3d,,d,) and
such that for every qe Py, and for every x in a J neighbourhood of g

IDfPrD(x)| 2 py > 1.

Let 4 =max {1/uy, 3} < 1.

Let 0 <i< j<k<m be such that fi(E), f{(E) = f*(E). We may assume that j
is the smallest number, with i < j <k <m, such that f¥(E)c f "(E) Since E is
strongly m-compatible there exists a (j — i)-compatible interval E> f (E) with
fiI7YE)= f“(E).

If (8.23a) holds then f(E)nU,= &, Vi=0,1,...,m— 1. Now let U = U, be a
‘neighbourhood of C(f) such that each component of U,\U has length 16,. So if
FUE)AU # & for some 0 <1< j—i then, since f(E)nU, =, f'(E) contains a
component of Uy\U and therefore | f (E)] 16,. Using Lemma 5.2b and from the
choice of & this implies | f*(E)| = | f'~}(E)| = (550)’ > 6. Since | f*(E)| £ 6 this gives
a contradiction. Thus we have shown that f (E)n U=gforalll=0,1,...,j—i—1.
Since E is (j ji— i)-compatible, E = fi~{(E) = f*(E) and the mlmmallty of J implies
f’(E)nf’ (E)y= for all 1=0,1,..., j—i—1. So we can apply Lemma 8.2 on
fITHE.

If (8.23b) holds then E is (j — i)-compatible and fI=*+"¥E) = f™*(f¥[E)) =
f™E) <V, and so we can apply Lemma 8.4 on f/~ 'IE

So in either case from the choice of N one has |Df'"(x)| 2 K; j-i2 2 for all
xeE if j—i= N. It follows that

LB ST ENI =3 IfE), if (j—DzN. (8.24)

Now assume that (j — i) < N. Then there exists a periodic point g of period j—i
in E. Since | fY(E)| £4,i=0,...,m— 1 one has from the choice of § and uy

|FE) =17 fUEN Zuw | fHE), if (j—i)<N. (8.25)
Combining (8.24) and (8.25) and using the definition of A we get
[f(E) £ A|f(E). QED.

9. Cross Ratios are Bounded from below on *-Branch-Intervals
Combining Propositions 7.1 and 8.1 we get the following result.

9.1 Proposition. Let f be a C* map satisfying the Misiurewicz conditions (i) and (ii')
and without flat critical points. Then there exists a constant S < oo with the following
property. Let I, be a *-branch-interval for f". Then
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PNTLAER ©.1)

Using Theorem 2.1 this implies the following result.

9.2 Theorem. Let f be a C* map satisfying the Misiurewicz conditions (i) and (ii')
and without flat critical points. Then there exists a constant C > 0 such that for every
x-branch-interval I, of f" and for all intervals J, < T,< I,

A(f", T,, J,), B, T, J,) 2 C. ©-2)

We should emphasize that if we had assumed from the start that Sf <0 then
we would immediately have obtained that A(f", T,,J,), B(f", T,,J,) = 1 and most
of the previous sections would be superfluous. The reason for Theorem 9.2 is that
it enables us to apply the Schwarz and Koebe Distortion Principle even for high
iterates of f.

Remark. For a given map f one can give an effective algorithm to give a lower
bound for C. This follows from the remarks after Propositions 7.1 and 8.1.

10. f™ is Quasi-Polynomial on *-Branch-Intervals of /™

Let us show that Theorem 9.2 implies that we have very good control on the
non-linearity of f"|I,.

10.1. Proposition. Let f:M — M be a C* map satisfying the Misiurewicz conditions
(i) and (ii’) and without flat critical points. Then the restriction of f" to *-branch-
intervals is quasi-polynomial in the following sense. There exist 0<!' < oo and a
constant K < oo such that for any n >0 and any *-branch-interval I, = (a,,b,) of "
there exist 1 £ 1, f§ I' such that

O g, 011 < DI S K- f Tt 0l
K || I
for all xel, with |(a,,x)| <1|1,1,
11/l i-1 " /)| i1
b <I|D <K-="L|(x,b .
K i |Cx, by)l |Df"(x)| T 1(x, by)l (10.1b)

for all xel, with |(x,b,)| < 3|1,

Remark. One can give an effective algorithm to estimate K. This follows since
there exists an effective estimate which gives a lower bound of C, see Sect. 9, and
from the proof below.

Proof. As before there exists N such that if there exists i > 0 such that if ce C(f)
and f#(c)eC(f) then either c is periodic or i < N,,. Suppose that each of the critical
points of f,..., f¥° is at most of order I'. Then there exists § > 0 such that for each
ceC(f), each 0 <i < N, there exists some 1 <1</, such that if (¢, v) is an interval
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such that f’|(c,v) is a diffeomorphism then

If(c o)l
= el <5 (10.2)
0-dist(v, C(f))' "' 2 |Dfi(v)| £ é'dist(v, c( (10.3)

Write I, =(a,,b,). By maximality of *-branch-intervals, there exists 0 <k <,
so that f*(a,)eC . (f)u dB,. Assume that k is the smallest integer with this property.
Let us distinguish three cases.

Case 1. C(f)# & and there exists 0 < k < nsuch that f%a,)e C(f). Write c = f¥(a,).
If ¢ is periodic then, because f is C2, ¢ would be a periodic attractor contradicting
the assumption that /, is a *-branch-interval. So assume that ¢ is not periodic.
(We should notice here that if f is only piecewise C? then ¢ could be a repelling
periodic point. If this happens then proceed as in Case 3 below). Let i be the
minimal number such that f%(c) # C(f) for all j = i. Then i < N,.

Let I, be the x-branch-interval of f* containing I,. From the Misiurewicz
condition and the fact that Clos(B,) consists of a finite number of intervals not
containing points of C(f) in its boundary, it follows that there exists ;> 0 such
that for any n, k and any *-interval-branch I, = (a,, b,) with f*(a,)e C(f), the interval
4 contains a é -neighbourhood of f¥a,)eC(f), see Corollary 5.4. Now
A(f5T,J),B(f*,T',J)=C>0 for all /T cI,=T* Let K,< o be the
constant from the Koebe Distortion Principle corresponding to C and = p,,
where p, = min(3,9,/3|M|). Now take p such that

92
0<p<min{ ——-, .
4 <KO 2; po)
From the above remarks it follows that we can choose T’ = I, such that f*| T’

is a difffomorphism, T'\I, consists of one interval, contains g, in its interior and
satisfies

[fHT\L)|
s = . 10.4
TG e (104
Take T*=T',J*UR* =1, and L* = T'\I, such that
PRI P (105

_p ’ = Po> -
LARTHE VAT TR
(Here the last two equalities follow from (10.4).) From the Koebe Distortion
principle and (10.5) follows
1| fu K1
1) <|Df¥x) KO-'f( ")', VxeJ*. (10.6)
KO lInl IInI

Moreover, if xel, = (a,, b,) and (| f*(a,, X)I/| f(I,)|) < 5 then (| f*(x, b,)|/| f<(T*)|) 2
U S4UI)V/) fX(T*)), and using (10.4) this is at least (1 — po) =1 = p,.!
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Hence

/4@ i
T Si=>xel* (10.7)

Since I, =J*uUL* =(a,,b,), one gets from the Koebe inequality (#**x)

LA 1 e X))

xel, and

KO llnl - ‘(an’x)l ,

Furthermore, from the mean-value theorem, the Koebe inequality (*) and (10.6)
one has

Vxel

a9l 2 o D) = Kormax [DFG)

l(am X)| zeT* zeJ*
§(K0)2-w, vxel,.
1]
Together this gives
ATV CHL TP T A R 108
(Ko)* |14l [(an, x)| [1,]

One gets from (10.6) and (10.7) that for each xel, such that (| f*(a,, x)|/| f5(I,)]) < %
one has

1) " AT
Ko 1L S IDf (X £ Ko T (10.9)

Because f¥a,)eC(f), and i £ N,, (10.2) and (10.3) give that there exists I,
0 <1< such that for all xel,,

k+i k+i 1 1
o</ (a"’x?’,'fk Ul 1 (10.10)

|faw )" [ f5A) 0

k+i

D) 1
[Dff(x)l — 0
Finally take the -branch-interval I,_,_; of f"* % which contains f**¥(a,)e
FC(\C(S). Corollary 5.5 implies that f" *"I,_,_;) contains a J-
neighbourhood of f"(a,) and we can apply the Koebe Distortion Principle exactly

as before. Apply the Koebe inequality (****) for f"*~i|I,_, _.. This gives that for
all xel,

0 f4(a,, x)I"~! FACHES] (10.11)

|f"@n )| _ 1" @ 0)l L LTI

@m0l Yanx) Ko /ML)
11/
= U 10.12
Kolf**i(1,)] (1012

Similarly, from the Koebe inequality for all xel, with (| f"(a,, x)|/| f"(I,)|) <} one
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has

VLA IRV AT (10.13)
Ko 1/°41,) = in"“(X)l_ 1))
Applying (10.10) twice to (10.12) gives

<If"(a,,,x)l)‘< LI a0 Kolf@n®)] (10.14)
S5 ) T 0% 1L T 0 AL " '
Since
2
0<p<23<0

inequality (10.14) implies
|/ X) _ | M(an X)] <
—< 10.15
=T 5 1oLy

Hence we can apply (10.9) for all points xel, for which (| f"(a,, x)|/| f"U,)]) < p.
Multiplying (10.9), (10.11) and (10.13) and using (10.15) gives

0 1/, /")
(Ko)* 1L, 1f**(1,)]
<Ko 1)) 14!

0 (L1 1S
for all xel, with (| f™a,,x)|/|f*I,)|) < p. Using (10.8) this gives
0 /U 1S (a0l \
THZTA '[f“"(ln)l'( L] ) =P

(Ko LS 1SN ,(t(an,x)i>"‘
0 (LI 1A\ L ’

for all xel, with (] f™(a,, x)|/| f"(I,)}) < p. Finally using (10.10), this last inequality
gives

1 4@, )" S| Df"(x)|

1@ )",

0% ") -1 < |pfn (Ko)* /")
K LI 1@, x)I7 " 2 |Df )l = — 7~ PO

for all xel,, with (| f"(a,, x)|/| f"(I,)]) < p. Similarly there exists 1 < I < I'such that

62 n I,, K le n([
UL i < gy K0 )

(KO) ,In, 0 llnl
for all xel, with (| f*(x,b,)|/|f"(,)|) < p. By integrating these inequalities one gets
that there exists a constant K; < oo such that if xel, and dist(x,dl,) < 1/K,|1,|

then () f™(a,, ))/| "I, (1 f"(x, b,) /1 f"(I,)]) £ p. In particular, from (10.16) and
(10.17) there exists a constant K, < oo (independent of n and I,) such that if

Lf (@ X)/Lf"T)] o1 |f7x, b)I/1f"(1,)] is equal to p then (1/K3)(1f"(I)I/11,]) =

(@, 01", (10.16)

| (x b)l' 1, (10.17)
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IDf"(x)| < K;(]f"(1,)|/|1,]). Using this, and the Koebe inequality (x) one gets
1 " "
Dy < Kok, 70
K0K2 |In| 'Inl

for all x,yel, such that (|f™a,,x)|/|/"U))),(1f"Cx,b,)l/If"I,)) 2 p. Since
dist(x, d1,) < 1/K,|1,| implies (10.16) or (10.17) and

106 b)Y (@ X))
TR Wi

> (10.18)

are bounded and bounded away from zero for dist(x, 0I,) = (1/K,)|1,|, combining
(10.16)—(10.18) proves (10.1).

Case 2. C(f)= & and fXa,)eC .(f) = {xo}. In this case one can use Theorem 2.5
n—1

since Y. |f(I,)| uniformly bounded and so there exists K, < co such that
i=0

DS _

IDf"(y)|

This finished the proof of Proposition 10.1 in this case.

Case 3. f*a,)ed(Clos(B,))uoM and fi(a,)¢C(f)uClos(B,) for all 0<i<k. In
particular either f* (Clos (I,)) n d(Clos (B,)) # & or k =0 and a,edM. If M = [0,1]
in order to streamline our argument, it is convenient at this point to extend
f:[0,1]1-[0,1] to a C> map f:R—R. In order to complete the proof of
Proposition 10.1 we need the following lemma.

Ko, Vx,yel, (10.19)

10.2 Lemma. There exist 6 >0, S’ < oo (which are independent of n and 1,) and an
interval I’ = (a,,b,) > (a,,b,) = I, such that f"|I, is a diffeomorphism,

VRUAVET P9 (10.20)

and such that
n—1
2 \f)ss. (1021)

Proof of Lemma 10.2. From Sect. 6 and since f has only hyperbolic periodic orbits,
it follows that there exists at most a finite number of periodic attractors and
Clos(By)n C(f) = &. In particular B, consists of a finite number of intervals and
the boundary of each of these intervals (except possibly if this boundary is in 0M)
consists of periodic or eventually periodic points, which are hyperbolic (all periodic
orbits are hyperbolic from assumption (ii')) and have uniformly bounded period.
Furthermore by assumption f(0M)< dM and the periodic points in dM are
hyperbolic. So we can choose ¢ >0 so small so that there exists C >0 and x > 1
such that for each n=0 and each x, y in one component of Clos(B,) with
xed(Clos (By))\(OM u C(f)) one has

Df"|[x, y] a diffefomorphism and |f"(x) — f*(y)| <e=|Df"(y)| = C-k". (10.22a)
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Similarly if xedM\C(f) and (y,x)nM = ¢ then

D f"|[x, y] a diffeomorphism and | f"(x) — f"(y)| < e=|Df"(y)| = C-x". (10.22b)
(Here we use the extension of f to R.) Moreover these exists d(0, ¢) such that if
ceC(f) then

i 20, fc)eint(By)=dist(f(c),d(Clos(By) =9, Vi=i,  (10.23)
Since f(a,)¢C(f)foralli=0,1,...,k — 1, there exists an interval I/ = (a,, b,) strictly
containing (a,,b,)=1, such that f"|I is a diffeomorphism, either f*I'\I,) <
Clos(By) or fXI\I) M = (if fXa,)edM), f(I,)nBy= &, Vi=0,1,....k—1
and using (10.23), | f*(I'\1,)] > J. In particular I’ is contained in a *-branch-interval
of f*~'. Now shrink I’ =1, so that

[f{I\L) =6 <e. (10.24)

It follows from (10.22) that :
ol 1 . .. 1 «
> lf‘(I,,\I,,)Ié—'( Y K '>'If LN = ——— M| (10.25)
i=k C iz0 Ck-—1

Moreover, I, is contained in a *-branch-interval for f*~! one has

k—1 .
Y IAfI)IES. (10.26)
i=0
n—1
Combining (10.25), (10.26) and Y |f%(I,)| < S gives
i=0
n-t . 1 k
IfiI) €28+ ————|M|. (10.27)
i Ck—1

i=0
This finishes the proof of this lemma. Q.E.D.

Conclusion of the Proof of Proposition 10.1 in Case 3. Let 6 >0 be the constant
from Lemma 10.2. Choose pe(0, min(6/3|M ), 1/2)). From Lemma 10.2, we have

n—1
PRIAIAIESE

and therefore there exists C' > 0 such that for all intervals I, as above, A(f", T,,J,),
B(f",T,J,)2C forall J,c T,cI, Let K, < o be the constant from the Koebe
Distortion Principle 3.2 corresponding to C and 7 = p.

From Lemma 10.2 it follows that we can choose T’ such that I, cT' I,
T'\I, consists of one interval, contains a, and satisfies

L) (1028)
LTI
Take T* =T, R*uJ* =1, and L* = T'\I, such that

TALSIN 1029
=" 102
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From (10.28) and (10.29) it follows that we can apply the Koebe inequality (%)
and one gets for all xeJ*,
1 |f"d, " *(
MU 1 g < ke L)
Ko 1] (1]
From (10.28) and (10.29) one has that xel,=(a,.b,) and (|f"(a,, x)|/|f"(I)) < p
implies (| /"(x, b)I/1/"I)]) = p (here we use p <3) and therefore xeJ*. Hence for
all xel, = (a,b,) such that (|f"(a, x)I/1/"U,)) < p,
1 |f"u (I
11 Lf"( ,,)l. (10.30)

SIDf(x) <K
Ko 1L [Df"(x)] L

Moreover, from the Koebe inequality (*) there exists K’ < oo such that

[Df(x)| < K" |f"1(|)\, for all xel,

n

such that
I/ Man X)L bl
Al )

From (10.30), the corresponding statement for (x,b,) and inequality (10.31),
Proposition 10.1 follows. Q.E.D.

(10.31)

11. The Exponential Decay of the Length of »-Branch-Intervals /, as n—» oo

In this section we prove Theorem B. From Theorem 9.2 we have that there is a
constant S < oo such that

n—1
2 fa)ss
i=0

for all =-branch-intervals I, of /. In this section we are in the position to improve
this result. We will show that these intervals go exponentially fast to zero, i.e.,
there are constants C” >0 and « < 1 such that |f(1,)] < (1/C")-x""". Since fi(1,) is
contained in a *-branch-interval of "' it suffices to show that

1
| £ — K",
C//
for all n =0 and all *-branch-intervals of /" The next result finishes the proof of
Theorem B.

11.1 Theorem. Let f:M — M be a C* map without flat critical points and satisfying
the Misiurewicz condition (i) and (ii'). Then there are constants C" >0 and k <1
such that for any n =0 and any x-branch-interval I, of f" one has
a)
U o
[l o«
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and therefore

1
IInl _S_F'Kn’lM"

b) for every periodic point of (minimal) period n one has
1
IDf"(p)| 2 C”'F

Proof. Since f satisfies Misiurewicz conditions (i) and (ii') it follows from Sect. 6
that B, consists of at most a finite number of intervals. From Corollary 5.4 there
exists ' > 0 such that for any *-branch-interval I, one has | f"(1,)| = ¢’. Lemma 5.1
then gives that there exists N < oo (independent of n and 1,) such that either f**¥|1I,
is not a diffeomorphism or f"*™(I,)n B, # (. In particular there exists i < N and
xeint(I,) such that f"*{(x)eC(f)u B,. Choose 0 <i < N minimal with respect to
this property. So I, is a *-branch-interval for f/"** but not for f"****. Let I .,
be one of the *-branch-intervals of f*** ! in I,. First we will prove the following.

Claim. There exists ¢ > 0 which is independent of n and I, such that

VAR AV AP [ =3
Proof of Claim. The boundary points of f"*¥(1,) are in | ) f(C.(f))u d(Clos(By)).

jz1

From this, the Misiurewicz conditions (i) and the fact that Clos(B,) consists of a

finite union of intervals whose boundary points are eventually periodic and since
f(0M) = oM, it.follows that there exists ¢ such that

MY int (1)) N C(f) # & =f""(,) contains an

. . (11.1)
¢ neighbourhood of C(f) f"*¥(int(I,))

and, as in Lemma 10.2, also such that
S" M int (L) N By # B =|f""(1,)nBy| Z &. (11.2)

Since fY(int(I,,;,))N(C(f)uBy) =& for all 0<j<n+i+ 1, we get from (11.1)
and (11.2) that |f"*I,\I,,,.,)| = & This finishes the proof of the Claim.

Let us now prove statement a) of Theorem 11.1. Since I, is a *-branch interval
for f**%, inequality (10.1) gives a universal constant K < co such that

. n+i I
|Df"+'<x)|§1<~'f7‘li', vxel,

It follows that

AN i)l 17
[V A

In particular from the Claim

IIn\In+i+1|>l‘lf”+i(1n\1n+i+1)l €
Ll TK ) IM|-K’

1\
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Hence there exists K < 1 such that
Has 24l <k (11.3)
[1,]

Since any *-branch-intervals I, of f* and I, of f*, with k <1, are either disjoint or
I, is contained in I,, it follows that for each *-branch-interval I, , ; of f "+J which
has non-empty intersection with I, and each j =1

[ inl S R[], (11.4)
In particular for any x-branch-interval I, of ",
M

ngn-!, (11.5)

where k = (K)''N. Moreover, from Corollary 5.4 there exists & >0 such that for
any *-branch-interval I, for f" one has |f"(I,)| = ¢'. So (11.5) implies

TRIATN .
LI = 1M

In particular there exists C” > 0 such that

IO =C"k™™ (11.6)
[l
This finishes the proof of statement a) of the theorem.

Let us now prove statement b) of Theorem 11.1. Let U,cV, <= W, be
neighbourhoods C(f) such that, as before, f(C(f))n V, = C(f) and such that each
of the components of V,\U, has length 6,. From Theorem A we may assume that
p is a repelling periodic point. Let n be the period of p and let I, be the
*-branch-interval of /" containing p and I} and I? the components of I,\{p}.

n—1

Notice that Y |f%(I,)|<S. If O(p)nU,= & then from Proposition 1.4 one gets
i=0

that there exists C > 0, independent of n and p, such that

IDf"(p)| 2 exp(— C-S)"llnli’,"—)'. (11.7)

On the other hand if O(p)n U, # & then choose peU,. As before df"(I,)e M\ V.
n—1

In particular, | f*(I%)| = 6. It follows from the Minimum Principle 3.1, Z [f{UI)ES
and (11.5), that there exists a universal constant C > 0 such that =

|D f"(p)| Z exp(— 3-C-S) min Ifl"l(ill,i.)l
1,2 "

1
=exp(—3-C-S)-6-min —
1,2

|L,|

gexp(—S-CS)'é'l—A’;—l-rc‘". (11.8)

This finishes the proof of this Theorem 11.1. Q.E.D.
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12. Hyperbolicity, Measure and an Alternative Proof of Maii¢’s Result
In this section we shall prove Theorem C.

12.1 Theorem. Let f:M — M be a C* map such that all its critical points are non-flat.
Assume that f satisfies the Misiurewicz condition (i). Let A be a compact set such
that f(A") = A" and which does not contain any non-hyperbolic periodic points. If
(C()uBg)N A = & then A is a hyperbolic set.
Proof. Let us first prove that we may assume that all periodic orbits of f are
hyperbolic. (For this we will not use that " nC(f)= J.) Let NH be the set of
non-hyperbolic periodic orbits of f. By assumption NHNX = . From
Theorem A, the orbits in NH have uniformly bounded period. Therefore NH is
compact and NH N C(f) = (J. So we can choose a neighbourhood W of NH such
that W = Jand W n C(f) = . The assertion of the theorem does not depend
on f | W, and therefore we may change f| W arbitrarily as long as we keep f |(M\W)
unchanged. Since f is a difffomorphism on each component of W, it is very easy
to find a C* map ¢ such that g|(M\W) = f|(M\W), such that all periodic orbits
of g are hyperbolic and such that g|W is a diffeomorphism on each component
of W. Therefore g coincides with f on a neighbourhood of /" and g also satisfies
the assumptions of the theorem.

So without loss of generality we assume that all periodic orbits of f are
hyperbolic. Let U be a neighbourhood of C(f) consisting of a finite number of
components such that Un# = . If C(f) = let U=C (f)={x0},

A= {x; f{(x)¢(UuClos(By)), ¥;=0,...,n—1}.

Since A N U = & and since ¢ is forward invariant one has # < ", foralln = 0.
From Proposition 9.1 there exists S < o

s <
i=0

for any component of I, of K,, (such a component is contained in a *-branch-interval
of f™). So from part b of Theorem 2.5, for each xel,,

A

Dn
|Df"(x) —IJI

]

where J, is the =-branch interval of f" contammg I,. From Corollary 5.4 there
exists a constant (5’ such that |f"(J,)| = 5’ It follows that

FA
IDf"(x)| 2
FAK
and from Theorem 11.1 one has
|Jal = C" k™| M]|.

From the last two inequalities we get that there exists a constant C"” >0 (which
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does not depend n and x) such that
1
IDf"(x)| 2 C"— (12.1)
K

for each xe A", > A . Theorem 12.1 follows. Q.E.D.

Let us now prove that any invariant Borel set #~ either has Lebesgue measure
zero or contains an interval.

12.2 Theorem. Let f:M — M be a C? map such that all its critical points are non-flat.
Assume that f satisfies the Misiurewicz condition (i). Let A" be a compact Borel set
such that f(A") = A" which does not contain any non-hyperbolic periodic points. If
BonA =G, A #M and A is Borel set with positive Lebesgue measure then
C(f)# & and A contains a segment in M which contains at least one critical point
in its interior.

Proof. As in the proof of Theorem 12.1 we may assume that all periodic orbits of f

are hyperbolic. Assume £ is an invariant set as above with positive Lebesgue

measure. Take a density point x' of . Since () f~(C(f)ud(Clos(By)) is
n20

countable we may assume that f"(x")¢ C(f)u Clos (B,) for all n = 0. For each n >0

let I, be the *-branch-interval of f” containing x'. From Corollary 5.4, | f*(I,)| = 5';).

Let I' = I, such that f"(I,\I,) consists of two components each of which has length

equal to | f"(I’)|. Then
L)) 2 45, (12.2)

From Theorem 9.2 there exists a constant C > 0 such that B(f", T*, J*)= C for
all J* « T* < I,. Therefore it follows from the Koebe inequality (*) that there
exists K’ < oo such that

1 _IDfl
K~ |IDf"(y)l
From the forward invariance of 4" and (12.3) it follows that

AN NSENON o [N NN o (12.4)

Iffa)r T T VAR 4
since x is a density point of 2#". From (12.2) it follows that there exists a sequence
n;— oo and an interval J, of length > }d;, such that f™(I; )—J,. Using (12.4) this

implies that |J,\o¢'| = 0. It follows that #" > J,,. Since f*(A )N By = F for alln = 0,
Lemma 5.1 implies that there exists i = 0 such that either

K, Vx,yel,. (123)

—f¥J, is not injective and therefore 4" > fi() > M, or
—int(#) N C(f) 2 int (fi(J) N C(f) # O

This completes the proof of this theorem. Q.E.D.

Theorem C follows from Theorems 12.1 and 12.2. Let us show that Maiié’s
results of [Ma] easily follow as a byproduct.
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12.3 Theorem. [Ma). Let f:M — M be a C* map which is not a diffeomorphism.
Let A" be a compact forward invariant set with (C(f)UBy)NA" = . Then

(i) there exists N < oo such that all periodic orbits of f in A" which are non-hyperbolic
or attracting have period less than N.

Moreover, if A" does not contain non-hyperbolic periodic points then

(ii) A~ is hyperbolic;
(iil) A has Lebesgue measure zero or A~ contains an interval.

Proof. If A" = ¢ then there is nothing to prove. So assume that " # (J. Take a
neighbourhood U of C(f) such that U N = . The statements about " do not
depend on f|U. So as long as we keep f|(M\U) unchanged we may change f|U
arbitrarily. So choose a neighbourhood V = Clos (V) < int(U) and a map g such
that g|(M\U) = f|(M\U) such that

a) gis C* and C3 on V;

b) all critical points of g are turning points, are contained in ¥ and are quadratic;
moreover, g maps each of these turning points into 2 or into some periodic point
by g (it follows that g satisfies the Misiurewicz condition (i));

Theorem 6.1 implies that there exists N < oo such that all non-hyperbolic or
attracting periodic orbits have period < N. In particular since # " U = J, and f
and g coincide outside U, statement i) follows. Now we can assume also that

¢) all periodic points of g are hyperbolic.

We may assume c) because once we constructed a map as in a) and b) then the
(minimal) period of non-hyperbolic periodic points is uniformly bounded and, by
a small perturbation near these non-periodic orbits, one can ensure that all periodic
points become hyperbolic. Since these non-hyperbolic periodic points are contained
outside a neighbourhood of " the statements about #" do not depend on this
perturbation. '

It follows that o < {x;¢"(x)¢U, Vn=0} and that g is a map satisfying the
conditions of Theorems 12.1 and 12.2. Q.E.D.

13. The Existence of Absolutely Continuous Invariant Measures

13.1 Theorem. Let f be a C* map without flat critical points. Assume that f satisfies
the Misiurewicz condition (i) and all periodic points of f are hyperbolic and repelling.
Then f has an absolutely continuous invariant probability measure of positive
entropy.

Proof. Let |A| be the Lebesgue measure of a measurable set 4. According to a
theorem of Dowker and others, see [Fo], in order to show that there exists an
absolutely continuous measure it suffices to show that there exists y > 0 and C < o0
such that for any measurable set A = M and any n =0 one has

lf7(A) = C- Al (13.1)
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The measure is defined by taking a weak-limit of the measures
1 N-1 _
(A =— 3 1f (Al
N <o

Since f has only repelling periodic points, from Corollary 5.4 there exists 6 >0
such that for each branch-interval I, = (a,, b,) of f” one has |f"(I,)| = 6. Take a set
A of Lebesgue measure ¢ and let I, I; be the maximal intervals in f"(1,) of length < ¢
such that I, contains f"(a,) and I contains f"(b,). From the Preimage Lemma 3.3
it follows that there exists a universal constant K < oo such that

If AT S K-{|(f " ,uIp)N],|}. (13.2)

Let | be the maximum of the orders of f at the critical points. Integrating the
inequalities (10.1a) one gets that there exists K'< oo such that if we take

(@, x)=f""U)n 1,

AN __(I(a,.,X)l>'= 1 _<r(f‘"(1,,)ml,,f>'
a1 Sk Ll ) kN L )

Similarly for I,. Since | f"(1,)| 2 é this gives

. 1Y
I(f "IN L, I(f"‘(Iﬂ))ﬂI,é(%) 1l (13.3)

Since this holds for all branch-intervals I,, and M is the union of f” branch-intervals,
(13.2) and (13.3) imply (13.1).

Denote the invariant measure constructed in this way by u. Now we show that
the entropy h*(f) of this measure u is positive. Indeed let & be the partition of M
generated by C.(f), and let &,=¢ v f1(&) v - v £~ ""1(&). By definition,

W)= tim HE)

now N
where

H(E,)=— 3 m(I)logm(I). (13.4)

Ietn

Of course the elements of this partition &, are the branch-intervals for f*. From
Sect. 11 there exists C’' < oo and pe(0, 1) such that for all n = 0,

I (x)| = C"p" (13.5)
From (13.1) and (13.5)
m(L(x)) £ C-|I,(x)]"= C-C"p”
Letting C” = C-C’, one gets from this and (13.4),

H(¢)z 3 m(I)(nylog(p) +1og(C") 2 (n-y-log(p) +1og(C").  (13.6)

Ieén
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It follows that
h(f)zylog(p)>0. Q.E.D.

Corollary. Let u be a ergodic component of such an absolutely continuous measure.
Then Pesin-Rohlin formula

h(f)= | log|f'ldu
M

holds. For p-a.e. x one has that

log | (/") (¥)I

n

converges to h,(f)>0.

Proof. This corollary follows immediately from the ergodicity of y, h,(f) >0 and
[Le]l. QE.D.
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