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Abstract. We describe the algebra of matrices commuting with the action of the
modular group on characters of SU(N), integrable representations. Using
methods of finite quantum mechanics we find a canonical basis for this
commutant over € and prove the existence of an equivalent basis over @ with
integral matrix elements. A final section is devoted to the case of SU(3).

1. Introduction

One of the goals in conformal field theory is to classify all rational models.
Automorphisms of the algebra of fusion rules and conformal embeddings enable
one to construct new modular invariant partition functions from previously known
ones. The Wess-Zumino-Witten models associated to simple Lie groups are among
the most tractable examples and are believed to be the basic bricks for the
construction of all rational theories. However, even in this case it has only been
possible to exhibit an exhaustive list of modular invariants in a limited number of
instances (SU(2), and SU(N), and corresponding coset models being the most
conspicuous) and the proof of completeness (of arithmetical nature) used methods
radically different from the above mentioned ones. In the present work we describe
partial results pertaining to a more general situation following the arithmetical
path. It is not unlikely that a number of arguments collected in the next sections
appear in one form or another in the mathematical literature. We thought it
however useful to present them in some detail for a nonexpert reader.

For a simple Lie group and a given level &, the associated Kac-Moody algebra
admits only a finite number of integrable representations, with (restricted)
characters y,(7), indexed by A, depending on a complex variable  in the upper half
plane Im t > 0, which carry a unitary representation of the modular group acting on

1 [1]. The space of states of the theory decomposes as a sum @ Z I, QH ).,
A, A
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where 4, is an irreducible representation space for the semi direct product of the
affine algebra and the Virasoro algebra, and Z, ;. are non-negative integers giving
rise to a partition function Z= ) Z, ,.,(7)y; (). Modular invariance requires

A A
the commutation of the representation of the modular group with the matrix Z; ;..

A systematic search for such invariants can be carried out in three successive steps of
increasing difficulty.

(i) Find a basis for the algebra of matrices commuting with generators S and 7 of
the modular group acting on characters extended by means of the Weyl group.
(ii) Obtain a basis of the subalgebra over rational numbers @ of the preceding one
with integral matrix elements.
(i) Impose the integrality and positivity condition, taking into account the folding
on a fundamental domain.

Restricting ourselves to the case of SU(N) at any level we carry out steps (i) and (ii)
proving in fact that the whole commutant has a basis consisting of matrices with
integral matrix elements. It is likely that similar properties extend to any affine
algebra. For SU(2) see [2].

In the last section we will give some illustrations in the case of SU(3) showing
how to express all known invariants in terms of the integral basis using an
interpretation of the weight lattice as a quadratic field. A partial account of this
work is also presented as a contribution to the proceedings of the Les Houches
meeting on “Number Theory and Physics,” to be published in Springer Proceedings
in Physics, Vol. L7.

2. Affine SU(N) Characters [1]

Lete,, u=1,2,..., N, be an orthonormal basis in RY. One chooses the N —1 simple
roots of SU(N) equal to the vectors a;=e;—e;,,, i=1,2,..., N—1, lying in the
hyperplane ¥ orthogonal to ) e,. The metric in ¥ is given by the Cartan matrix

u
gij=a;"a; equal to 2, —1, or 0 according to |i—j|=0,1 or >1. The simple roots
generate the root lattice M, while the dual weight lattice M * is generated by a basis
of N — 1 fundamental weights &' such that & - ;= 6, hence o' =g/a;, where g" is the

inverse of the matrix g;;: &' - a’=g" =Inf i, j) — % It is readily verified that V, M

and M* are invariant under permutations of the basis vectorse,. The action of these
permutations in V is given by products of reflections with respect to hyperplanes
orthogonal to the simple roots, giving rise to the Weyl group W of SU(N).
Integrable representations of the corresponding affine Lie algebra at level k (we
will call height the integer n=N+k = N) are labeled by (strictly) positive weights p
satisfying p,=p-a;>0and ) p, < N. We call B, this fundamental domain of weights

1
(a simplex). Computing the traces over these representations using the standard
gradation generated by the element L in the associated Virasoro algebra of central
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charge

(NP -1k N
C'W‘(Nz_“(I )

one defines the (restricted) characters for Imz>0 and pe B,,

p(m=Tr,e <‘c |:L0 — 2%]) s

where e(z) stands for exp2inz. There are (:} 1) weights in B, but equivalent

weights under charge conjugation (see below) correspond to equal restricted
characters. The character formula admits an extension to all p’s in M*. According
to this extension y,(t) is antisymmetric in p under the action of the Weyl group and
invariant under translations by elements in the sublattice nM. Taken together the
semi-direct product of Weyl transformations and translations in nM form a
Euclidean discrete subgroup called the affine Weyl group generated by N reflections
in the hyperplanes bounding B,, which appears as a fundamental domain for its
action on non-zero characters.

As stated above when we deal with restricted characters (i.e. ignore a further
possible dependence on angles in the Cartan subgroup) there exists a further charge

conjugation symmetry. It is the product of the Weyl permutation reversing the order
N(N—-1)

of the basis vectors in RV :e,—»ey,;_,, 1Sus<N (of signature (—1) 2 ) with
the inversion p— —p. It corresponds to the replacement &' —>a" ~* on fundamental
weights, hence c¢(p)=Z;p,a" " and (Cx), (1) = 2, (1) = 2p(7).*
At height n= N (level k =0), B, contains a unique element p, corresponding to a
2
trivial theory with y, (t)=1. We have (py);=1, 1=i=N—1, P, =—]\lj\%.
Characters of integrable representations at a given height exhibit a close
relationship with heat kernels (with t playing the role of time) and share with them
the fact that short and large time (corresponding to t— —t ') are related. More
precisely the characters carry a unitary representation of SL(2, Z) (or PSL(2, Z) if
we use restricted characters as we shall do in the sequel). The two generators of the
modular group S and T are represented as

N(N-1)
S t(—t =i 3 (% detwe( =22 )40
i (NnN-l)UZ p'eB, weW n P ’

p 2
T XP(T+1)=e<E_W>XP(T) .

! 1t is interesting to note that the isometry C on the weight lattice acts as a reflection in a
hyperplane when N =3 or 4. While the SU(N) characters are even under C the Weyl group can in
the above cases be extended to a larger similar group pertaining to the weight lattices for the Lie
algebras G, in the case N =3 or B;(SO(7)) in the case N =4. Thus the present work on the SU(N)
commutant can presumably be extended to those
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Using Gauss’s sums one checks that (ST)*=S2=C, C?*=1, where charge
conjugation C acts as the identity on restricted characters. The representative
matrices S and T are both unitary and symmetric.

For pe M* and x e V/M we define y,(x)= ), detwe(p-*x)insuch a way that

weW
for strictly positive weights the classical Weyl formula for SU(N) characters reads

Yp(X)
ch,(x)=—2 .
0=y
The S matrix takes the form
N(N-1)

i 2 p
S,,,'=W Vel | -

From the classical character decomposition

chy, chy,= Z N oo Chps

P1,p2
P3

with p;, p,, P; strictly positive, we get by restricting the argument x to the division

o1 . . . .
points P B,, the Verlinde fusion rules at height » with p, p,, p,, ps € B,,

p p p
chy, (;) chy, (;) =p 2;3 N3? p2Chy, (;) .
3€D0n

The coefficients NP? = are obviously integers but the folding on B, as a consequence

P1,P2

of the periodicity mod nM in p; of ch,, (B makes it not obvious that they are non-
negative. "

3. Preliminaries

Before constructing the commutant we collect here some facts concerning the action
of the modular group on finite abelian groups.

When the integers g, , ..., g, are not all zero we denote by [a , ..., a,] their greatest
common (positive) divisor (we could take zero if all a’s are vanishing). Bezout’s
theorem then implies the existence of integers b, ,..., b, such that Xa;b,=[a,,..., a;lc
for any integer ¢. The following property will be useful in the sequel.

Lemma 1. For any triplet of integers u, v, w,v=+0, such that [u, v, w] =1, there exists an
integer y satisfying [u+yw,v]=1.

To prove this we assign to each integer x the non-zero divisor of v
O,=[u+xw,v]. If [x,u] =1, then [d,, u] = [u+xw, v, u] = [xw, v, u] = [w,v,u] =1. Let
Idenote the set of values d, as x runs over integers prime to ». This set is non-empty
as [1,u]=1 and §, €I, and is finite since d, divides v. Elements of I, hence their
product y are prime to u, consequently d,€1, [6,,u]=1. By the definition of y, §,
divides y, and it also divides u + yw by the definition of § , thus also u. Being prime to
u and positive §, has to be equal to one, which means [u+yw, v] =1, concluding the
proof.
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Now let G be a finite abelian group denoted additively. It is a result of
Kronecker’s divisor theory[3] that G is isomorphic to a direct product
ZyXZyyX...X Ly, (Z,=Z/aZ), with g; dividing a;,, for i=1,2,...,/—1. This
decomposition is unique, and if G; > G, the number of factors in G, is larger than or
equal to the same number in G,. We shall say thatg,,...,g,in G is a factorized basis
implementing this decomposition if the map j, Z'>G, given by (4,,..., 4,) = Z4;g; is
onto with a kernel a,Z x ... x a,Z.

The ring IM,(Z) of 2 x 2 matrices with integral entries acts on G x G through
right multiplication as (g,9')—(ag+cg’,bg+dg’), for (g,9')eGxG and

<a Z)e IM, (Z). Hence a fortiori SL(2,Z) acts on G xG. To any pair h,h'e G
¢

let us associate the subgroup H < G that they generate (obviously 4 and 4’ belong to
H). The subgroup H is invariant when the ordered pair (4, /') is replaced by any
other one deduced by the (right) action of SL(2, Z). Thus in general we can talk of
the subgroup H associated to the SL(2,Z) orbit of an ordered pair (h,4')eGx G
(the pairs (A, h’) and (k’, h) generate the same subgroup H but are not related (in
general) by an SL(2, Z) transformation, thus we could instead act with GL(2, Z)).
Obviously H x H is also stable under SL(2, Z), and we will give in the following a
classification of its orbits in H x H, distinguishing those with associated subgroup
equal precisely to H, which we assume =+ {0}.

The subgroup H generated by (k,4') is isomorphic to some direct product
Z,xZ,, for p and g positive integers not both equal to 1. This means that we can
find a factorized basis g,g’ € H implementing this decomposition. By construc-
tion for any pair (f, f')e Hx H there exists a matrix Me IM,(Z) such that

f, fHY=h,h)M, in other words with M=<j Z, (f, fH=(ah+ch’,

bh+dh"), and of course M is not unique.

Lemma 2. (i) det M is well defined mod p.
(i) If the pair (f, ') also generates H, given any integer m one can find a second
matrix Me WL, (Z) such that (f, f')=(h,h") M and det M =det M +pm.

To prove the first point we note that since the factorized pair (g,9')
also generates H we have both (g,9')=(h,h")M and (h,h')=(g,g9')N, thus
(9.9')=(g,9')NM, i.e. NM=I+<§
NM =Imodp, det Ndet M =1mod p and any other choice # will lead to the same
determinant (det N)"'modp, an element in Z}, the set of invertible elements
mod p, with the convention that Z¥ =7Z, = {0}. For any other pair (f, /') and any
choices (f, f")=(h,h"YM=(h,h")M we have (g,9'YNM=(g,g')NM, hence as
before NM = NI mod p. Taking determinants and using the fact that det Ne Z; we
conclude that det M =det #/ mod p.

To prove the second point we use again (g,g’) a factorized basis in an
intermediate step. Assume that (f, /') also generates H. Thus (f, f')=(g,9")M
and (g,9')=(f, f')M for some M. Given any integer m we want to show the
existence of another integral matrix M with the property that (f, /') =(g,g') M and

R with R an integral matrix. Hence

det M =det M+ pm. Setting M =<j z> and knowing that A7 — M has to be of
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the form (p 0) <OC ﬁ) we translate these conditions into
0 pg/\y o

(A4) pq(ad—PBy)+da+qgad—cB—qgby=m .

From (g,9') MM =(g,g’) and looking at the lower right element of MM we deduce
the existence of two integers b and d such that ch+dd=1mod pgq proving that
(c,d)%(0,0)and [c, d, pq] =1. Assume ¢ #0 (a similar argument is valid if 4+ 0). We
use the first lemma to pick ¢ such that [c,d+pgd]=1 and set y=0. Condition (4)
reduces to a(d+pgd) — fc =m —aqd which admits a solution in «, § since from the
above ¢ and d+ pqé are relatively prime. We now replace the factorized basis (g,g")
by an arbitrary pair (A, h") generating H, thus (h, 4')=(g,g’') N. Taking any 4 such
?) N. Clearly
(det N g,g’) is also a factorized basis, so that changing (g,g’) into (det N g,g’) and

that Adet N=1modp we can write (h,h')=(detNg,g’)

N into 3 ?)N, we can henceforth assume (4,4')=(g,9')N, det N=1modp.

From the above we can even choose an equivalent matrix, call it N again, such that
N belongs to SL(2,Z). If now (f, f') is yet another pair generating H we have
(f, f)=(h,h)M=(g,9')NM. Again from the above we know that given the
integer m, L exists with the property that (f, f~ ) (g9,9')Land det L=det NM +pm
=det M+ +-pm. But N is invertible and setting M =N ~'L we have (f, f')=(g,9')L
=(h,h") Mand det M =det L=det M +pm concluding the proof. We note that if
two elements in SL(2, Z) are called equivalent when the two matrices have equal
entries mod p (written M ~M ") the above reasoning for g=1 yields a proof of the
well known isomorphism between SL(2,Z)/~ and SL(2,Z,).

As a corollary we obtain that in G x G there are exactly ¢(p)=Card Z} orbits
with associated subgroup H (recall that H~Z,xZ,)). Indeed if two pairs on
distinct orbits (&, 4") and (f, f') generate H then (f, f')=(h,h')M and from the
second part of the lemma det M =1 mod p would contradict the hypothesis while we
know that det M € Z}. Thus there can be at most ¢(p) such distinct orbits while if
(g,9’") is a factorized basis for H and ¢ is any integer invertible mod p, (69, 9g’) gives
at least @(p) representative points on distinct orbits.

More generally we are interested in classifying all orbits under SL(2,Z)
included in H x H, i.e. also those that generate subgroups of H. Take a factorized
basis (g,g’) in H. When matrices M act to the right on such a row vector we now
understand that their first line is mod p their second mod pg when no confusion is

y

possible. Set M= ;, _,). Clearly 6=[x, y,p] and 0'=[X', y', pq] are well

defined and invariants of the right SL(2, Z) orbit associated to (g,g’) M. Writing
X=0x, y=0y, X'=06'x" and y'=45"y’ we deal exclusively in the sequel with the

SL(2,Z) orbit generated by (g,9")M=(5g,5'g") <i’ ;) If we define r=p/d,

s=pq/é' (of course r will not divide s in general) and remark that (6g,d'g’) is a
factorized basis for a group isomorphic to Z, x Z we can forget about ¢ and ' for
the time being. and assume x, ymod r, x’, y’ mod s such that [x, y,r]=[x', ¥, s]=1.
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We then define ¢ and x through ¢ ={r, s] and kg =rs. The determinant 4 = xy’ — yx’
is well defined mod ¢ and is obviously an invariant of the orbit.

By hypothesis the equation xu+ yv=1mod r admits solutions. We pick one of
them and denote by Q' the quantity x'u+y'v.

Lemma 3. (i) Q' is well defined and invertible mod [4, o] (i.e. one can find Qe Z}; ,
such that QQ'=1mod [4, ¢]).

(if) Q'mod [4, ¢] is an invariant of the corresponding orbit (hence also its inverse
Qmod [4, ¢]).

Let xug+yvo=xu+yv=1modr. Setting Qy=x"ug+y'vy, Q' =xu+y'v, we

have
X y\(uw u\_(1 1
x ¥y )\we v) \Q5 Q)

where equality is modr for the first line and mods for the second. Hence the
determinant of both sides is well defined modg=[r,s] and we find Q'—Q;
= A (uyv —uv,) mod ¢ showing that Q' is well defined mod [g, 4].

If we interchange the roles of x, y and x’, y’ we also define an integer
Qmod [p, 4]. We deduce from the set of relations xu+yv=1modr Q'=x"u+y'v,
x't+y'v=1mods and Q=xi+yv that

X y\/[fu (1 Q
)0 B)a T)mosea

which is obviously unchanged if we substitute <§, y,>A for (i, i,>

<

and 4°! (’: ’;) for (2‘ Z) with AeSL(2,Z) from which we deduce (i) that

1-0Q2Q'=0mod [g, 4] by taking determinants and recalling that det <x’ 4 ,)=A
and (ii) that Q and Q' are invariants of the orbit. X

Theorem 1. The four invariants § a divisor of p, 8' a divisor of pq, Amod [p/d, pq/5’]
and Q in Z}, 5 .5, 4 05 defined above characterise an orbit, i.e. two pairs in Hx H
with the same invariants are related by an SL(2,Z) transformation.

As was seen before the dependence on § and ¢’ factorizes and we can deal
with the orbits of pairs of elements in a subgroup of H isomorphic to Z, x Z; of

the form (dg,6'g’) (;C, ;) with x, ymodr=p/§, x',y'mods=gqp/é’ and

[x, y,7]=[x",»',s]=1. Using Lemma 1 we substitute if necessary for x’, y’ an
equivalent pair of integers again denoted by x’, y’, shifted possibly by multiples of s
such that [x’, y']=1. This ensures the existence of two integers z and ¢ such that the
matrix

belongs to SL(2, Z). Acting on the right with K on M yields an equivalent matrix
with elements on the second row equal to 0 and 1 respectively. So up to equivalence
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we can assume M of the form (g ’I) and the problem is reduced to showing that

two matrices
X y XY
0 1 0 1

correspond to the same orbit if and only if they have the same invariants 4 and Q,
which amounts to saying that x =X mod [r, s] and y = Ymod [x, r, 5], and we recall
that [x, y, r]=[X, Y, r]=1. This implies that one can find integers u, v, g, T such that

(B) x[r,slu+ysv=X—xmodr ,
(C) xo+yst =Y—ymodr .

Indeed from [x[r,s], ys,r]=]r,s] [x, y [r_ss_]’ _[rr—s]]:_ [r, s] [x, ¥, [r—rs—]Jz [r, s]

and X—x=0mod [r,s] it follows that X—x can be represented as a linear
combination of x[r,s], ys, and r as expressed by (B). Similarly from [x, ys,r]
=[x, r], ys]=[x, rs] (the second equality being due to the fact that [[x,r], y]=1)
and Y—y=0mod [x, r, s] it follows similarly that ¥ —y can be expressed as a linear
combination of x, ys and r as shown in (C). It is then readily verified that

x y X Y . 14+[r,sly o
D M= th M=
D) <0 1) (0 1) W < sv A4st)’
the equality being understood first line mod r second line mod s. The two matrices
play a similar role, hence we can also find an integral matrix with a similar property

(o 0=

This proves that when acting on the factorized basis the two matrices <g )1) ) and

(‘(X)/ f generate the same subgroup of Z, x Z,. This subgroup H is of the form
Z,x Z,, with u dividing [r, s] and we note that the above matrix M constructed in
(D) verifies det M =1 mod [r, s] and a fortiori mod . The proof of Lemma 2 with &
playing the role of H implies the existence of a matrix equivalent to M of
determinant equal to 1, hence in SL(2, Z) which completes the proof of the theorem.

As a special case let the abelian group G be isomorphic to Z, x Z ,, and the prime
factorizations of p and ¢ be written

p=I1P*, q=T1Pl,

where P; run over a finite set of primes. We have the following.

Corollary. For G as above the number of orbits in G X G under SL(2,Z) is equal to

p H [(ai+ DB+ 1)+;1,f o; (1 _Bi)] .
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The proof relies on the factorization of arithmetical properties for distinct primes so
that it is sufficient to establish the result for p=P* and g= P* and then take the

product over primes, N=]] Np,.

We have first to choose 6 =P¢, §'= P? with 0<d<a, 0<d’<a+ B. Then with
c=inf(a—d,a+p—d’), Aisin Z,. of the form P®4,, 4y € Z}.-. Finally Qisin Z,.
So the required number of choices is

a a+p inf(a—d,a+p—d’) .
M= 3 5 TS g ey
d=0 d'=0 b=0

where ¢@,=CardZ¥(p(1)=1) and explicitly for P a prime and m>0,

1 .
e(P™)=P™ (1 _F)' We rewrite the sum as

a [
Np= ), ) Y e(P)o(PTP) .
c=0 0sdZa b=0
0<d'Sa+p
c=inf(a—d,a+p—ad’)

The middle sum yields a factor 2a+ +1 —2c. We then split the sum over ¢ into ¢
=0 (hence b =0) and ¢ > 0 and in this case distinguish the terms with =0 or ¢ from
those with 0 <b < ¢ getting

2a+ﬁ+1+i Qa+p+1-2¢) {P‘Z(I—%)+(c—l)<1—%>2} .

c=1

The bracketisequalto (c+1) P°—2cP¢~ ! +(c—1) P°~2 so that the summand can be
rewritten

{Qa+p+D[(c+1) P —cP ] =2c(c+1) [P =P ]} —{coc—1} ,

leading after summation over c to the expected result for N,
Np=Qa+p+D)[(a+ 1) P*—aP* ']-2a(a+1)[P*— P* 1]
=P [(a+D(B+D+a(1-BP '] .

4. Finite Quantum Mechanics and the Commutant

As was mentioned in Sect. 2 the characters as well as the matrices S and T admit a
natural extension to the whole weight lattice M * with invariance under translations
belonging to the sublattice nM. This allow one to consider S and T as acting as
unitary operators on a finite dimensional Hilbert space with a basis indexed by the
elements of the abelian group M */nM. This extension implies that for any element
of the Weyl group

Xop(D) =det wy, (7) ,
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hence for pe M*/nM
N(N-1)

I pp’

l)2 2
T XP(1+1)=3<2n 2N>XP(1)

Let us introduce a Hilbert space E with orthonormal basis [p), pe M*/nM and for
convenience now rescale scalar products in M* (and M < M*) by a factor Nso asto
deal only with integers. We also redefine S and T by dropping irrelevant phases as
operators in E such that

PP,

N > P>,

Slp>= (Nn™~ 1)1/22 (

2
Tlp>= e( )IP>

With a redefinition of C as the unitary matrix such that C|p>=|—p)>, we have
S$2=C and obviously C commutes with S and T. The point is until we reinstate the
antisymmetry of characters under the Weyl group, the search for this enlarged
commutant is unsensitive to extra global phases in the various operators (reflecting
a similar property in quantum mechanics). It is worth pointing out that T and S are
indeed well defined on M */nM, since with the rescaled definition of scalar products
if pe M* and reM, p-reNZ and r*€2NZ. The key idea in constructing the
commutant is to identify S and T as generators of a group of canonical
transformations on an appropriate (and natural) set of conjugate operators
identifying the action of the modular group with the metaplectic group of finite
quantum mechanics. For this purpose we introduce the analogues of conjugate
canonical variables (or rather their exponentials) as follows. Define for each
peG,=M*/nM operators PP and QP through

PPlp’>=lp+p’> , QFpH= e( )lp>

The maps p—PP and p—>QP are unitary representations of G, in
End (E)(P°=Q°=1) intertwined by S the finite Fourier transform and verify the
fundamental commutation rules

, pp .
PP OP = _ryr ppp
Q e( nN)Q

This implies that these operators generate a representation of the finite Heisenberg
group, a central extension of G, X G, by Z,. This representation is irreducible and
one verifies easily that the products P® QP form a basis of End (E) in these sense that
for any operator V with |G,|=Card G,,

=[G,|”" Y PPQY Tr(Q " P7*V) .

p,p’
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A simple calculation yields the adjoint action of S and 7 on P’s and Q’s,

STPPS=QF | StQPS=P"
2

TtPrT=e(- P\ PrO® | TiQPT=0QF .
2nN

There exists a natural projection from G,, to G, (reduction of p mod M*/2nM to
mod M */nM) and a map from G, x G, to Z, given by the scalar product assigning
p-p’ to a pair p,p’ in such a way that the following diagram is commutative

Gy X Gy = Zyuy

! !

G, X G, > Z,N

1 s . .
Let £ stand for e <m> a primitive 2aN-th root of unity and for k,k’ in G,, with

projections p,p’ in G, set
{k,k’}:&k'k,PPQP' ,
{kk'}t={-k —k'} .

Even though for any V¥ we stil have {kk'}Tr({—k —k'}V)
=PPO® Tr(Q "P P PV) so that the full set of elements {k,k’} still generates
End (F) they are not linearly independent any more with two elements proportional
if and only if the projections of their labels on G, x G, are equal.

The purpose of this definition is to make the action of S and T'more transparent.
One readily verifies that

Stk k'}S={-k’k}
THK k') T={k,k'—k} .

Using the one to one correspondence between an ordered pair (k,k’) in G,, x G,,
and an operator {k,k’} in E we see that the adjoint action of S and T can be
interpreted as multiplication to the right by the matrices < (1) (1)> and ((1) i) of
the corresponding pair (k, k") in G,, X G,,. These operations generates an action of
SL(2, Z) which factors through a finite quotient group. Averaging over this finite
group yields all elements of the required commutant.

Using the notations of Sect. 2 one checks that as a lattice over integers M*
admitsabasisa!, «,,..., ay_, (reduced to ! if N =2) from which it follows that as an
additive group M */nM is isomorphic to Z,y x Z¥~2. This proves, using a remark in
Sect. 3 that the effective action is at most SL(2, Z) mod 2xnN, 1.e. SL(2,Z,,y). With

k= (: fl) in SL(2,Z,,y), we write {k,k'} K for {ak+ck’,bk+dk’'}. Thus

(kk'}K
KeSLQ2,Z,,y)
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commutes with S and 7. On the other hand if an operator ¥ commutes with Sand T
it commutes with the action of any element in SL(2, Z), hence easily

1 1
- k’k, KTr( _ka _k, V 5
Gonl SLE. Zy) x s (K IKTE( %)

vV

showing that the above elements generate the commutant. What is left is to find a
basis in this family.

First of all the elements generating the commutant only depend on (k,k’)

through its orbit under the action of SL(2, Z) (to the right). So for @ an orbit in

G,, % G,, we set
L= Y {kk},
k,k")e0

which differs only by a constant (the order of the isotropy group of a “point” on the
orbit) from the generating element introduced above.

Next we want to relate orbits in G,, X G,, to orbits in G, X G,,. Let (p, p’) be the

b

d) €SL(2,Zy,5).

We check that (ak+ck’)(bk+dk’)—k-k’'=abp*+cdp’®—2bcp-p’' mod2nN,

meaning that ¢@k ¥k Gk+dk)—k-k” qenends only on the projection of (k,k’) on

G, x G,. This proves that if two pairs (k,k’) and (11') in G,, X G,, belong to the

orbits ¢, and @, and have identical projection (p,p’), then I, ¢ % ¥ =1, 7',

Hence I,;, and I, differ at most by a phase. On the other hand if (q,q") lies on the

projection in G, X G, of (k,k’) in G,, x G,, and consider K= ¢
c

orbit of (p,p’) in G,x @G, there exists a matrix (Z g) in SL(2,7Z) such that

(q,9)=(,p") <: g) Let (k,k’) be a lift of (p,p’) in G,,xG,,, then

k, k) <a g) projects on (q,q’) proving that up to phases there exists a unique
Y

invariant for each orbit in G, X G, . Disjoint orbits involve distinct sets of monomials
PPQP proving that the set of non-vanishing invariants attached to orbitsin G, X G,
form a linearly independent basis of the commutant (over C).

An element of the commutant attached to an orbit in G, x G, can vanish only if
the distinct terms projecting on the same pair at each point conspire to give zero.
Consider all pairs (k,k’), (1,1)... projecting on the same pair (p, p’) in G, x G, and
lying on the same orbit (0. Then either I, is zero or else they satisfy E¥ %' =¢"V=_
If this condition is satisfied the contribution of the term PPQP in I, cannot be
compensated by any other one and /, cannot vanish. On the other hand let (k, k')

belong to @ and assume that (k, k') <Z Z) as the same projection in G, x G,;, for
(" b ) in SL(2; Z,,y). Write
c d

N-2 N-2

k=xa'+ Y xo , KkK=ya'+ ) ya .
1 1
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The assumptions are
b

(x0,¥0) [(c d) —I] =0modnN ,

(x,.,y,.)[<" Z)—I]EOmodn 1SiSN-2 .
4

Let us compute the difference in scalar products modulo 2n#N. We have
(ak+cK') - (bk+dk') =k -K'= (N — 1) [axo+ cyo) (byo +dyo) — X0 Vo]
+ N[(axo+cyo) (bx; +dy;) —xo 1 +(bxo +dy,) (ax; +cy1) — Yo x;]

N-3

—-N Z [(ax;+cy)(bx; 1 +dYis1) —XiVisq

i=1

INY

+(bx;+dy)(aX; 41 +CYiv1) = ViXiq]
N-2
+2N Y [(ax;+cy)(bxi+dy) —x;y)] -
i=1
By assumption the last term vanishes mod2nN. Furthermore from
anN= —anNmod 2nN we can change the sign of the combination (bx;+dy;)
(ax; 4 +CYip1) —ViX;4q for i=0,1,..., N—3 in the second and third term on the
right-hand side and use ad —bc =1 to show that they vanish mod 2nN so that we are
left with

(ak+ck' - bk +dk')—k - k'=(N—1)[(axy + cyo) (bxo +dyo) —Xoyol mod 2nN
and the condition that (axy+cyy)(bxg+dyy) —xeyo=0modnN. If N is odd the
1 N
right-hand side vanishes mod2aN. If N is even the matrix < pn ) of

yuN 1
determinant 1+ Byn*N?=1mod 2nN (since N is even) can be lifted to a matrix in

SL(2,Z) and hence can be used for (Z Z in the above since it obviously

transforms (k, k') into a pair with equal projection. Then the above difference in
scalar products becomes (Bx3+yy¢)nN. For B and y arbitrary this expression is
always zero mod 2nN if and only if x, and y, are both even. Since N is even this
condition on x,y, is invariant along the orbit and under projection on G, x G,,. One
sees easily that it is equivalent to saying that a pair (p,p’) in G, % G, is such that
p>*=p*=0mod 4 (consistent with the fact that p® or p’? is defined mod 2nN, a
multiple of 4 for N even), a condition invariant under SL(2,Z) along the orbit.
Calling such orbits even we conclude that

Theorem 2. If N is odd to every orbit in G,x G, we associate an element of the
commutant, well defined up to a phase. These elements are linearly independent and
generate the commutant. If N is even the same is true provided one restricts oneself to
even orbits.

We have thus succeeded to obtain a basis of the commutant over € even though
the construction (not to mention the enumeration) is not as straightforward as one
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might wish. However for small values of N one can be much more specific, as will be
shown in the following section.

For the time being we will prove a stronger result using the analysis of Sect. 3.
While the above construction is in a sense canonical (up to phases) it produces
matrices with complex entries in general (in the standard basis of E, the one that is
relevant). But it is possible to show that

Theorem 3. By a linear transformation one can find an equivalent basis (over C) of the
commutant consisting of matrices with integral entries (even zeroes and ones only).
The latter is obviously a basis over Q (rational numbers).

This is the kind of basis we need, even if the following construction is not the
most convenient for further applications. Consider an orbit ¢ in G,, x G,,. We
know that any pair in ¢ generates the same subgroup G < G,,, isomorphic to some
Z,xZ,,. For any (k,k") = ¢ and any pair (1,1') =G x G (not necessarily in ©) there
exists a two by two matrix of integers M such that (I,1') =(k, k') M with det M well
defined mod p and changing the representative pair (k,k’) in ¢ does not change
det M mod p. We therefore set

B,(1,1')=det M mod p

bilinear in 1 and I’ and antisymmetric in the interchange of its arguments reflecting
similar properties of the determinant as a function of its columns. Moreover the pair
(L 1") generates an orbitin G x G < G,, X G,,and B,(1,1') isindependent of the choice
of (I,I') in @' so we could write it B,(®'). Let G be fixed, then we know that ¢(p)
distinct orbits generate the same G, hence we get ¢(p) different B,. If ¢ and @
generate G and @'isanorbitin G x G, we have B,(0') = Bo((?)B@((O ").Since G = G,,
and since the abelian group G,, is isomorphic to Z,,y x ZJ,” ! it follows that p, the
order of an element in G, hence in G,,,, divides 2nN (to see this it suffices to write it in
factorized form). As a result the following operator is well defined for any ¢t mod p,

By 1,
|G]..Zsoé" ary,

and J, ,=Jg,:8,@) when O and 0 both generate the same G. We now split the sum
over orbits O’ in G x G as

Jo,.=

1
foi7i61 &

expressing J’s as linear combination of the previous basic invariants, hence proving
that they belong to the commutant.

Next we prove that the J’s have integral matrix elements. Let x, X’ belong to G,
and p, p’ be the projections in G, of LI'eG. Then

<X, {l’ l,} le> = 5x,p+x’modG,.€l.l,+2pl x

1
(recall that £=e (W)) .

For fixed 1 assume that there exists k’ in G projecting on q’ such that

Zﬁ P ‘Baw)l

2N
11 +2q’ -x'+;1T tB,(1,k')£0mod 21N .
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Then

2nN ’ - ,
————tBo(l,l)+2p -x'+1-1 =O .

2 ¢

'eG

Indeed, we can replace ), by ) for fixed m and k' since G is a group, the
I'eG I'+mk'eG

average over mmod 2nN and it is this average which (easiy) yields zero. On the

other hand if (I is still fixed) for every I’ in G (projecting on p’) we have

2 . .
l-k'+2p'-x’+—;1l/tB@(l, 1"Y=0mod 2nN, then the previous sum over 1’ yields

instead of zero an integer, namely the order |G| of the group G. We can now perform
the summation over 1. Thus the matrix elements of J, , are (non-negative) integers
(this follows from our choice of averaging over G in their definition). We can say
even a little more. The non-vanishing elements {x|J, ,|x’) count the number of
1e G,, with projection p=x—x’ such that a linear form in 1 vanishes for allI'e G.
When this number is non-zero it is independent of x —x’ since any such 1 is the sum
of a particular solution and a solution of the same problem when x =x'=0 (and the
latter is obviously non-vanishing). We conclude that the matrices

Jo,1
<01 Jo,10>

belong to the commutant and have entries 0 or 1. It now remains to prove that they
generate the commutant.

To do this we appeal to the Jordan Holder theorem [3] which states (in the case
of a finite abelian group H) that the length m (the number of elements) in an
increasing sequence of maximal proper subgroups {0}¢ H & H,...$ H,,=H is an
intrinsic property of H independently of the possible arbitrariness on some
subgroup H;. Thus to an orbit @ we can associate the length m of the corresponding
subgroup G it generates. In particular for the trivial orbit ¢, reduced to the pair (0, 0)
we have m=0, then J, =1, =I the unit operator. Assume now that I,’s of length
smaller than m can be expressed as linear combinations of J ,’s. Let ), be an orbit of
length m with associated subgroup G=Z,x Z,, so that G x G contains ¢(p) orbits
generating exactly G. In the definition of J, _, we split the sum over G x G into orbits
under SL(2, Z) and call respectively ¢, and @), those associated to G or to proper
subgroups of G with length necessarily smaller than m. Hence

1 2nN

Y Yer eI, .

Oyt — 147
et lGl i=1,2 0;

In the sum over orbits ¢, the I, are expressible as linear combinations of the J’s by
the recurrence hypothesis, we move these terms to the left-hand side. Then we
perform a Fourier transform over ¢ mod p. For ¢ ¢ Z} we get relations among the J’s
(they could be identities). But for each t € Z¥ we get an expression for an element /,,,
where () runs over the orbits associated to G. In particular we get I, as a linear
combination of J’s. Taking a maximal free subset among the J’s we find the basis of
the commutant as claimed in Theorem 3. Indeed that it is also a @ basis follows from
a standard theorem on incomplete bases in vector spaces over a field.
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One may wonder whether there is a short cut to deduce this theorem. It is clear
that the whole discussion is based on the choice of a primitive nN-th (or possible
2nN-th) root of unity. But the rational commutant is insensitive to such a choice.
Thus getting rid of unwanted phases if S’ and 7'’ denote matrices similar to Sand T
with any other primitive root substituted for the original one the enveloping
algebras generated over @ are identical as a result of the previous analysis.

We will now exhibit the structure of matrix elements of J; , which we assume to
be normalized by their (0, 0) entry. To a subgroup H of G, we associate a dual A
defined as follows:

H={peG,, p-p=0(n.N) for all p’s in H} .

LIt is quickly checked that S < Y |p>> is proportional to Z |p> proving that
H=H. From peH ped

1 if there is 1 in G with projection x —x’ such that for all k in G
(with projection denoted by q)

I xS = 2nN
x| 0,t|x> l-k+2q'X’+—;- tBy(1,k)=0mod 2nN

0 otherwise ,

we easily see that H= {peG,,IxeG,{x|J, [x—p)=1} is a subgroup of G,,
using that if 1 in G has projection x —x’ and k in G projection q, then1-k+2q - x’
=—1'k+2q-x(2nN). Now let pe H and xeG, such that {(x|J, |Jx—p)=1,

={yeG,,<{x+yl|J,,/x+y—p)=1} is also a subgroup of G,, easily seen to be
independent of p and x, hence H'={y € G,<y|J,,ly)> =1}. This proves that if pe H,
xisdefined mod H'. Butif {x|J, ,[x —p) =1and <y|J, |y —q) =1 we can check that
{x—y|Jp,x—y—(p—q))=1. Hence we can define a homomorphism s from H to
G,/H' associating the class of X to p. Then {x|Jy ,[X'> =0, + .y + HOx+H",s(x-x)- WE
can now compute TrJ, ,G_, P_,, i.e. Y <x|J, |x—p)& 2 *~P) This is zero

xeGp

if p¢ H. If pe H we pick X, such that xo+H’'=s(p) and get ) & 20'(o*y=p),
N yeH’
This is |H'|£ ~2P"®~P if p’e H'. Hence

o (0 ifp¢ H or p'¢H’
TrJ, Q" *P p=|H|{§-2p’-<x0‘P) otherwise .

But we know that J, , commutes with S and T and up to phases S and T act on
Q “® P ®byan SL(2, Z) transformation on (p’, p). This implies that H and A’ have
to coincide. Consequently the scalar product between an element of H and any
representative in a class of G,/H" is well defined modnN, and

Tr (Jp,,Q "» P P)=|H|0pcpbpcné 2P ¢®7P

More generally let K be any subgroup of G, and r a homomorphism from K to G,/K.
We can define Q depending on K and r by

Tr(QQ ™ P P)=|K|d,cxOp g &P TP
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Demanding that Q commutes with S and T requires
p'r(@®+p-r(p’)=p-p'modnN ,
2p-r(p)=p*mod 2nN .

Using the homomorphism property of r the second condition implies the first one. It
is easy to check that the above homomorphism s defined for H satifies the required
conditions, and that the matrix elements of Q are

<X|Q|X,> =6x+K,x’+K5x+f,r(x—x’) s

hence are integers.

5. Specialization to SU(3)

Until now we have only used the additive group structure on G,=M*/nM. In
special cases however it is also possible to take advantage of a natural multiplicative
structure on G, to define particular elements of the commutant with integral entries.
These are necessarily linear combinations of the J’s, but an explicit form of the
coefficients is not defined until we make choice of a basis among the J’s. We use
SU(3) as an illustration, but any semi simple rank two Lie group would allow for a
similar treatment. (For instance, because we forget momentarily the antisymmetry
constraints from the Weyl group the discussion of G, and SU(3) invariants is
essentially identical.)

We endow € with twice its usual scalar product 2Rezz’, and set w=e@).
With our new normalization for scalar products the two fundamental weights of
SU(3) satisfy a!-al=a?-a?=2, a'-a?=1, and clearly 1 and w satisfy these
relations. Hence we take for M* the quadratic ring Z (w). (It is well known that is it
an unique factorization domain, and that primes # 3 in Z do or do not decompose in
Z(w) according to their residue 1 or — 1 mod 3.) The root lattice is a sublattice of M*
having scalar products with M* equal to zero mod 3. This is equivalent to saying
that M consists of multiples of g=1+w, hence is a prime ideal in M*, and
G,=M?*/nM has a natural ring structure. We can think of G, as a Z(w) module, its
ideals are principal, and are generated by divisors of ng (in the Z(w) sense), but of
course there exist additive subgroups of G, which are not ideals.

The basic constructions for a general Lie group admit here a compact expression
in complex notation. For instance the Weyl group is generated by complex
conjugation and multiplication by w?. The two Casimir invariants for SU(3) are

- P»+23
C,(M)=4i4,C;(1)= -2|— , and the dimension of the representation of SU(3) with
3 3

highest weight A(A=m, +m,w, m,>0, m,>0) is pep (¢ is the highest

weight for the trivial representation). The fundamental domain B, is the set
{(my,m,), m; >0, my>0, m; +m, <n}. Recall that the level k is such that n=k +3.

Representations of SU(3) have a triality A»t(1)e M*/M=F,, such that if
A=my +owm,, t(1)=m; —m, mod 3. Furthermore as a set, B, is invariant under a
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group of rotations of order three generated by
A—06(l)=w?A+nmodng

arising from the outer automorphism group of 45".

To motivate the following discussion it is perhaps illuminating to rephrase the
construction of SU(2) invariants [2] using the formalism introduced at the end of
the preceding section. In the SU(2) case we also have a principal ring structure for
M*[nM isomorphic to Z,, with usual product as scalar product, and here all
subgroups are also ideals.

Let § divide 2n (2n=385"), set K=087Z,, then K= 5 Zz,, The only homomor-

phisms from K to Z,,/K are of the form r : §x—r(x+ K), where r is an integer. The
homomorphism r has to verify 2ar(a) =a? mod 47 for a in §Z,,. This is equivalent
to §=26 and r=6modd’. This gives an element Q; of the commutant, with
(x|Q51X"> =0y 2008)0x+x=0@s)- WEset a=[6,’] and choose u,veZ such that

ou+06'v=a. Then ou—d'v is well defined mod %Tn. But x—x'=0Q20)x+x'=0(26")

’

2
implies that x=x'=0(ax), hence “x is well defined mod;n and
x’—5 v—ou o —(6 v——éu)x=u5(x+x )+vd'(x —x), and this is zero

o o o

2
mod ?n. Conversely we have

_5’1)—5u

x=2M§EOQ®

and

0'v—ou
x4+

xszyugsoaaq,

- 2
hence if we set b=5v . 5“, we have (note that b%2=1 (a—:l>>

2
, if x=x'=0moda and x’sbxmodl
x| Q51x") = , @
0 else .
In this form it is easy to extend this discussion to the SU(3) case. We had a such that
o? divided n and b such that b2 =1 <2_n> We replace this by an element o up to a

3n
unit such that ad divides » and p such that uji=1 < ) and define Q(,

1 /= ’= /= g
APy = 1 if A’=2'=0moda and A’'=uimod 2

0 else .



Modular Transformations of SU(N) Affine Characters 635

First we note that g and g differ by a unit and that if é divides gn the dual of 6G,, is
on

3 G,. We now compute TrQ¥Q_, P_,, i.e.

Zv: <V|Q‘(l¢)|v—ﬂ.>e (:2R—e_?i;(v‘_i)> ‘

This sum is non-zero if and only if we can write 4 in the form (we define

N
N =ng):(1—paz +? u, i.e. A belongs to the ideal

|:(1 — o, —‘A:/—}=a[1 —U, i_:l .
o oo

If 1 is in this ideal which we denote by K, the possible z’s differ by multiples of
N

N
T T Hence oz is defined modulo the ideal generated by T 41
&[(l—u)a, "a‘—] &[1—;;, —_}

o
. N
which is the dual ofoz[l —U, ﬂ_] since 1 —pu= —pu(1 — jg) mod — and [,u, £_J=1.
o 73 73

Hence we retrieve the general structure presented at the end of Sect. 4, and
all that remains to shown is that if to AeK we associate oz such that

N - -
l—(l—u)ozZEOmod? then 2Relaz=AAmod3n. To do so, we write

. N
A=(1—poaz +§ t. The dual of aG, is generated by = hence

M=1—-w( —ﬂ)zfa&+% tt+2Re(1—p)z ANt
=Q2—-u—p)zzaamod 3n
using pa=1 <%>. On the other hand
2Re laz=2Re (1 — p)azdzmod 3n
=adzZ(2—u—pg)mod3n .

Hence the property is satisfied and Q” belongs to the integral commutant.

In the SU(3) case G, is isomorphic as an additive group to Z,, X Z,,, and we have
an explicit formula for the dimension of the commutant. For small values of » this
dimension is listed in Table 1.

Table 1. Dimension of the commutant for small values of n in the SU(3) case

n 112]3[4(5]6|7|8]|9 (10(11(12{13|14{15(16]1718(19]20 (212223 |2425|26 |27
dim, | 2 [10]12{32]22(60] 30| 88 |54 [110{46 [192| 54 [150{1321224| 70 D70|78 B52[1800230|94 [528/170R70R16

For instance for n=5 this dimension is 22, but it is possible to verify that the
number of distinct Q{ in this case is 12. In general we expect that the Q(” represent
only a small fraction of the commutant.
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However all known invariants up to now can be expressed using only the Q’s.

The significance of this property is not clear to us.

Table 2. List of known SU(3) invariants. Conjugate partners are omitted, (1) is the triality and

a(7) is the Z; action on representations labeled A=m; +wm,, i.€. x;= Y, m,
Height n Invariant Y %, A 4. Xar N oz
nz3 A,=Y Il oy

2
nz6 D,= ZI KaXat TaXoyt XaXoray Q@

A,0|A
n=0mod 3
n>6 D, =Y Tadem® ) QW n=1mod3

A
n%0mod 3 Q¥ n=-1mod3

8 Eg=|x1,1+ 13,3 + 103,14+ 23,47 +t1,3+ %3P

+1xa,1 4 20,0+ 22,3+ 46,1 3,2+ 216l o405
12 Epp=|11,0+ X101+ 21,10 X5,2+ X2,5+ 15,51

+20x3,3+ 3.6+ X631 QP +0p

Fio=lx11+ 1110+ t10.1P 123,34 23,6 + 26,3

12,2+ X2,5+ X5, 5 4 |xa 1+ 7,0+ 21,41

+1x1,6+ Ha, 7+ 12,17 + 22,4

+ia,a(X2,2t 18,2t X2,8) t (K22 H M52+ X2,8) Xara QP -10f9
24 Eya=lt11+ X221+ X122 Xs,5 F Xaa,s + X514+ X111

+ 21,5+ 25,10+ Xa1,8 28,11

+x7,0+ 21,7+ Xa6,0 + 21,16 T Xa6,7F X7,16 T X8,5 QP +00

+¥s,8F X11,2F 2,11+ X7,7F X10,7+ 27,10 +Q9+09

We list the expressions of the known invariants for SU(3) [4,5] in Table 2

omitting possible “charge conjugate” partners. (Given a positive normalized
invariant Z= )" y,(t) 4, 1 (%), we can always associate a “conjugate” one Z'

A, A
obtained from the preceding by changing A", ,.—» A"} ;.= A"; ,1', which may or may
not coincide with Z.)
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