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The Rotation Set of a Homeomorphism
of the Annulus is Closed

Michael Handel

Department of Mathematics and Computer Science, Lehman College, Bronx, NY 10468, USA

Abstract. We show that the rotation set for any orientation preserving,
boundary component preserving homeomorphism of the annulus is closed. In
particular, if the homeomorphism is area preserving, then the rotation set is a
closed interval.

Introduction

In this paper we show that for any orientation preserving, boundary component
preserving homeomorphism /:A->A of the closed annulus, and for any lift
/ : A-»A to the universal cover, the rotation set #(/) is closed. This generalizes
work of Aubry [Au-D] and of Mather [Ma] who showed (among other things)
that if / is an area preserving twist map of the annulus, then R(J) is a closed
interval.

We identify A with R x [0,1] and let pγ: A-»R be the projection onto the first
coordinate. The covering translation for A is T(x,y) = (x + \,y). For each xeA,
choose a lift x e A and consider lim (Pi/%x)—Pi(x))/n. When this limit exists, it is

called the J-rotation number of x and denoted ρ(J, X); as the notation indicates, it is
independent of the choice of x. Although ρ(f,x) need not be defined for all x, it is
defined μ-a.e. for every /-invariant measure μ.

Theorem 0.1. Iff: A->A is an orientation preserving, boundary component preserv-
ing homeomorphism and J: A->A is any lift, then:

1. The rotation set R(J) = (J ρ(J, x) is a closed set, where the union is taken over the
domain of ρ.
2. For each r e R(J), there is an f-invariant measure μr such that ρ(J, x) = r for μr-a.e.
xeA.
3. With the exception of at most a discrete set of values r in R(J), there is a compact
invariant set Qr such that ρ(J, x) = r for all xeQr;ίfr is rational then Qr exists and is
realized by a periodic orbit.
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Remark. I do not know any examples for which there exists reR(J) with no
compact invariant set Q satisfying ρ(J, x) = r for all x e Qr.
Remark. For each xeA, let Q\J,X) be the set of accumulation points of {{PιJ\x)
—Pι(x))/n: n ̂  1} and let R'(J) = (J Q'{% X). Our proof of Theorem 0.1 extends in a

xeA

straightforward way to show that R'(J) = R(J).
The proof of Theorem 0.1 can be divided into three parts. Although there are

no pseudo-Anosov homeomorphisms on an annulus, there are homeomorphisms
that are pseudo-Anosov relative to a finite invariant set. The first step in the proof
(Proposition 1.1) is to show that for this special class of homeomorphisms, the
rotation set is a closed interval and that each point in this interval is realized on a
compact invariant set. The proof is a straightforward application of symbolic
dynamics.

The next step is to exploit the fact that a pseudo-Anosov homeomorphism has
the minimal complexity among all homeomorphisms in its homotopy class. We
show (Proposition 1.2) that if φ is pseudo-Anosov relative to K, and if / is
homotopic to φ relative to K, then the interior of the rotation set for φ is contained
in the rotation set for / and that every element of this open interval is realized on
an /-invariant compact set. The proof is a simple extension of the global
shadowing techniques in [H2].

The third part of the proof is to show that if certain limit arguments (taking
Hausdorf limits of ω-limit sets) do not succeed in producing an invariant set with
rotation number r, then the pseudo-Anosov techniques of steps 1 and 2 are
applicable. This step is contained in Sects. 2 and 3. The limiting arguments in
Sect. 2, especially the use of the Birkhoff Ergodic Theorem in Proposition 2.3, is
taken from [B-S].

The heart of this paper (Lemma 3.2) is a fixed point result that detects a finite
invariant set K, so that the relative mapping class determined by / and K is
pseudo-Anosov. The proof of this lemma is essentially a subset of the proof of
Theorem 9.1 in [HI]. The techniques from [HI] can also be used to prove
Lemmas 2.1 and 2.2.

1. Relative Pseudo-Anosov Homeomorphisms

We say that φ:A->A is pseudo-Anosov relative to a finite invariant set K if it
satisfies all of the properties of a pseudo-Anosov homeomorphism (see [T] or
[F-L-P]) except that the associated stable and unstable foliations may have
1-pronged singularities at points in K. Equivalently, let N be the compact surface
obtained from A\K by compactifying each puncture with a boundary circle; let
p:N-+A be the map that collapses these boundary circles to points. Then φ is
pseudo-Anosov relative to K, if and only if there is a pseudo-Anosov
homeomorphism Φ:N^>N such that φp = pΦ.

Proposition 1.1. // φ: A-> A is pseudo-Anosov relative to some finite invariant set
K, then each R($) is a closed interval. For each r e R($% there is a compact invariant
set QrCA such that ρ($,q) = r for all qe Qr. Moreover, if reint(R{$)), then we may
choose <2rCint(A\K).
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Proof of Proposition ί.i. Let p: JV-> A and Φ:N-+N be as in the definition of a
relative pseudo-Anosov homeomorphism. We can compute ρ($, x) using Φ instead
of φ as follows. Let K c A be the full pre-image of K c A. Let JV be the infinite cyclic
cover of iV obtained from λ\K by compactifying each puncture with a boundary
circle, and let p: JV-> A be the map that collapses these boundary circles to points.
A lift $:A->A of φ:A->A determines a lift Φ:N-+N of Φ.N^N such that
βφ = $β. Choose yep~\x)cN and a lift yeN of y; define ρ(Φ,j;) = lim (
— p1py)/n= lim {Pι<j)np{y) — PιPy)ln = ρ((f),x) if this limit exists.

π o o

Choose a Markov partition of JV into topological rectangles {Ru ...,Rn} such
that the diameter of each Rt and each Φ(Ri) is less than 1/4 and such that each non-
empty Φ(Λί)n(intJRJ ) is connected. Let B = (b^ be the transition matrix for
Φ:N->N with respect to this partition; i.e. bij = l if Φ(Ri)n(intRJ)Φ0 and frl7 = 0
otherwise. We say that a sequence S = {s J of integers 1 ̂  sf ^ rc is admissible if each
£>s.s. + 1 = l. Since J5 is an irreducible matrix (Expose 10 of [F-L-P]), there is a
constant L so that for any 1 ̂ ij^n, there is an admissible sequence of length at
most L starting at i and ending at j.

An admissible sequence )S={5 ί:0^i^m} is a partial address for yeiV if
Φfy) e # s . for 0 ̂  / ̂  m. We say that S has average rotation greater than r {{{p^Φ^y)
—p1p(y))/m>r for every lift yeN of every point yeN that has S as a partial
address. We define average rotation less than r similarly.

Suppose that ρ(Φ,yί) = r1<r<r2 = ρ(Φ,y2) for some yuy2eN and r ,r u r 2 eR.
Choose 1 ̂  i0 ^ n so that biol = 1. By adding admissible sequences of length at most
L to the beginning and end of a long partial address for yu we construct an
admissible sequence U that starts with 1, ends with ί0 and that has average rotation
less than r. Similarly we can use y2 to construct an admissible sequence V that
starts with 1, ends with i0 and that has average rotation greater than r.

Define the infinite admissible sequence S =W1W2W3...by Wί = U,by Wi+1 = U
iϊW1W2...Wihas average displacement greater than r and by Wi+ί = Votherwise.
Choose yeN so that Φ\y) e Rs. for all i > 0 (Expose 10 of [F-L-P]), and note that
\PipΦk(y)—PίP(y) — kr\ is bounded independently of k> 0. Let Q* be the ω-limit set
of the Φ-orbit of y and let Qr = pQf. Then ρ(Φ, q*) = r for all q* e Q* and ρ($, q) = r
for all q e Qr.

We have shown that R($) is an interval and that each r e int(.R($)) is realized on
a compact invariant set. By choosing j ^^eintCN) and by choosing U and V
sufficiently long, we guarantee that β*Cint(AΓ) and hence that β,.cint(A\X).

Suppose now that r is the upper endpoint oϊR(^). (The argument for the lower
endpoint is similar.) Choose an increasing sequence rt-+r. We claim that there exist
constants Mt>0 so that for any l^z, y'rgw, there is an admissible sequence
V = V(l,ij) = {vk:0^k^Ml} such that:

1. υo = i,
2. υMι=j,
3. V has average rotation greater than rh

4. For all 0 < /' < / and 0 ̂  a ̂  Mt — Mv, the admissible sequence {vai..., va+Mι,} has
average rotation greater than rv.

The construction is inductive. Suppose that we have constructed V(ΐ9 ij) and
Mv for all 0</'</ and all l ^ i , j^n. Construct Vι(l,iJ) = {v
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satisfying (l)-(3) from a long partial address for some yι+1eN satisfying ρ(Φ, yι+1)
= rι+l9by adding appropriate initial and terminal sequences of length at most L. If
(4) fails for some /' and a, replace {ι>J, ...,t>J+Ml,} in V%i9j) by 7(/>ί,ι?J+Ml,) to
obtain V2{l,iJ). Then V2{IJJ) also satisfies (l)-(3) and if F^Uj) is a partial
address for zγ and V2(IJJ) is a partial address for z2, then PιpΦMι{z2)—pγp(z2)
>pίpΦMι(z1)—pίp(zί)+\/2. After finitely many such replacements we arrive at
V(IJJ).

Define S to be the infinite admissible sequence S=7(l, l , ί 0 ) 7(2, l,i0)
7(3,1, ί0)... and let y e N satisfy Φ\y) e £ s . for all f > 0. Define Q* to be the ω-limit
set of the Φ-orbit of y and define Qr=pQ*. Then ρ($, g) = r for every g e Qr. Π

A key dynamical property of a pseudo-Anosov homeomorphism is that it has
minimal complexity among all elements in its mapping class. The following
proposition is another example of this phenomenon.

Proposition 1.2. Suppose that 0: A->A is pseudo-Anosov relative to K and that
f: A->A is homotopic to φ relative to K. lfj\ A->A and $: A->A are lifts that are
equivariantly homotopic relK, then R(J)Dint(R($)). Moreover, for each
r e int(R($)), there is a compact f-invariant set Q'r such that ρ(J, q') = r for all q' e Qr.

Proof of Proposition ί.2. Fix r e mt(R((j))). Let p: N^A, Φ: N^N, p: iV->A and
Φ: N-+N be as in the proof of Proposition 1.1. Then ρ(Φ, y) = ρ($, p(y)) for all y e N
at which these limits are defined. Let β*Cint(AΓ) and Qr=p{Q?) be as in
Proposition 1.1.

For all n > 0, there exist Fn:N^>N and fn:A^A such that pFn = fnp and such
that f = fnonK and on the complement in A of the 1/n-neighborhood of K. (Of
course, if/ is well behaved on a neighborhood of K, then there exists F:N->N such
that pF = fp.) Let /„: A->A be the lift of/„ .A-^A that is equivariantly homotopic,
relX, to / : A-> A and to $: A-> A; let Fn: N-+N be the lift of Fn: JV->N that satisfies
pFn = Jnp. Then Fn is equivariantly homotopic to Φ and ρ(Fn, w)= lim (pχpFk

n{w)
fe-^oo

-pίpw)/k= lim (p1fϊp(w)-p1pw)/k = ρ(]'n,p(w)) for all weN on which these
fc->oo

limits are defined.
We say that the Φ-orbit of y shadows the Fn-orbit of w in N if there exist C > 0

and lifts w,yeN so that D(Φk(y), Fk

n(w))< C for all keZ, where D is an equivariant
metric on JV. If the Φ-orbit of y shadows the Fn-orbit of w in ft, then ρ(Φ, y)

Fig.l
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Let N be the universal cover of AT, and let Φ:N^>N and Fn:N^>N be
equivariantly homotopic lifts of Φ: N^N and Fn:N^N respectively. We say that
the Φ-orbit of y shadows the Fn-orbit of w in N (this is called global shadowing in
[H2]) if there exist C > 0 and lifts wJeN such that D(Φfc(j>), Fk

n(w)) < C for all k e Z,
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where D is an equivariant metric on N. If the Φ-orbit oίy shadows the Fπ-orbit of w
in N, then obviously the Φ-orbit of y also shadows the FM-orbit of w in N. We are
therefore reduced to proving the following lemma.

Lemma 1.3. For all ε > 0, there exists δ>0,so that ifQ*CNίsa non-empty compact
φ-invariant set satisfying dist(Q*, dN) > ε, then for alln>0 there exists a non-empty
compact Fn-ίnvariant set Q'*(n)cN such that dist(<2'*(n), dN)>δ and such that for
all w e Q'*(n% there exists yeQ* so that the Φ-orbit of y shadows the Fn-orbit of w in
N.

Proof of Lemma 1.3. This is a straightforward extension of Theorem 1 of [H2].
The stable and unstable foliations for Φ determine a function DFol :NxN->[0,co)
(as in 1.4 of [H2]) that has all the properties of an equivariant metric except that
DFol(zuz2) = 0 when zγ and z2 lie in the same component of the pre-image of dN.
For sufficiently small δ0, the DF o Γdiameter of a component of the full pre-image of
Nδo(dN) is less than one. In particular, DFol(Φ(z), Fn(z)) and DFol(Φ~ \z\ F~ \z)) are
uniformly bounded independently of n and z. This implies (cf. the proof of
Lemma 2.2 in [H2]) that the constant C used in the definition of shadowing in N
can be chosen independently of y, w, and n. This is sufficient (cf. the proof of
Theorem 2 in [H2]) to imply the existence of Q'*(n) with the appropriate
shadowing properties; it remains to show that dist(Q'*(w), dN) has a lower bound
that is independent of n.

There exists K > 0 so that if dist(>>, dN) > ε, then sup DFol(Φ\y), A) > C + 1 for
\k\<K

every lift $ of y and component A of the pre-image of dN. Choose δ > 0 so that if
w e Nδ(dN), then Fk

n(w) e Nδo(dN) for all \k\<K and all sufficiently large n. •

2. The pA Hypothesis

Throughout this section / : A-» A is a fixed lift of a fixed homeomorphism / : A-> A;
we will write ρ(x) for ρ(J, x). Most of the results in this section are contained in
[B-S].

Lemma 2.1. Suppose that ρ(x) is defined and that Y is the ω-limit set of x. Then
either ρ(y) = ρ(x) for all ye Y, or there are periodic orbits in A with prime period and
with rotation numbers arbitrarily close to ρ(x).

Proof of Lemma 2.1. If the lemma fails, then (cf. Theorem 6.19 of [Wa]) there
exists a point yeY such that ρ(y) φ ρ(x). For concreteness, assume that ρ(y) > ρ(x)
and choose ρ(y)>p/q>ρ{x). We will show that there exists a periodic point zeA
such that ρ(z) = p/q.

Let h=T~pJq\λ^λ. Then lim / ^ ( j ^ o o and lim p1h
n(x)=-oo for any

n-*oo n-*oo

lifts y and x of y and x. Fix ε > 0. For each i > 0, choose lifts yt of y and xf of x
and choose segments % — {ti(y^: at <j < bt} of the ft-orbit of yt and
Xi = {hJ{xi):ci<j<di} of the h-orbit of X; such that

2. Plh»in>w\
3. dist(hbiyi),hcixi))<ε,
4.
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The ε-pseudo-orbit Y1X1 %X2 has accumulation points, so by [Fr], h has a fixed
point z. Let z e A be the projected image of z. •

Lemma 2.2. Suppose that Yt is an ω-lίmit set, that ρ| l̂  = rf->r, and that Y^Yin the
Hausdorf topology on closed sets. Then either ρ\Y=ror there exist periodic orbits in
A with prime periods and with rotation numbers arbitrarily close to r.

Proof of Lemma 2.2. The proof is similar to that of Lemma 2.1 and is left to the
reader. •

We say that r satisfies the pA-hypothesis if there are periodic orbits Xb a closed
invariant set X, an invariant measure μ with support in X, a (not necessarily
invariant) set BcX of positive μ-measure and ε>0 such that
(pA-i) X^X in the Hausdorf topology.
(pA-ii) Either ρpQ<:r<:r + ε<ρ(b) for all beB and all sufficiently large i or
ρ(Xi)>r>r — s>ρ(b) for all beB and all sufficiently large i.

This definition is motivated by Lemma 3.1 and the following proposition.

Proposition 2.3. For all r in the closure of R(J), one of the following holds:

1. There is a compact invariant set Q such that ρ(q) = r for all qsQ.
2. There is an f-invariant measure μ such that ρ(x) = r for μ-a.e. JCGA.

3. r satisfies the pA-hypothesis.

Moreover, the set of values of r that satisfy (2), but not (1) or (3), is discrete.

Proof of Proposition 23. Lemmas 2.1 and 2.2 imply that either (1) holds or there
exist periodic orbits Xt with ρ(Xι) = r^r. After passing to a subsequence, we may
assume that {Xf} converges in the Hausdorf topology to a closed invariant set X
and that the unique invariant measure μt on X{ converges in the weak-star
topology to an invariant measure μ with support in X.

Let g: A->A be the displacement function g{z) = p1j{z)—p1(z), where zeA is

any lift of ze A. Then ρ(z)= lim (1/n) £ g{f\z)) and the Birkhoff Ergodic
w-oo \fc = O /

Theorem implies that J gdμt= J ρdμi = ri and that J gdμ= J ρdμ. Since μ^μ in
Xi Xi X X

the weak-star topology, J gdμ^ J gdμ. We conclude that J ρdμ = r. Either
Xi X X

ρ(x) = rμ-a.e. or r satisfies the pv4-hypothesis.
It remains to show that the set D of points in the closure of #(/) that satisfy (2)

but not (1) or (3) is discrete. Suppose that rteD and that rt-^r. We will show that
rφD. Lemmas 2.1 and 2.2 imply that there are periodic orbits Y( such that ρ(]Q->r.
We may assume without loss that { Y^\ converges in the Hausdorf topology to a
closed invariant set Y. If ρ| Y=r we are done. We may therefore assume that there is
an invariant measure v with support in Y such that J ρdv + r (cf. Theorem 6.19 of

[Wa]). Suppose for concreteness that each rt<r; the case rt>r is similar. If
J ρdv<r, then rt would satisfy the /^-hypothesis for all sufficiently large /. Thus
Y

J ρdv > r and r satisfies the p^-hypothesis. •
y
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3. Proof of Theorem 0.1

As in Sect. 2, / : A-»A is a fixed lift of a fixed homeomorphism / : A-*A and we
write ρ(x) for ρ(J,x). The results in Sects. 1 and 2 reduce Theorem 0.1 to the
following proposition.

Proposition 3.1. // r satisfies the pA-hypothesis, then there exists n>0, an fn-

invariant finite set K and a homeomorphism φ:A-+A such that:

1. φ is pseudo-Anosov relative to K,
2. φ~fnre\K,
3. nreint(jR($)), where $: A->A is the lift of φ that is equίvariantly homotopic to
JnVQ\K.

The following lemma is the heart of this paper. Its proof is postponed until after
the proof of Proposition 3.1.

Lemma 3.2. Suppose that r satisfies the pA-hypothesis. Then there exist f-periodic
orbits Yί and Y2 that have distinct prime periods and that satisfy the following
property: for any homeomorphism g: A->A that is homotopic to f relative to Yγ u Y2>
there is a g-periodic orbit Z such that either ρ(Z)<r<ρ(Y1\ ρ(Y2) or ρ(Yχ\ {?(Y2)
<r<ρ(Z).

Proof of Proposition 3.1. Let Yγ and Y2 be as in Lemma 3.2, let N be the compact
surface obtained from A\(Y1uY2) by compactifying each end by a circle and let
p:iV-»A be the quotient map.

The restriction f\(A\(Y1uY2)) determines an element μ of the mapping class
group of N. If μ is a pseudo-Anosov class, define n = 1, K = Yx u Y2 and φ=pΦp~1,
where Φ is a pseudo-Anosov representative of μ. Properties (1) and (2) are
immediate. Property (3) follows from Lemma 1.1.

If μ were a finite order class, then it would have a representative G:N->N
whose projected image g = pGp~ί: A-»A was conjugate to a rigid rotation (see
[H3], for example). Since Yx and Y2 have distinct periods, this is impossible.

We may therefore assume that μ is reducible [T]. Choose a reducing set Γ for μ;
i.e. a disjoint union Γ = {yί9 ...,yΛ} of non-peripheral, non-parallel, simple closed
curves in N that is setwise preserved by a representative G:N->N of μ.

We first observe that for each 1 ̂ j ^ fc, G setwise fixes yjm If ys separates the
components of <?A then this is immediate. If γj bounds a disk Dj in A, let lj be the
smallest positive integer such that Glj(y^ = yj. If YtnDj + 09 then the period of Yt is
the product of lj with the cardinality of l^nDj. The claim now follows from the fact
that the periods of Yt are distinct primes.

We next observe that each y7- separates Yx from Y2. If y} separates the
components of dA, then this follows from the fact that γj is non-peripheral. If jj
bounds a disk Dp then Dj cannot intersect both Yi and Y2 since these orbits have
distinct rotation numbers. By our first observation, Dj contains Yt if it intersect Yt.
Since y} is not null-homotopic in N, yk separates Yγ from Y2.

The five possible configurations for Γ are shown below; the components of
A\Γ whose union contains Yiu7 2 are labelled A1 and A2.

Let P be the union of small product neighborhoods of the y/s. Let Nt be the
component of N\P corresponding to Av We may assume that Γ is a maximal
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reducing set and hence that the element of the mapping class group of Nt

determined by G\Nt is irreducible. Let Ht: N^Ni be a representative of this class
that is either pseudo-Anosov or finite order. Then uίf, : uiVf->uiV; extends to a
homeomorphism H.N^N whose nonwandering set is contained in uJVf. Let
H:JV-> JV be the lift of H:N->N determined by / : A->A. Denote {ρ(β,x):xeNt}
by R(Hd.

Fig. 2
(e)

We consider the five possibilities. In Figure (3.1-a), Aγ and A2 are annuli and
R(H) = R(β1)uR(B2). If Hi is finite order, then R(Ht) = ρ(Y^ Thus either H1 or H2,
say Hl9 is pseudo-Anosov and reintiRiHJ). Define n = l , K=YX and
φ = spH1p~ΐs~ί, where 5: A ^ A is a homeomorphism that is homotopic to the
identity relative to Yv

In Figure (3.1-b), A1 is an annulus, A2 is a disk and JV3 is a three times
punctured sphere. Since H3:N3->N3 setwise preserves the components of dN3,
H3 = identity. Moreover, Q(B,Z) = Q(Y2) for all zeN2. Thus R(H) = R(H1)uρ(Y2)
and the proof concludes as in the previous case.

In Figure (3.3-c), Aγ and A2 are disks while N3 and AΓ4 are three punctured
spheres. Thus R(H) = ρ(Y1)vρ(Y2) which is impossible.
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In Figure (3.3-d), Aι and A2 are disks, ΛΓ3 is a four times punctured sphere and
) = R(H3)uρ(Y1)uρ(Y2). As above, H3 is pseudo-Anosov and reint(R(H3)).

Let n be a multiple of the periods of Yx and Y2 and let yieYui=\,2. Let N' be the
surface obtained from A\{yί9y2} by compactifying each end with a circle, let
p': N'-+A be the quotient map and let μ' be the element of the mapping class group
of N' determined by fn\(A\{yl9 y2})> There is a homeomorphism s: N3 ->N' so that
siί^s"1 is a representative of μ'. Define K = {yί,y2} and φ = p'sHn

3s~ι(p')~1.
In Figure (3.3-e), ̂ 4X is a disk and R(H) = R(H2) + £?(Ti) The proof concludes as

in the previous case with K= ^2

u{);i}- •

The proof of Lemma 3.2 relies on the "homotopy Brouwer Theory" developed
in [HI]; see in particular the proofs of Theorem 9.1 and Theorem 4.4 in [HI].

Proof of Lemma 3.2. Let (Xi9 X, μ, B, ε) be as in the definition of the /^-hypothesis.
For concreteness, we assume that each ρ(Xt )<r; the case ρ p Q > r is analogous.
Choose r<p/q<r + ε and let h=T~pJq\λ^λ.

Lemma3.3. For all Z>>0, there exist <5>0, yί9 y2eA and m, n>0 so that:
(i) $j covers a point in some Yj = Xij,j=l,2,

(ii) d i ( ) 5 d i ( / ( ) / n ( / ) ) 5
(iii)
(iv)

h" n (y 2 )

Fig. 3

Proo/ o/ Lemma 3.3. Let 5 C X C A be the full pre-images of B c X C A and let μ be
the measure on X determined by μ. Since ρ\B>p/q, we may assume, after
restricting to a subset of B if necessary, that there are constants D'>D>0 and δ > 0
such that:
1. p1/zi(F)>p1(&)-D/ for all />0 and Fe5,
2. dist(/i(z),z)<D73 for all ZGA,
3. hi(N2δ(B)nB)nN2δ(E) = Φ for all i>0 and SeB,
4. h{N2δ(B))nN2δ{B) = φ for all FeS.

Fig. 4
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Choose Bo e 8 so that μ(Nδ/2(E0)r\B) > 0. Since B is contained in the Hausdorf
limit of the Xt\ there exists Yί=Xiί, yxeYu and a lift yx of y1 such that
dist(j/l5 Eo) < δ/2. If a is a positive multiple of the period of yl9 then h^y^ = T~d(yι)
for some d>0. By choosing a to be sufficiently large, we may assume that d>D'.
Let B0 = Nδ(y1)nB and let Bι = T'ld(B0) = Nδ{T~ιdyί)nB = Nδ(hlayί)nB. Each Bι

has the same μ measure, say c>0. Properties (2) and (3) imply that the forward
orbit of Bt intersects C = pϊ 1{[pί(yi) — D\ Piiy^ + D']) in a set of μ measure at least
c. Since μ(C) is finite, the forward orbits of the 5/s can not all be disjoint. By
property (1), the forward orbit of Bt is disjoint from Bk for all k>L Thus the forward
orbit of Bko intersects Blo for some k0 > l0. Since ft commutes with T, the forward
orbit of Bko_lo intersects Bo. Choose BeB0 and n>0 so that ft~w(5)eSfco_ίo. Let
m = (ko-lo)a. Then dist(δ',5?1)<5, dist(ft~B(S), /ιw(j;1))<δ and dist(^1,/ιw(>;1))>D.
Since B is contained in the Hausdorf limit of the Xt% there exists Y2 = Xh, y2 e Y2

and a lift y2 of y2 that is so close to 5, that dist(j)2,^i)<<5 and dist(^~Λ(j;2),
ff"(yi))<5. D

Let R = sup{dist(/ι(z),z):ze A} and apply Lemma 3.3 with D = 5R. Denote the
/z-orbits of y t and y2byΘ1 and 0 2 respectively. Suppose that g: A-> A is homotopic
to / relative to (YίuY2)9 and that h': A->A is the lift of gq that is equivariantly
homotopic to h relative to {ΘιvΘ2). Since fixed points of ft' correspond to periodic
points of g with rotation number p/q, it suffices to show that Fix(ft'|(int(A)) φ 0. We
will assume that Fix(ft'|(int(A)) = 0 and arrive at a contradiction.

An arc αCint(A) connecting x to h(x) is called a homotopy translation arc for x
with respect to (ftjfi^uβ^) if there is a homotopy F ί:int(A)^int(A) such that:

1. Fo = identity,
2. FJ(0(x)u0(y)) = identity, ί e [ 0 , l ] ,
3. F1(ft(α))nα = ft(x).

Note that if h! :int(A)^int(A) is homotopic to ft relative to 0 1 u 0 2 , and if α is a
homotopy translation arc with respect to (ft,Θγ\jΘ2\ then α is also a homotopy
translation arc with respect to (h'9Θ1vΘ2).

Let τ C Nδ(yx) be an arc connecting j ^ to y2. Let ρ C NR{yx) be an arc connecting
j?! to ft(j?i). Then h~1(ρ)uρuh(ρ)cN2R(y1) and ft(τ)nτ = 0. It follows (cf. Corollary
4.5(c) of [HI]) that there is an arc yCN2R(yi) that contains yx^jy2 and that is a
homotopy translation arc for yx with respect to (ft, Θγ\jΘ2). Similarly there are arcs
αCN2R(ftm(y1)) and βcN2R(h~n{y2)) that contain ^m(^i)uft"w(y2) and that are
homotopy translation arcs with respect to {h,(9x\jΘ2) for hm(yγ) and h~n(y2)
respectively. Note that ocnβ + 0 and that (ocuβ)nγ = φ. This contradicts
Corollary 4.5(a) of [ H I ] . D

Acknowledgement. I am grateful to Dick Hall for bringing this problem to my attention through
his problem list [Hall].
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