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Abstract. An interval map is said to have an asymptotic measure if the time
averages of the iterates of Lebesgue measure converge weakly. We construct
quadratic maps which have no asymptotic measure. We also find examples of
quadratic maps which have an asymptotic measure with very unexpected
properties, e.g. a map with the point mass on an unstable fix point as
asymptotic measure. The key to our construction is a new characterization of
kneading sequences.

1. Introduction

A probability distribution v on the phase space X of a discrete-time dynamical
system f:X-+X is called an asymptotic measure, if the normalized uniform
measure λ on the phase space, e.g. Lebesgue measure or more generally a
Riemannian volume, tends under the action of the dynamical system to the

\ n-l

distribution v. In mathematical terms this means that - £ (f*)kλ converges
n k = o

weakly to v, where /* is defined by \\pd(f*λ) = \\pofdλ for ψeC(X). For many
hyperbolic systems asymptotic measures exist, e.g. for axiom-̂ 4 systems (cf. [B]).
Sometimes they are called natural measures or Bowen-Ruelle-Sinai measures.

For nonhyperbolic systems the situation is more complicated. Consider the
family fa(x) = ax(\ — x) with 0 < a ̂  4 of quadratic maps on [0,1]. Each fa has either
sensitive dependence to initial conditions f i.e. there is an ε > 0 such that sup length

V «>o
(fnj) > ε for all intervals J Q [0,1]Y or there is an attractor (a stable periodic orbit
or a Cantor set) which attracts Lebesgue - a.e. trajectory (cf. [G]). In the latter case,
the attractor supports a unique /^-invariant probability measure, which is an
asymptotic measure of entropy zero (cf. [Ni, P]).

Work of Jakobson [Ja], Collet/Eckmann [CE2] and others [Mi, BC, R, No,
Kl, K2, NvS] suggests that for "most" fa with sensitive dependence there is a
unique absolutely continuous invariant probability measure, which, by the
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ergodic theorem, is an asymptotic measure for fa. On the other hand, Johnson [Jo]
gives an example of a map fa with sensitive dependence that has no finite
absolutely continuous invariant measure. He does not investigate, however,
whether his example has an asymptotic measure.

In this paper we construct parameters a, for which fa has no asymptotic
measure and others for which fa has an asymptotic measure with unexpected
properties. These fa have necessarily sensitive dependence.

Before we state our results, we fix some notation. By a unimodal map we mean
a continuous map / : [ — 1,1 ] -> [ —1,1] such that / is strictly increasing on [ — 1,0]
and strictly decreasing on [0,1], and such that /( —1)=/(1) = —1. Such an / is
called 5-unimodal, if it is of class C3 and if it has negative Schwarzian derivative,

/ \

We call (/ί)0^ί<i a full continuous family of unimodal maps, if

d
(t,x)\-+ft(x) and (t, x) ι-> — ft(x) are continuous maps from

[0,l]x[-l,l]toR, (1.1)

/ί(0)>0 for ίe[0,l], /t

2(0)<0 for ίe(0,l]; /0

2(0) = 0, Λ(0) = l. (1.2)

A typical example of a full continuous family of S-unimodal maps is given by fs(x)

= s(l — x2) — 1 for s £ ¥—^—, 2 . By a linear change of coordinates, this family is

transformed to fa(x) = ax(\ — x).
For a probability measure μ on [—1,1] let ώt(μ) be the set of all weak

(\ n \
accumulation points of the sequence - £ (ft*)kμ . Observe that v is an

asymptotic measure for ft if and only if ώt(λ) = {v}, where λ denotes the normalized
Lebesgue measure on [ — 1,1]. Finally, denote by δx the unit point mass at x and by
hμ(f) the entropy of an invariant probability measure μ under / For a full,
continuous family of S-unimodal maps we prove

Theorem 1. Let 0^ho<h1 <log—-^—. There are uncountably many parameter
values t such that

(i) ώt(λ) is a weakly closed, convex set, and

{K(ft) - v e ώt(λ), v ergodic] = [Ao, AJ,

(ii) ώt(δx) = ώt(λ) = ώt(δ0) for A-a.e. x.

Theorem 2. Let 0 < A<log—-ή-—. There are uncountably many parameter values t
such that

(i) ft has an asymptotic measure v with entropy h which is ergodic and singular to
Lebesgue measure.

(ii) ώt(δx) = ώt(λ) = ώt(δ0) = {v} for λ-a.e. x.
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Theorem 3. Let zt denote the unique positive fix-point of f. There are uncountably
many parameter values t such that

(i) δZt is an asymptotic measure for f, but zt is not a stable fixed point.
(ii) ώt(δx) = ώt(λ) = ώt(δ0) = {δZt} for Λ-a.e. x.

Remarks, (a) If t = 1 is the only parameter with ft(0) = 1, then in all three theorems
the parameter ί = l is an accumulation point of the set of parameters with
properties (i) and (ii). As /x has an absolutely continuous invariant measure
equivalent to λ (see [Mi]), Theorem 3 shows that ώt(λ) depends as discontinuously
as possible on t near ί = l.

(b) In all three theorems, properties (i) and (ii) imply that ft has sensitive
dependence. For Theorems 1 and 2, this follows from the fact that ft does not have
an asymptotic measure with entropy zero, and in Theorem 3 the asymptotic
measure is supported neither by a stable periodic orbit, nor by a Cantor set.

(c) In the case of Theorem 2, ft has no ergodic absolutely continuous invariant
probability measure. Hence, by Theorem A in [K1] or by Corollary 2 in [K2],
one has

for Λ-a.e. x.
On the other hand,

lim - log \(ft

n)'(x)\ = j log \ft'\dv ^ hv(f) > 0
«->oo n

1 n

for v-a.e. x, although v is the weak limit of - £ δf*x for A-a.e. x.
n k= l

The proofs of the three theorems rely on the same basic idea, which is carried
out in Sect. 3. We sketch it briefly: In a first step (Proposition 1) we construct
"skeletons" of kneading sequences with the following property: For each kneading
sequence e which fits the skeleton there is at least one parameter value t such that e
is the kneading sequence of f and such that f has no finite, absolutely continuous
invariant measure of positive entropy. This construction is similar to the one of
Johnson [Jo]. Given such a skeleton, we construct in a second step (Proposition 2)
particular kneading sequences fitting the skeleton and having prescribed ω^o).
Some additional care is required in order to obtain ώt(δx) = ώt(λ) = ώt(δ0) for A-a.e.
x. The second step relies on a new characterization of kneading sequences, which is
also of independent interest. It is given by Theorem 6 in Sect. 4. In Sect. 2 the
background material is provided, which is needed for the proofs in Sects. 3 and 4.

2. Preparations

In this section we prepare the necessary tools for the construction of the examples.
Let / : [ — 1, l]-»[ —1,1] be a unimodal map with critical point 0 and /2(0)<0
</(0). We restrict / to the absorbing invariant interval [α, ft], where a=f2(0) and
b=f(0)> In order to apply the methods described below, we modify/. Let

V= {x e (a, b) \f\x) = 0 for some k ̂  0} .
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We substitute each x e V by two points x — and x + in [α, b] and denote this
modified interval by /. Then / is again a totally ordered set and a compact
metrizable space with respect to the order topology. Define q: I-»[α, b~\ by q{y) — y
if yφ{x — ,x+ \xeV) and q(x-\-) = q(x — ) = x for xe V. Then q is continuous and
surjective and every ye[aib~]\V has only one inverse image. We extend /
continuously from [α,b]\F to / and denote this map by g. Then g:J->7 is
continuous and q°g=f°q. Often we shall consider the dynamical system (/,g)
instead of ([α, b]9 /). A measure on [a, b~] for which V is a nullset can be transferred
to I by q. Hence we have the Lebesgue measure λ also on /. If the critical point 0 is
not periodic, then V is a nullset of every invariant measure and hence there is a
1 — 1-correspondence of invariant measures on ([α,6],/) and (/,g), which pre-
serves the entropy. Furthermore, if a sequence (vfc) of measures on / converges
weakly to v, then q*{vk) converges weakly to g*(v), since ψ o q is continuous on / for
every continuous function ψ on [α,fe].

Next we describe (/, q) using symbolic dynamics. Set

Then
(Ω

We have φog = σoφ. As «2Γ is a partition into closed-open sets, φ is continuous, and
φ: I^κρ(I) is a homeomorphism, if JΓ is a generator. This happens in our examples
since they contain no stable periodic orbit (see [G]).

The kneading sequence e of the one-dimensional dynamical system (/, g) is
defined by e = φ(b). If 0 is not periodic, e is the sequence, which is usually called
kneading sequence for ([α, b]9f) and defined by ek = 1, if fk+1(0)>0 and ek = 0, if
/ f c + 1(0)<0 (cf. [MT, CE2]). In order to investigate the structure of e, we define a
ye{2,3,4, ...}u{oo} and a sequence (ri)ι^i<γ in N as follows. Set r1 = l. If
r l 5r2,...,r, are defined, set St = 1 + r1 +. . . + r, and let r i + x eNu{oo} be maximal
such that eSι+}=e} for 1 ̂  j < η+ x. If r t + 1 = oo for some i, set y = i: +1, otherwise set
y = oo.

In this way we have defined γ, (ri)1^ί<y and

5 0 = l , Sfe = H-r1 + ...+r f c for l = fc<y, (2.2)

= [α,0-]C/ and Z!

en Jf = {Z0,Z1} is a partition of / and g|Z0 and g\Zx are monotone. Let
: = {0,1}N, σ) be the two-shift. We define the coding φ: I-+Ω by

., where ω—j if gI~1(x)6ZJ-. (2.1)

such that

% k - 1 + i«s k- 1 + 2 ^ = ^ 2 - ^ - 1 ^ for l = f e < 7 , (2.3)

where x' = l ifx = 0andx/ = 0ifx = l. [Forfe=l this holds, since rx = 1
β2 = 0 in view of g2(0)<0— < 0 + <g(0).] If y<oo, we have additionally

^ ^ + 2- = e 1 e 2 . . . . (2.4)

We can describe the sequence (ri)ίύi<y in a different way. Set
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It is shown in Lemmas 1 and 2 of [H 2] that there is a map β : N y ->N y u{0} such
that

rk = SQ{k) for ί£k<y, (2.5)

(rj)k<j<y^(rQ{Qm+j-k)k<j<γ for fceNy with β(fc)^l. (2.6)

Here ^ denotes the lexicographic ordering. By (2.2) and (2.5) we get

Q(k)<k for fceNr (2.7)

It follows from (2.5) that (2.6) is equivalent to

(Q(j))k<j<y^(Q(Q(Q(k))+j-k))k<j<y for fceNy with β(fc)^l. (2.8)

It is convenient, to introduce a name for these maps. A map β is called a kneading
map, if there is a 7 e {2,3,.. .}u{oo} such that β maps N y to N y u{0} and such that
(2.7) and (2.8) are satisfied.

On the other hand, one can start with a kneading map β and determine a 0 — 1-
sequence e uniquely in the following way. Because of (2.7), the map β defines
uniquely a sequence (ri)1<i<γ using (2.2) and (2.5).

By (2.7) and (2.5), we get rt^St_x for 1 ̂ i < γ . Hence settinge1 = l and e 2 = 0 a
0 — 1-sequence e is defined uniquely by (2.3) and (2.4). We call e the β-sequence of
the given kneading map β.

We construct our examples of unimodal maps in terms of β. To this end we
need the following theorem, which is proved in Sect. 4.

Theorem 4. Let (ft)te[0, i] be a family of unimodal ^-maps on [ — 1,1] satisfying (1.1)
and (1.2). Suppose that ye{2,3, ...}u{oo} and that β :N y ->N y u{0} is a kneading
map. Let e be its Q-sequence. Then there is a decreasing sequence of intervals

00

Jk = Jk(Q\ which are open subsets of (0,1], such that JO0=JOD(Q)'. = f] Jk is not
k=ί

empty and such that ft has e as its kneading sequence for all t e JaD. J^ is constructed
such that the critical point of f is nonperiodίc for all teJ^, and hence e is also the
kneading sequence of gt.

If γ = oo and Q is not eventually periodic, then J^ is closed. If Q is another
kneading map with Q-sequence e and if et = ei for l^i^k, then Jf(Q) = JiQ) for

For later use we state two more properties of kneading maps Q. For the
sequence {r^lύi<y assigned to Q we have

i S f c = l + r 1 + ... + r k ^ 2 k for \^k<y. (2.9)

This follows by induction from (2.5) and (2.7). If e is the g-sequence, then we have

e eventually periodic => γ < 00 or Q eventually periodic. (2.10)

In order to prove (2.10), suppose that γ = 00. Since e is eventually periodic, there are
k and / such that σk+ιe= σke. Asy = oo, there is an αe{0,l,...,/ — 1} such that
{α + Im: m e N} contains St for infinitely many i e N r Hence there are i +7 with
S^k and Sj^k, such that σSie = σSje. From the definition of the rι we get ri+ι

= rj+i for ί ^ l . Now (2.5) implies β(ϊ + /) = δ(/ + 0 for Z^l, and (2.10) follows.
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In Sect. 3 we need the following construction related to the kneading sequence.
In [ K l ] and [K2] a Markov extension of the dynamical system (/,g) is
constructed. Define the following subintervals Dk of / for /c^l. If k = Si for some

For kφ{Si:O^i<γ} choosey maximal such that Sj<k and let Dk be the closed
subinterval of/ with endpoints gk~1(b) and gk~Sj~ 1(b). In particular, D1=Z1 and
D2 = Zo. By (2.1) we get gι~ 1(b) e Zeι for / ^ 1. Since g |Z 0 and g\Zx are monotone, we
get the following results by induction using (2.3), (2.4), and (2.5) (cf. [H 3]).

DkCZek for fc^l, (2.11)

k if kφ{St:0^i<y}9 (2.12)

DSinDri = 0 for 0^i<y. (2.13)

oo

Let the sets Dk be disjoint copies of the sets Dk. Set ΐ= (J Dk. Let πk: Dk^>Dk be the

identity and let π:ΐ-+I be given by π(x) = πk(x\ if xeDk. We define g:/->/ as
follows. Fix x e T and let k be such that x e Z)fc. If fe φ {St — 1:0 ^ / < y}, then set g(x)
= π^+i ogo πk(x), which is defined by (2.12). If k — S{ — 1 for some i < y, then g o πk(x)
is either in Ds. or in Dr. by (2.13). In the first case set g(x) = π ^ x ° g © πk(x), in the
second case set g(x) = π~1 °goπk(x). Then (/,g) is a Markov map with countable
Markov partition {Dk:k^l}. It is called a Markov extension of (/,g). We have

3. Proofs of Theorems 1-3

Remember that gt:I^>I ( O ^ ί ^ l ) is obtained from a full, continuous family of
S-unimodal maps by doubling all preimages of the critical point, and φt:I^>Ω
= {0,1 }N is the coding associated with gt. Observe that the endpoints a = gt(b) and
b = gt(O±) of/ depend also on t.
For N ^ 1 let

ΩN:={ωeΩ:0N and 01 2 ί + 1 0 (for z^O) do not

occur as subwords of ω}.

ΩN is a closed subshift of Ω. It is a strongly transitive sofic system, and therefore it is
a factor of an aperiodic topological Markov chain of the same entropy (cf. [F]). In
particular ΩN has the specification property (see [DGS]). Using the results of [F] it
is easy to check that

lim fttop(σ|Ω]v) = l o g 1 ^ . (3.1)

Denote by M{1\ Jί{Ω\ etc. the spaces of Borel probability measures on /, Ω, etc.
endowed with their weak topologies. As φt:I-^κρt(I) is a homeomorphism (cf.
Sect. 2), φ*: Jί(I)^Jί{φt(I)) is homeomorphic, where φ* is defined by

{ueC{φt{I)))-
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Finally let

Jίσ{ΩN):={ve Jί{ΩN): v σ-invariant}.

The following theorem has the theorems from the introduction as corollaries:

Theorem 5. Let C be a closed convex subset of Jίσ(ΩN) for some N^l. There is an
uncountable set TQ[0,1] such that for allteT holds:

(i) The kneading sequence of gt is not eventually periodic.
(ii) gt has no λ-absolutely continuous invariant probability measure of positive

entropy.
(iii) vEώt(δb)oφfveC.
(iv) ώt(δx) = ώt(λ) = ώt(δb) for 2-a.e. x.

Before we turn to the proof of this theorem, we show how to deduce
Theorems 1-3 from it:

Proof of Theorems 1 and 2. If Q^h0^h1<\og —-^—, there is AΓ^l such that

^N : = ^toP(σ|βiv)> ̂ i» s e e (3 1) Restricting the length of permitted blocks of Γs, we
find an irreducible subshift of finite type in ΩN with entropy h\ hί<h' <hN which
can support ergodic shift-invariant probability measures of all entropies between 0
and h'. In particular we find a set C o Q Jiσ{ΩN) containing only ergodic measures
and such that

{hv(ft): φfv e Co} = {hμ{σ) :μeC0} = [Λo, ή , ] .

If h0 = hί9 we may assume that C o contains only one element. Let C be the convex
closure of Co. Then Theorem 1 and 2 follow from Theorem 5, since q*: Jl(ΐ)
-+Jΐ([a,b]) is continuous and its restriction to invariant measures is 1 — 1 and
preserves entropy, cf. Sect. 2.

Proof of Theorem 3. Let μ be the point-mass on 1 °° e Ωv Then {ψ\)~1{μ} = {δZt},
where zt is the fix-point of gt (different from a). Hence Theorem 3 follows from
Theorem 5 for C = {μ}, because if zt were stable, then the kneading sequence of gt

would be eventually periodic.
We prepare the proof of Theorem 5 with a collection of some facts and

definitions. Let Ά be the set of all mappings Q :N->Nu{0} satisfying

Q(ϊ)<i for all i (3.2)

and

(G(i +j))j* i ^ (β(G(G(0) +J))j* i for all ί with Q(ί) > 0. (3.3)

Ά is the set of kneading maps with γ = oo.

A sequence J^ = (0 = Vo < Uγ < Vγ < U2 < V2 < ...) of integers is a frame, if

Uk+ί^k-2k+Vk for all fc^O (3.4)

and,

Vk^k2'2u* for all fc^l. (3.5)
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Given a frame 3F we define the skeleton 6^{^) as the set of all Q e Ά satisfying

Uk<iSVk^Q(ϊ)=Uk, (3.6)

Q(Uh+1)<Uk (3.7)

forall/c^l.
1 n

Let vJCfttfI: = - £ ^k(JC). We postpone the proofs of the following two

propositions. The first one is inspired by Johnson's construction [Jo].

Proposition 1. For each JV^ 1 there are uncountably many different frames 3F with
U1=N+ί such that for each Qe^(^) and each ί e J J β ) (cf Theorem 4) holds:

i) gt has no ergodic λ-absolutely continuous invariant probability measure of
positive entropy.

ii) For /ί-a.e. xel and each ψeC(I).

lim (vXfUS{Vn)(ψ)-vb)t,S(un)(ψ)) = 0 (3.8)
n~* oo

Here S(k) = Sk is determined by Q using (2.2) and (2.5).

Proposition 2. Let C be a closed convex subset of Jiσ(ΩN\ and let & be a frame
with U1=N+1. There is Q e ̂ {^) with Q(ί) = 0 (1 ̂  i ̂  N) and such that for each
teJJQ) holds

where Lt is the set of weak accumulation points of the sequence (v f c > ί j S ( t 7 k )) f e^1.

Proof of Theorem 5. Let & be a frame as in Proposition 1 and Q e SP{βr\ 16 J JQ)
as in Proposition 2. We prove i)-iv) of the theorem for this t:

i) Q e 6^{^) is unbounded and hence not eventually periodic because of (3.6),
such that the g-sequence e is not eventually periodic by (2.10). But e is the kneading
sequence of gt for t e J Jβ) by Theorem 4.

ii) Follows from Proposition 1 and Corollary 2 of [L].
iii) Follows from Proposition 2.
iv) By Proposition 1, gt has no ergodic absolutely continuous invariant

probability measure of positive entropy, whence the same is true for ft. Therefore,
Theorem 4 of [K2] implies ώt(δx)Qώt(δb) for /ί-a.e. x and ώJ(λ)QώJ[δb). On the
other hand, (3.8) of Proposition 1 implies LtQώt(λ) and LtQώt(δx) for A-a.e. x, such
that the assertion follows from Lt = ώt(δb), see Proposition 2.

If T denotes the set of parameters with properties i)—iv), then Γis uncountable
by Proposition 1. If t = 1 is the only parameter for which ft(0) = 1, then {1} = J^{Q\
where Q = 0. By Theorem 4, Q as in Proposition 2 satisfies JN(Q) = JN(Q)> whence
teJN(Q) and f] JN(Q) = {1}. This proves Remark a) from Sect. 1.

N

Proof of Proposition 1. Recall from Sect. 2 that gt: /-• J is the Markov extension of
Sk-l

gt and that also the space I varies with t. Let ΐk: = (J Dt be the part of / "below
i = 1 ^

level Sfc," and denote by X the Lebesgue-measure on /.



Quadratic Maps without Asymptotic Measure 327

We construct inductively a frame 3F which determines a sequence (^) n > 0 of
"partial skeletons" by

&0 = Ά and,for n ^ l ,

S?n = {QeΆ\ (3.6) and (3.7) hold for fc = l, ...,n}. (3.9)

Obviously £?(&)= Π ^ Let Fo = 0, U1=N + ί >1. Suppose that

are determined. Then ί ^ is well defined and to each Qe&?

n.1 we consider β
defined by

5(0=6(0 ( f ^ i α 5(0=t/» ( ^ t / j . (3.10)

We check that Qe£^f

n.1:Q satisfies (3.2) and it satisfies (3.6)L(3.7) for k^n-ί
because β does. It satisfies (3.3) for i < Un because β does and Q(Un +1) = Un, and
for i^Un because

β(β(β(0) +1) ̂  β(β(0) < β(0 by (3.2)

Let Pn_ x = {Q: Q e ̂ n_ x}. ^π_ x is finite, whence also

Tn_!: = {ί e [0,1]: ί is endpoint of an interval J J β ) , β e Pn- J

is finite. As β(0= t/π for all 6e«^»-i and all i> l/B, we see from (2.12), (2.13), and
(2.5) that gt(T\ϊUn)Qί\TUn for all teTn_v Hence, by assertion (3.14) in [K2] or
Proposition 2.1 of [Mi], there is pn>2Un such that

X{*etVH:& i*)erϋt}<± (3.11)

for all t e Γπ _!. As 7̂  _ x is finite it follows from Theorem 4 that (3.11) holds also for
all ί e J J β Λ J J β X β €<?„_!, if mis large enough. As Jm{Q) = Jm{Q) for m<Sι if Q'
is any map in Ά which coincides with Q on {1,...,/}, there is Vn~ίn2 pn such that
(3.11) holds for all teJJQ') if Q'ΦQ but β'(0 = β(0 for i= 1,..., Fn.

Finally choose [/„+1 ̂ n 2n+v". By definition of 5̂ ,

te U J J β ί ^ t has property (3.11). (3.12)

This finishes the recursive construction of 3F. !F is a frame, as [/„ + x ^ n 2" + F n and
Vn^:n2 - 2Un by choice of (7W and Vn. As we have much freedom in choosing Un and
Vn, the construction produces uncountably many different frames.

We prove that if ί e J ^ β ) , Qe^(^\ then gt has no ergodic, absolutely
continuous invariant probability measure of positive entropy: Suppose for a
contradiction that μ is such a measure. By Theorem 3 of [K 3] (cf. also Theorem 3
of [H1]) there is an ergodic gt invariant probability measure μ on / of the same
entropy and such that μ = π*μ, μ<%.

As TUn/* /with w->oo, we have
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which together with (3.11) is in contradiction to μ<ξX. This proves i) of
Proposition 1.

Now we prove (3.8): By (3.12) and the Borel-Contelli lemma, the set
{neΉ:gϊ»(x)eΐUn} is finite for X-a.e.xeJif Qe^(^)= f] &>„ and teJJQ). For

such an x let n be so large that gp

t

n{x)iTv , i.e. gfn{x) is "above level Sv ." As
Q(ί)=Un for UH<i£ Vn, we have g^)φΐUn for pn^k<S{Vn) by (2.12) and (2.13),
and ((φt(πx))k)k=Pnf...,s(vn)> th e itinerary of πx from time pn to time S(FJ, is
composed of segments eu ...,eS([7n)_1, * [except for an initial- and end segment
of length ^ £(£/„)], where * can be either 0 or 1, cf. (2.3). Now (3.8) follows from the
facts that S{Un)->oo as n->oo and S(Vn)-pn^Vn-pn^{n2 -\)2Un^(n2 -l)S(Un)
by (2.9) and by the choice of Un and Vn.

Proof of Proposition 2. Let 3F be a frame with Uί = JV+1. As Jί(ΩN) is separable,
there is an at most countable set C = {μi:ie¥ί}QC which is dense in C. As
jUjÔ jv) = 1 for all ί and as ΩN has the specification property, each μt has a generic
point ω(ΐ)eΩN (see [DGS, Corollary 21.15]). Without loss of generality ω1(ί) = 0
for all L

Let d be a metric for the weak topology on Jί(ΩN). For each I'eN there is
ί(i)eN such that for all /^/(i),

( ) 7 (3 1 3 )

Let nί,n2,n3,... be a sequence in N such that each i e N occurs infinitely often
among the nk and for sufficiently large k,

(3.14)

Such a sequence exists as S([/ί :+1)-S(Ffc + fc)^17)i+1-2''k+*-> oo by (3.4) and
S(Vk)^Vk^k2 by (3.5).
We shall construct ge<S%^) such that

)-s(vk+k)(nk) for all fc^l. (3.15)

Fix k 2; 1 and write ω{nk) = u t (n^Vjίn^)... where v}{nk)=0 or 11 for all ϊΐ 1. This is
possible because oy(nk)eΩN and ωι{nk) = 0. Define β:N-»]Nu{0} by

β(/)=0 (/ = 1,-.^1 = ̂  + 1) (3-16)

Pi-C/J (3.17)

.,fc-l) (3.18)

(3.19)

: »•
+ 1 -F t -fc) . (3.20)
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The choice in (3.20) is made such that

Vj{nk) = e\=0, if

and (3.21)

vJ{nk) = e1e'2 = lU if r(Vk

because eί = l, e2 = 0. [Observe

) = 0 and

by (2.5).]
We show that QeSf(&)9 i.e. (3.2), (3.3), (3.6), and (3.7).
ad(3.2): Q(ί)<i for all i by definition of β.
ad(3.3): By definition of β, β ( 0 > 0 implies β(β(0) = 0 or 1. Hence if l^j^N

and β(/)>0, then β(β(β(0) +j) = 0. Suppose (3.3) is wrong. Then β(i+j) = 0 for
lύj^N. As β ( 0 > 0 implies i>Uί9 the Q(i+j) are defined in (3.20), and it
follows that there are N consecutive 0's in ω(nk\ a contradiction to ω{nk) e ΩN.

ad(3.6): This is (3.17).
ad(3.7): Follows from (3.20) and the assumption Uί=N + l > 1 .
Finally (3.15) follows from (2.3) and (3.21).
We proceed to prove φ?(Lt) = C, where Lt is the set of weak accumulation

points of the sequence (vb,tfS(vk))k^i' Let μteC, ί = nk for infinitely many k.
Observing

1^0 (fc-oo) (3.22)

by (2.9) and (3.4) and that ω(ί) is generic for μi9 it follows from (3.15) that
(φf)~1μieLt. As Lt is closed and C is dense in C, we have (φf)~1CQLt.

Now let veLt be the weak limit of a subsequence (mkj)jkl of (vM f S ( ϋ k )) f c^i. If
there is i e N such that ήj: = nk. = ί for infinitely many7, then φ*v = μt e C by (3.15)
and (3.22). Otherwise rc,—>oo as7-*00. In that case let dj:=S{Ukj + 1)-S{Vk)

1 n

and μi,n:=-Σ^δσkωii). Then

d(φ? v, μBj) ^ d(φ*v, φ*mkj) + d(φfmfc., μΛ., d) + d(μftjf d., μn).

The first term tends to zero by choice of (mkj)j^ l9 the second one by (3.15) and (3.22),

and the third one is less than — by (3.13) and (3.14). But ήj->oo as;->oo such that
nnj j

d{φ?v,μnj)-+0, i.e. φ*vecl{C) = C. This finishes the proof of φf(Lt) = C. In
particular, Lt is convex.

Now we prove ώt{δb) = Lt. The " 2 "-inclusion is trivial. So let veώt(δb) be the
weak limit of a sequence (vbtt,ι)j>i Define kj by S(Vkj)^lj<S(Vkj + 1),

dj: = S(Vk), bj:= min{lpS(Vkj + kj)} .

As bj- α7. ̂  fcr S(C7k._ x) ^ fc; 2 ^ -A by (2.2), (2.5), (3.18), and (2.9), we have in view

of (3.5),

^ ^ ^ f o o . (3.23)
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1 k

For k < I let v[fc, /] : = —— £ δgi(b)9 and define v[k, k]: = 0. Then
/ K i = l+ 1

vM.,, = v[0, Ij] = af v[0, αj + ^ f%[« j> &,] + ̂  v[b,,
V */ lj

Passing to a subsequence, if necessary, we may assume that

af ->ρ, ̂ f ^ - 0 , ^ _ i _ ρ [ s e e (3.23)],
h h h

φ*v[0, aj]^v' e ΛUί^), φ*v[^ , /,] - v" e Jίσ(ΩN).

We shall show that v' e φf^ and that v" e C if ρ < 1. Then

because C is convex, and the proof is finished.

v'eφ*Lt: As Q(Uk +;) = [7fc for = 1,..., F f c- l/fc, and as

by (2.9) and (3.5), we have

] * [ 0 S ( l / ) ] ) ^ 0 as

and the set of weak accumulation points of(φfv[0,S(Ukj)J) is contained in φfLt

by definition of Lt.

v" 6 C if ρ < 1: Let 0 < ε < 1 — ρ. For large j we have ε k} ̂  1 and hence

(lj-bj)*ε.lj^ε.S(Vk)*ε.krKnj)^Wj) (3.24)

by (3.14), where fίf. =nkj. Hence

^ f v C ^ / J ^ ^ ^ - ^ - ^ O as j^co

by (3.15) and

by (3.13). If the ήj (/^l) are unbounded, there is a subsequence along which
d(φ?v[bjylj],μnj) tends to zero, such that v"eC. Otherwise there is some ί e N
such that i = fίj for a subsequence of (#,-), and along this subsequence Aj tends to
zero, because Ij—b7•-> oo by (3.24) and ω(i) is generic for μt. Again we conclude that
diφfvlbplj^μi) tends to zero along a subsequence, whence v" = ^ e C

4. Proof of Theorem 4

We start with a ye{2,3, ...}u{oo} and a kneading map

β:Ny->Nyu{0}, where N y
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This means that (2.7) and (2.8) are satisfied. Let (r,-)^,-^ and (Si)0<ί<y be the
sequences defined by (2.2) and (2.5). Finally let e be Ihe Q-sequence, which is
uniquely determined by e1 = 1, e2 = 0, by (2.3) and by (2.4).

In order to prove Theorem 4, for a given 0 — 1-sequence e with e1 = l, e2 = 0
we set

and define maps

α:{l,2,...}->{l,2,...} and b:{n,n + l,

as follows:

otherwise

tf «*+i=**+i-w. ( 4 2 )

( otherwise v ;

Lemma 1. Let e be the Q-sequence of some kneading map Q.
(i) a(k) + b(k) for k^n.

(ii) The existence of a k0 with a(k) = a(k0) for all k^.k0 is equivalent to y < oo. If
7=oo and if there is a k0 with b(k) = b(k0) for all fc^/c0, then (β(/ + m))m>i
= (6(6(60*))+ m)W far somej.

(iii) // k^n and ek+1-a(k) = ek+1_b(k), then ek + 1=ek + 1_a(k).

Proof For later use we state the following. If i+\<y and l<Q(i+l) or i+\
= y<oo and l<γ9 then by (2.3) for k = ί+l or by (2.4) we get

eSi +Sι - i + 1 eSτ +Sι = eSι - i + 1 '" eSr

Applying again (2.3) we have, if ί + 1 < γ and / < Q(i +1) or if i + 1 = y < oo and / < y,

esi+sι-ί + i- esi+sι = ei- erι-ie'rι

Similarly we get for Z = Q(i + l) and ί+l<y that

i + S, = ̂ l ^ I - l^r , J ( 4 4 )

and for Z = y<oo and i + 1 = 7 we get

.. (4.5)

For a given k let p = p(k) be maximal such that Sp^k. We consider two further
assertions

(iv) a(k) = Sp.
(v) If fc(fe)>a(k\ then there is a maximal g = g(/c)^0 with Sp + Sq^k and

= SP + S ;̂ if b(k)<a{k), then there is zj=j(k)Sp with

rG(Q0)) + m = 0+m for l ^ m ^ p - j , rQ(β(/>>+i>-./+i>fc-Λ, a n d

We prove (i), (iii), (iv), and (v) by induction on k. We begin with k — n. The definition
of n and (2.3) imply that rm=\ for l ^ m g w - 2 and rn_1>l. This gives a(k) = k
= Sk-1 for l^fc^w —1 and a(n) = a(n — \) = n — 1 =<SM_2. By definition, we have
ί?(n) = n = 5 w _ 2 + l = 5 π _ 2 + 5 0 . This implies b(n)>a{n\ in particular (i) holds.
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Because of ex φe2, also (iii) is satisfied, (iv) follows with p(ή) = n — 2, and (v) holds
with q(ή) = 0.

Now we suppose that (i), (iii), (iv), and (v) hold for fc. We prove them for /c+1.
Write p for p(fc), q for q(k) and j for j(k). We consider six cases:

Case 1. b(k) > a(k), p(k + l)=p, and q(k +1) = q. By (iv) we have a(k) = Sp. Because of
p(k + ί)=p we get by (2.3) or (2.4) that ek+ί=ek+1_a(ky Hence a(k + l) = a(k) by
(4.1). This gives a(k + ί) = Sp, which is (iv) for fc + 1 . By (v) we have b(k) = Sp + Sq.
Because of p(k + \)=p and q(k + l) = q we get by (4.3), (4.4) or (4.5) with i = p and
l = q + l that ek+i=ek+1-m. Hence b(k + ί) = b(k) by (4.2). This implies b(k + \)
> a(k +1) giving (i) for k + 1 . Since fr(fc +1) = Sp + Sφ we get (v) for k + 1 . As ek+x _ β ( k )

= ek+1-bik) = ek+ί, we get also (iii) for fc + 1.

Case 2. b(k)>α(fc), p(k + i) = p,q(k + ί)>q. In the same way as in case 1 we get that
ek+i-a(k) = ek+i a n d Λat a(k + l) = Sp, implying (iv) for k + 1. By (v) we have b(k)
= Sp + Sq. Because of p(k +1) = p and q(k +1) > q, which implies q(k -h 1) = q + 1 and
fc + 1 =SP + Sq+19 we get by (4.3) with i = p and / = ̂ f + l that ek+ί + ek+1 _b(fc). Hence
6(fc +1) = fc + 1 by (4.2). This implies b(k +1) > a(k +1) giving (i) for k +1. As 6(fc +1)
= Sp + 5 € + 1 we get (v) for fc + 1. Since ek+1_a(k) = ek+ί*ek + 1 - m , we get also (iii)
for/c + 1.

Case 3. b(k)>a(k), p(k+l)>p. By (iv) we have a(k) = Sp. Because of
which implies p(fc 4- l) = p + 1 and k + 1 = Sp+ ί9 we get by (2.3) that ek + 1+ek + 1 _fl(fc).
Hence α(fc + l) = /c + l by (4.1). This gives a(k + l) = Sp+u which is (iv) for k + ί.

By (v) we have b(k) = Sp + Sq. As p(fc + l ) = p + l, we get that Sp + Sq+ί=Sp+l9

i.e. Q(p +1) = ̂  + 1. Because of k+ ί = Sp+u we get by (4.4) with i = p, / = « + 1 that
^ + 1 = e f c + 1 _ f t ( J k ) . Hence b(fc+l) = fo(fc) by (4.2). This implies a{k+\)>b{k + \\
giving (i) for k+1. Since

b(k+ί) = Sp + Sq = Sp+1—rq+1 =Sp+ί

 r

and n

we get (v) for fc + 1 withj{k + l) = p + l =p(k + \). As

ek+ ί - a(k)^ ek+ ί= ek+ I -b(k)

we get also (iii) for k +1.

4. ί)(/c)<a(/c), fc + 1 < S p + r Q ( Q a ) ) + p _ J + 1 . By (v) and (2.6) we get

hence fc + 1 <Sp+ί, which means p(k + ί) = p. In the same way as in case 1 we get
that ek + 1-a(k) = ek + ί and that a(k+l) = a(k) = Sp, which implies (iv) for fc + 1.

By (v) and r m = SQiQU)), we get r β ϋ ) + rj+, + . . . + rp = SQiQU))+p-j. This and (2.3)
imply

= ' < rQ(QO')) + p - 7+ 1

in particular for / = fc + 1 — Sp. By (2.3) and Sp < k + 1 < Sp+ x we get ek+ ^ — ek+ x _S p.
Hence we get for / = fc + 1 — iSp that

O ) + r
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Since b(k) = Sj—rQij), this says that ek+1=ek+1-b{k). Hence b(k+l) = b(k) by (4.2).
This implies a{k + \)>b{k + \) giving (i) for fc+1. Since fc(fc l) S

) = p9 and

we get (v) for k + 1 with 7*(fc +1) =j.

As efc+i-β(fc) = ek + i = e k + i - w , we get also (iii) for fc + 1.

Case5. b(k)<a(k), p(k+l) = p, k+l=Sp + rQiQU))+p_j+1. In the same way as in
case 1 we get that ek+1^a(k) = ek+ί and that α(fc + l) = α(fc) = Sp, which implies (iv)
for fc+1. In the same way as in case 4 we get by (2.3) that

el^=el + (rQω + rJ+1 + ...+rp) f ° r ' = & + 1 ~ $p = rQ(Q(j)) + p-J+ 1 *

Again as in case 4 we get ek + 1==ek+ί_Sp and ek + 1Φek + ί.Sj+rQuy Since b(k)
= Sj—rQU)9 this says that ek+ιή=ek + ί_m. Hence £>(fc+l) = fc+l by (4.2). This
implies fc(fc+l)>α(fc + l) giving (i) for fc + 1. As fe(fc + l) = fc+l=Sp + Sβ with

), we get (v) for fc + 1. Since

ek+ί-a(k) =

we get also (iii) for fc + 1.

Case 6. b(k)<a(k\ p(k+l)>p, k+l=Sp + rQ(Qij))+p_j+1. In the same way as in
case 3 we get /?(fc + l) = p + l , e k + 1 φe f e + 1 _ f l ( f c ) , and α(fc+l) = fc + l = S p + 1 , which
implies (iv) for fc + 1 .

In the same way as in case 5 we get eί + ez + ( r Q ϋ ) + r j + 1 + _ + r p ) for / = fc + 1 -Sp. By
fc + 1 =SP+1 we get l = rp+u and (2.3) implies et + eι+Sp. Hence

ek+l=el + Sp

 = el + (rQU)+rj + i + ... + rp)
 = ek + 1 -Sj + rQU)

As b(k) = Sj—rQU), this means ek+ί = ek+1_Hk). Hence fe(fc + l) = fo(fc) by (4.2). This

implies α(fc+l)>ί?(fc + l) giving (i) for fc + 1. Since b(k + l) = Sj—rQU), p(fc + l)

15

 rQ(QU))+P-j+i=rP+i> w h i c h follows from fc+l=Sp+1, and

we get (v) for fc+1. As
ek+l- a(k) ^ek+l=ek+l- b(k)

we get (iii) for fc+1.
This finishes the induction. In particular, (i) and (iii) are shown.
We show (ii). It follows from (iv) that a(k) = Sm for some fixed m and all fc^fc0

happens if and only if rm+ x = oo, which means 7 = m + 1 < 00. This shows the first
assertion of (ii). If y = oo, we have α(fc)-*oo for fc-»oo, and hence p(fc)->oo. If b(k)
= b(k0) for all fc>fc0, then b(k)<a(k) happens for all fc except finitely many.
Choosing a larger fc0, we suppose that b(k)<a(k) for all fc^fco As SJ—ΓQ^SI
>si~rQd) ίorJ> * ' w e Se ti( f c) ==Λfco) = Ί for k^k0. This implies rQ{Qm+m = rj+m for
1 ^mSp{k)—j for all fc and hence for all m ^ 1. This implies the second assertion
of(ii).

Now let (/ί)ίe[o, 1] be a family of unimodal C^-maps on [— 1,1] satisfying (1.1)
and (1.2). We define maps Pk:[0,l]->[-l, 1] by P O Ξ Ξ 0 and

Pk(t)=ft(Pk-i(t)) for fc^l (4.6)

The maps Pk are continuous.
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Let ε(t) be the kneading sequence of ft and εk(t) its kth coordinate, such that ε(t)
= ε1(ί)β2(ί).... Since Pk(t)=fk(0), we have

Furthermore (4.6) implies

Pm(t) = 0^Pm+k(t) = Pk(t) for fel. (4.8)

As/1(O) = l ,weget

P k ( l ) = - 1 for fc^2. (4.9)

Suppose that J is an open subinterval of [0,1] such that Pfc(ί)4=0 for te J and
1 ^ k ^ m and that s is an endpoint of J with Pm(s) = 0. This means that /s

m(0) = 0 and
the critical point 0 is a stable periodic point of fs of period m. By (1.1) there is an
open interval UcJ with endpoint s, such that ft has a stable periodic point x of
period m near 0, whose orbit attracts the orbit of 0 but does not contain 0, since
ft

m(0) = PJt) * 0 for t e J. Hence sign/f

k(0) = signft

k(x) for k ^ 1 and ε(t) is periodic
for t E U by (4.7), as Pk(ή =ft

k(0). This implies also that Pk(t) =fk(0) * 0 for all fc ̂  1
and ί e U. By (4.7) we get

signPw + f e(ί) = signPfc(ί) for fe^l, if teU. (4.10)

After these preparations we can show

Lemma 2. Let e = eγe2 ... be a 0—1-sequence with eλ = l and e2 = 0. Set

If this set is empty set n = co. Define α:{l,2, ...}->{l,2,...} and b: {n,n+l, . . . }
-+ {n, n +1,...} by (4.1) and (4.2). If n=co, then there is no b. Suppose that ek-a(jι-l)

= ek_Hk_ί) implies ek = ek_a(k_ί) if k>n. Then there is a sequence (Jk)k^ι of
intervals, open as subsets of (0,1], and such that

(i) For k^2 we have JkCJk-1. For k^ 3 these two intervals have a common left
endpoint if and only if a(k — 1) = a(k). For k>n they have a common right endpoint if
and only if b(k-l) = b(k).

(ii) The left endpoint of Jk is a zero of Pa(k) for k ̂  2, the right endpoint of Jk is 1
if k<n and a zero of Pb{k) otherwise.

(iii) For teJk, Pk(t)>0, if ek = l, and Pk(t)<0, if ek = 0.
(iv) Jk depends only on eu...,ek.

Proof We prove the existence of the intervals Jk and their properties (i)—(iv) by
induction on k.

Set J i = J2 = (0,1]. Because of / f

2 (0)<0 </r(0) for t e(0,1], we get P2 <0 < P1

on (0,1]. This implies (iii) for k = 1 and 2. By P 2(0)=/ 0

2(0) = 0 we get (ii) for k = 2.
(Observe that α(2) = 2, as ex = l, e2 = 0.) The other assertions are trivial.

For 2 ^ k < n we shall choose Jk = (xk, 1] such that xk _ x < xk (if k> 2), Pk(xk) = 0
and P f c(t)<0 for te Jk. As ek = 0 for 2<;fc<n and hence a{k) = k for 2^/c<n, this
implies (i)—(iii). For k = 2 such a choice was made above. Hence suppose that k ^ 3
and J 2 , ...,Jk-1 are chosen. By P f c_1(x f e_1) = 0, (4.8) and (1.2) we get
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and (4.9) implies Pk(l) < 0. Let xk be maximal with Pk(xk) = 0. Then xke(xk_ l91) and
Jk = (xk, 1] has the desired properties. As e2 = . . . = ek = 0 implies n > ίc, (iv) follows
immediately.

If w=oo, the proof is finished. Hence suppose that w<oo. We have Jn-ί

=(*n-1> 1] As above we have Pn(xn-1)>0 and Pn(l) <0. Let yn be the smallest zero
ofPnm(xn_ul).Setxn = xn-ί and Jn = (xn,yn).Sinceen = l=eί anda(n-l) = n-l,
we get a{n) = a(n — \), and (i) follows for k = n. As b(n) = n we have also (ii) for fc = n.
(iii) holds for k = n because en = 1 and P π > 0 on JM, and (iv) for k = n follows from the
definition of n.

Note also that Po(ή = 0<Pn(ή=ft

n(0)SPι(ή=ft(0) holds for all te Jn, since
[/f

2(0), /ί(0)] is invariant under ft. Hence the following assertion, too, holds for
k = n:

(v) Either Pk_a(k)mPkmPk-m(ή for all teJk or Pk_m(t)£P&)

= f̂e-α(fc)(0 f° r aH ί GΛ> a n d Pk-a(k) a n d Pk-b(k) a r e both ^ 0 or ^ 0 on J k .
We proceed to prove (i)-(v) for k> n by induction. So let k> n and suppose that

(i)-(iv) are shown for 1,2,..., k — 1 and that (v) is shown for k — 1. We consider two
cases.
Case 1. ek_a{k_1) = ek_b{k_1)=:d. By (v) for k— 1 we have that P k _ ! is between
Pk-i-a(k-i) a n ( * ^fc-i-b(fc-i) o n Λ - i a n d that they all are either ^ 0 or ^ 0 on
J k _ v As ft is monotone on [— 1,0] and on [0,1], this implies that Pfc is between
Pk-a(k-i) a n d Pk-Hk-i) o n Λ - i Because of 1 ̂ a(k — 1), fc(fe — l)^fc — 1, we get by
(iii) for k — a(k — 1) and k — b(k — \) that P k _ f l ( k _ υ and Pk-m-i) are both > 0 on
J f e_ 1 ? if d = l, and that both are < 0 on J f c - l 5 if d — 0. Set Λ = Λ - i ^Y 0 U Γ

assumption on e, we have ek = d. By the above, Pk(t) > 0 for t e Jk if d = 1 and < 0 if
d = 0. This gives (iii). Furthermore, (4.1) and (4.2) imply a(k) = a(k~l) and fr(fc)
= b(k — 1). This completes the proofs of (v) and (i), and the validity of (ii) for k
follows from that for k — 1. Finally (iv) holds, because the definitions of a{ί) and b(ί)
for i^k depend only on e l 5 ...,efe.

Case 2. ek_aik_ί) + ek_Hk_1). Write J fc_1=(x,};). By (ii) for fe —1 we have

-Pα<*-i)(*) = 0 a n d Λ(fc-i)(y) = ° I n v i e w o f ( 4 1°) t h e r e is ^ > 0 with signPfe(ί)
= signPk_β ( k_υ(ί) for te(x,x + δ) and signPfc(ί) = signP f c_b ( f c r l )(ί) for te(y-δ,y).
These signs are different as e f c_ f l ( k_ 1 )Φβ f c_& ( k_ 1 ); observe (iii) for fc —α(/c—1) and
fc-i(fe-l)and(4.7).

Hence the set of zeros of P k in (x,y) is a non-empty subset of [x + δ,y — <5].
Suppose first that βk = ek _ α(k _ 1}. Let z e [x + δ, y — δ~] be minimal with Pk(z) = 0 and
choose Jk = (x, z). As Pk(ί) Φ 0 for t e 7k, we get signPk(ή = signPk _ a{k _ x}(ί) for ί e / k,
and (iii) follows from ek = ek_α ( k_1 ). By (4.1) and (4.2) we get a(k) = a(k — 1) and
fc(fc) = fc. This implies (i) and (ii). In the same way as in Case 1 we see that P k is
between P k _ α ( k _ 1 } and P k _ b ( k _ 1 ) on Jk-γ. Because signPfc = signP k_ a ( k_ 1 } on J k,
pk(z) = 0 and P k _ α(k _ γ) φ 0 on Jk _ x, P k is between P k _ fl(k _ x } and P o = 0, which is (v)
since a(k) = a(k — 1) and b(/c) = fc. Finally (iv) follows, because α(f), £>(0 f° r ι ^ ^
depend only on ei,...,ek.

Suppose now that ek = ek- Hk _ xy Let z G [X + δ, y — <5] be maximal with Pk(z) = 0,
and choose Jk = (z,y). The proof is now analogous to that for ek = ek_a{k_iy

Proof of Theorem 4. Lemma 1 (iii) shows that the assumptions of Lemma 2 are
satisfied. eγ = 1 and e2 = 0 are part of the definition of Q-sequences. The existence of
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the intervals Jk follows from Lemma 2. If neither a nor b is eventually constant, it
oo oo

follows from (i) of Lemma 2 that J= f] Jk equals [] Jk and is hence nonempty

and closed. By (ii) of Lemma 1 this happens always, if y = oo and Q is not eventually
periodic. Now suppose that there is a fe0 with α(/c) = α(fc0) for fe^fe0. By (i) of
Lemma 2 the intervals Jk for k ̂  k0 have a common left endpoint x and Pa{ko)(x) = 0
by (ii) of Lemma 2. By (4.10), there is a (5>0 such that Pι(ί) φO for all / and all
t e (x, x + <5). By (ii) of Lemma 2 we get (x, x + (5) c Jk for all fe proving J^ φ 0. If b is
eventually constant, the proof of J^ Φ 0 is similar. By (4.7) and (iii) of Lemma 2, we
get that ft has e as its kneading sequence, and the critical point 0 is nonperiodic for
all teJ^ The last assertion of Theorem 4 follows from (iv) of Lemma 2.

It might be useful to collect the different characterizations of kneading
sequences. To this end we introduce an order relation <i on Ω = {0,1 }N. If x φ γ_ are
in Ω, let j be minimal such that Xj φ y}. Then x < γ9 if x l 5..., x7 _ t contains an even
number of 1 and Xj<yj or if x x . . . Xj_x contains an odd number of 1 and Xj>yy
Furthermore, for an eeΩ with e1 = \ and e2 = 0, set ns = min{l^2: ^ = 1} and
define

αe:{l,2,...}->{l,2,...} and 6β:{nβ,nβ + l,...}->{nβ,nβ + l,...}

by (4.1) and (4.2). We have

Theorem 6. For a 0 — 1-sequence, the following are equivalent:
(i) e is the kneading sequence of a unimodal map f with non-periodic critical

point 0 and with /2(0)<0</(0).
(ii) e1 = ί, e2=0, and ekek+i...<3eίe2 ... for all /c^2.

(iii) e is the Q-sequence of a kneading map Q.
(iv) ex = ί9 <?2 = 0, and ek_a(k-1) = ek_b{k_1)=>ek = ek_aik_1) for k>n& where

a = ag and b = be.

Proof (i) => (ii) and (ii) => (iii) are shown in [H 2]. (iii) => (iv) is (iii) of Lemma 1 and
(iv) => (i) follows from Lemma 2 and the arguments in the proof of Theorem 4
above.
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