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Abstract. An interval map is said to have an asymptotic measure if the time
averages of the iterates of Lebesgue measure converge weakly. We construct
quadratic maps which have no asymptotic measure. We also find examples of
quadratic maps which have an asymptotic measure with very unexpected
properties, e.g. a map with the point mass on an unstable fix point as
asymptotic measure. The key to our construction is a new characterization of
kneading sequences.

1. Introduction

A probability distribution v on the phase space X of a discrete-time dynamical
system f:X—X is called an asymptotic measure, if the normalized uniform
measure 4 on the phase space, e.g. Lebesgue measure or more generally a
Riemannian volume, tends under the action of the dynamical system to the

n—1

C . . 1
distribution v. In mathematical terms this means that — Y (f*)*1 converges
Nk=o0

weakly to v, where f* is defined by [wd(f*1)=[y o fdA for y e C(X). For many
hyperbolic systems asymptotic measures exist, e.g. for axiom-4 systems (cf. [B]).
Sometimes they are called natural measures or Bowen-Ruelle-Sinai measures.
For nonhyperbolic systems the situation is more complicated. Consider the
family f,(x)=ax(1 —x) with 0 <a <4 of quadratic maps on [0, 1]. Each f, has either
sensitive dependence to initial conditions (i.e. there is an ¢ >0 such that sup length

n>0

(f"J)> ¢ for all intervals J C[0, 1]), or there is an attractor (a stable periodic orbit
p

or a Cantor set) which attracts Lebesgue —a.e. trajectory (cf. [G]). In the latter case,
the attractor supports a unique f -invariant probability measure, which is an
asymptotic measure of entropy zero (cf. [Ni, P]).

Work of Jakobson [Ja], Collet/Eckmann [CE 2] and others [Mi, BC, R, No,
K1, K2, NvS] suggests that for “most” f, with sensitive dependence there is a
unique absolutely continuous invariant probability measure, which, by the
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ergodic theorem, is an asymptotic measure for f,. On the other hand, Johnson [Jo]
gives an example of a map f, with sensitive dependence that has no finite
absolutely continuous invariant measure. He does not investigate, however,
whether his example has an asymptotic measure.

In this paper we construct parameters a, for which f, has no asymptotic
measure and others for which f, has an asymptotic measure with unexpected
properties. These f, have necessarily sensitive dependence.

Before we state our results, we fix some notation. By a unimodal map we mean
acontinuousmap f:[—1,1]—[—1, 1] such that f is strictly increasing on [ — 1, 0]
and strictly decreasing on [0, 1], and such that f(—1)=f(1)= —1. Such an f is
called S-unimodal, if it is of class C* and if it has negative Schwarzian derivative,

that is Sf: = ffﬂ,l—%<%>2<0 on [—1,11\{0}.

We call (f))o<.< a full continuous family of unimodal maps, if

(t,x) > f(x) and (t,x)— ;3; f{x) are continuous maps from

[0,1]x[—1,1] to R, (1.1)
£(0)>0 for te[0,1], £2(0)<0 for te(0,1]; fX0)=0, £,(0)=1.  (1.2)

A typical example of a full continuous family of S-unimodal maps is given by f(x)

1
=5(1—x?)—1forse [lﬁ;— , 2]. By a linear change of coordinates, this family is

transformed to f(x)=ax(1 —x).
For a probability measure p on [—1,1] let @,(u) be the set of all weak

1 n
accumulation points of the sequence . Y (¥ u . Observe that v is an
k=1 nz1
asymptotic measure for f, if and only if @/(4) = {v}, where 1 denotes the normalized
Lebesgue measure on [ — 1, 1]. Finally, denote by 6, the unit point mass at x and by
h,(f) the entropy of an invariant probability measure u under f For a full,
continuous family of S-unimodal maps we prove .

1+)/5
Theorem 1. Let 0<h,<h, <log +2V‘. There are uncountably many parameter
values t such that
(i) @(4) is a weakly closed, convex set, and

{h(f):ved 2), v ergodic} =[hy, h],
(i) @(0,)=@(A)= @5, for I-ae. x.

1+1/5
Theorem 2. Let 0 <h<log +21/. There are uncountably many parameter values t
such that
(i) f, has an asymptotic measure v with entropy h which is ergodic and singular to

Lebesgue measure.
(i) @(0,)=d,(A)=d[0)={v} for I-ae. x.
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Theorem 3. Let z, denote the unique positive fix-point of f,. There are uncountably
many parameter values t such that

(i) 0., is an asymptotic measure for f,, but z, is not a stable fixed point.

(i) @L0,)=d(A)=d(o)={0,,} for A-ae. x.

Remarks. (a) If t=1 is the only parameter with f,(0)=1, then in all three theorems
the parameter t=1 is an accumulation point of the set of parameters with
properties (i) and (ii). As f; has an absolutely continuous invariant measure
equivalent to A (see [Mi]), Theorem 3 shows that @,(4) depends as discontinuously
as possible on t near t=1.

(b) In all three theorems, properties (i) and (ii) imply that f, has sensitive
dependence. For Theorems 1 and 2, this follows from the fact that f, does not have
an asymptotic measure with entropy zero, and in Theorem 3 the asymptotic
measure is supported neither by a stable periodic orbit, nor by a Cantor set.

(c) Inthe case of Theorem 2, f, has no ergodic absolutely continuous invariant
probability measure. Hence, by Theorem A in [K 1] or by Corollary 2 in [K 2],
one has {

lim sup -~ log(7) (9| <0
for A-a.e. x.
On the other hand,

lim 110g (") ()l =[log| f/ldv=h,(f)>0

n>oo N

1 n
for v-a.e.x, although v is the weak limit of . Y. Ok, for J-ae. x.
k=1

The proofs of the three theorems rely on the same basic idea, which is carried
out in Sect. 3. We sketch it briefly: In a first step (Proposition 1) we construct
“skeletons” of kneading sequences with the following property: For each kneading
sequence ¢ which fits the skeleton there is at least one parameter value ¢ such that e
is the kneading sequence of f, and such that f; has no finite, absolutely continuous
invariant measure of positive entropy. This construction is similar to the one of
Johnson [Jo]. Given such a skeleton, we construct in a second step (Proposition 2)
particular kneading sequences fitting the skeleton and having prescribed @,(d,).
Some additional care is required in order to obtain @,(0,) = @(1)=d,(d,) for 1-a.e.
x. The second step relies on a new characterization of kneading sequences, which is
also of independent interest. It is given by Theorem 6 in Sect. 4. In Sect. 2 the
background material is provided, which is needed for the proofs in Sects. 3 and 4.

2. Preparations

In this section we prepare the necessary tools for the construction of the examples.
Let f:[—1,1]>[—1,1] be a unimodal map with critical point 0 and f%0)<0
< f(0). We restrict f to the absorbing invariant interval [a, b], where a= f%(0) and
b=£(0). In order to apply the methods described below, we modify f. Let

V={xe(a,b): f¥x)=0 for some k=0}.
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We substitute each xe V by two points x— and x+ in [a,b] and denote this
modified interval by I. Then I is again a totally ordered set and a compact
metrizable space with respect to the order topology. Define q: I—[a, b] by q(y)=y
if y¢ {x—,x+ :xeV} and q(x+)=g(x—)=x for xe V. Then g is continuous and
surjective and every ye[a,b]\V has only one inverse image. We extend f
continuously from [a,b]\V to I and denote this map by g. Then g:I-I is
continuous and qog=foq. Often we shall consider the dynamical system (I, g)
instead of ([a, b], f). A measure on [a, b] for which V is a nullset can be transferred
to I by q. Hence we have the Lebesgue measure 4 also on 1. If the critical point 0 is
not periodic, then V is a nullset of every invariant measure and hence there is a
1 —1-correspondence of invariant measures on ([a,b], f) and (I, g), which pre-
serves the entropy. Furthermore, if a sequence (v,) of measures on I converges
weakly to v, then g*(v,) converges weakly to g*(v), since y o g is continuous on I for
every continuous function y on [a,b].
Next we describe (I, g) using symbolic dynamics. Set

Z,=[a,0—-]cI and Z,=[0+,b]CI.

Then & ={Z,,Z,} is a partition of I and g|Z, and g|Z, are monotone. Let
(2:={0,1}™, 6) be the two-shift. We define the coding ¢ :1-Q by

P(xX)=w,0,0;3..., where w;=j if g '(x)eZ;. 1)

We have pog=0-¢. As & is a partition into closed-open sets, ¢ is continuous, and
¢ : I->@(I)is a homeomorphism, if & is a generator. This happens in our examples
since they contain no stable periodic orbit (see [G]).

The kneading sequence e of the one-dimensional dynamical system (I, g) is
defined by e=¢(b). If 0 is not periodic, e is the sequence, which is usually called
kneading sequence for ([a, b], f) and defined by e, =1, if f**1(0)>0 and e, =0, if
f¥*10)<0 (cf. [MT, CE 2]). In order to investigate the structure of e, we define a
7€{2,3,4,...}u{wo} and a sequence (r;);<;<, in N as follows. Set r,=1. If
172, ..., 1; are defined, set S;=1+r;+...+r; and let r;, ; e NU{c0} be maximal
such that es . j=e;for 1 <j<r;, ;. Ifr;, , = co for some i, set y =i+ 1, otherwise set
y=co0.

In this way we have defined y, (r); <;<, and

So=1, S=1+r+...+r, for 1=Zk<y, 2.2)
such that
€S, 1 +1€5,_ +2--- €5, =¢€1€...¢, 1€, for 1=k<y, (2.3)

where x’=1if x=0and x'=0if x=1. [For k=1 this holds, sincer,=1and e, =1,
e,=0 in view of g%(0)<0— <0+ <g(0).] If y < oo, we have additionally

esy_1+1esy_1+2... =e4€5.... (2.4)

We can describe the sequence (), <;<, in a different way. Set

N,={leN:1=I<y}.



Quadratic Maps without Asymptotic Measure 323

It is shown in Lemmas 1 and 2 of [H 2] that there is a map Q:IN,»IN,u{0} such
that

r=S8ow for 1=k<y, (2.5)
(r<j<yZ(rouy+j-h<j<y for keN, with Q(k)=1. (2.6)

Here = denotes the lexicographic ordering. By (2.2) and (2.5) we get
Q(k)<k for keNlN,. (2.7

It follows from (2.5) that (2.6) is equivalent to
(Qh<j<y2(QQQK) +j—K<j<y for keN, with Q(k)=1. (2.8)

It is convenient, to introduce a name for these maps. A map Q is called a kneading
map, if thereis a y e {2, 3, ...} U{oo} such that Q maps N, to IN,U{0} and such that
(2.7) and (2.8) are satisfied.

On the other hand, one can start with a kneading map Q and determine a 0 — 1-
sequence ¢ uniquely in the following way. Because of (2.7), the map Q defines
uniquely a sequence (r;); <; <, using (2.2) and (2.5).

By (2.7) and (2.5), we get r;<S;_, for 1 <i<y. Hence settinge, =1 ande,=0a
0—1-sequence e is defined uniquely by (2.3) and (2.4). We call e the Q-sequence of
the given kneading map Q.

We construct our examples of unimodal maps in terms of Q. To this end we
need the following theorem, which is proved in Sect. 4.

Theorem 4. Let (f,),10, 1; be a family of unimodal C Lmaps on[ —1,1] satisfying (1.1)
and (1.2). Suppose that ye {2,3,...}u{co} and that Q :IN,-IN,U{0} is a kneading
map. Let e be its Q-sequence. Then there is a decreasing sequence of intervals

J=J(Q), which are open subsets of (0,1], such that J ,=J(Q):= () Jy is not
k=1

empty and such that f, has e as its kneading sequence for allte J . J , is constructed
such that the critical point of f, is nonperiodic for all te J ., and hence e is also the
kneading sequence of g,.

If y=00 and Q is not eventually periodic, then J , is closed. If Q is another
kneading map with O-sequence & and if e;=&; for 1 <i<k, then J{Q)=J{0) for
1<iLk.

For later use we state two more properties of kneading maps Q. For the
sequence (;); <; <, assigned to Q we have

Se=1+r+...+1<2* for 1=k<y. (2.9
This follows by induction from (2.5) and (2.7). If e is the Q-sequence, then we have

e eventually periodic = y< oo or Q eventually periodic. (2.10)

In order to prove (2.10), suppose that y = co. Since e is eventually periodic, there are
k and [ such that ¢**'e= o*e. As y= o, there is an a€{0,1,...,/—1} such that
{o+Im:meNN} contains S; for infinitely many i€ IN,. Hence there are i+ with
S;2k and S;2k, such that ¢5e=0¢%. From the definition of the r, we get r,,,
=r;4 for [21. Now (2.5) implies Q(i+1)=Q(j+1) for I=1, and (2.10) follows.
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In Sect. 3 we need the following construction related to the kneading sequence.
In [K1] and [K2] a Markov extension of the dynamical system (I,g) is
constructed. Define the following subintervals D, of I for k> 1. If k=S, for some
i<yset D,=[0+,g" '(b)]if g*~'(b)=0+,and D, =[g*"'(b),0—]if g* () <O—.
For k¢ {S;:0<i<y} choose j maximal such that S;<k and let D, be the closed
subinterval of I with endpoints g*~!(b) and g* =5/~ (b). In particular, D, = Z, and
D,=Z,.By(2.1)wegetg' "'(b)e Z, for > 1.Since g|Z, and g|Z, are monotone, we
get the following results by induction using (2.3), (2.4), and (2.5) (cf. [H 3]).

D,cZ, for k=1, (2.11)
g(Dy_)=D, if k¢{S;:0<i<y), 2.12)
g(DS,--—l):DS,-UDri, DS;ﬁDr,=® fOI’ 0§i<’y. (2.13)

0
Let the sets D, be disjoint copies of the sets D,. Set [ = () D,. Let n: D, — D, be the
k=1

identity and let 7:T—1I be given by n(x)=m,(x), if xe D,. We define g:I—-T as
follows. Fix x e I and let k be such that xe D,. If k¢ {S;—1:0<i <y}, then set §(x)
=m0 g om(x), which is defined by (2.12). If k= S;— 1 for some i <7, then g o m,(x)
is either in Dy, or in D, by (2.13). In the first case set §(x)=mg," o g o m(x), in the
second case set §(x)=m,, ' o g o m(x). Then ([, g) is a Markov map with countable
Markov partition {D,:k=1}. It is called a Markov extension of (I,g). We have
nog=gom.

3. Proofs of Theorems 1-3

Remember that g,: -1 (0<t<1) is obtained from a full, continuous family of
S-unimodal maps by doubling all preimages of the critical point, and ¢,:I—>Q
={0,1}"is the coding associated with g,. Observe that the endpoints a=g,(b) and
b=g,(0+) of I depend also on t.

For N>1 let

Qy:={weQ:0" and 01%*10 (for i=0) do not

occur as subwords of w}.

Qy is a closed subshift of Q. It is a strongly transitive sofic system, and therefore it is
a factor of an aperiodic topological Markov chain of the same entropy (cf. [F]). In
particular Qy has the specification property (see [DGS]). Using the results of [F] it
is easy to check that

3—%1/—5. (3.1)

lim h,,(0lq,)=1log
N- oo

Denote by .#(I), #(Q), etc. the spaces of Borel probability measures on I, Q, etc.
endowed with their weak topologies. As ¢,:I—¢/I) is a homeomorphism (cf.
Sect. 2), oF : M (1) M(@/I)) is homeomorphic, where ¢ is defined by

fud(pfv)=fuepdv (ue C([l).
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Finally let
MA2y): ={veMQy): v o-invariant}.
The following theorem has the theorems from the introduction as corollaries:

Theorem 5. Let C be a closed convex subset of M (Qy) for some N > 1. There is an
uncountable set TC[0,1] such that for all te T holds:
(i) The kneading sequence of g, is not eventually periodic.
(ii) g, has no A-absolutely continuous invariant probability measure of positive
entropy.
(ill) ved/d,) <> pfFveC.
iv) @(0,)=bd/(L)=d,5,) for i-ae. x.

Before we turn to the proof of this theorem, we show how to deduce
Theorems 1-3 from it:

1
Proof of Theorems 1 and 2. If 0<hy<h, <log +2V§, there is N=1 such that

hy : = hyop(010,) > 1, see (3.1). Restricting the length of permitted blocks of 1’s, we
find an irreducible subshift of finite type in Qy with entropy #', h; <h' <h, which
can support ergodic shift-invariant probability measures of all entropies between 0
and k' In particular we find a set C,C.#,(Q2y) containing only ergodic measures
and such that

{h(f): @FveCo} ={h,(0): pe Co}=[ho,h].

If hy =h,, we may assume that C, contains only one element. Let C be the convex
closure of C,. Then Theorem 1 and 2 follow from Theorem 5, since g*:.#(I)
—./#([a,b]) is continuous and its restriction to invariant measures is 1—1 and
preserves entropy, cf. Sect. 2.

Proof of Theorem 3. Let p be the point-mass on 1 €Q,. Then (¢,)” {u}={9.,},
where z, is the fix-point of g, (different from a). Hence Theorem 3 follows from
Theorem 5 for C={u}, because if z, were stable, then the kneading sequence of g,
would be eventually periodic.

We prepare the proof of Theorem 5 with a collection of some facts and
definitions. Let 2 be the set of all mappings Q :IN->INuU{0} satisfying

O@)<i foralli (3.2)
and
QG +)))j2 1 2(QQ(QE) +)))j>1 for all i with 9(#)>0. (3.3)
2 is the set of kneading maps with y=co.
A sequence F =(0=V,<U, <V, <U,<V,<...) of integers is a frame, if
Ups 1 2k-2"V< forall k=0 (34
and,

Vizk*-2U« forall k=1. (3.5)
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Given a frame & we define the skeleton () as the set of all Q € 2 satisfying
Up<i=Ve=0()=U,, (3:6)
QU+ 1)<U; (3.7
for all k>1.

1 n
Let Veni = Y. 04 We postpone the proofs of the following two
k=1

propositions. The first one is inspired by Johnson’s construction [Jo].

Proposition 1. For each N =1 there are uncountably many different frames & with
U, =N +1 such that for each Q€ #(¥) and each te J (Q) (cf. Theorem 4) holds:
i) g, has no ergodic A-absolutely continuous invariant probability measure of
positive entropy.
ii) For J-a.e. xel and each e C(I).

}Ln; (Vs,e, S(V,.)(‘P) —Vp o, swn(®)=0. (3-8

Here S(k)=S, is determined by Q using (2.2) and (2.5).

Proposition 2. Let C be a closed convex subset of M(Qy), and let F be a frame
with U; =N + 1. There is Q € #(F) with Q(i)=0 (1 i< N) and such that for each
teJ(Q) holds

P (@(6,))=HL)=C,
where L, is the set of weak accumulation points of the sequence (vy ; s> 1-

Proof of Theorem 5. Let # be a frame as in Proposition 1 and Q € #(£),te J(Q)
as in Proposition 2. We prove i)—iv) of the theorem for this ¢:

i) Qe (F)is unbounded and hence not eventually periodic because of (3.6),
such that the Q-sequence e is not eventually periodic by (2.10). But eis the kneading
sequence of g, for te J(Q) by Theorem 4.

ii) Follows from Proposition 1 and Corollary 2 of [L].

iii) Follows from Proposition 2.

iv) By Proposition 1, g, has no ergodic absolutely continuous invariant
probability measure of positive entropy, whence the same is true for f,. Therefore,
Theorem 4 of [K 2] implies @,(d,)<@,(d;) for A-a.e. x and @,(4)S@,(J;,). On the
other hand, (3.8) of Proposition 1 implies L,C &,(4) and L,C &,(0,) for A-a.e. x, such
that the assertion follows from L,=®/(J,), see Proposition 2.

If T denotes the set of parameters with properties i)—iv), then T is uncountable
by Proposition 1. If t =1 is the only parameter for which £,(0)=1, then {1} =J (0),
where 0 =0. By Theorem 4, Q as in Proposition 2 satisfies J5(Q) = Jy(Q), whence
teJy(@) and () Jy(Q)={1}. This proves Remark a) from Sect. 1.

N

Proof of Proposition 1. Recall from Sect. 2 that g,: [ - I'is the Markov extension of
Sk—1 . N
g, and that also the space I varies with t. Let I[,: = |J D, be the part of I “below
i1

level S,,” and denote by 1 the Lebesgue-measure on I.
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We construct inductively a frame & which determines a sequence (%), o of
“partial skeletons” by

SFo=2 and,for n=1,

&,={0Q€2:(3.6) and (3.7) hold for k=1, ...,n}. (3.9
Obviously #(#)= (| <, Let V,=0, U; =N +1>1. Suppose that
nz0

Vo<U,<V<...<U,_;<V,_<U,

are determined. Then %,_, is well defined and to each Q€ ¥, _, we consider
defined by

0M=0G) (sU,), 0M=U, (>U,. (3.10)
We check that Qe.%,_,:Q satisfies (3.2) and it satisfies (3.6), (3.7) for k<n—1
because Q does. It satisfies (3.3) for i < U, because Q does and Q(U,+1)=U,, and
for iz U, because

00+ 1)=0(06)<Q() by (3.2
SU,=Q(i+1).

Let #,_,={0:Q€e¥,_,}. #,_, is finite, whence also
T,-,:={te[0,1]: t is endpoint of an interval J ,(Q), Q€ %,_,}

is finite. As Q(i)=U, for all Q€ %,_, and all i>U,, we see from (2.12), (2.13), and
(2.5) that g(I\Iy,)SI\I, for all teT,_,. Hence, by assertion (3.14) in [K2] or
Proposition 2.1 of [Mi], there is p,>2"" such that

o R 1
Mgely, @ ely )<~ (3.11)
n

forallte T,_,. As T, _, is finite it follows from Theorem 4 that (3.11) holds also for
allte J,(QO)\J (Q), Qe Z,_,,if mis large enough. As J,(Q")=J,(Q) for m< S, if Q'
is any map in 2 which coincides with Q on {1, ...,1}, there is V,=n?- p, such that
(3.11) holds for all teJ(Q') if Q'+ Q but Q'()=0Q() for i=1,...,V,.

Finally choose U, ,;=n-2"*"~ By definition of ¥,

te |J Jo(Q)=t has property (3.11). (3.12)
This finishes the recursive construction of #. % is a frame,as U, ., =n-2"""and
V,2n?- 2 by choice of U, and V,. As we have much freedom in choosing U, and
V,, the construction produces uncountably many different frames.

We prove that if teJ (Q), Qe F(F), then g, has no ergodic, absolutely
continuous invariant probability measure of positive entropy: Suppose for a
contradiction that u is such a measure. By Theorem 3 of [K 3] (cf. also Theorem 3
of [H 1]) there is an ergodic g, invariant probability measure £ on I of the same
entropy and such that p=n*g, <1,

As Iy ~T with n— oo, we have

lim A(g; "Iy,)=lim A(Iy,)=1,
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whence lim A(7, v.N8r Wt v)=1,
which together with (3.11) is in contradiction to A<A. This proves i) of
Proposition 1.
Now we prove (3.8): By (3.12) and the Borel-Contelli lemma, the set
{neN: gi~()e Iy, } is finite for J-ae. £elif Qe #(F)= () ¥, and teJ(Q). For
nz0

such an £ let n be so large that §7(%)¢ Iy, ie. §7(%) is “above level Sy, As
Q0@)=U,for U,<i<V,, we have g‘f()%)etfun for p,<k<S(V,) by (2.12) and (2.13),
and ((@{n2)k=p,....,sv,) the itinerary of n£ from time p, to time S(V,), is
composed of segments e, ..., egy,,- 1, * [except for an initial- and end segment
of length <S(U,)], where * can be either 0 or 1, cf. (2.3). Now (3.8) follows from the
facts that S(U,)— o0 as n—oo and S(V,)—p,2V,—p,=(n*—1)2"">(n?—-1)S(U,)
by (2.9) and by the choice of U, and V.

Proof of Proposition 2. Let # be a frame with U, = N + 1. As .#(Q,) is separable,
there is an at most countable set C'={y;:ie N} CC which is dense in C. As
u{2y)=1for all i and as Q2 has the specification property, each y; has a generic
point w(i) e Qy (see [DGS, Corollary 21.15]). Without loss of generality w,(i))=0
for all i.

Let d be a metric for the weak topology on .#(Q2y). For each ie N there is
I(i) e N such that for all 1= 1(i),

1 ¢ 1
d Hiog Y Oaiog | <= (3.13)
j=1 !
Let ny,n,,n,, ... be a sequence in IN such that each ieIN occurs infinitely often
among the n, and for sufficiently large k,
SVozk-Umy),  S(Ugs)—S(V+k)2lny). (3.14)

Such a sequence exists as S(Uy,)—S(V;+k)=U,,—2"***>c0 by (3.4) and
S(V)z Vi =k? by (3.5).
We shall construct Q € #(#) such that

ESWith)+ 1> - €U ) = P1(M)s s D5y, s, +n(m) forall kz1.  (3.15)

Fix k=1 and write w(n) =v,(n)v,(ny) ... where v{n,)=0 or 11 for all j=1. This is
possible because w(n;)e 2y and w,(n,)=0. Define Q : N—-NuU{0} by

0)=0 (j=1,..,U;=N+1) (3.16)
QU +j)=U, (k=1,j=1,...,V—Uy (3.17)
QV+j)=U,_; (kz1,j=1,...k—1) (3.18)

otk=1 (k21), (3.19)

o )0 if vfm)=0
it kt))= {1 it on)=11"
k21, j=1,...Ups1—V—k). (3.20)
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The choice in (3.20) is made such that
vim)=e;=0, if r(V+k+j)=1
and (3.21)
vim)=ee, =11, if r(V,+k+j)=2
because e; =1, e, =0. [Observe
ri)=1<0(@()=0 and r(i))=2<Q(>)=1

by (2.5).]

We show that Q € #(£), i.e. (3.2), (3.3), (3.6), and (3.7).

ad(3.2): Q(i)<i for all i by definition of Q.

ad(3.3): By definition of Q, Q(i)> 0 implies Q(Q(i))=0 or 1. Hence if 1<j<N
and Q(i)>0, then Q(Q(Q(i))+j)=0. Suppose (3.3) is wrong. Then Q(i+j)=0 for
1<j<N. As Q@i)>0 implies i>U,, the Q(i+j) are defined in (3.20), and it
follows that there are N consecutive 0’s in w(n,), a contradiction to w(n,) € Qy.

ad(3.6): This is (3.17).

ad(3.7): Follows from (3.20) and the assumption U; =N +1>1.

Finally (3.15) follows from (2.3) and (3.21).

We proceed to prove ¢f(L,)=C, where L, is the set of weak accumulation
points of the sequence (v, swoh>1- Let p;€C, i=n, for infinitely many k.
Observing

SVe+R)/S(Up+ ) 2" /Up >0 (k—>o0) (3:22)

by (2.9) and (3.4) and that w(i) is generic for u;, it follows from (3.15) that
(¥ 'weL,. As L, is closed and C' is dense in C, we have (p¥)"'CCL,

Now let ve L, be the weak limit of a subsequence (my );» 1 of (v, s,z 1- If
there is i € N such that #i;: =n, =i for infinitely many j, then ¢jv=y; e C by (3.15)
and (3.22). Otherwise fi;—> o0 as j—co. In that case let d;: =S(U ,,)—S(V;, +k;)

1 n
and y; ,:= ;kzl Ogkeqy Then

d(ofv, #ﬁj) <d(¢fv, @fmkj) + d(‘P;kmkj’ .uﬁ,-,d,-) + d(ﬂﬁj,dj’ l‘ﬁ,) .
The first term tends to zero by choice of (m); 1, the second one by (3.15) and (3.22),
. 1
and the third one is less than s by (3.13) and (3.14). But #i;— 0o as j— oo such that

d(ofv, 4 )0, ie. (p;"vecl(C')J= C. This finishes the proof of ¢f(L,)=C. In
particular, L, is convex.

Now we prove @,J,)=L,. The “2”-inclusion is trivial. So let ve @,J,) be the
weak limit of a sequence (v, ,,;));5 1- Define k; by S(V, ) <1;<S(V;,+ 1),

a;:=8(V;,),  b;:=min{l;, SV, +k)}.
Asb;—a;<k;-S(Uy,- ) Sk;- 2Ux-1 by (2.2), (2.5), (3.18), and (2.9), we have in view
of (3.5),
b]_a] kavkj_l S 1_
L Ve, T Kk;

J J

—0asj—oo0. (3.23)

IIA
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For k<1 let v[k,1]: l_—1—k Z (5g i and define v[k, k]:=0. Then

vb,t,lj=v[0’lj]— V[O a]]+ } V[ j’b]+ ] [ P J.]’

J
Passing to a subsequence, if necessary, we may assume that

9 L, bj;ai 0, ’f;bf 1—o [see(3.23)],

J J

l—’ -
[0, a1V el (Qy),  @FVIby ]V €M (2y).
We shall show that v'e ¢}L, and that v"eC if g<1. Then
prv=0-v+(1—e"e@!L,=C,
because C is convex, and the proof is finished.
vVepfL,: As QUy+j)=U, for j=1,...,V,— U, and as
S(UW/SM)=2%/V,<k™?
by (2.9) and (3.5), we have
dp#v[0,a;],  ¢!v[0,8(U;))—»0 as j—o0,

and the set of weak accumulation points of (¢;*v[0, S(U, )]) is contained in ¢/L,
by definition of L,.

v'eCif p<1: Let 0<e<1—g. For large j we have ¢-k;=1 and hence

(li—byze-l;ze-S(Vi)2e-k;- UA;) 2 UA) (3.24)
by (3.14), where fi;: =n, . Hence
d@IVIby 1) b i,—5) 20 a5 j00
by (3.15) and
1
A =d(y, 1, b ) S )
J

by (3.13). If the #; (j=1) are unbounded, there is a subsequence along which
d(ofv[bj 1], ) tends to zero, such that v’eC. Otherwise there is some ieIN

such that i=1i; for a subsequence of (#;), and along this subsequence 4; tends to

zero, because [;—b;— oo by (3.24) and w(i) is generic for ;. Again we conclude that
d(pfv[b; 1], u,) tends to zero along a subsequence, whence v’ =py; € C.

4. Proof of Theorem 4
We start with a ye{2,3,...}u{o0} and a kneading map
Q:N,-»N,u{0}, where N,={leN:1=I<y}.
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This means that (2.7) and (2.8) are satisfied. Let (r;); <;<, and (S;)o<;<, be the
sequences defined by (2.2) and (2.5). Finally let ¢ be the Q-sequence, which is
uniquely determined by e, =1, e, =0, by (2.3) and by (2.4).

In order to prove Theorem 4, for a given 0— 1-sequence e¢ with e, =1, e, =0

we set
n=min{l=2:¢,=1}

and define maps
a:{1,2,...}>{1,2,...} and b:{nn+1,...}>{nn+1,..}

as follows:

_ _Jalk), i ey =€t 1—ap
at)=1, alk+1)= {k+1 otherwise ’ @D

_ _)blk), if e =g _pg
bim)=n,  blk+1)= {k +1 otherwise ’ “2

Lemma 1. Let e be the Q-sequence of some kneading map Q.

(i) a(k)*b(k) for k=n.

(ii) The existence of a k, with a(k)= a(k,) for all k = k, is equivalent toy < co. If
y=o0 and if there is a ko with b(k)=>b(k,) for all k=k,, then (Q(j+m))ys,
=(QQ(Q() + M)z for some .

(i) If k=n and e 1 _ap=€x+ 1 —pair then €k+1=Ck+1—aky
Proof. For later use we state the following. If i+1<y and I<Q(i+1) or i+1
=y< oo and [<7, then by (2.3) for k=i+1 or by (2.4) we get
€si+Si-(+1 €5, 485, =€ +1 - €5,
Applying again (2.3) we have, ifi+1<yand I<Q(i+1)orifi+1=y< oo and I<y,
esi+sl_l+1...esi+sx=e1 -..en_le;l. (4.3)
Similarly we get for I=Q(i+1) and i+1 <y that
€548 1+1 - €545, =€1 - €181, 4.4
and for [I=y<oo and i+ 1=y we get
eS.‘+Sl—1+1eSi+Sl—1+2"‘=e1e2"" (4'5)

For a given k let p=p(k) be maximal such that S,<k. We consider two further
assertions

(iv) ak)=S,.

(v) If b(k)> a(k), then there is a maximal g=g(k)=0 with S,+S,<k and b(k)
=8,+8,; if b(k)<a(k), then there is a j=j(k)<p with

Fowuy+m=Tj+m for 1SM=p—j, To@uy+p-jr1>k=S,, and bk)=S;—rq.

We prove (i), (iii), (iv), and (v) by induction on k. We begin with k = n. The definition
of n and (2.3) imply that r,,=1 for 1<m=<n—2 and r,_, > 1. This gives a(k)=k
=8,_, for 1<k<n—1 and a(n)=a(n—1)=n—1=S,_,. By definition, we have
b(m)=n=S,_,+1=8,_,+S, This implies b(n)>a(n), in particular (i) holds.
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Because of e, +e,, also (iii) is satisfied. (iv) follows with p(n)=n—2, and (v) holds
with g(n)=0.

Now we suppose that (i), (iii), (iv), and (v) hold for k. We prove them for k+ 1.
Write p for p(k), q for gq(k) and j for j(k). We consider six cases:

Case 1. b(k)>a(k), p(k+ 1)=p, and q(k+ 1) = q. By (iv) we have a(k) =S . Because of
p(k+1)=p we get by (2.3) or (2.4) that ¢, , | =€, ; — .- Hence a(k+1)=a(k) by
(4.1). This gives a(k+1)=S,, which is (iv) for k+1. By (v) we have b(k)=S,+S,.
Because of p(k+1)=p and g(k+1)=q we get by (4.3), (4.4) or (4.5) with i=p and
I=q+1 that e, ,; =¢,,; _pu). Hence b(k+1)=b(k) by (4.2). This implies b(k+1)
> a(k+1) giving (i) for k+ 1. Since b(k+1)=S ,+ S, we get (V) for k+ 1. As e 4 ; — 41y
=€+ 1-bo) =€k +1» WE get also (iii) for k+1.

Case 2. b(k)> a(k), p(k + 1)=p, g(k + 1) > q. In the same way as in case 1 we get that
€+ 1-aky=€x+1 and that a(k+1)=S5,, implying (iv) for k+ 1. By (v) we have b(k)
=S,+S,. Because of p(k + 1) = p and g(k + 1) > g, which implies g(k+ 1) =g+ 1 and
k+1=S§,+8,.1,wegetby(4.3)withi=pand/=q+1thate,, e, _,, Hence
b(k+1)=k+1 by (4.2). This implies b(k + 1) > a(k + 1) giving (i) for k+ 1. As b(k+ 1)
=8,+8,+1 we get (v) for k+1. Since e, 1 1 _ 44y =64+ 1 F €+ 1 —px) We get also (iii)
for k+1.
Case 3. b(k)>a(k), p(k+1)>p. By (iv) we have a(k)=S,. Because of p(k+1)>p,
which implies p(k+1)=p+1andk+1=S,, ;, we get by (2.3) that e, , ; F e, 11 — o)
Hence a(k+1)=k+1 by (4.1). This gives a(k+1)=S,, ;, which is (iv) for k+1.

By (v) we have b(k)=S,+S,. As p(k+1)=p+1, we get that S,+S,,; =5,+1,
Le.Q(p+1)=q+1.Because of k+1=S5,, ,, we get by (4.4) with i=p, |=q+1 that
€ +1=€+1-pay Hence b(k+1)=b(k) by (4.2). This implies a(k+1)>b(k+1),
giving (i) for k+1. Since

b(k+1)=Sp+Sq=Sp+1_rq+1 =Sp+1_rQ(p+l)

and
Fop+y+1>0=k+1=S,,,,

we get (v) for k+1 with j(k+1)=p+1=pk+1). As

€+ 1—ak) F €+ 1= €+ 1-biky
we get also (iii) for k+1.

Case 4. b(k) <a(k), k+1<S,+7ogjy+p-j+1- BY (v) and (2.6) we get

Tou)+p-i+1STp+15
hence k+1<S,, ;, which means p(k+1)=p. In the same way as in case 1 we get
that e ;1 — o4 =€+ and that a(k+1)=a(k)=S,, which implies (iv) for k+1.
. By (V) and rQ(’) = SQ(Q(]))’ we get rQ(J) + rj+ 1 +...+ rp = SQ(Q(J)) +p—j ThlS and (2.3)
imply
CL=Clt(rgiy+ri+1+trp) for 1=1<rgegy+p-i+1s

in particular for =k +1—S,. By (2.3)and S,<k+1<S,,  wegete,, ;=¢. 15,
Hence we get for I=k+1—8§, that

Ct 1= =Cly o +rr1+..+rp) = Ck+1-S;+rou)
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Since b(k)=S;—rg;, this says that e, . ; = e, ; _). Hence b(k+1)=b(k) by (4.2).
This implies a(k+1)>b(k+1) giving (i) for k+1. Since b(k+1)=S;—rg()»
p(k+1)=p, and
(e+1)=p Toun+p-i+1>k+1=5,,
we get (v) for k+1 with j(k+1)=j.

AS €11 —a@)=Ck+1=Cr+1-pxy WE get also (iii) for k+1.

Case 5. b(k)<a(k), p(k+1)=p, k+1=S,+7ogjy+p-j+1- In the same way as in
case 1 we get that e, . ; _,4)=¢;+, and that a(k+1)=a(k)=S,, which implies (iv)
for k+1. In the same way as in case 4 we get by (2.3) that

eF o tryer bty 100 I=k+1—=8, =To0G)+p—jr1-

Again as in case 4 we get ¢, =¢,, g, and €+ 1F €t 1-5;+rg, SinCe b(k)
=8;—rq(» this says that e, +e, ., ;4 Hence b(k+1)=k+1 by (4.2). This
implies b(k+1)>a(k+1) giving (i) for k+1. As bk+1)=k+1=5,+S, with
qa=0(0(Q()+p—j+1), we get (v) for k+ 1. Since

€t 1—at)=Ck+1F €k+1-bk)
we get also (iii) for k+1.

Case 6. b(k)<a(k), p(k+1)>p, k+1=8,+7yy+p-j+1- In the same way as in
case 3 we get plk+1)=p+1, e F €11 -qnp and a(k+1)=k+1=S5,,;, which
implies (iv) for k+1.

In the same way as in case 5 we get e; %€,y (vo; +rj4 1 +... 41, fOT [=k+1—5,. By
k+1=S,,, we get I=r,, , and (2.3) implies ¢;+¢,, 5,. Hence

€kt 1 =€t 8, = Cla(royy+rit1+..+rp) —Ck+1-S;+rog) "

As b(k)=S;—rq(;, this means e, , ; = e, , | ). Hence b(k+1)=b(k) by (4.2). This
implies a(k+1)>b(k+1) giving (i) for k+1. Since bk+1)=S8;—ry;, pk+1)
=p+1, roiy+p-j+1="p+1, Which follows from k+1=5,,,, an

Toun+p-ij+2>0=k+1=5,.,,
we get (v) for k+1. As
€+ 1—at) Flr+1= Ch+1-bek)
we get (iii) for k+1.

This finishes the induction. In particular, (i) and (iii) are shown.

We show (ii). It follows from (iv) that a(k)=S,, for some fixed m and all k=k,
happens if and only if r,, , ; = 0o, which means y=m+ 1 < co. This shows the first
assertion of (ii). If y= oo, we have a(k)— oo for k— oo, and hence p(k)— co. If b(k)
=b(k,) for all k>k,, then b(k)<a(k) happens for all k except finitely many.
Choosing a larger k,, we suppose that b(k)<a(k) for all k=k,. As S;—ry;>S;
> 8;—roq forj>i, we get j(k) =j(ko) = :j for k 2 k,. This implies ro(g(j) + m =" +m fOT
1 <m=<p(k)—j for all k and hence for all m= 1. This implies the second assertion
of (ii).

Now let (f);c(0,1; be a family of unimodal C'-maps on [—1,1] satisfying (1.1)
and (1.2). We define maps P,:[0,1]-[—1,1] by P,=0 and

P)=f(P-,(t) for k=1. (4.6)

The maps P, are continuous.
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Let £(t) be the kneading sequence of f; and g,(¢) its k'® coordinate, such that &(t)
=¢&,(t)e,(t) ... . Since P,(t)=f*0), we have

L1 Py>0
&)= {o it Pyt)<0’ @7

Furthermore (4.6) implies
P, (t)=0=P, . ()=Pt) for k=1. 4.8)
As f,(0)=1, we get
P(1)=—1 for k=2. 4.9)

Suppose that J is an open subinterval of [0,1] such that P,(t)+0 for teJ and
1 <k <mand that sis an endpoint of J with P,(s) =0. This means that f"(0)=0and
the critical point 0 is a stable periodic point of f; of period m. By (1.1) there is an
open interval U CJ with endpoint s, such that f, has a stable periodic point x of
period m near 0, whose orbit attracts the orbit of 0 but does not contain 0, since
f™0)=P,(t)+0 for t e J. Hence sign £*(0) = sign f¥(x) for k=1 and &(t) is periodic
for te U by (4.7), as P,(t)=£*(0). This implies also that P,(t)=f*0)+0 for all k>1
and te U. By (4.7) we get

signP,, . (t)=signP,(t) for k=1, if teU. 4.10)
After these preparations we can show
Lemma 2. Let e=e,e, ... be a 0—1-sequence with e; =1 and e, =0. Set
n=min{/=2:¢=1}.

If this set is empty set n=o0. Define a:{1,2,...}>{1,2,...} and b:{n,n+1,...}
—{n,n+1,...} by (4.1) and (4.2). If n= oo, then there is no b. Suppose that e, _ ,4 — )
=€ _px—1) implies e,=e;_,4—1) if k>n. Then there is a sequence (Ji)>; of
intervals, open as subsets of (0,1], and such that
(i) For k=2 we have J, CJ,_,. For k=3 these two intervals have a common left

endpoint if and only if a(k— 1)=a(k). For k> n they have a common right endpoint if
and only if b(k—1)=b(k).

(ii) The left endpoint of Jy is a zero of Py, for k=2, the right endpoint of J, is 1
if k<n and a zero of Py, otherwise.

(iii) For teJ,, P(t)>0, if e,=1, and P,(t)<O0, if ¢,=0.

(iv) J, depends only on ey, ..., €.

Proof. We prove the existence of the intervals J, and their properties (i)—(iv) by
induction on k.

Set J, =J,=(0,1]. Because of £,>(0)<0<f,(0) for te(0,1], we get P, <0< P,
on (0,1]. This implies (iii) for k=1 and 2. By P,(0)=f7#(0)=0 we get (ii) for k=2.
(Observe that a(2)=2, as e; =1, e,=0.) The other assertions are trivial.

For 2 <k <n we shall choose J,, =(x,, 1] such that x; _ ; <x, (if k> 2), P,(x,)=0
and P,(t)<O0 for te J,. As ¢, =0 for 2<k<n and hence a(k)=k for 2<k<n, this
implies (i)—(iii). For k=2 such a choice was made above. Hence suppose that k=3
and J,,...,J,_ are chosen. By P,_,(x,_,)=0, (4.8) and (1.2) we get

Pyx,—1)=P(x¢-1)=f,_,(0)>0,
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and (4.9) implies P,(1) <0. Let x; be maximal with P,(x,)=0. Then x,e(x,_;,1) and
J=(x, 1] has the desired properties. As e, =...=¢, =0 implies n> k, (iv) follows
immediately.

If n=o0, the proof is finished. Hence suppose that n<oco. We have J,_;
=(x,_1,1]. Asabove we have P,(x,_,)>0and P,(1)<0. Let y, be the smallest zero
of P,in(x,_,,1). Set x,=x,_, and J,=(x,, y,). Sincee,=1=e, and a(n—1)=n—1,
we get a(n)=a(n—1), and (i) follows for k=n. As b(n)=n we have also (ii) for k=n.
(iii) holds for k=nbecause e,=1 and P,>0on J,, and (iv) for k =n follows from the
definition of n.

Note also that Py(t)=0<P,()=f"0)< P,(t)=1/0) holds for all teJ,, since
[£*0), £(0)] is invariant under f,. Hence the following assertion, too, holds for
k=n:

(v) Either Py_,uft) S PUO)S Pi_pgy(t) for all ted, or Py_,u,()SPY)
S P, _,w(t) for all teJy, and Py _,4) and Py _,, are both =0 or <0 on J,.

We proceed to prove (i)—(v) for k> n by induction. So let k> n and suppose that

(i)—(iv) are shown for 1,2, ..., k—1 and that (v) is shown for k— 1. We consider two
cases.
Case 1. e, _ 44— 1y=€—px—1)=:d. By (v) for k—1 we have that P,_, is between
Py _ap-1yand Py_; 441y 0n J,_; and that they all are either 20 or <0 on
Ji—1. As f, is monotone on [ —1,0] and on [0, 1], this implies that P, is between
Py _q—1yand Py _yyon J,_;. Because of 1 Sa(k—1), b(k—1)<k—1, we get by
(iii) for k—a(k—1) and k—b(k—1) that Py _,;_,, and Py_,;_,, are both >0 on
Jy—1, if d=1, and that both are <0 on J,_,, if d=0. Set J,=J,_,. By our
assumption on ¢, we have ¢, =d. By the above, P(t)>0forteJ, ifd=1and <0if
d=0. This gives (iii). Furthermore, (4.1) and (4.2) imply a(k)=a(k—1) and b(k)
=b(k—1). This completes the proofs of (v) and (i), and the validity of (ii) for k
follows from that for k— 1. Finally (iv) holds, because the definitions of a(i) and b(i)
for i<k depend only on e, ..., €.

Case 2. e _,4—1)F€—pa—1) Write J,_;=(x,y). By (i) for k—1 we have
Pu—1y(x)=0 and Py _y(y)=0. In view of (4.10) there is 6>0 with sign P(t)
=8ign Py _ .- 1)(t) for te(x, x+0) and sign P,(t) =sign Py _ - 1(t) for te(y—9, y).
These signs are different as e, _ ;4 — 1)+ €, —px—1); Observe (iii) for k—a(k—1) and
k—b(k—1) and (4.7).

Hence the set of zeros of P, in (x, y) is a non-empty subset of [x+d,y—J].
Suppose first that e, = e, _ .- 1). Let ze [x+J, y— J] be minimal with P,(z)=0and
choose J, =(x, z). As P(t) 0 for te J,, we get sign P(t) =sign Py _ . 1((t) for te Jy,
and (iii) follows from e, =¢;_,—1). By (4.1) and (4.2) we get a(k)=a(k—1) and
b(k)=k. This implies (i) and (ii). In the same way as in Case 1 we see that P, is
between Py _,4—1) and P,_;4 1) on J,_,. Because sign P, =signP;_,;_;, on J,,
P(z)=0and P,_,4-+00nJ,_,, P, is between P, _ -1, and P, =0, which is (v)
since a(k)=a(k—1) and b(k)=k. Finally (iv) follows, because a(i), b(i) for i<k
depend only on ey, ..., ¢e,.

Suppose now that e, = e, _, — ). Let ze [x + 6, y— ] be maximal with P,(z) =0,
and choose J,=(z, y). The proof is now analogous to that for e,=¢;_,4 - )

Proof of Theorem 4. Lemma 1 (iii) shows that the assumptions of Lemma 2 are
satisfied. ¢, =1 and e, =0 are part of the definition of Q-sequences. The existence of
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the intervals J, follows from Lemma 2. If neither a nor b is eventually constant, it
follows from (i) of Lemma 2 that J= (} J, equals () J, and is hence nonempty
k=1 k=1

and closed. By (ii) of Lemma 1 this happens always, if y = co and Q is not eventually
periodic. Now suppose that there is a k, with a(k)=a(k,) for k=k,. By (i) of
Lemma 2 the intervals J, for k > k, have a common left endpoint x and P, ,(x)=0
by (ii) of Lemma 2. By (4.10), there is a 6 >0 such that P,(t)+0 for all [ and all
te(x,x+0). By (ii) of Lemma 2 we get (x, x + ) CJ, for all k proving J , +0. If b is
eventually constant, the proof of J , + 0 is similar. By (4.7) and (iii) of Lemma 2, we
get that f, has e as its kneading sequence, and the critical point 0 is nonperiodic for
all teJ . The last assertion of Theorem 4 follows from (iv) of Lemma 2.

It might be useful to collect the different characterizations of kneading
sequences. To this end we introduce an order relation <t on Q= {0, I}N. If x4 yare
in Q, let j be minimal such that x;#y; Then x <y, if x,, ..., x;_, contains an even
number of 1 and x;<y; orif x; ... x;_, contains an odd number of 1 and x;>y;.
Furthermore, for an eeQ with e, =1 and e, =0, set n,=min{/=2:¢,=1} and
define

a,:{1,2,..}-{1,2,...} and b,:{n,n,+1,...}>{n,n,+1,...}
by (4.1) and (4.2). We have

Theorem 6. For a 0— 1-sequence, the following are equivalent:
(i) e is the kneading sequence of a unimodal map f with non-periodic critical

point 0 and with f?(0)<0< f(0).

(i) e;=1,e,=0, and exe,,,...<ee,... for all k=2.

(iii) e is the Q-sequence of a kneading map Q.

(iv) ey =1, e,=0, and e, _ 4, —1y=€x_p—1) = €x=€x—o—1) fOr k>n,, where
a=a, and b=>b,.
Proof. (i) = (ii) and (ii) = (iii) are shown in [H 2]. (iii) = (iv) is (iii) of Lemma 1 and
(iv) = (i) follows from Lemma 2 and the arguments in the proof of Theorem 4
above.
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