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Hausdorff Dimension of Order Preserving Sets

J. J. P. Veerman*

Rockefeller University, Box 75, New York, NY 10021, USA

Abstract. Let g a C 2 generic bimodal map of the circle. We prove that the
closure of the union of the order preserving recurrent sets with irrational
rotation number has Hausdorff dimension zero. This set contains order
preserving periodic orbits with each rotation number p/q in the rotation
interval of g.

I. Introduction and Definitions

Consider a C2 bimodal map g of the circle to itself. We choose g such that the
boundaries of the rotation interval ρ(g) of g are rational. It is easy to see that the
requirement holds for C2-generic g. Note that if one replaces g with gλ = g + λ, with
λ e R, then the latter requirement holds for Lebesgue almost every λ (see Swiatek
1987). Without loss of generality we may choose g such that g'(0)<0.

Invariant order preserving sets can be assigned a rotation number. Consider
the union Ω of all order preserving minimal sets that have irrational rotation
number. One can show (Veerman 1989) that each such set is the unique recurrent
set of ft, where ft is defined as follows:

- ft is non-decreasing and orientation preserving,
- for x e Ut ("flat spot"), Ut an open interval, ft(x) = ί,
- f o r χφUt9 ft(x) = g(x\
- the rotation number of ft, ρ(t) is irrational.

The set of parameters t for which ρ(t) is irrational will be called A. Let Ωt be the
recurrent set of ft. The previous statements can be summarized as

Ω=[JΩt. (2.1)
teA

It has been established that the Hausdorff dimension of A, HD(A\ is zero
(Veerman 1989). In this note, it is our aim to show:

Theorem 1.1. HD(Ω) = 0.
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We give a brief description of the set Ω (see Veerman 1986). For teA,Ωt is the
unique minimal recurrent Cantor set of ft. The closure of their union, Ω, is again a
Cantor set. Each x in dΩ lies on an orbit of f with t e dA. There are two possible
types:

- Order preserving periodic orbits with rotation number p/q e ρ(g), and
- receding or advancing order preserving orbits with rotation number p/q e ρ(g).

These latter orbits are not recurrent and have as their α- and ω-limit set an orbit
of the first type. The difference between receding and advancing is that for a
receding orbit Fq(x) <x + p, whereas for an advancing orbit the opposite inequality
holds.

It is clear, then, that dΩ contains only countably many points. The previous
theorem is implied by:

Proposition 1.2. HD(Ω) = 0.

Finally, we remark (Veerman 1987) that for each irrational ρ, there is a
neighborhood n of ρ, such that g has a unique order preserving unstable orbit with
rotation number p/q en. This orbit has unique receding and advancing order
preserving homoclinic orbits. For p/q e n, these are precisely the orbits that lie in
dΩ.

II. Expansivity

Let τ be such that ρ(τ) is irrational. In this section, we prove that gm restricted to
some open neighborhood of Ωτ can be extended to h, an expanding C2 map of
degree m. For a definition of the Hausdorff distance, we refer to Falconer (1985).

m - l

From now on, we will denote the closed set S1 — (J ft~
j(Ut) by Em(t). Note

7 = 0

that these sets have a partial ordering given by ...En+ί(t)CEn(t)... CE0(t). We call
ft(γ, m) expansive if:

- there exist m ^ l and y>\ such that for all xeEJτ) we have:

We will call ft uniform (γ, m) expansive if:

- for each τ e A, there is an ε > 0 such that for each t in an ε-neighborhood Tε of τ, ft

is (y, m) expansive.

We have:

Proposition 2.1 (Veerman 1989). There exist y>\ and m>0 such that ft uniform
(y, m) expansive.

Proposition 2.2. There is an open neighborhood N of Ωτ such that gm\N can be
extended to an expanding map h which is C2 and has degree m +1.

Proof. Let N = [j Em(t). According to Proposition 2.1, we may choose ε so small
teTε

that f is (γ, m) expansive for all t e Tε. At t = τ, the rotation number of f is irrational
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Fig. 2.1. The construction of the extension h of gm\N

and so the inverse images of Uτ do not intersect or touch Uτ. Therefore, ί->£m(ί) is
continuous in the Hausdorff topology at t = τ. So, for ε small enough, N will consist
of m +1 intervals on which gm is expanding. By restricting ε again, we can make
sure that the Hausdorff distance between the graph of gm\j and the diagonal is
positive. Then we can extend gm\N to h (see Fig. 2.1), where h has the same
smoothness as / and has degree m +1. •

III. Symbolic Dynamics

We set up the symbolic dynamics for h needed for the proof of the main result.
Lebesgue measure is denoted by μ.

Denote by 7(0) and 1(1) the intervals [0, α) and [α, 1), where α is the inverse of 0
under h. Let /(ΐo*Ί ... i j be defined by:

The sequence {ir}^=0 will be referred to as the binary expansion of x.
According to Veerman (1987) every point with order preserving orbit under g

such that its orbit has rotation number ρ has a binary expansion {ίr}™= 0 that can be
constructed as follows (compare Fig. 3.1): There is a d such that

(3.1)

-y = px + d

Fig. 3.1. The construction of the binary expansion of a point whose orbit is order preserving
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or

(3.2)

where

ί if x is integer valued

else

. „., , ί x
int*{x}= < . , Λ .1 ' [int{x} + l

In the next section, we need to reason with expanding maps. So, we translate
the above statements to the language appropriate for a degree m-h 1 map h.

L e t ; r e {0, ...,m +1} and, as before, J(/o) are the successive inverse images of
[0,1). The sequence {jr}?=0 associated with a point x iterated under h is called the
m + 1 expansion of x. For each order preserving orbit of g contained in N, we can
construct its binary expansion and its m + 1 expansion. Recall from the previous
section that gm coincides with h on the open set N.

Lemma 3.1 ("bounded geometry"). There are constants 1 < α ̂  m + 1 and β^
such that for all n, in:

Proof. We have Λ(J(/α/Ί •• 7n-i)) = ^(/i •• 7«-i) So the ratio of the lemma equals
h\x) for some x. But h, by Proposition 2.2, is C2, expanding, and of degree
m + 1. •

IV. The Hausdorff Dimension of Order Preserving Sets

In this section, we prove the main result. For the definition of Hausdorff s-measure
and Hausdorff dimension, we refer to Falconer (1985).

Partition the circle into N = (m + \)n intervals J(j0 ...jn-ι) as defined in the

previous section. Let S be an invariant set such that S = Sn [j J(j0 . . . ^ . i ) ,
Ur\eK

where the cardinality of K is Ns. So, orbits in S can only land in Ns of the N
intervals.

Lemma 4.1.
n lnα

Proof Let ΓQ be the space of coverings {Ai}^=1 of S with diameter, at most, oc~Qn.
Denote the Hausdorff s-measure by HS(S). Then, by Lemma 3.1, we can cover S
with a member of ΓQ that has at most ]V£+int{Q} intervals. So,

HS(S)= lim inf £ [ μ ( 4 ) ] s ^ lim ^ + i n t ^ a " Q / I s .
Q-+oo ΓQ i = 0 <?->oo

This is equal to zero if

1 lnJVc
D

n lnα

Let S(n) be the (invariant) set of points in N with binary expansion such that:
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- All finite subsequences of length n or less are order preserving.

Note that ...S(3)CS(2)cS(l).

Proposition 4.2. HD(S(n)) ̂  -
nn lnα

Proof. According to the previous lemma, we only have to prove that NS{n) ^ 2n4.
Note that from (3.1) and (3.2) follows that the shift

corresponds to

Therefore, the previous statement is implied if the total number of solutions to (3.1)
and (3.2) restricted to fce{0, ...,n — 1} is at most 2n4.

Write these solutions as sM(ρ, d). For a given solution, we can change d and ρ in
the construction without changing sn(ρ, d\ as long as {ρk + d} mod 1 φ 0 for
k e {0,..., n — 1}. So the number of solutions to (3.1) is at most equal to the number
of different lines ρx + d intersecting precisely two distinct lattice points (ll912) and
(/3? /4), where ίf e {0,..., n — 1}. This number is less than n4. The same must be done
to count the solutions to (3.2). •

As we noted before, the set of all order preserving orbits under g which are
contained in N, is equal to the set of points whose binary expansion is generated
according to (3.1) and (3.2) for ρ in some interval. So for all n, we have the inclusion:

S C S(n) => HD(S) ̂  HD(S(nj).

Corollary 4.3. HD(Ω nJV) = 0.

Proof. The set S we defined above contains ΩnN. •

Since we can cover Ω with a countable number of open sets N f, Proposition 1.2,
and therefore the main result, Theorem 1.1, follows immediately.
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