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Abstract. The recent identification of classical BRST cohomology with the
"vertical cohomology" of a certain fibration is used to compute it in terms of
the classical observables and the topology of the gauge orbits. When the gauge
orbits are compact and orientable, a duality theorem is exhibited.

Introduction

The classical BRST cohomology for finite dimensional systems has recently been
interpreted geometrically. Let (M, Ω) be a symplectic manifold and {0J a set of first
class constraints. Their zero locus, Mo = niφf1(0), is a closed co-isotropic
submanifold of M. The hamiltonian vector fields, {Xt}9 associated to the
constraints span the null directions of the restriction of Ω to Mo. Since this
distributions is involutive, M o is foliated by maximal connected submanifolds
having the {Xt} as their tangent vectors. If this foliation, J^, fibers, the space of
leaves M can be given a differentiate structure such that the canonical map,
π:M0^M, sending each point in M o to the unique leaf it lies in, is a smooth
surjection. Moreover M inherits a symplectic structure Ω, making (M, Ω) into a
symplectic manifold. The passage from (M, Ω) to (M, Ω) is known as the symplectic
reduction of M by Mo.

The tangent bundle of M o breaks up as TM0 = T^@N^, where Ύ& = TM^
is the tangent space to the foliation and N^ is the normal bundle to the foliation.
Let T*!F and iV*!F denote the cotangent and conormal bundles to the foliation,
respectively. Under this split, the differential forms, Ω(M0\ on M o decompose as

(1)
p,q

where Ωp'q(M0) is the space of smooth sections through the bundle

(2)
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The exterior derivative on Mo has a piece

dp:Ωp>q->Ωp+1>q, (3)

called the "vertical derivative," which corresponds to exterior differentiation along
the leaves of the foliation. Let us define the "vertical forms" by β£(M0) = Ωp> °(M0).
They form a differential complex under the vertical derivative

...->Ω$(M0)-^Ωl+1(M0)^...9 (4)

whose cohomology, called the "vertical cohomology," is precisely the cohomology
of the classical BRST operator. This is proven in [1] and in [2] for the case of
irreducible constraints; and in [3] for the case of reducible constraints.

In [4] the Poincare lemma for this complex is proven. That is, if ω is a
d^-closed vertical p-form (for p ^ 1), then around each point in M o there exists a
neighborhood U and a vertical (p — l)-form θ defined on U such that ω = d^θ on U.
A vertical 0-form is just a function on Mo and it is d^-closed if and only if it is
constant on each leaf. Therefore a ̂ -closed vertical 0-form is the pull back via π of
a function on M. Let $& be the sheaf of germs of smooth functions on M and let Ωv

denote the sheaf of germs of vertical forms on Mo. By the above remarks there is an
acyclic resolution

fc->β£—^β^..., (5)

where the first map is the inclusion. This identifies the vertical cohomology with
the sheaf cohomology i/(M 0 ;π*^) and thus makes contact with the work of
Buchdahl [5] on the relative de Rham sequence, of which the vertical cohomology
is an important special case.

Buchdahl treats the case of an arbitrary smooth surjective map / : Y-+X
between two arbitrary (smooth, paracompact) manifolds. He then obtains a
resolution for the pull-back sheaf f*Sx in terms of "relative" forms Ωf. Relative
forms are differential forms along the "fibers" of/ and the derivative in the exterior
derivative along the fibers. Hence vertical cohomology is a particular case of this
construction for a very special /, Y, and X. Buchdahl does not characterize the
relative cohomology completely, but he proves two results that relate it to the
cohomology of the fibers. In the case of vertical cohomology, his results
(Propositions 1 and 2 in [5]) imply the following two theorems, where F is the

typical fiber in the fibration Mo—>M and H(F) stands for the real deRham
cohomology of the typical fiber.

Theorem 6. Hi(F) = 0 implies #£(M0) = 0. // HP~\F) = HP{F) = O for some p> 1,
then HUM0) = 0.

Theorem 7. // for some p^ 1, Hp,(Mo) = Hp,+ ί(Mo) = 0, then HP(F) = O.

An easy corollary of these two theorems gives a characterization of the
vanishing of the BRST cohomology for positive ghost number.

Corollary 8. A necessary and sufficient condition for the classical BRST cohomology
to vanish for positive ghost number is that the gauge orbits have vanishing positive
de Rham cohomology.
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In particular in the case of a compact orientable gauge orbit, Poincare duality
already forbids the vanishing of the BRST cohomology of top ghost number.

These results, although already providing a lot of information, are far from
fully characterizing the BRST cohomology in terms of the topology of the gauge
orbits and the gauge invariant observables. This is precisely the aim of this paper.

I will prove that for the case of a fϊbration

F >M0

| π (9)

M

the vertical cohomology is isomorphic as C°°(M)-modules to the space of smooth
sections of a vector bundle over M whose typical fiber is the real de Rham
cohomology of F. This vector bundle is moreover an associated bundle to the
original bundle via the natural representation

ρ DiffF-AutH(F). (10)

When the constraints arise from the hamiltonian group action of a connected
Lie group G, the fibration G-^M0-+M is, in fact, a principal G-bundle and it
follows that the associated bundle is trivial. In this case the BRST cohomology will
simply be given by the i/(F)-valued functions on M.

Finally, when the orbits are compact and orientable, the Poincare duality on
H(F) induces a duality on the BRST cohomology. The orientability hypothesis is
superfluous for irreducible constraints, since the fibers are parallelizable.

Topological Characterization
To fix the notation, let F^M0^M be a smooth fiber bundle where the typical
fiber, F, is connected. Let dv denote the vertical derivative, ΩY(MO) the vertical
forms, and HV(MO) the vertical cohomology. By definition, the zeroth vertical
cohomology, HV(MO\ consists of those smooth functions on M o which are
locally constant on the fibers; and since the fibers are connected, these functions
are constant. The projection π induces an isomorphism, π*:C*(M)->C°°(M0),
defined by π * / = / ° π , onto the smooth functions on M o which are constant on
the fibers. Therefore, there is an isomorphism

(11)

By its definition the vertical derivative dv obeys

dv(ω AΘ) = {dvώ) A θ + ( - 1 )pω A (dvθ), (12)

for ω 6 Ω%r(M0) and θ e ΩV(MO). Therefore Λ induces an operation in cohomology

u : Wv(Mo) x Hv(M0)^Hp

v

+«(M0), (13)

defined by [ω]u[0] = [ω Λ 0]. This operation is well defined because of (12) and
makes the vertical cohomology into a graded ring. In particular,

u : H°V(MO) x HUM0)-+H<y(M0) (14)

makes HV(MO) into a graded #£(M0)^C°°(M)-module.
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Let jfF denote the sheaf of C°°(M)-modules on M defined by Jίfv(U)
= Hv(π ~x U) for all open U C M. By local triviality there exists an open cover % for
M such that for all 1/eΦ, π ^ l / ^ l / x F . Therefore jev(U)^Hv(U xF). By a
theorem of Kacimi-Alaoui (ΠI(1) in [6]) the vertical cohomology of a product is
given simply by

HV{U x F)^CCO{U)®H(F), (15)

where H(F) is the real de Rham cohomology of F. This implies that Jtfy is a locally
free sheaf and thus the sheaf of germs of smooth sections of a vector bundle over M
with fiber H(F).

The task ahead is to determine the transition functions of this bundle. Let {ψv}
be the family of diffeomorphisms

\pυ:π-χU-+UxF (16)

given by the local triviality of the original bundle Mo—>M. The transition

functions of this bundle are then given, for all Un V+ 0, by guv = ψu

oψv~
ί, thought

of as a map guv: UnV-*ΌiSF.
Recall that there is a natural representation of DiffF as automorphisms of

degree zero of the (graded) de Rham cohomology ring H{F). If φ e Diff F then the
automorphism is defined by [ω] i—> [iφ'^co]. By the homotopy invariance of
de Rham cohomology, two diffeomorphisms which are homotopic are represented
by the same automorphism in H(F). So any diffeomorphism which is homotopic to
the identity will automatically induce the identity automorphism on cohomology.

Composing the transition functions {guv} with this representation provides
maps

(17)

which, as I will now show, are the transition functions of the bundle whose sheaf of
sections is given by J^v.

To see this notice that for all open sets U e °lί,

(ψϋ ψ: Hv(π~ ιU)->Hv{UxF)^ C™{M)®H(F), (18)

allows us to identify vertical cohomology classes on π~ιU with iί(F)-valued
functions on U. Let ω be a dF-closed vertical form and [ω] its class in vertical
cohomology. Restricted to Un V there are two ways in which one can identify [ω]
with an H(F)-valued function on UnV: either by using the trivialization on U or
the one on V. Let fυ = [(ψΰ x)*ω] and fv = l(ψγ x)*ω]. The transition functions huv

are precisely the automorphisms of the fiber H(F) relating these two descriptions of
the same object. That is, the transition functions obey fu = huvfv. But because

fϋ=i(ψϋ ιr<o]=i(ψϋ ιr ° ΨΪ - (ΨΫ :)*ω] (ί9)

= [(VD1)*°V?/κ] = C(Vv»VU1)*Λ'] = [(βϋκ1)*/κ],

the transition functions are in fact the ones in (17). Therefore I have proven the
following theorem.
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Theorem 20. The BRST cohomology is ίsomorphίc as a C°°(M)-module to the smooth
sections of the associated bundle M o xρH(F)-+M associated to the representation
ρ:DiffF->Autiί(F).

Notice that this associated bundle decomposes naturally as a Whitney sum of
vector bundles

M o xρH(F) = φM0 xρH
p{F), (21)

p

since diffeomorphisms do not alter the degree of a form.

The Case of a Group Action

When the constraints arise from the hamiltonian action of a connected Lie
Group G - i.e. the constraints are the coefficients of the moment map relative to a
fixed basis for the Lie algebra of G - the bundle

G >Mn

(22)

M

is in fact a principal G-bundle and the diffeomorphisms of G defined by the
transition functions correspond to right multiplication by an element of the group.
Since G is connected, right multiplication by any element g e G is homotopic to the
identity. [Proof. Let 11—• g(t) be a curve in G such that g(0) = 1 and g(l) = g. Right
multiplication by g(ί) gives the desired homotopy.] By the homotopy in variance of
deRham cohomology, the transition functions of the associated bundle
M o xρH(G)-^>M are the identity maps and thus the bundle is trivial. This proves
the following corollary.

Corollary 23. When the constraints arise from the hamiltonian action of a connected
Lie group G, the BRST cohomology is isomorphic to the H{G)-υalued functions on M.

The Case of Compact Orientable Fibers

Finally suppose that the fibers are compact and orientable.1 Therefore Poincare
duality induces an isomorphism

*:Hp(F)-+Hn-p(F), (24)

where n is the dimension of the fiber. This induces a duality in the BRST
cohomology as follows. Let σ be a section through Mo xρH

p(F). Define a section
%σ through M o xρH

n~p(F) by

= *σ{m) \fmeM. (25)

This is an isomorphism and hence we have the following result.

1 When the constraints are irreducible, the fibers are parallelizable (the {Xf} are a global basis for
the tangent space) and hence orientable



186 J. M. Figueroa-O'Farrill

Corollary 26. Let the typical fiber F be n-dimensίonal, compact, and orientable.
Then there is an isomorphism

H*v(M0)^Hn

v-
p(M0). (27)

For some very interesting remarks concerning duality in BRST cohomology,
see the recent paper [7].
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