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Abstract. The energy behavior of the time-dependent Schrédinger equation
i ==L aps % Vix—y{t)
at lP - 2m w =1 J y J 1P

is discussed, where the y (1) are trajectories of classical scattering. In particular,
we prove that the energy cannot become arbitrarily large as t— co.

1. Introduction and Results

The charge transfer model describes a system of one quantum particle, e.g., an
electron, and N others, which can be treated classically because they have a much
greater mass (see [1-5, 8-107). We suppose that the trajectories y(t),j=1,...,N, of
the heavy particles are given and cause a time-dependent potential for the first one.
So we have to consider the Schrodinger equation

 p0=—HOP() (1.1)

in the Hilbert space LA(R"), where H(t)=H,+ V(t), Hy= — ﬁ A and

N
V()= ,;1 Vix—yit).

In addition to the self-adjointness of all H(t), t € IR, one needs some smoothness of
V(t) for the existence of the time evolution. If the yft) are continuously
differentiable and the VV{(x) are H,-bounded, then the existence is well known
(Theorem X.71 in [7]). This does not include the Coulomb potential V{x)=|x| !
for dimension v=3, which is the most important in the charge transfer model.
However, some recent papers ([5, 8, 11]) show that t3here also exists a time

evolution for potentials V{x) with singularities like lx|—7+e, e>0,v=3.
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Because of the explicit time dependence of the Hamiltonian, we have a loss of
energy conservation. So we can ask, which energy behavior can occur? Are there
some initial states with an energy expectation which goes to infinity for large
times? We will show that this cannot happen for y|t) arising from classical
scattering in the sense of assumption (1) (see below). The energy boundedness [in
the weaker sense of Corollary 4.2(b)] is necessary for asymptotic completeness.
Furthermore, we will see in Sect. 2 that for large times the energy decreases if the
electron moves repeatedly from one center of force to another. This feature is
important in the proof of asymptotic completeness [9], too.

We will assume the following: _

1. The paths y{t), j=1,...,N, are twice continuously differentiable with

2

" d
5A0= 27 A0 € LR 1, do). (12)
There are o, t; >0 such that

)=yl Zat for t=t,,j+l. (1.3)

2. Every V;is an H,-bounded multiplication operator with relative bound zero.
3. The time evolution exists; i.e., there is a family of unitary operators
{U(t,5)}:,ser such that

(a) U, t)=1 for all teR;

(b) U(t,s)U(s,r)=U(t,r) for all t,s,reR,;

(c) U(t,s)D(H,)=D(H,)and y(t)=U(t, s)y is continuously differentiable with
respect to t, satisfying (1.1) for each we D(H,) and s€IR.
4. Outside a compact set K; every potential V(x) has a derivative in L*(R"\K)
such that for some R>0,

IV Vix)F (x| >7)ll € L'([R, ), dr), (14

where the orthogonal projector F(|x|>r) is given by multiplication with the
characteristic function of the indicated region.

Of course, classical trajectories y(t), which are outgoing in the sense of (1.3),
satisfy (1.2) if the forces between the heavy particles are decaying like the forces
acting on the light particle [see (1.4)].

By a Cauchy argument, it follows that

vji= tlfg yi{t)

exists with v;# v, for j+1 With the second assumption and the Kato-Rellich
theorem, H(t) is self-adjoint on D(H(t))=D(H,). Furthermore, we get a uniform
lower bound for the Hamiltonian, i.e., for some M >0 and all teR we have

Ht)+M=0. (1.5)
Now we state our main result.

Theorem 1.1. Suppose the assumptions (1)(4) are satisfied. Then for each initial
time seR and each ye D(H,), the time evolution yp(t)=U(t,s)y has a uniformly
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bounded energy expectation, i.e.,
sup (w(0), HO)p(r)) <0 (1.6)

and
sup (w(0), Hop(t)) <o . (1.7)

The operator boundedness with bound zero in assumption (2) implies form
boundedness with bound zero. Hence, (1.6) and (1.7) are equivalent. The proof of
(1.7)is given in the next two sections. In the following we show that an appropriate
energy expression has a controllable time derivative. For the definition of this
expression we need some vectors and some functions of time satisfying (2.1)2.4).
The existence of these are given in Sect. 3.

Theorem 1.1 is an extension of the first part of [9], where the energy
boundedness is an essential tool for the proof of asymptotic completeness.
Independently of this work, Graf [2] has also proved that the energy cannot
increase without bound. Although he has used a different method, the assumptions
are essentially the same.

2. Change of the Energy

Since H(t)y(t)is continuous in ¢ (Assumption 3.c), we get that sup (y(t), H(t)p(t))
s=t=to

is bounded for every fixed t,=s. Unfortunately we are not able to show that the
time derivative of the energy expectation is in L!([t,, 00), dt) for some ¢,

N
‘%(w(t), H{@)w(1)=— j;l yi8) - (), VVi(x — y ) w(2).

So we try to find an energy expression whose derivative can be estimated.

For N=1and y,(t)=tv,, we could change to the rest frame of the center of force
by a Galilei transformation. There we have energy conservation. Equivalently we
could consider:

~ 1 m
H(@t)= =— (P—mv,)* + V,(x—y,(®) =H(t)—v, - P+ —~ v?
2m 2
in the original frame. Here P:= —iV denotes the momentum operator.

m
2
the commutator i[H(t),v, - P], cancels the uncontrollable derivative of the
potential. Thus the expectation of H(t) is constant.

In the general situation we take instead of v,-P an operator A(t). In a
neighborhood of each yt), this operator A(t) should be yft)- P (plus a real
bounded function of f). These neighborhoods should grow linearly in time.

Since our intuition is based on y{t) which are straight lines, we need the
following

While — v} is only an unimportant constant, the time derivative of v, - P, i.e.,

Lemma 2.1. y{t)=tv;+o(t) for t—o0.
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Proof. Let £>0. Take t,>0 such that sup [y (t)—v;| < % Then
t

2to
1 1 to 1t .
F P O-tl= - y0)+ (5) (As)—v))ds| + 5 ,{ [V (s)—vjlds
< ! const, + °
=t o n 2
<egfort=t; >ty and t, large. [

Assume that there are finitely many w,eR" and real A(t), k=1,..., M,
satisfying

w-v;%wp  for all j, k, 2.1)
Y A()we=jft) forallj, 2.2)
x
M) L' (R, dr), (23)
and
lim 4,(6)>0. 2.4
t—>

In the case y () =v;, the 4,(t) can be chosen independent of t. The existence is shown
in Sect. 3. Now we define the energy expression which we mentioned before:

B(t)=H(t)— A(t), 2.5)
where M
A= k; Ay { PO +POf L, (2.6)
PO =P —mw,, @7
fe=Ht:9=9 (} wk-[x—twk]), 28)
i<a<1, 29

and ¢ e C*(R) with ¢(y)=0 for y<0, ¢(y)=1/2 for y=1 and ¢'(y)=0.
The set in which f(t, x) depends on x, i.e., V, f(¢,x) %0, is contained in

M,(t)= {x eR'0<w,- ; —wZ< tTl—‘a‘} (2.10)

x . . . I
For wy - n <w? the function fi(t, x) vanishes and gives no contribution to B(z). On

.. b 1 )
the other hand, we get inside {xlwk 7 Zwi+ tlh-a} that fi(t, x)=1. According to

the beginning of this section, this means in the case 4,(f)=4,, M =1, that the
operator B(f) measures the energy in this region in a Galilei-system moving with
the velocity A,w,. Thus, M,(t) defines a boundary between these two areas of
different energy measurement.
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Because there are only finitely many w, and vj, (2.1) implies that there are

neighborhoods U; of v; and some 4> 0, such that
(Wi - v—wi|>6 (2.11)

for all k, j, and ve U;. Hence the sets t-U;= {xl?e Uj} are disjoint from the

boundaries M,(t) for large . With Lemma 2.1, we can find a ;>0 and a
neighborhood U of the origin, such that

M) {y{t)+tvlveU}=0 for all t>1,,j,k. (2.12)

The next lemma shows that A(¢) satisfies the condition which we want to have.
Taking P® instead of P gives better control of the terms due to the boundaries
M (¢).

Lemma 2.2. There is a t,>0 and a neighborhood U of the origin, such that

M
2. k; AW filt, x)= 1) (2.13)

for all j, t=t,, and x e {y{t)+tvlve U}.

Proof. With (2.12), we have already shown that for a fixed j, the function f(t, x) can
only take the two values 0 and i, depending on which side of M,(t) the set
{y{t)+tvjpe U} lies. Thus (2.13) follows from (2.2). O

The next step consists of the computation of the time derivative of B(¥).

Lemma 2.3. There exists a t,>0 such that for weD(H,), seR, t=t,, and p(t)
=U(t,s)y the scalar product (v(t), B(t)y(t)) is continuously differentiable and

%(w(t), BOv(0)
2
S ] (C O ST A I RERT)
T omt 2
+2Re k; (e, x)p(e), PP () (2.15)
3 (00,8, 0000), 216

where
&e=t""w, [x—tw ],

ha(t, )= — Al Wi Sl )
Bb9= % [2 Y Ak(t)w,,fk—y';t)] (V) ey 1),

B0= 3 T 0808,

y 4
pen= 3 AN gy,
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Proof. The potentials V{x— y{t)) are contained in B(f) and we have to use

(@), Vix =y D) p(0) = (B(1), V) B(®), P(t) =™ Pyp(t), (2.17)

for the time derivative, if i[ P, V(x)]=V'V{x) is not Hy-bounded. For the sake of
simplicity we only consider the formal derivative

i[H(), B(t)]+ 0 B(t)— —i[H(@®), A(t)] -+- 0 H(t) 13_ A(t)

= ,.; (—ilVx =y A0). AO] + 5 Vix—yA0)

—i[Hy A(t)]— % A(?).

The first sum on the right side of the last equality gives g, (t, x), which is bounded if
we take t, large enough (see Lemma 2.2).
For the computation of —i[H 0 A(t)] we use

i[Ho, fil=— (m)+ —(4f)= (ka) — (Aj;
and V=g &)t W, Afy=0"(E)E ™
Thus we get
~ilHo AOT=~ 3 AW, {P o)
" Wi
; /1k(t)Wk2 I:tz"‘ (p"(ék)’P(k)]’

where the last sum is g,(t, x). With
0 , o wi
a-tfk—(p (o l:“ T C— F:l )
we have
6 M
% At)y= Y {hft,x)P® + PWR(t, x)}
k=1

wi o«

2

The proof is finished with the following equality:

M P-w w,- P
_ a« (k) k) 1 k
k; lk(t)wk{ e PCIPO+POYE) — 2 }
2

- iZl AlO)wy {[—%—

<wk o 1ék> ?'(&) <ka<">—%5t“-lék)

2
2 fk] PGPV +PY(E) [— =2 é]}

+ gZ(ta X) . D
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By (2.4) the functions A,(t) are positive for large ¢, and thus (2.14) is negative for
states y(t) crossing one of the boundaries M,(t) (D supp¢'(,)). This represents a
kind of energy loss as the particle scatters from one center of force to another. This
feature is important for the proof of asymptotic completeness for the charge
transfer model in [9].

Due to the fact that the rest frames of the heavy particles are not necessarily
inertial, we get (2.15). If the forces V'V(x — y/(t)) cannot be separated by the M,(t),
we have to deal with their tails. This gives g,(t, x). The function g;(t, x) is a pure
quantum effect. A quantum state does not like to have its position measured
precisely. Thus we have taken an increasing thickness t* of M,(t). The time

dependence of the thickness causes the ™% 5 a1 ¢, 1n (2.14) and the additional term

g 2(t> X).
From Lemma 2.2 Assumption 4 and (2.9), we get

3
ngl (1.0(1), gn(t’ X)W(t)) € Ll([th OO)’ dt) .

Furthermore, we can estimate (2.15) by

M
2 kgl Ih(z, )@ - (1@ + [[mwep@)]).

Using (2.3), we obtain the following.

Corollary 2.4. For some t,>0, there are functions g,he L*([t,, 00),dt) such that

& (o), BOWO) S8 +ho) 1Py

It is easily seen from the definition that A(t) is form bounded with respect to H,,
with form bound zero uniformly in t>0. Hence, for every a>0 thereisa be R,
such that

m IPol?= (¢, Hop) <(¢, B(t)p) +ale, Hop) +b l|o||*

for all pe Q(H,). By Corollary 2.4, we get

1—a
o SuP IPy@)* < sup (w(®), BOw(®) +blyll*

m toSt= tosSt=

T
<const, + | dth(t) | Py(t)]|
with °
const,, =(y(to), B(to)p(to)) + I dtg(t)+b il

If sup [Py(t)|*<1 for all T=t,, then the proof of Theorem 1.1 is finished.

to= t_
Otherwise we can divide by sup | Py(t)|, which also proves the statement, since

to< t_

h is integrable.
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3. Geometry of the Boundaries

In this section we show the existence of the w, and 1,(t), k=1, ..., M, which we have
needed for the definition of B(t). They are not determined by (2.1}{2.4), and we
have a great deal of freedom in choosing them. First we take an orthonormal basis
{ei}i=1.....y of R with

vﬁ 4: Uu (3'1)
for j*1,i=1,...,v, where we have defined

v ji = ei -0 e

Furthermore, we assume that for all j and i

v;>0 3.2)

ji= V-
This is not really necessary, but it simplifies the notation, and it is possible to get
(3.2) by a Galilei-transformation. So we have no loss of generality.
Lemma 3.1. There are finitely many w,eR® and A(t), k=1,...,M, satisfying
(2.1)12.4).
Proof. If is sufficient to find w, e IR*\{0}, A,(¢) with
Y A@Owe=yL), j=1,..,N, (33
Wi u,;-g w2
instead of (2.1) and (2.2), because in the case of w, - v;=wj we get for w,=(1 —¢g)w,,
£>0, the inequality W, - v;>W;. We have to choose ¢ small enough to preserve
w, - v, <wi, if this occurs for some . Of course, we will scale 4,(t) with (1 —¢) ™!, since
we want to have the same product A,(t)w,.
We will take (i,n)e{1,...,v} x{1,...,N} instead of ke {1,..., M} and
We=W; ,=a; .;, a;,>0.
Hence (3.3) is equivalent to
Y Aiut)a;,=e;-yft), foralliandj. (34)
For theidea of this procedure, see the example behind the proof. Wefixie {1, ..., v}
and sort the set {v, ;...,vy ;}, i.€., there is a permutation y of {1,..., N} such that
0<v,01),i <Vu2y,i <--- <Oy, i- 3.5

Define

Ai,n= V), i>
and
a.L g (yu(n)(t)”'yu(n— 1)(t)) for n>1
=1 "
_1—ei')}u(1)(t) for n=1.
a1

12
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For fixed j and j' = u~ 1(j), we get
y
Y Aiat)a; = Zl Ait)a; ,=e;- y{t).

n
VjiZ8in

Obviously, (2.3) and (2.4) follow from Assumption (1) and (3.5). O

Since the proof perhaps does not make the idea of choosing the w, and A,(t)
clear enough, we will consider the example: N=2,v=2, y,(t)=v, =(1, 3) and y,(t)
=v,=(2,1). The points v; and v, are in velocity space, which simultaneously
should be thought of as position space divided by the time. The thickness of the
boundaries M,(t) [see (2.10)] is here ¢t~ **, which goes to zero for t— co. For the
sake of simplicity we will assume we have sharp boundaries M}, = {v|w, - v=wi}.
The procedure of the proof gives

W1,1=(1a0)’ W1,2=(2,O)a W2,1=(0a1), W2,2=(O,3),
which leads to the boundaries
My ={(l,plueR}, M, ,={2 plucR},
M'2,1={(ﬂ, 1)IﬂGR}, M(2,2={(ﬂ’3)|HEIR}

Mll,l M/1,2
3 2 M,
2.4
1 J 02
( M,
0 1 2 3

We can see from the definition (2.5)42.9) that B(t)= H(t) near the origin. To find
out whether B(t) measures the energy at the first center of force in the right Galilei
system (=rest frame of this center), we have to sum up all changes at the
boundaries between the origin and v,. By the scaling with (1 — ¢) the boundaries M,
with v; € M} have to be included. These are M {, M}, {, and M ,. While the w,
determines the site of the boundaries, the velocity difference of the Galilei systems
on both sides of a boundary M; is 4,w,. Here 4, =1, 4, ,=1/2, 4, =1, and
A,,,=2/3. Therefore, the velocity of the Galilei system, in which the energy is
measured at v,, is given by

AWy, 1H g W 1+ As oWy =0

This equation is (3.3) for j=1.
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4. Corollaries

If the particle travels with bounded speed, the position divided by the time will be
bounded, too. For time independent Hamilton operators, this is shown in [ 6] with
a similar proof.

Corollary 4.1. Let D=D(Hy)nD(|x|). Then
(a) Ut,s)D=D for t,seR, 4.1)
2
(b) sup W(®), 7z wt) <o 4.2)
for each weD, seR, and p(t)=U(t,s)y.
Proof. We define x,=x(1 +&ex?)~'/? and compute

iLH(), X2 =iTHo, x71= 51— (P Vx2+Vx2-P)

1
= {P-(1+ex?) 32 x,+x,(1+ex?) 3% P}.
Hence, for se R, T=s, we D, and w(t)=U(t, s)yp, we get

T
Sup. x> = llxpl2+ [ del(w (), iLH (@), x2]p ()]
2|T—s|
m

Sllxgpll?+ Sup [Py (@)l - sup_ lxp@l.  (43)
els tels

In the case T<s, we get the same inequality for sup |x,w(t)]l. This shows that
5]

te[T
1%l (1 +x2)~ Y24(6)]| = | x,w(¢)]| has a bound independent of ¢, and
U(t,s)yp = lim (1 +ex?)~?y(t)e D
=0
for every teR. It follows that U(t,s)DCD, D=U(t,s) [U(s,t)D]CU(t,s)D, and
thus (4.1). Taking e=0 in (4.3) implies

2|T—s
(T eyl + 27

sup [ Py(t)|| <const,, (1+]|s|+|T)). O
t>s

Corollary 4.2. Let seR, pe #, and p(t)=U(t,s)p. Then
(@) lLim sup IF(H(®)2 E)p((1)] =0,

E-o t=

(b) lim sup |F(Ho2 E)p(t)| =

E-w t2s

(©) lim sup [|[F(x| 2 v(lt|+1)p()] =

v—>oots

Proof. Since the projectors and the propagator are uniformly bounded, it is
sufficient to prove the statements for yp € D. Using (1.5), the norm in (a) is bounded

b
’ IF(H@®)Z E)(H@)+ M)~ 2| - [(H@©)+ M) ).
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Because the second factor is bounded in t = s, the first one gives the convergence.
The proofs of (b) and (c) are similar. []
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