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Abstract. The energy behavior of the time-dependent Schrόdinger equation

1Jt ψ = ~2rn ,

is discussed, where the y/t) are trajectories of classical scattering. In particular,
we prove that the energy cannot become arbitrarily large as ί->oo.

1. Introduction and Results

The charge transfer model describes a system of one quantum particle, e.g., an
electron, and N others, which can be treated classically because they have a much
greater mass (see [1-5,8-10]). We suppose that the trajectories y/f)J=ί9..., ΛΓ, of
the heavy particles are given and cause a time-dependent potential for the first one.
So we have to consider the Schrόdinger equation

lψ(t)=-iH(ήψ(t) (1.1)

in the Hubert space L2(RV), where H(t) = Ho + V(t), Ho=--—A and

In addition to the self-adjointness of all H(t), t eR, one needs some smoothness of
V(t) for the existence of the time evolution. If the yft) are continuously
differentiable and the VVfx) are H0-bounded, then the existence is well known
(Theorem X.71 in [7]). This does not include the Coulomb potential F/{x) = |x|~1

for dimension v = 3, which is the most important in the charge transfer model.
However, some recent papers ([5, 8, 11]) show that there also exists a time

2
evolution for potentials Vpc) with singularities like \x\ 2 , ε>0, v = 3.
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Because of the explicit time dependence of the Hamiltonian, we have a loss of
energy conservation. So we can ask, which energy behavior can occur? Are there
some initial states with an energy expectation which goes to infinity for large
times? We will show that this cannot happen for yft) arising from classical
scattering in the sense of assumption (1) (see below). The energy boundedness [in
the weaker sense of Corollary 4.2(b)] is necessary for asymptotic completeness.
Furthermore, we will see in Sect. 2 that for large times the energy decreases if the
electron moves repeatedly from one center of force to another. This feature is
important in the proof of asymptotic completeness [9], too.

We will assume the following:
1. The paths yj(t)9j = ί,...,N, are twice continuously differentiable with

^ π . + , d t ) . (1.2)

There are α, tγ >0 such that

\yj{t)-yι(t)\^at for t^tuj*l. (1.3)

2. Every V} is an #0-bounded multiplication operator with relative bound zero.
3. The time evolution exists; i.e., there is a family of unitary operators
{U{t,s)}useκ such that

(a) £/(ί,ί) = Hforallίe]R;
(b) U(t, s) U(s, r) = U{t, r) for all t, s, r e R;
(c) U(t, s)D(H0) = D(H0) and ψ(t) = U(t, s)ψ is continuously differentiable with

respect to ί, satisfying (1.1) for each ψeD(H0) and selR.

4. Outside a compact set Kj every potential Vfx) has a derivative in L°QR?\Kj)
such that for some R > 0,

||F7j(x)F(|x|>r)|| €£([/?, oo),dr), (1.4)

where the orthogonal projector F(\x\>r) is given by multiplication with the
characteristic function of the indicated region.

Of course, classical trajectories yjit), which are outgoing in the sense of (1.3),
satisfy (1.2) if the forces between the heavy particles are decaying like the forces
acting on the light particle [see (1.4)].

By a Cauchy argument, it follows that

Vj:= lim
ί->oo

exists with vj + vl fory'Φ/. With the second assumption and the Kato-Rellich
theorem, H(t) is self-adjoint on D(H(t)) = D(H0). Furthermore, we get a uniform
lower bound for the Hamiltonian, i.e., for some M > 0 and all ί e R we have

(1.5)

Now we state our main result.

Theorem 1.1. Suppose the assumptions (l)-(4) are satisfied. Then for each initial
time s e R and each \peD{H0\ the time evolution ψ(t) = U(t,s)ψ has a uniformly
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bounded energy expectation, i.e.,

sup (xp(t)9H(t)xp{t))< co (1.6)

and
sup(ψ{t),H0ψ(t))<co. (1.7)

The operator boundedness with bound zero in assumption (2) implies form
boundedness with bound zero. Hence, (1.6) and (1.7) are equivalent. The proof of
(1.7) is given in the next two sections. In the following we show that an appropriate
energy expression has a controllable time derivative. For the definition of this
expression we need some vectors and some functions of time satisfying (2Λ)-{2Λ).
The existence of these are given in Sect. 3.

Theorem 1.1 is an extension of the first part of [9], where the energy
boundedness is an essential tool for the proof of asymptotic completeness.
Independently of this work, Graf [2] has also proved that the energy cannot
increase without bound. Although he has used a different method, the assumptions
are essentially the same.

2. Change of the Energy

Since H(t)ψ(t) is continuous in t (Assumption 3.c), we get that sup (ψ(t), H(t)ψ(t))

is bounded for every fixed ίo = s Unfortunately we are not able to show that the
time derivative of the energy expectation is in L1([ί0, oo),dή for some ί0,

^ (ψ(t% H(t)ψ(ή) = - Σ hit)' (V(O, Wfpc -yjt))ψ(ή).
at j=i

So we try to find an energy expression whose derivative can be estimated.
For N = 1 and y^t) = tvί9WQ could change to the rest frame of the center of force

by a Galilei transformation. There we have energy conservation. Equivalently we
could consider:

^ ~vl

in the original frame. Here P : = — iV denotes the momentum operator.

While — υ\ is only an unimportant constant, the time derivative of v1 P, i.e.,

the commutator i[H{t\υι-P~], cancels the uncontrollable derivative of the
potential. Thus the expectation of H(t) is constant.

In the general situation we take instead of vί- P an operator Λ(ή. In a
neighborhood of each yj{t)9 this operator A(t) should be yβ) P (plus a real
bounded function of t). These neighborhoods should grow linearly in time.

Since our intuition is based on yβ) which are straight lines, we need the
following

Lemma 2.1. yJ{t) = tυj + o(t) for t-+co.
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Proof. Let ε > 0 . Take to>0 such that sup \yj{t) — Vj\<-. Then

± } \yj{s)-Vj\ds

< ε for t^.t1>t0 and ί t large. •

Assume that there are finitely many w k e R v and real λk(t), fc = l , . . . , M ,
satisfying

wk - Vj φ wf for all j , k, (2.1)

1/(11+, Λ), (2.3)

and

lim/l f c(ί)>0. (2.4)

In the case yj(t) = ϋj, the Ak(ί) can be chosen independent of t. The existence is shown
in Sect. 3. Now we define the energy expression which we mentioned before:

B(t) = H(t)-A(t), (2.5)

where u
Λ(ή= Σ Ut)wk {fkP

(k) + P{k)fk}, (2-6)
fc=l

(2.7)

(2.8)

(2.9)
and φeC°°(R) with φ(y) = 0 for y^O, φ(y) = l/2 for j / ^ 1 and

The set in which fk(t,x) depends on x, i.e., Vxf(t,x) + 0, is contained in

M,(ί)= ̂ x€W\0<wk-j-w
2
k<~y (2.10)

X

For wk — ̂  Wfc the function /k(ί, x) vanishes and gives no contribution to B(t). On

ί x 1 1
the other hand, we get inside < x\wk — ̂  wk + - j ^ - > that /fc(ί, x) = \. According to
the beginning of this section, this means in the case λk(t) = λk, M = l, that the
operator B(t) measures the energy in this region in a Galilei-system moving with
the velocity λkwk. Thus, Mk(t) defines a boundary between these two areas of
different energy measurement.
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Because there are only finitely many wk and vj9 (2.1) implies that there are
neighborhoods Uj of Vj and some <5>0, such that

\wk v-w2

k\>δ (2.11)

ί x )
for all k, j , and veUj. Hence the sets t-U)= <x\—eUj> are disjoint from the
boundaries Mk(t) for large t. With Lemma 2.1, we can find a £ 0 > 0 and a
neighborhood U of the origin, such that

eU} = Φ for all fetoj,k. (2.12)

The next lemma shows that A(t) satisfies the condition which we want to have.
Taking P(k) instead of P gives better control of the terms due to the boundaries
Mk(t).

Lemma 2.2. There is a t0 > 0 and a neighborhood U of the origin, such that

2 Σ m*J&,x) = Ut) (2.13)
fc=l

for all j9 t ^ ί0, and x e {y0) + tv\v e 17}.

Proof With (2.12), we have already shown that for a fixed j , the function fk(t, x) can
only take the two values 0 and \, depending on which side of Mk(i) the set
{yft) + tv\v e U} lies. Thus (2.13) follows from (2.2). •

The next step consists of the computation of the time derivative of B(t).

Lemma2.3. There exists a to>0 such that for ψeD(H0), S G R , ί^ίo> and ψ(ή
= U(t,s)ψ the scalar product {ψ(t\ B(t)ψ(ή) is continuously differentiable and

jt(ψ(t),B{t)ψ{t))

M

(2.14)> - ί ? < - ^ v(t)

+ 2Re Σ (Mί.x)v(ί).ix*V(ί)) ( 2 !5)
k = l

+ Σ (Ψ(t),gn(t,x)ψ(t)), (2.16)

where

hk(Ux)=-λk{t)wJk{t,x),

gift

M

N Γ M Ί

,x)= Σ 2 Σ (̂OWfc/k-y/ί) (F^ίx-^/ί)),

k = ι λm t
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Proof. The potentials V}{x — yβ)) are contained in B(t) and we have to use

(φ(t), tyx-y/t))ψ(t)) = (v(ί), ^)tp(ί))^(ί) = ̂ ( ί ) pφW, (2.17)

for the time derivative, if i [P, F^x)] = Wfic) is not i/0-bounded. For the sake of
simplicity we only consider the formal derivative

j t B(ί)= -i[β{t),A{t)-\ + j t H(ή- j t A(t)

= Σ (-iίVJίx-yjίt) 01

The first sum on the right side of the last equality gives g^ί, x), which is bounded if
we take ί0 large enough (see Lemma 2.2).

For the computation of — i\H0,A{t)\ we use

-Ύ,k, Afk = φ"(ξk)Γ2«w2

k.
Thus we get

where the last sum is g3(ί, x). With

we have

- A(t)= Y {hk{t,x)P{k) + P{k)hk(t,x)\
ot k=i

The proof is finished with the following equality:

kΣ

+ g2(t,x). D
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By (2.4) the functions λk(t) are positive for large ί, and thus (2.14) is negative for
states ψ(t) crossing one of the boundaries Mk(t) (D suτppφf(ξk)).Ύhis represents a
kind of energy loss as the particle scatters from one center offeree to another. This
feature is important for the proof of asymptotic completeness for the charge
transfer model in [9].

Due to the fact that the rest frames of the heavy particles are not necessarily
inertial, we get (2.15). If the forces VVpc—yj(ή) cannot be separated by the Mk(t\
we have to deal with their tails. This gives g^x). The function g3{t,x) is a pure
quantum effect. A quantum state does not like to have its position measured
precisely. Thus we have taken an increasing thickness f of Mk{t). The time

dependence of the thickness causes the —- fx ξk in (2.14) and the additional term

)
From Lemma 2.2 Assumption 4 and (2.9), we get

Σ (VW> g»fc x)ψ(t)) e Lx(lt09 oo), dt).
1

Furthermore, we can estimate (2.15) by

2 Σ IIhk(t,x)ψ(t)\\ >(\\Pψ(t)\\ + \\mwkψ(t)\\).
fc=l

Using (2.3), we obtain the following.

Corollary 2.4. For some to>0, there are functions g^eί/f l^, oo),dt) such that

jt(ψ(t),B(t)ψ(t))^g(t) + h(t) \\Pψ(t)\\.

It is easily seen from the definition that A(t) is form bounded with respect to Ho

with form bound zero uniformly in ί>0. Hence, for every a>0 there is a beIR+

such that

^ \\Pφ\\2 = (φ,Hoφ)^(φ,B(t)φ) + a(φ,Hoφ) + b \\φ\\2

for all φ e Q{H0). By Corollary 2.4, we get

^ sup \\Pψ(ή\\2^ sup (ψ(tlB(t)ψ(ή) + b\\ψ\\2

wn

t ( o + ]dth(t)\\Pψ(t)\\
., to

with

tt0 = (ψ(t0lB(t0)ψ(t0))+ J dtg(t) + b\\ψ\\2.
to

If sup \\Pψ(t)\\2<>l for all T^ί 0 , then the proof of Theorem 1.1 is finished.

Otherwise we can divide by sup || Pψ(t) \\, which also proves the statement, since
toύtύT

h is integrable.
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3. Geometry of the Boundaries

In this section we show the existence of the wk and λk(t\ k = 1,..., M, which we have
needed for the definition of B(t). They are not determined by (2Λ}-(2A\ and we
have a great deal of freedom in choosing them. First we take an orthonormal basis
te }ί=i,...,v°f]Rv with

VjiΦvu (3.1)

for j φ /, i = 1,..., v, where we have defined

Furthermore, we assume that for all j and i

vβ>0. (3.2)

This is not really necessary, but it simplifies the notation, and it is possible to get
(3.2) by a Galilei-transformation. So we have no loss of generality.

Lemma3.1. There are finitely many w f ceR v and λk(t\ fc = l, . . . ,M, satisfying
(2.1H2.4).

Proof If is sufficient to find wfeeRv\{0}, λk(ή with

Σ M)wk = ffi)> J = l>->tf> (3.3)
k

wk vj ^ w£

instead of (2.1) and (2.2), because in the case of wk Vj=w£ we get for wk = (l — s)wk,
ε>0, the inequality wh-Vj>wl. We have to choose ε small enough to preserve
wk - vt < wk, if this occurs for some /. Of course, we will scale λk(t) with (1 — ε) ~ ι

9 since
we want to have the same product λk(t)wk.

We will take (i,n)e{l,...,v} x {1,...,N} instead of fce{l,...,M} and

Wfc = w ί,π = α ί , n e ί , flifΠ>0.

Hence (3.3) is equivalent to

Σ kn(t)aUn = et - y/ί), for all i and j . (3.4)
n

For the idea of this procedure, see the example behind the proof. We fix i e {1,..., v}
and sort the set {i;M,...,t>N> J, i.e., there is a permutation μ of {1, ...,iV} such that

Define

and
Γ 1

(VuίJt) — y „,„ _ i Λ(t)) for n > 1

for n=ί
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For fixed) and^^μ"1^'), we get

Σ hn(t)aUn= Σ KJ^Kn^ryfi).
n « = 1

Obviously, (2.3) and (2.4) follow from Assumption (1) and (3.5). •

Since the proof perhaps does not make the idea of choosing the wk and λk(t)
clear enough, we will consider the example: N = 2, v = 2, j>1(ί) = i;1 =(1,3) and y2(t)
= v2=(2,1). The points vt and v2 are in velocity space, which simultaneously
should be thought of as position space divided by the time. The thickness of the
boundaries Mk(t) [see (2.10)] is here ί~1+α, which goes to zero for ί->oo. For the
sake of simplicity we will assume we have sharp boundaries Mk = {v\wk v = w£}.
The procedure of the proof gives

which leads to the boundaries

3

1

0

Λ

1

Λf'i,2

v2

I >

1 '

2 3

f 2 , 2

We can see from the definition (2.5H2.9) that B(t) = H(t) near the origin. To find
out whether B(ή measures the energy at the first center of force in the right Galilei
system ( = rest frame of this center), we have to sum up all changes at the
boundaries between the origin and v v By the scaling with (1 — ε) the boundaries M'k
with vx eMk have to be included. These are M'lΛ, M'2Λ, and M2t2. While the wfc

determines the site of the boundaries, the velocity difference of the Galilei systems
on both sides of a boundary M'k is λkwk. Here λiΛ = ί9 λU2 = l/2, λ2Λ = l, and
λ2f2 = 2/3. Therefore, the velocity of the Galilei system, in which the energy is
measured at vl9 is given by

This equation is (3.3) for j=ί.
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4. Corollaries

If the particle travels with bounded speed, the position divided by the time will be
bounded, too. For time independent Hamilton operators, this is shown in [6] with
a similar proof.

Corollary 4.1. Let D = D{H0)nD(\x\). Then

(a) U(t,s)D = D fort,seΈL, (4.1)

x2

(b) sup(t/;(ί),——j ψ(t))<co (4.2)

ί̂ S lΊΓt

for each ψeD, seR, and ψ(t)=U(t,s)ψ.

Proof. We define xε = x(l +εx 2)~ 1 / 2 and compute
iίH(t),xΏ = i[H0,xΏ = ̂ {p- Vx' + Vxl• P}

= -{P-(l+εx2)-3l2xε + xε{i

Hence, for seR, T^s, ψeD, and ψ(t) = U{t,s)ψ, we get

sup | |x εφ(ί)| |2^ \\xεψ\\2 + } dt\{ψ{t), i
te[s,T] s

sup \\Pψ(t)\\ sup ||x,φ(ί)ll (4 3)
m te[s,T] te[s,T]

In the case T^s, we get the same inequality for sup ||xεtp(ί)||. This shows that
te[T,s]

|| |x|(l +εx2)~ll2ψ(t)\\ = ||xeφ(ί)ll has a bound independent of ε, and

U(t,s)ψ=lim(l+εx2)-1/2ιp(t)eD

for every ίeR. It follows that U{t,s)DcD, D = U(t,s) [U(s,t)D~]CU{t,s)D, and
thus (4.1). Taking ε = 0 in (4.3) implies

D

Corollary 4.2. Let seR, ψeJV, and ψ(t)=U(t,s)ψ. Then

(a) lim sup||F(fl(ί)^£)V(ί)ll=O,

(b) lim sup| |F(H o ^£)φ(ί) | |=0,

(c) lim sup| | ί (|x|^»(|ί| + l))φ(ί)ll=O.

Proof Since the projectors and the propagator are uniformly bounded, it is
sufficient to prove the statements for ψ e D. Using (1.5), the norm in (a) is bounded

x'2 xp(t)\\.
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Because the second factor is bounded in t ̂  s, the first one gives the convergence.
The proofs of (b) and (c) are similar. •
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