The Universal R-Matrix for $U_{q} s l(3)$ and Beyond!

Nigel Burroughs*
Department of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge, England CB3 9EW

Abstract

The R-matrices for the quantised Lie algebras A_{n} are constructed through the quantum double procedure given by Drinfel'd [6]. The case of $U_{q} s l(3)$ is thoroughly analysed initially to demonstrate the more subtle points of the calculation. The ease of the calculation for A_{n} is very dependent on a choice of generators for the Borel subalgebra $U_{q} b_{+}$and its dual, and a certain ordering imposed on these generators which is related to the length of a certain word in the Weyl group.

Introduction

To every Lia algebra and Kac Moody algebra g there exists a unique Hopf algebra A; a one parameter deformation of the universal enveloping algebra of g. This is the quantisation of the algebra g, and was defined by Drinfel'd [6] and Jimbo [11]. In the terminology of [6], these Hopf algebras turn out to be (pseudo) quasi-triangular Hopf algebras, which means that there exists an element $R \in A \otimes A$, called the universal R-matrix, that satisfies certain properties. The recent interest in quantum groups and the associated quantised algebra appears to be based on two of these properties: the R-matrix is the quantisation of the classical r-matrix [2] associated with g, and R satisfies the quantum Yang Baxter equation. The former property is important in attempts to quantise Toda field theories and related systems, since the classical r-matrix defines the Poisson structure of the monodromy matrix [8]:

$$
\begin{equation*}
\{T \stackrel{\otimes}{,} T\}=[r, T \otimes T] \tag{1}
\end{equation*}
$$

where any variable dependence of the monodromy matrix T and classical r-matrix r (in some representation) has been suppressed. Quantisation is then achieved by interpreting T as a matrix of operators that satisfies an appropriate quantum level

[^0]version of the Poisson bracket [8]:
\[

$$
\begin{equation*}
R T_{1} T_{2}=T_{2} T_{1} R \tag{2}
\end{equation*}
$$

\]

This quantisation process quantises the r-matrix, interpreting it as a representation of the universal R-matrix associated with A. The representation corresponds to that initially used for r. Problems occur in this quantisation process when taking the continuum limit, and so has tended to be restricted to discrete models. However quantisations of the nonlinear Schrödinger equation and sinh-Gordon model have recently been proposed by Skylanin [17,18]. Similar techniques and ideas occur in relation to the KdV hierarchy and W-algebras $[1,19]$. If the representation of R is fundamental, Eq. (2) defines a quantum group generated by the matrix elements $T_{i j}$ [9]. The ease with which this equation can be obtained from the quantised algebra A given any representation of A, suggests that the Hopf algebra A and the universal R-matrix are of deep significance in this quantisation process.

Secondly we have the quantum Yang Baxter equation, which is intimately linked with the Braid relation. This suggests that any system possessing a braiding may have an underlying quantum group interpretation. This is the case for conformal field theory, whose braiding matrix has a structure very reminiscent of the R-matrix provided that q is a root of unity [16]. The connections between CFT and the KdV hierarchy [19] support this suggestion; the KdV hierarchy admitting hamiltonian structures defined by a classical r-matrix [13]. The R-matrix is, as before, in some representation. However it may be possible to remove the representation; lifting to some universal object encompassing the properties of the CFT.

From a more mathematical point of view, this relationship of the QYBE with the braid relation has been exploited to give universal invariants of links [15], the invariants being valued in $A \otimes A$. This construction uses the universal R-matrix and gives an universal invariant for each quantised algebra A. Given any representation of A, the more usual link invariants are obtained. This construction can be viewed as lifting the representation.

The connections between quantum groups and physics occur through a representation of the R-matrix, these normally being evaluated by indirect methods and not using the universal R-matrix. This is because although the universal R-matrix was defined by Drinfel'd [6], and a method of calculation given via the quantum double construction [6], the method is difficult, and some R-matrices in representation form were known [12], [14]. Hence motivation was lacking. However universal objects can display an underlying structure in a more succinct form and encompass representation independent properties. Hence they may ultimately prove useful.

This paper derives the universal R-matrix for the Lie algebra sequence A_{n} by using the quantum double construction [6]. Initially the $U_{q} s l(3)$ case is analysed in detail, $U_{q} s l(3)$ having properties not present in the $U_{q} s l(2)$ case, which was given in [6] and is also analysed together with the quantum double construction in [4]. The main new feature is the q-analogue Serre relations $[6,11]$. These arise because of the use of generators corresponding only to the simple roots. It is desired to avoid direct use of these Serre relations, and hence generators corresponding to
each root of A_{n} will be defined. It is necessary to order these generators, the chosen ordering being based on the length of the word of the element in the Weyl group that generates the root from α_{1}; the end root of the Dynkin diagram. This ordering is necessary to make the calculation of dual bases of $U_{q} b_{+}, U_{q} b_{-}$possible.

The following result is obtained:

$$
R_{A_{n}}=q^{f\left(H_{i}\right)} \prod_{\alpha \in \Phi^{+}}^{<} E_{q^{-2}}\left(\lambda e_{\alpha} \otimes f_{\alpha}\right) \quad \text { with } \quad f\left(H_{i}\right)=\sum_{i j} a_{i j}^{-1} H_{i} \otimes H_{j} .
$$

This involves a q-analogue of the exponential function E_{q}, non-coroot generators $\left\{e_{\alpha}\right\},\left\{f_{\alpha}\right\}$ of $U_{q} b_{+}, U_{q} b_{-}$respectively, a generator ordering implied by $<$and a constant $\lambda \in C[[h]] . a_{i j}$ is the Cartan matrix corresponding to A_{n}.

This paper is constructed as follows. In Sect. 1 the Hopf structure of the quantised Lie algebra $U_{q} s l(3)$ is studied; a system of generators and an adjoint action being given. However the adjoint action does not appear to give a representation of the quantised algebra. Section 2 constructs the dual of the Borel subalgebra $U_{q} b_{+}$of $U_{q} s l(3)$, the Hopf structure being explicitly constructed from the duality definition. The quantum double of $U_{q} b_{+}$is constructed in Sect. 3 as defined in reference [6]. The R-matrix for the quantum double is constructed in Sect. 4 and then passed to the quotient to give that of $U_{q} s l(3)$. Emphasis is on the choice of generators and bases for the corresponding modules, an appropriate choice making this construction via the quantum double feasible. Section 5 demonstrates that the classical limit of the R-matrix reproduces the Lie bialgebra structure, i.e. it gives the classical r-matrix of $s l(3)$. Sections 6-8 extend the above constructions to the algebras A_{n}. Probably the essential feature of Sect. 6 is the ordering of all the positive roots and the corresponding generators defined by an adjoint action. The ordering is very important in the calculation of the structure of $U_{q} b_{+}^{\prime}$ and in defining a system of dual bases. In Sect. 7 the dual algebra to $U_{q} b_{+}$is analysed, again with an ordering of the generators. Here it is observed that $U_{q} b_{+}^{\prime} \cong U_{q} b_{+}$, hence only the coalgebra of the dual needs to be calculated; the algebra can be inferred. Finally the R-matrix for the quantised Lie algebras A_{n} is calculated in Sect. 8. The fundamental representation is then used in Sect. 9 to project the universal R-matrix to the representation form, this agreeing with that given by Drinfel'd in [6].

The various definitions and quantities required to understand the form of the R-matrix are collected in an appendix for ease of reference.

0. Notation

It is necessary to assume a certain amount of prerequisites in order to limit the length of this work. The quantum group terminology used is defined in [6], while the structure of the root system may be found in [10]. The quantum double construction of the universal R-matrix is defined in [6], while an analysis can be found in [4] together with an explicit construction for the $U_{q} s l(2)$ case. h will be the deformation parameter associated with the quantised algebra A_{n}. We shall find the following combination useful: $q=e^{h / 2}$. This differs from some other works on quantum groups, there being no uniform notation.

In order to simplify notation we shall use the following convention; wherever indices appear we shall assume:

$$
\begin{aligned}
& i, j \in\{1,2\} \quad \text { sum over simple roots. } \\
& a, b \in\{1,2,3\} \text { sum over positive roots. }
\end{aligned}
$$

The explicit numerical values are for the $U_{q} s l(3)$ example. It must be stressed that in Sect. 1 through 5 the root α_{3} is not simple. This contrasts to the general case of A_{n} where this root would be denoted α_{12}.

1. The Hopf Structure of $\boldsymbol{U}_{q} s l(3)$

The quantisation of the Lie algebra $s l(3)$ is achieved by defining generators for each coroot and simple root, the latter satisfying a q-analogue Serre relation [11]. In the construction of the quantum double, Sect. 3, it will be necessary to obtain the dual to $U_{q} b_{+}$, a Borel subalgebra of $U_{q} s l(3)$. Handling the Serre relation in this dualising process is immensely difficult; hence extra generators will be defined such that the Serre relation is reduced to commutation relations. These generators will be defined via an appropriate analogue of the commutator bracket.

We shall review the structure of the Hopf algebra $U_{q} s l(3)$ as given in [6]. $S l(3)$ has 3 roots: α_{1}, α_{2} and $\alpha_{3}=\alpha_{1}+\alpha_{2}$, with the following inner product structure:

$$
\left(\alpha_{i}, \alpha_{i}\right)=2, \quad\left(\alpha_{1}, \alpha_{2}\right)=-1
$$

where α_{1}, α_{2} are a choice of simple roots. A suitable basis of generators for $U_{q} s l(3)$ is the q-analogue of the Chevalley basis of $s l(3)$. The generators are $H_{1}, H_{2}, X_{1}^{ \pm}$, $X_{2}^{ \pm}, X_{3}^{ \pm}$, i.e. H_{i} are coroots and the $X_{a}^{ \pm}$are the generators corresponding to the roots $\pm \alpha_{a}$.

The algebra structure is as follows:

$$
\begin{align*}
{\left[H_{i}, X_{i}^{ \pm}\right] } & = \pm 2 X_{i}^{ \pm}, \quad\left[H_{1}, X_{2}^{ \pm}\right]=\mp X_{2}^{ \pm}, \quad\left[H_{2}, X_{1}^{ \pm}\right]=\mp X_{1}^{ \pm} \\
{\left[X_{i}^{+}, X_{j}^{-}\right] } & = \pm \delta_{i j} \frac{\sinh \left(\frac{h H_{i}}{2}\right)}{\sinh \left(\frac{h}{2}\right)} . \tag{3}
\end{align*}
$$

$X_{i}^{ \pm}$satisfy q-analogue Serre relations [6] and [11], in this case these are triple relations. However we shall define extra generators $X_{3}^{ \pm}$corresponding to the third root α_{3} such that a direct use of this triple relation is avoided. The extra generators are defined by a q-analogue of the adjoint action of $s l(3)$:

$$
\begin{equation*}
X_{3}^{ \pm}=\operatorname{ad}_{q} X_{1}^{ \pm} \cdot X_{2}^{ \pm}:=q^{1 / 2} X_{1}^{ \pm} X_{2}^{ \pm}-q^{-1 / 2} X_{2}^{ \pm} X_{1}^{ \pm} \tag{4}
\end{equation*}
$$

Then impose commutation relations between $X_{3}^{ \pm}$and the generators $X_{i}^{ \pm}$such that the q-analogue triple relations are reproduced. The total algebra structure of the generators $X_{3}^{ \pm}$is given by:

$$
\left[H_{i}, X_{3}^{ \pm}\right]= \pm X_{3}^{ \pm}, \quad i=1,2
$$

$$
\begin{align*}
{\left[H_{1}+H_{2}, X_{3}^{ \pm}\right] } & = \pm 2 X_{3}^{ \pm} \\
\operatorname{ad}_{q} X_{1}^{ \pm} \cdot X_{3}^{ \pm}: & =q^{-1 / 2} X_{1}^{ \pm} X_{3}^{ \pm}-q^{1 / 2} X_{3}^{ \pm} X_{1}^{ \pm}=0 \\
\operatorname{ad}_{q} X_{2}^{ \pm} \cdot X_{3}^{ \pm}: & =q^{1 / 2} X_{2}^{ \pm} X_{3}^{ \pm}-q^{-1 / 2} X_{3}^{ \pm} X_{2}^{ \pm}=0 \tag{5}
\end{align*}
$$

This definition of the adjoint structure is the same as that given in [3].
The coalgebra structure is given by:

$$
\begin{align*}
& \Delta: U_{q} s l(3) \rightarrow U_{q} s l(3) \otimes U_{q} s l(3), \\
& \Delta H_{i}=H_{i} \otimes 1+1 \otimes H_{i} \\
& \Delta X_{i}^{ \pm}=X_{i}^{ \pm} \otimes q^{H_{i} / 2}+q^{-H_{i} / 2} \otimes X_{i}^{ \pm}, \quad i=1,2, \\
& \Delta X_{3}^{+}=X_{3}^{+} \otimes q^{H_{3} / 2}+q^{-H_{3} / 2} \otimes X_{3}^{+}+\left(q-q^{-1}\right) q^{-H_{1 / 2}} X_{2}^{+} \otimes q^{H_{2} / 2} X_{1}^{+} . \tag{6}
\end{align*}
$$

The skew antipode S_{0} [4], [6], is given by:

$$
\begin{align*}
S_{0}\left(H_{i}\right) & =-H_{i} \\
S_{0}\left(X_{i}^{ \pm}\right) & =-q^{\mp 1} X_{i}^{ \pm}, \quad i=1,2 \\
S_{0}\left(X_{3}^{ \pm}\right) & =-q^{\mp 2} X_{3}^{ \pm \prime}, \tag{7}
\end{align*}
$$

where $X_{3}^{ \pm}:=q^{-1 / 2} X_{1}^{ \pm} X_{2}^{ \pm}-q^{1 / 2} X_{2}^{ \pm} X_{1}^{ \pm}$is an alternative definition of the generator corresponding to the third root α_{3}. This is further discussed in Sect. 8. These two generators are exchanged under the operation of the (skew) antipode.

There is an alternative choice of generators that is very useful. These are defined as follows:

$$
\begin{equation*}
e_{a}=q^{H_{a} / 2} X_{a}^{+}, \quad f_{a}=q^{-H_{a} / 2} X_{a}^{-}, \quad a=1,2,3 . \tag{8}
\end{equation*}
$$

These satisfy the relations:

$$
\begin{align*}
e_{3} & =e_{1} e_{2}-q^{-1} e_{2} e_{1}, \quad 0=e_{1} e_{3}-q e_{3} e_{1}, \\
0 & =e_{2} e_{3}-q^{-1} e_{3} e_{2} \quad \text { and } \quad e \rightarrow f, \\
\Delta e_{i} & =1 \otimes e_{i}+e_{i} \otimes q^{H_{i}}, \quad \Delta f_{i}=q^{-H_{i}} \otimes f_{i}+f_{i} \otimes 1, \\
\Delta e_{3} & =1 \otimes e_{3}+e_{3} \otimes q^{H_{1}+H_{2}}+\left(q-q^{-1}\right) e_{2} \otimes q^{H_{2}} e_{1}, \\
{\left[e_{i}, f_{j}\right] } & =\delta_{i j} \frac{2}{\lambda} \sinh \left(\frac{h H_{i}}{2}\right), \quad \text { where } \quad \lambda=\left(1-q^{-2}\right), \\
S_{0}\left(e_{i}\right) & =-q^{-H_{i}} e_{i}, \quad S_{0}\left(f_{i}\right)=-q^{2} q^{H_{i}} f_{i} . \tag{9}
\end{align*}
$$

There is a Borel structure of $U_{q} s l(3)$ denoted by $U_{q} b_{ \pm}$. These are Hopf subalgebras of $U_{q} s l(3), U_{q} b_{+}$being generated by the coroots H_{i}, and the positive root generators X_{a}^{+}. Similarly $U_{q} b_{-}$is generated by H_{i}, X_{a}^{-}. Since emphasis will now be on the Borel subalgebra $U_{q} b_{+}$the + superscript will be dropped for these generators.

2. The Dual to $\boldsymbol{U}_{q} \boldsymbol{b}_{+}$

The quantum double is isomorphic as a $C[[h]]$-module to $U_{q} b_{+} \otimes U_{q} b_{+}^{0}$ [6], where $U_{q} b_{+}^{0}$ is the dual ${ }^{1} U_{q} b_{+}^{\prime}$ with reversed comultiplication. Hence it is necessary

[^1]to evaluate the Hopf structure of $U_{q} b_{+}^{\prime}$; more specifically obtain a basis of $U_{q} b_{+}^{\prime}$ such that the evaluation map is known. In performing this process the generators are ordered to define a basis of the $C[[h]]$-module $U_{q} b_{+}$. The choice of ordering is initially arbitrary, however a more suitable choice for the general case emerges from the $U_{q} s l(3)$ example.

Consider the $C[[h]]$-module structure of $U_{q} b_{+}$. Since we may commute any of the generators $H_{1}, H_{2}, X_{1}^{ \pm}, X_{2}^{ \pm}, X_{3}^{ \pm}$a suitable basis for this module is:

$$
\begin{equation*}
H_{1}^{a} H_{2}^{b} X_{1}^{c} X_{2}^{d} X_{3}^{e}, \quad a, b, c, d, e \in Z_{\geqq 0} . \tag{10}
\end{equation*}
$$

Any element of the dual is uniquely defined by its values on this system of basis elements ${ }^{2}$. Hence define the following dual elements $W_{1}, W_{2}, Y_{1}, Y_{2}, Y_{3} \in U_{q} b_{+}^{\prime}$ by:

$$
\begin{equation*}
W_{i}\left(H_{j}\right)=\delta_{i j}, \quad Y_{a}\left(X_{b}\right)=\delta_{a b} \tag{11}
\end{equation*}
$$

with all other evaluations being zero on the chosen basis of the $C[[h]]$-module $U_{q} b_{+}$. Choose the following basis for the module generated by these elements:

$$
W_{1}^{a} W_{2}^{b} Y_{1}^{c} Y_{2}^{d} Y_{3}^{e}, \quad a, b, c, d, e \in Z_{\geqq 0} .
$$

There is a Hopf algebra structure induced on this $C[[h]]$-module; the algebra structure of $U_{q} b_{+}$induces the coalgebra structure, and likewise the coalgebra structure of $U_{q} b_{+}$induces the algebra structure. The Hopf structure will be evaluated, and it turns out to be isomorphic to that of $U_{q} b_{+}$. These elements span the Hopf dual to $U_{q} b_{+}$, this being obvious once we have established the existence of dual bases in Sect. 4a.

The Commutation Rules for $U_{q} b_{+}^{\prime}$. The multiplication structure of the dual is defined as follows:

$$
\begin{equation*}
Y Y^{\prime}(X)=Y \otimes Y^{\prime}(\Delta X), \quad \forall X \in U_{q} b_{+}, \quad \forall Y, Y^{\prime} \in U_{q} b_{+}^{\prime}, \tag{12}
\end{equation*}
$$

with the evaluation $Y \otimes Y^{\prime}\left(X \otimes X^{\prime}\right)=(Y, X)\left(Y^{\prime}, X^{\prime}\right)$. To define $Y Y^{\prime}$ the element X may be taken to lie in the basis.

The duality relationship between the algebra structure of $U_{q} b_{+}^{\prime}$ and the coalgebra of $U_{q} b_{+}$means that the commutation rules in $U_{q} b_{+}^{\prime}$ will depend on the relationship between the coalgebra maps Δ and $T \circ \Delta$ in $U_{q} b_{+}$(T is the transpose operator.) We note that the generators $\left\{H_{i}, X_{i}\right\}$ form Hopf subalgebras of $U_{q} b_{+}$, and that the generators of the dual have been defined such that the following can be deduced from the $U_{q} s l(2)$ case [4]:

$$
\left[W_{i}, Y_{i}\right]=-\frac{h}{2} Y_{i}
$$

These are also easy to verify directly, using the techniques demonstrated below.
For the calculation of the commutation rule for W_{1} and Y_{2} we observe that the defining relation: $W_{1} Y_{2}(X)=W_{1} \otimes Y_{2}(\Delta X)$ is non-zero only if $X=H_{1} X_{2}$. This

[^2]is because the Y_{2} requires an X_{2} in ΔX, and the W_{1} term requires an H_{1}. By reversing the order of H_{1} and Y_{2} we have:
$$
W_{1} Y_{2}\left(H_{1} X_{2}\right)=1, \quad Y_{2} W_{1}\left(H_{1} X_{2}\right)=1
$$

This implies that: $\left[W_{1}, Y_{2}\right]=0$. A similar calculation holds for W_{2}, Y_{1} giving the commutation relation: $\left[W_{2}, Y_{1}\right]=0$. It can also be proved that $\left[W_{1}, W_{2}\right]=0$. For the calculation of the commutation rule for Y_{1}, Y_{2} we observe:

$$
Y_{1} Y_{2}(X)=Y_{1} \otimes Y_{2}(\Delta X) \neq 0 \quad \text { only if } \quad X=X_{1} X_{2}, X_{3}
$$

On inserting these two values we obtain:

$$
\begin{gathered}
Y_{1} Y_{2}\left(X_{3}\right)=0, \quad Y_{2} Y_{1}\left(X_{3}\right)=\left(q-q^{-1}\right) \\
q^{1 / 2} Y_{1} Y_{2}\left(X_{1} X_{2}\right)=q^{-1 / 2} Y_{2} Y_{1}\left(X_{1} X_{2}\right)=1
\end{gathered}
$$

the last two evaluations being deduced from:

$$
\Delta\left(X_{1} X_{2}\right)=q^{-1 / 2} q^{-H_{2} / 2} X_{1} \otimes q^{H_{1} / 2} X_{2}+q^{1 / 2} q^{-H_{1} / 2} X_{2} \otimes q^{H_{2} / 2} X_{1}+\cdots
$$

Hence this gives: $q^{1 / 2} Y_{1} Y_{2}-q^{-1 / 2} Y_{2} Y_{1}=-q^{-1 / 2}\left(q-q^{-1}\right) Y_{3}$. For the calculation of the commutation rule for Y_{i}, Y_{3} we observe:

$$
Y_{3} Y_{i}(X)=Y_{3} \otimes Y_{i}(\Delta X) \neq 0 \quad \text { only if } \quad X=X_{i} X_{3}
$$

This follows on noting that the generator Y_{a} only has a non-zero evaluation on X_{a}. (For Y_{3} this can occur in the combination $X_{2} X_{1}$.) Note the occurrence of an $X_{2} X_{1}$ combination due to the presence of X_{1}, X_{2} in ΔX_{3} (6). The following evaluation maps are required:

$$
\begin{array}{ll}
Y_{3} Y_{1}\left(X_{1} X_{3}\right)=q^{-1 / 2}, & Y_{1} Y_{3}\left(X_{1} X_{3}\right)=q^{1 / 2} \\
Y_{3} Y_{2}\left(X_{2} X_{3}\right)=q^{-1 / 2}, & Y_{2} Y_{3}\left(X_{2} X_{3}\right)=q^{-3 / 2}
\end{array}
$$

in order to deduce the following structure:

$$
q^{1 / 2} Y_{3} Y_{1}-q^{-1 / 2} Y_{1} Y_{3}=0, \quad q^{-1 / 2} Y_{3} Y_{2}-q^{1 / 2} Y_{2} Y_{3}=0
$$

This is very similar to the adjoint structure defined before for $U_{q} s l(3)$; see (4), (5), and is in fact that of $U_{q} b_{-}$.
The Coalgebra Structure of $U_{q} b_{+}^{\prime}$. The coalgebra structure of the dual to a Hopf algebra is defined as follows:

$$
\begin{equation*}
\Delta Y\left(X \otimes X^{\prime}\right)=Y\left(X X^{\prime}\right), \quad \forall Y \in U_{q} b_{+}^{\prime}, \quad X, X^{\prime} \in U_{q} b_{+} \tag{13}
\end{equation*}
$$

Hence we may deduce (by using the evaluation structure given in the appendix) that:

$$
\begin{align*}
& \Delta W_{i}=1 \otimes W_{i}+W_{i} \otimes 1 \\
& \Delta Y_{1}=1 \otimes Y_{1}+Y_{1} \otimes e^{W_{2}-2 W_{1}}, \\
& \Delta Y_{2}=1 \otimes Y_{2}+Y_{2} \otimes e^{W_{1}-2 W_{2}}, \\
& \Delta Y_{3}=1 \otimes Y_{3}+Y_{3} \otimes e^{-W_{1}-W_{2}}-q Y_{2} \otimes e^{W_{1}-2 W_{2}} Y_{1} \tag{14}
\end{align*}
$$

For example, to evaluate ΔY_{1} we have:

$$
\Delta Y_{1}\left(X \otimes X^{\prime}\right)=Y_{1}\left(X X^{\prime}\right) \neq 0 \quad \text { only if } \quad X X^{\prime}=X_{1} H_{1}^{r} H_{2}^{s}
$$

X, X^{\prime} are elements of the chosen basis, but $X X^{\prime}$ is not necessarily so; hence reordering using the commutation relations is necessary. The product $X X^{\prime}$ may be split in any fashion to give:

$$
\begin{gathered}
\Delta Y_{1}\left(1 \otimes X_{1} H_{1}^{r} H_{2}^{s}\right)=Y_{1}\left(X_{1} H_{1}^{r} H_{2}^{s}\right)=(-2)^{r}, \\
\Delta Y_{1}\left(X_{1} H_{1}^{r} H_{2}^{s} \otimes H_{1}^{r_{1}^{\prime}} H_{2}^{s^{\prime}}\right)=(-2)^{r+r^{\prime}} .
\end{gathered}
$$

This implies: $\Delta Y_{1}=1 \otimes Y_{1}+Y_{1} \otimes e^{W_{2}-2 W_{1}}$.
For ΔY_{3} we may use the commutation relations. However the direct calculation of both the commutation relations and the comultiplication relations turns out to be unnecessary since $U_{q} b_{+}$is self dual. This is shown in the general case of A_{n}.

3. The Quantum Double of $\boldsymbol{U}_{q} \boldsymbol{b}_{+}$

The algebra generated by Y_{1}, Y_{2} is a QFSH algebra [6]. We require the QUE algebra equivalent with opposite comultiplication in order to build the quantum double [6]. The maximal ideal m in $U_{q} b_{+}^{\prime}$ is $\left\langle W_{1}, W_{2}, Y_{1}, Y_{2}, Y_{3}\right\rangle$, (since $\left\langle W_{1}, W_{2}, Y_{1}, Y_{2}\right\rangle$ only contains the combination $\left.h Y_{3}\right) . m^{r}$ is the obvious $C[[h]]$-module, the $r^{\text {th }}$ power of m. So we construct the QUE equivalent as [4, 6]:

$$
\left\{\sum_{n=0}^{\infty} h^{-n} m^{n}\right\} \subset U_{q} b_{+}^{\prime} \otimes_{C[[h]]} C((h)),
$$

which is generated by:

$$
1, \frac{W_{1}}{h}, \frac{W_{2}}{h}, \frac{Y_{1}}{h}, \frac{Y_{2}}{h}, \frac{Y_{3}}{h} .
$$

In more simplistic terms, the QUE algebra equivalent has a Hopf structure that is obtained from the commutation and comultiplication relations of the QFSH algebra by the transformation:

$$
W_{i} \rightarrow h W_{i}, \quad Y_{a} \rightarrow h Y_{a} .
$$

The evaluations between the QUE algebra duals are also weighted by the above transformation. From now on the dual is interpreted either as the QFSH algebra or as the QUE algebra equivalent as appropriate.

It is useful to choose the following combinations:

$$
\begin{equation*}
J_{1}=2\left(2 W_{1}-W_{2}\right), \quad J_{2}=2\left(2 W_{2}-W_{1}\right), \quad J_{3}=J_{1}+J_{2}=2\left(W_{1}+W_{2}\right) . \tag{15}
\end{equation*}
$$

The generators J_{i}, Y_{a} have an Hopf structure isomorphic to that of the H_{i}, f_{a} generators of $U_{q} b_{-}$(9).

The quantum double $D\left(U_{q} b_{+}\right)$, can be viewed as a lift of the original Hopf algebra $U_{q} s l(3)$ such that it separates the two Borel subalgebras, i.e. $U_{q} b_{+} \cap U_{q} b_{-}=\varnothing$. This can be achieved in an infinite number of isomorphic ways (cf. separating $s l(3)$ Borel subalgebras $b_{ \pm}$), however the requirement that the quantum double is quasi-triangular with the canonical element of $U_{q} b_{+} \otimes U_{q} b_{+}^{0}$, [4], Sect. 4a fixes this uniquely. The quasi-triangular condition can be shown to specify the commutation relations between the sets of generators H_{i}, e_{a} and J_{i}, Y_{a}
[4]. The prescription for obtaining these commutation relations can be manipulated into the following diagram [4]:

Fig. 1
The derivation and explanation of the usage of this diagram appear in [4]. Recall that in this diagram $A^{0}=U_{q} b_{+}^{0}$ is the QUE algebra, (n, m) is the evaluation between the entries in positions n and m, and γ is the multiplication map $\gamma: a \otimes b \rightarrow a b$. Knowledge of the $U_{q} s l(2)$ case [4] and the Hopf subalgebras $U_{q} b_{+}, U_{q} b_{+}^{0}$ means that the only relations that need to be calculated are those between the following pairs of elements:

$$
\begin{equation*}
H_{i}, J_{j} \quad J_{1}, e_{2} \quad J_{2}, e_{1} \quad H_{1}, Y_{2} \quad H_{2}, Y_{1} \quad e_{1}, Y_{2} \quad e_{2}, Y_{1} \quad e_{a}, Y_{3} . \tag{16}
\end{equation*}
$$

The last pair may be evaluated by using the commutation relations from the previous pairs. The remaining pairs are evaluated by using the above diagram, Fig. 1. For the pair J_{1}, e_{2} we require the following mappings:

$$
\begin{aligned}
S_{0} \otimes 1^{2} \circ \Delta^{2} e_{2} & =1 \otimes 1 \otimes e_{2}+1 \otimes e_{2} \otimes q^{H_{2}}-q^{-\boldsymbol{H}_{2}} e_{2} \otimes q^{H_{2}} \otimes q^{H_{2}} \\
\Delta^{2} J_{1} & =J_{1} \otimes 1 \otimes 1+1 \otimes J_{1} \otimes 1+1 \otimes 1 \otimes J_{1} .
\end{aligned}
$$

On performing the evaluations we obtain the commutation rule: $\left[J_{1}, e_{2}\right]=-e_{2}$. For a more through exposition of this type of calculation see [4].

The only other mapping that is required to complete the algebra structure of the quantum double is:

$$
\Delta^{2} Y_{1}=q^{-J_{1}} \otimes q^{-J_{1}} \otimes Y_{1}+q^{-J_{1}} \otimes Y_{1} \otimes 1+Y_{1} \otimes 1 \otimes 1
$$

This allows us to deduce that: $Y_{1} e_{2}=e_{2} Y_{1}$.
All other pairs (16) have a commutation relation that can be obtained by dualising the two procedures above. Hence the final structure of the quantum double for $U_{q} s l(3)$ is:

$$
\begin{align*}
{\left[H_{i}, J_{j}\right] } & =0, \\
{\left[H_{i}, e_{i}\right] } & =2 e_{i}, \quad\left[J_{i}, e_{i}\right]=2 e_{i}, \\
{\left[H_{1}, e_{2}\right] } & =-e_{2}, \quad\left[J_{1}, e_{2}\right]=-e_{2} \quad(1 \leftrightarrow 2), \\
{\left[H_{i}, Y_{i}\right] } & =-2 Y_{i}, \quad\left[J_{i}, Y_{i}\right]=-2 Y_{i}, \\
{\left[H_{1}, Y_{2}\right] } & =Y_{2}, \quad\left[J_{1}, Y_{2}\right]=Y_{2} \quad(1 \leftrightarrow 2), \\
{\left[e_{i}, Y_{j}\right] } & =\frac{1}{h} \delta_{i j}\left(q^{H_{i}}-q^{-J_{i}}\right) . \tag{17}
\end{align*}
$$

The triple relations satisfied by Y_{i}, e_{i} have been suppressed.

It is observed that $H_{i}-J_{i}$ commutes with all elements of the quantum double $D\left(U_{q} b_{+}\right)$. These generators produce an ideal and coideal, such that:

$$
\frac{D\left(U_{q} b_{+}\right)}{\left\langle J_{i}-H_{i}\right\rangle} \cong U_{q} s l(3) .
$$

The Hopf structure for $U_{q} s l(3)$, as defined in Sect. (9), is reproduced under the following identification:

$$
\begin{equation*}
J_{i}, H_{i} \rightarrow H_{i}, \quad e_{a} \rightarrow e_{a}, \quad Y_{i} \rightarrow \frac{\lambda}{h} f_{i}, \quad Y_{3} \rightarrow-\frac{\lambda}{h} f_{3} . \tag{18}
\end{equation*}
$$

4a. The Universal \boldsymbol{R}-Matrix for $\boldsymbol{D}\left(\boldsymbol{U}_{q} \boldsymbol{b}_{+}\right)$

The quasi-triangular structure of the quantum double $D\left(U_{q} b_{+}\right)$is given by the canonical element of $U_{q} b_{+} \otimes U_{q} b_{+}^{0}$, i.e. the universal R-matrix is $R=\sum_{s} \zeta_{s} \otimes \zeta^{s}$, where $\left\{\zeta_{s}\right\} \in A,\left\{\zeta^{s}\right\} \in A^{0}$ are dual bases [6]. The practical procedure for finding the R-matrix is to choose bases for $U_{q} b_{+}, U_{q} b_{+}^{\prime}$ and to calculate the evaluation matrix. ($U_{q} b_{+}^{\prime}$ is the QFSH algebra.) This is ${ }^{3}$:

$$
\begin{aligned}
B\left\{k^{\prime}\right\} & =W_{1}^{k} W_{2}^{l} Y_{1}^{u} Y_{2}^{v} Y_{3}^{w}\left(H_{1}^{k^{\prime}} H_{2}^{l^{\prime}} e_{1}^{u^{\prime}} e_{2}^{v^{\prime}} e_{3}^{w^{\prime}}\right), \\
\left\{k^{\prime}\right\} & =\left\{\text { Indices for } U_{q} b_{+}\right\} \quad\{k\}=\left\{\text { Indices for } U_{q} b_{+}^{0}\right\} .
\end{aligned}
$$

The R-matrix is then given by: $R=\sum_{s t} B_{t}^{-1 s} \zeta_{s} \otimes \zeta^{t}$, where the bases are no longer necessarily dual. For the $U_{q} s l(3)$ case this is easily calculated to give:

$$
\begin{gathered}
B\{k\}= \\
\left.\delta \delta_{\{k\}}^{\left.k^{\prime}\right\}}\right\} q^{-2 v w} k!l!\left[u ; q^{-2}\right]!\left[v ; q^{-2}\right]!\left[w ; q^{-2}\right]! \\
{[u ; q]!=\prod_{i=1}^{u}[i ; q], \quad[i ; q]=\frac{\left(1-q^{i}\right)}{(1-q)}}
\end{gathered}
$$

The $q^{-2 v w}$ may be removed by a change of ordering of the $e_{a} \otimes Y_{a}$ generators from the 123 ordering to a 132 order. The bases with this ordering are then dual up to a normalization. Without the choice of e_{a} and Y_{a} as generators, the process of finding the R-matrix becomes much harder since the bases are no longer dual; the Cartan subalgebra generators cause mixing, and hence the semi-infinite matrix B has to be inverted. The $q^{-2 v w}$ factor demonstrates very nicely how important the ordering is, since now the summations in the R-matrix are independent. For the general case of A_{n} a suitable ordering will be chosen from the outset. The R-matrix can now be written down as:

[^3]\[

$$
\begin{align*}
R & =e^{h\left(H_{1} \otimes W_{1}+H_{2} \otimes W_{2}\right)} \sum_{u v w=0}^{\infty} Q_{u v w}^{\prime} e_{1}^{u} e_{3}^{v} e_{2}^{w} \otimes Y_{1}^{u} Y_{3}^{v} Y_{2}^{w}, \\
Q_{u v w}^{\prime} & =\frac{(-1)^{v} h^{u+v+w}}{\left[u ; q^{-2}\right]!\left[v ; q^{-2}\right]!\left[w ; q^{-2}\right]!}, \tag{19}
\end{align*}
$$
\]

on summing the $k, 1$ indices. Note that the descendant of the simple root generators lies between those simple root generators, and in this form the summations are independent.

4b. The Universal \boldsymbol{R}-Matrix for $\boldsymbol{U}_{q} s l(3)$

So far we have a quasi-triangular Hopf algebra $D\left(U_{q} b_{+}\right)$and a Hopf homomorphism $D\left(U_{q} b_{+}\right) \rightarrow U_{q} s l(3)$. Hence a quasi-triangular structure is induced on $U_{q} s l(3)$ by this homomorphism. The quotient map to $U_{q} s l(3)$ was obtained earlier, (18) and this gives the R-matrix for $U_{q} s l(3)$, from (19), as:

$$
\begin{aligned}
R_{U_{q} s l(3)} & =q^{f\left(H_{i}\right)} \sum_{a, b, c=0}^{\infty} Q_{a b c} e_{1}^{a} e_{3}^{b} e_{2}^{c} \otimes f_{1}^{a} f_{3}^{b} f_{2}^{c} \\
Q_{a b c} & =(-1)^{b}\left(\left[a ; q^{-2}\right]!,\left[b ; q^{-2}\right]!,\left[c ; q^{-2}\right]!\right)^{-1}\left(1-q^{-2}\right)^{a+b+c} \\
f\left(H_{i}\right) & =\frac{2}{3} H_{1} \otimes H_{1}+\frac{2}{3} H_{2} \otimes H_{2}+\frac{1}{3} H_{1} \otimes H_{2}+\frac{1}{3} H_{2} \otimes H_{1}
\end{aligned}
$$

This may be rewritten in a more succinct form using one of the q-analogues of the exponential function [7]:

$$
R_{U_{q} s l(3)}=q^{f\left(H_{2}\right)} E_{q^{-2}}\left(\lambda e_{1} \otimes f_{1}\right) E_{q^{-2}}\left(-\lambda e_{3} \otimes f_{3}\right) E_{q^{-2}}\left(\lambda e_{2} \otimes f_{2}\right)
$$

where

$$
\begin{align*}
\lambda & =\left(1-q^{-2}\right), \\
E_{q}(x) & =\sum_{r=0}^{\infty} \frac{x^{r}}{[r ; q]!} . \tag{20}
\end{align*}
$$

The sign in the middle term can be removed by incorporating it in the generator f_{3}, i.e. by defining the composite root generators as: $e_{12}=\operatorname{ad}_{q} e_{1} \cdot e_{2}, f_{21}=\operatorname{ad}_{q} f_{2} . f_{1}$, in the notation of Sect. 6.

The above R-matrix has been explicitly checked, and satisfies all the conditions required of it; thus making $U_{q} s l(3)$ a quasi-triangular Hopf algebra. We again note that the descendant of the simple root generators lies between them. This is a general feature.

5. Classical Limit $\boldsymbol{h} \rightarrow \mathbf{0}$

Recall that as $h \rightarrow 0$ the Lie bialgebra structure of $s l(3)$ is obtained [6]. In particular we can obtain the classical r-matrix:

$$
r=\left.\frac{R-1}{h}\right|_{h \rightarrow 0}
$$

which gives the Lie coalgebra structure:

$$
\begin{aligned}
& \phi: s l(3) \rightarrow s l(3) \otimes \operatorname{sl}(3) \quad(\text { a cocycle }), \\
& \phi(a)=\left[\Delta_{0} a, r\right]=\delta r(a), \quad \forall a \in s l(3), \\
& \Delta_{0} a=a \otimes 1+1 \otimes a .
\end{aligned}
$$

By taking the $h \rightarrow 0$ limit:

$$
R=1+\frac{1}{2} f\left(H_{i}\right)+h\left\{X_{1}^{+} \otimes X_{1}^{-}+X_{2}^{+} \otimes X_{2}^{-}-X_{3}^{+} \otimes X_{3}^{-}\right\}+O\left(h^{2}\right)
$$

Hence, the r-matrix is:

$$
\begin{aligned}
r= & \frac{1}{3} H_{1} \otimes H_{1}+\frac{1}{3} H_{2} \otimes H_{2}+\frac{1}{6} H_{1} \otimes H_{2}+\frac{1}{6} H_{2} \otimes H_{1} \\
& +X_{1}^{+} \otimes X_{1}^{-}+X_{2}^{+} \otimes X_{2}^{-}-X_{3}^{+} \otimes X_{3}^{-} .
\end{aligned}
$$

It is easily verified that this is the (quasi-triangular) r-matrix given in [6].

6. A System of Generators for the Quantisation of the Lie Algebras $\boldsymbol{A}_{\boldsymbol{n}}$

We have a system of generators for $U_{q} s l(3)$, Sect. 1 ; the q-analogue of a Chevalley basis. It is desired to achieve the same structure for $A_{n}=U_{q} s l(n+1)$ and build a dual basis for $U_{q} b_{+}, U_{q} b_{+}^{\prime}$. Then the quantum double and finally the R-matrix can be constructed. In order to accomplish this, it is necessary to impose an ordering on the positive roots, and also on the generators of $U_{q} b_{+}, U_{q} b_{+}^{\prime}$ corresponding to these roots. For instance, it is necessary to choose a basis for the $C[[h]]$-module $U_{q} b_{+}$such that the generators of the dual can be defined; compare this to (10), (11). This will require an ordering of the generators of $U_{q} b_{+}$. An astute choice of ordering makes the following calculation of a system of dual bases for $U_{q} b_{+}, U_{q} b_{+}^{\prime}$ much simpler than it would be on any arbitrarily imposed ordering.

First, we require some notation and conventions for the root system. Any classical properties of the root system can be found in [10]. Let S be a choice of simple roots for A_{n}; these being numbered along the Dynkin diagram consecutively, and let Φ^{+}denote the positive roots. The roots for A_{n} have the following form:

$$
\begin{equation*}
\alpha \in \Phi^{+} \text {iff } \alpha=\alpha_{i}+\alpha_{i+1}+\cdots+\alpha_{j} \text { for some } j \geqq i, \tag{21}
\end{equation*}
$$

i.e. a consecutive sum of simple roots. Consider the roots being generated from the ultimate root of the Dynkin diagram α_{1} by an element of the Weyl group: $\alpha=\sigma\left(\alpha_{1}\right)$. The Weyl group $W_{A_{n}}$ is generated by the reflections σ_{i} corresponding to the simple roots. Define $\mu(\sigma)$ as the length of the word $\sigma \in W_{A_{n}}$ with respect to these generators. Each root has a minimal length word associated with it which can be proved to be: $\mu(\alpha)=(j+i)-2$ with α the root defined above. A partial order 4 is imposed by $\mu: \alpha<\beta$ if $\mu(\alpha)<\mu(\beta)$. If $\mu(\alpha)=\mu(\beta)$ then it can be proved that $(\alpha, \beta)=0$ and vice versa. Hence this partial order is sufficient for the adjoint definition below (22). But for convenience we shall order this case by the number of simple roots in the expansion.

[^4]Define the adjoint action of the generators in a Borel subalgebra by the following:

$$
\begin{equation*}
\operatorname{ad}_{q} P_{\alpha} \cdot O_{\beta}=P_{\alpha} O_{\beta}-q^{(\alpha, \beta)} O_{\beta} P_{\alpha}, \quad \alpha<\beta, \tag{22}
\end{equation*}
$$

where P_{α}, O_{β} are generators corresponding to the roots $\alpha, \beta \in \Phi^{+}$. Supplement the definition with:

$$
\begin{equation*}
\operatorname{ad}_{q} P_{\alpha} \cdot O_{\beta}=-\operatorname{ad}_{q} O_{\beta} \cdot P_{\alpha} . \tag{23}
\end{equation*}
$$

This is suitable for a H_{i}, e_{a} system of generators, for a H_{i}, X_{a} system the coefficients need to be altered. For instance compare the commutation relations in Sect. 1: (4), (5) and (9).

As in the classical theory the roots are the eigenvalues of the generators in the Cartan subalgebra. However as we are using the universal enveloping algebra the eigenvalues now lie in the Z-span of Φ^{+}. We note that the eigenvalue of $\operatorname{ad}_{q} P_{\alpha} \cdot O_{\beta}$ is $\alpha+\beta$. This definition of adjoint generalises that of [3] and is suitable for all the quantum versions of the Lie algebras.

To ensure that the Serre triple relations do not appear directly in the algebra structure, we shall define a generator for each $\alpha \in \Phi^{+}$, and a corresponding generator for $-\alpha$. Within each Borel subalgebra we shall order the generators by the ordering induced from that of the corresponding roots. Hence we have the following:

$$
\begin{equation*}
P_{\alpha}<O_{\beta} \quad \text { iff } \quad \alpha<\beta, \tag{24}
\end{equation*}
$$

for P_{α}, O_{β} any two generators of $U_{q} b_{+}$(or $U_{q} b_{-}$) corresponding to the roots $\alpha, \beta \in \Phi^{+}$. Where necessary, the coroots will always be assumed to be placed before all other roots.

It is most convenient to extend the H_{i}, e_{a} generator structure, since these led to dual bases in the $U_{q} s l(3)$ example, Sect. 4 a . Hence define the following:

$$
\begin{align*}
& e_{i}, f_{i} \text { for } \alpha_{i} \in S, \\
& e_{\alpha}=\prod_{s \in[i, j-1]}^{<}\left(\operatorname{ad}_{q} e_{s}\right) \cdot e_{j}, \\
& f_{\alpha}=(-1)^{j-i} \prod_{s \in[i, j-1]}^{<}\left(\operatorname{ad}_{q} f_{s}\right) \cdot f_{j}, \quad \text { where } \quad \alpha=\sum_{\substack{s \in[i, j] \\
j>i}} \alpha_{s} \in \Phi^{+} . \tag{25}
\end{align*}
$$

The $<$ behind the product implies that the generators are ordered as above, in an ascending order when read from left to right. This is the successive adjoint action by descending simple root generators. For example in A_{3} we have:

$$
\begin{aligned}
e_{12} & =\operatorname{ad}_{q} e_{1} \cdot e_{2}, \quad e_{23}=\operatorname{ad}_{q} e_{2} \cdot e_{3} \\
e_{123} & =\operatorname{ad}_{q} e_{1} \cdot \operatorname{ad}_{q} e_{2} \cdot e_{3}=\operatorname{ad}_{q} e_{1} \cdot e_{23}
\end{aligned}
$$

and the ordering $e_{1}<e_{12}<e_{2}<e_{123}<e_{23}<e_{3}$.
Also note that:

$$
\begin{equation*}
e_{\alpha}=\prod_{s \in[i, j-1]}^{<}\left(\operatorname{ad}_{q} e_{s}\right) \cdot e_{j}=(-1)^{j-i} \prod_{s \in[i+1, j]}^{>}\left(\operatorname{ad}_{q} e_{s}\right) \cdot e_{i} \tag{26}
\end{equation*}
$$

Thus the generators can be expressed either as the successive adjoint action by descending simple root generators (25), or ascending ones (26). Equation (26) implies that:

$$
f_{\alpha}=\prod_{s \in[i+1, j]}^{>}\left(\operatorname{ad}_{q} f_{s}\right) \cdot f_{i} .
$$

This differs in sign from the generator used in the $U_{q} s l(3)$ case, this change being advisable to avoid unpleasant signs in the R-matrix. To emphasise the difference between the definitions of the generators e_{α}, f_{α}, the notation e_{12}, e_{23}, e_{123} and $f_{21}, f_{32}, f_{321}\left(A_{3}\right)$ is preferred for any specific quantised algebra. The proof of (26) is a simple consequence of the fact that: $\operatorname{ad}_{q} e_{i} \cdot \mathrm{ad}_{q} e_{j}=\operatorname{ad}_{q} e_{j} \cdot \operatorname{ad}_{q} e_{i}$ if $|i-j|>1$. More specifically we require: $\alpha_{i}+\alpha_{j} \notin \Phi^{+},\left(\alpha_{i}, \alpha_{j}\right)=0$.

The generators corresponding to the simple roots have a simpler structure than the other roots because the adjoint structure was defined to reproduce the Serre triple relations. Thus we have, if $\alpha+\beta \notin \Phi^{+}$:

$$
\begin{align*}
& \operatorname{ad}_{q} e_{\alpha} \cdot e_{\beta}=0 \quad \text { if } \alpha \text { or } \beta \in S, \\
& \operatorname{ad}_{q} e_{\alpha} \cdot e_{\beta} \neq 0 \text { in general if neither } \alpha, \beta \notin S . \tag{27}
\end{align*}
$$

This is illustrated in A_{3} by: $\mathrm{ad}_{q} e_{12} \cdot e_{23}=\left(q-q^{-1}\right) e_{2} e_{123}$.
However we have the very important relation:

$$
\begin{equation*}
\operatorname{ad}_{q} e_{\alpha} \cdot e_{\beta}= \pm e_{\alpha+\beta} \quad \text { if } \quad \alpha+\beta \in \Phi^{+}, \quad \text { the sign for } \alpha \lessgtr \beta \tag{28}
\end{equation*}
$$

This implies that we may decompose a generator in any manner.
The generators have the following Hopf structure:

$$
\begin{align*}
& {\left[H, e_{\alpha}\right] }=\alpha(H) e_{\alpha}, \quad\left[H, f_{\alpha}\right]=-\alpha(H) f_{\alpha}, \quad \forall H \in U_{q} h, \\
& {\left[e_{i}, f_{j}\right] }=\delta_{i j} \frac{2}{\lambda} \sinh \left(\frac{h H_{i}}{2}\right), \quad \text { where } \quad \lambda=\left(1-q^{-2}\right), \\
& \Delta e_{i}=1 \otimes e_{i}+e_{i} \otimes q^{H_{i}}, \quad \Delta f_{i}=q^{-H_{i}} \otimes f_{i}+f_{i} \otimes 1, \\
& \Delta e_{\alpha}=1 \otimes e_{\alpha}+e_{\alpha} \otimes q^{H_{\alpha}}+\left(q-q^{-1}\right) \sum_{\substack{\beta>\beta^{\prime} \\
\beta+\beta^{\prime}=\alpha \\
\beta, \beta^{\prime} \in \Phi^{+}}} e_{\beta} \otimes q^{H_{\beta}} e_{\beta^{\prime}}, \\
& \forall \alpha \in \Phi^{+} . \tag{29}
\end{align*}
$$

The last equation can be proved by induction. The reason why the chosen ordering is useful is because of the structure of Δe_{α}. Let p_{1} be the projector on the first position of $U_{q} b_{+}^{\otimes 2}$, then the map $p_{1} \circ \Delta$ acting on the non-coroot generators increases the order of the element:

$$
\begin{equation*}
p_{1} \circ \Delta(x) \geqq x, \quad x \in U_{q} b_{+} . \tag{30}
\end{equation*}
$$

This is also a characteristic of the dual comultiplication.

7. The Dual Structure of $\boldsymbol{U}_{q} \boldsymbol{b}_{+}$

In order to calculate the structure of the dual $U_{q} b_{+}^{\prime}$ it is again necessary to choose a basis of the corresponding $C[[h]]$-module (10). This basis is chosen by using
the root ordering above. This turns out to be a very useful choice as the adjoint structure is then self dual. The basis is:

$$
\begin{equation*}
\prod_{\alpha_{i} \in S} H_{i}^{r_{i}} \prod_{\alpha \in \boldsymbol{\Phi}^{+}}^{<} e_{\alpha}^{s_{\alpha}}, \quad r_{i}, s_{\alpha} \in Z_{\geqq 0} . \tag{31}
\end{equation*}
$$

For example, in the $U_{q} s l(3)$ case we obtain $H_{1}^{r_{1}} H_{2}^{r_{2}} e_{1}^{s_{1}} e_{12}^{s_{1}} e_{2}^{s_{2}}$, as suggested in Sect. 4a. Define the elements $W_{i}, Y_{\alpha} \forall \alpha_{i} \in S, \alpha \in \Phi^{+}$by the evaluation maps:

$$
\begin{equation*}
W_{i}\left(H_{i}\right)=1, \quad Y_{\alpha}\left(e_{\alpha}\right)=1, \tag{32}
\end{equation*}
$$

will all other evaluations being zero on the chosen basis of the $C[[h]]$-module $U_{q} b_{+}$. Compare this to Eqs. (10) and (11). These generators will generate $U_{q} b_{+}^{\prime}$ as a Hopf algebra, this being obvious once the existence of dual bases is demonstrated Sect. 8.

The comultiplication structure of $U_{q} b_{+}^{\prime}$ will now be derived. For the generators W :

$$
\begin{aligned}
\Delta W_{i}\left(X \otimes X^{\prime}\right) & =W_{i}\left(X X^{\prime}\right) \\
\text { implies that } X, X^{\prime} & =H_{i}, 1 \text { or vice versa. }
\end{aligned}
$$

And hence we obtain: $\Delta W_{i}=1 \otimes W_{i}+W_{i} \otimes 1$.
Consider the generator Y_{α} for some root $\alpha \in \Phi^{+}$:

$$
\Delta Y_{\alpha}\left(X \otimes X^{\prime}\right)=Y_{\alpha}\left(X X^{\prime}\right) \neq 0 \quad \text { only if } \quad X X^{\prime}=e_{\alpha} f\left(H_{i}\right)
$$

where f an arbitrary function of the coroots. If a root is not simple we may decompose it into the sum of two other positive roots. This is reflected on the generator level by the adjoint action (28):

$$
e_{\alpha}=\operatorname{ad}_{q} e_{\beta^{\prime}} \cdot e_{\beta}, \quad \beta^{\prime}, \beta \in \Phi^{+}, \quad \beta^{\prime}+\beta=\alpha, \quad \beta^{\prime}<\beta
$$

This is valid for any decomposition of the root; hence in order to specify ΔY_{α} we must consider: $X=e_{\beta}, X^{\prime}=e_{\beta^{\prime}}$ for $\beta^{\prime}<\beta$ as above (this order is reverse to that of the basis). This gives; on inserting two arbitrary functions of H_{i} :

$$
Y_{\alpha}\left(e_{\beta} f\left(H_{i}\right) e_{\beta^{\prime}} f^{\prime}\left(H_{i}\right)\right)=-q^{\left(\beta^{\prime}, \beta\right)} f\left(-\left(\alpha_{i}, \beta\right)\right) f^{\prime}\left(-\left(\alpha_{i}, \alpha\right)\right) .
$$

Hence it is deduced that:

$$
\begin{equation*}
\Delta Y_{\alpha}=1 \otimes Y_{\alpha}+Y_{\alpha} \otimes e^{-J_{\alpha} / 2}-q \sum_{\substack{\beta>\beta^{\prime} \\ \beta+\beta^{\prime}=\alpha \\ \beta, \beta^{\prime} \in \Phi^{+}}} Y_{\beta} \otimes e^{-J_{\beta} / 2} Y_{\beta^{\prime}} \quad \forall \alpha \in \Phi^{+}, \tag{33}
\end{equation*}
$$

where $J_{\alpha}=2 \sum_{k}\left(\alpha, \alpha_{k}\right) W_{k}$. Compare this definition to (15).
The comultiplication (33), is identical to that of H_{i}, e_{α} (29), under the identification:

$$
J_{i} \rightarrow-H_{i}, \quad Y_{\alpha} \rightarrow(-1)^{m} \frac{\lambda}{h} e_{\alpha},
$$

where α is a sum of $m+1$ simple roots. ($U_{q} b_{+}^{\prime}$ is interpreted as the QUE algebra equivalent.) Hence the commutation structure of the dual is also identical to that
of $U_{q} b_{+}$, being induced by the comultiplication of $U_{q} b_{+}$. This demonstrates that $U_{q} b_{+}^{\prime} \cong U_{q} b_{+}$. (The above method of finding the comultiplication can also be used to show the consistency of the Hopf structure of $U_{q} b_{+}$.)

Hence the Hopf structure of $U_{q} b_{+}^{\prime}$ (interpreted as the QUE algebra) is given by:

$$
\begin{align*}
{\left[J_{\alpha}, Y_{\beta}\right] } & =-(\alpha, \beta) Y_{\beta}, \\
\operatorname{ad}_{q} Y_{\alpha_{i}} \cdot Y_{\alpha} & =-\frac{\lambda}{h} Y_{\alpha_{i}+\alpha} \text { for } \alpha_{i}<\alpha, \alpha_{i}+\alpha \in \Phi^{+}, \\
\operatorname{ad}_{q} Y_{\alpha_{i}} \cdot Y_{\alpha} & =0 \text { for } \alpha_{i}+\alpha \notin \Phi^{+}, \\
\Delta Y_{\alpha} & =1 \otimes Y_{\alpha}+Y_{\alpha} \otimes q^{-J_{\alpha}}-h q \sum_{\substack{\beta>\beta^{\prime} \\
\beta+\beta^{\prime}=\alpha \\
\beta, \beta^{\prime} \in \Phi^{+}}} Y_{\beta} \otimes q^{-J_{\beta}} Y_{\beta^{\prime}} \quad \forall \alpha \in \Phi^{+} . \tag{34}
\end{align*}
$$

The adjoint structure of the commutation relations implies that the generators $Y_{\alpha}, \alpha \in S$ satisfy the triple relations [11]. Hence we could reverse the sequence of events in Sect. 1 and drop the non-simple root generators.

It now only remains to choose a basis of the dual, which will again be based on the root ordering defined in Sect. 6. The most convenient basis to choose is:

$$
\begin{equation*}
\prod_{\alpha_{i} \in S} W_{i}^{r_{i}} \prod_{\alpha \in \Phi^{+}}^{<} Y_{\alpha}^{s_{\alpha}}, \quad r_{i}, s_{\alpha} \in Z_{\geqq 0} \tag{35}
\end{equation*}
$$

Since it is dual (up to normalisation) to the basis chosen for $U_{q} b_{+}$(31). This is shown in Sect. 8.

This completes the structure of the dual $U_{q} b_{+}^{\prime}$ and so we may proceed with the calculation of the R-matrix and the quantum double.

8. The R-Matrix and the Quantum Double

The construction of the R-matrix is again practically trivial because the chosen bases for $U_{q} b_{+}, U_{q} b_{+}^{\prime}$ are dual up to a normalisation. This is a consequence of the coalgebra structure (30): $p_{1} \circ \Delta(x) \geqq x, x \in A=U_{q} b_{+}$or $U_{q} b_{+}^{\prime}$ with p_{1} the projector onto the first position of $A^{\otimes 2}$. Observing this, we may calculate the evaluation matrix. Consider first the following evaluation (all generator products being assumed as ordered in the ascending fashion, (31), (35)):

$$
\begin{equation*}
\prod_{\alpha \geqq \delta} Y_{\alpha}^{r_{\alpha}}\left(\prod_{\alpha \geqq \eta} e_{\alpha}^{s_{\alpha}}\right)=Y_{\delta}^{r_{\delta}} \otimes \prod_{\alpha>\delta} Y_{\alpha}^{r_{\alpha}}\left(\Delta\left(\prod_{\alpha \geqq \eta} e_{\alpha}^{s_{\alpha}}\right)\right) \tag{36}
\end{equation*}
$$

This implies that $\delta \geqq \eta$, by the above order increasing property of Δ. The reverse equality is obtained by the dual procedure, and so $\delta=\eta$. Using the coalgebra structure (29), we continue this process to obtain:

$$
\begin{align*}
Y_{\delta}^{r_{\delta}} \otimes \prod_{\alpha>\delta} Y_{\alpha}^{r_{\alpha}}\left(\Delta\left(\prod_{\alpha \geqq \delta} e_{\alpha}^{s_{\alpha}}\right)\right) & =Y_{\delta}^{r_{\delta}} \otimes \prod_{\alpha>\delta} Y_{\alpha}^{r_{\alpha}}\left(e_{\delta}^{s_{\delta}} \otimes q^{s_{\delta} H_{\delta} \cdot} \cdot 1 \otimes \prod_{\alpha>\delta} e_{\alpha}^{s_{\alpha}}\right) \\
& =Y_{\delta}^{r_{\delta}}\left(e_{\delta}^{s_{\delta}}\right) \prod_{\alpha>\delta} Y_{\alpha}^{r_{\alpha}}\left(\prod_{\alpha>\delta} e_{\alpha}^{s_{\alpha}}\right) \tag{37}
\end{align*}
$$

Hence the evaluation matrix splits into several independent parts, one for each root α.

The final step is to evaluate:

$$
Y_{\delta}^{r_{\delta}}\left(e_{\delta}^{s_{\delta}}\right)=\delta^{r_{\delta} s_{\delta}}\left[r_{\delta} ; q^{-2}\right]!,
$$

which is identical to a calculation in [4]. Including the Cartan subalgebra generators is easily accomplished by using a contour integral technique. We evaluate:

$$
\exp \left(\sum_{i} z_{i} W_{i}\right) \prod_{\alpha \in \Phi^{+}} Y_{\alpha}^{r_{\alpha}}\left(\exp \left(\sum_{i} w_{i} H_{i}\right) \prod_{\alpha \in \Phi^{+}} e_{\alpha}^{s_{\alpha}}\right)
$$

with w_{i}, z_{i} complex variables; the entries of the evaluation matrix being given by the coefficients of powers in w_{i}, z_{i}. These can be isolated by a contour integration about the origin.

The R-matrix for the quantum double can now be written down as:

$$
\begin{equation*}
R_{D\left(U_{q} b+\right)}=\exp \left(h \sum_{i} H_{i} \otimes W_{i}\right) \prod_{\alpha \in \Phi^{+}}^{<} E_{q^{-2}}\left(h e_{\alpha} \otimes Y_{\alpha}\right) \tag{38}
\end{equation*}
$$

On passing to the quotient Hopf algebra A_{n} we use the following identification:

$$
J_{i}, H_{i} \rightarrow H_{i}, \quad Y_{\alpha} \rightarrow \frac{\lambda}{h} f_{\alpha}
$$

which can be verified by a few calculations to obtain the quantum double structure of $D\left(U_{q} b_{+}\right)$. These are similar enough to those already evaluated in Sects. 3 and [4] that the proof is omitted.

Hence we obtain the Universal R-matrix for A_{n}, from (38) as:

$$
\begin{equation*}
R_{A_{n}}=q^{f\left(H_{i}\right)} \prod_{\alpha \in \Phi^{+}}^{<} E_{q^{-2}}\left(\lambda e_{\alpha} \otimes f_{\alpha}\right), \quad f\left(H_{i}\right)=\sum_{i j} a_{i j}^{-1} H_{i} \otimes H_{j} \tag{39}
\end{equation*}
$$

where $a_{i j}$ is the Cartan matrix and $\lambda=1-q^{-2}$. Recall that the generators have been defined differently from Sects. $1-5$, see (9), (25), this accounting for the sign in (20). Without this absorption of the sign in the definition of $f_{\alpha}(25)$, we would obtain a sign in the arguments of the exponents: $(-1)^{m}$ for α the sum of $m+1$ simple roots.

From the universal R-matrix for the quantum double we can also obtain the R-matrix for any Hopf subalgebra of A_{n} that is isomorphic to some quotient Hopf algebra of the double. This includes $A_{m} \subset A_{n}$ for $m<n$, the quotient being given by setting excess generators to zero. Does this suggest some infinitely generated quantum double?

The above construction probably follows through for the other quantised Lie algebras, the analysis being more complex because of quadratic/quartic Serre relations and branched Dynkin diagrams [5].

Reversing the Order of the Roots. The procedure for constructing the quantum double involved a number of choices to be made; in particular we have ordered the roots and defined an adjoint structure (22), (23) and (24). The order of the roots
can be reversed and in doing so we transform the adjoint structure by a $q \rightarrow q^{-1}$ transformation:

$$
\begin{equation*}
\operatorname{ad}_{q} P_{\alpha} \cdot O_{\beta}=P_{\alpha} O_{\beta}-q^{-(\alpha, \beta)} O_{\beta} P_{\alpha}, \quad \alpha<\beta \tag{40}
\end{equation*}
$$

This is achieved by recalling that the antipode is an algebra anti-homomorphism [6], it exchanges the two definitions of the adjoint and that $S \otimes S(R)=R[4]$. Hence the R-matrix is also equal to:

$$
\begin{align*}
R_{A_{n}} & =\prod_{\alpha \in \Phi^{+}}^{>} E_{q^{-2}}\left(\lambda S\left(e_{\alpha}\right) \otimes S\left(f_{\alpha}\right)\right) q^{f\left(H_{i}\right)} \\
& =\prod_{\alpha \in \Phi^{+}}^{>} E_{q^{-2}}\left(\lambda q^{-2 m+2} q^{-H_{\alpha}} e_{\alpha}^{\prime} \otimes q^{H_{\alpha}} f_{\alpha}^{\prime}\right) q^{f\left(H_{i}\right)} \tag{41}
\end{align*}
$$

where the only changes are the descending order of the roots in the product of q-exponentials and the generators $e_{\alpha}^{\prime}, f_{\alpha}^{\prime}$ are now defined by the adjoint definition (40). The positive root α is the sum of $m+1$ simple roots.

9. The \boldsymbol{R}-Matrix in the Fundamental Representation

The R-matrix in some representation $\rho: A_{n} \rightarrow \operatorname{End}(V, C[[h]])$ can be obtained by the projection of the universal R-matrix obtained above. For example using the fundamental representation [6]:

$$
\rho\left(H_{i}\right)=E_{i, i}-E_{i+1, i+1}, \quad \rho\left(e_{i}\right)=q^{1 / 2} E_{i, i+1}, \quad \rho\left(f_{i}\right)=1^{1 / 2} E_{i+1, i}
$$

where $E_{i j}$ is the matrix with value one at position i, j, zero elsewhere, we obtain the R-matrix:

$$
\begin{equation*}
R_{\rho \otimes \rho}=q^{-1 /(n+1)}\left(I \otimes I+(q-1) \sum_{i=1}^{n+1} E_{i i} \otimes E_{i i}+\left(q-q^{-1}\right) \sum_{i<j} E_{i j} \otimes E_{j i}\right) \tag{42}
\end{equation*}
$$

as given in [6]. Note that the normalization of the generators is different than those used in [6].

Conclusion

The R-matrices for the quantised Lie algebras A_{n} have been constructed through the quantum double. The final form involving q-analogues of the exponential function was dependent on the summations over generators being independent. A method for achieving this emerged naturally from the $U_{q} s l(3)$ example, namely choosing an ordering of the roots such that their descendants lie between them. This ordering also allowed the dual structure and the evaluation matrix to be evaluated. The final form is reminiscent of a symbolic structure $R \approx \exp (h r)$ with the "exp" suitably interpreted. The extension to the other Lie algebras is an obvious path to pursue [5], however complications arise: branched Dynkin diagrams do not allow a consecutive ordering of roots, and non-simply laced Lie algebras do not have such a concise form of the comultiplication structure (29). It is even possible that extended Dynkin diagrams can be treated; however the extra root requires special attention.

Acknowledgements. I am indebted to Alan Macfarlane for our many discussions on quantum groups, his help in preparing this manuscript and suggesting the R-matrix calculation for $U_{q} s l(3)$ initially. I would also like to thank Jonathan Simon for help with the Macintosh, and Gérard Watts for a helpful suggestion on my root ordering.

Appendix. The Evaluation Structure of $\boldsymbol{U}_{\boldsymbol{q}} \boldsymbol{b}_{+}$and $\boldsymbol{U}_{\boldsymbol{q}} \boldsymbol{b}_{+}^{\prime}$

The evaluation mappings below are necessary for the calculation of the coalgebra structure of the dual and algebra structure of the quantum double in the $U_{q} s l(3)$ example Sects. 2-4.

$$
\begin{array}{rlrl}
W_{i}^{r}\left(H_{j}^{s}\right) & =\delta_{i j} \delta^{r s} r!, & Y_{1}\left(X_{1} H_{1}^{r} H_{2}^{s}\right)=(-2)^{r}, \\
Y_{2}\left(X_{2} H_{1}^{r} H_{2}^{s}\right) & =(-2)^{s}, & Y_{3}\left(X_{3} H_{i}^{r}\right)=(-1)^{r}, \\
Y_{3}\left(X_{2} H_{1}^{r} H_{2}^{s} X_{1} H_{1}^{r} H_{2}^{s^{\prime}}\right) & =-q^{1 / 2}(-2)^{s}(-1)^{r^{\prime}+s^{\prime}} .
\end{array}
$$

Appendix. Summary of Definitions

The Universal R-matrix for the quantisation of the Lie algebra A_{n} has been derived to be (39):

$$
\begin{aligned}
R_{A_{n}} & =q^{f\left(H_{i}\right)} \prod_{\alpha \in \Phi^{+}}^{>} E_{q^{-2}}\left(\lambda e_{\alpha} \otimes f_{\alpha}\right) \\
f\left(H_{i}\right) & =\sum_{i j} \alpha_{i j}^{-1} H_{i} \otimes H_{j}
\end{aligned}
$$

The meaning of the various quantities will be collected here for ease of reference. $a_{i j}$ is the Cartan matrix and $\lambda=1-q^{-2}$.
The q-analogue of the exponential function is [7]: $E_{q}(x)=\sum_{r=0}^{u} \frac{x^{r}}{[r ; q]!}$, where:

$$
[u ; q]!=\prod_{i=1}^{u}[i ; q], \quad[i ; q]=\frac{\left(1-q^{i}\right)}{(1-q)}
$$

The roots are ordered in Sect. 6, by the length of the minimal word in the Weyl group needed to generate it from the end root of the Dynkin diagram; α_{1}. The length of the word for the root $\alpha=\sum_{s \in[i, j]} \alpha_{s} \in \Phi^{+}, j \geqq i$, is $\mu(\alpha)=(j+i)-2$. So $\alpha<\beta$ if $\mu(\alpha)<\mu(\beta)$

The generators in each Borel subalgebra are ordered by (24): $P_{\alpha}<O_{\beta}$ iff $\alpha<\beta$.
Define the ordered products, Sect. $\Pi^{<}, \Pi^{>}$, where the $<,>$denote an ascending order of generators and descending order of generators respectively, when read from left to right.

The adjoint map is defined, (22) by: $\operatorname{ad}_{q} P_{\alpha} \cdot O_{\beta}=P_{\alpha} O_{\beta}-q^{(\alpha, \beta)} O_{\beta} P_{\alpha}$ for $\alpha<\beta$, with the anti symmetry (23): $\operatorname{ad}_{q} P_{\alpha} \cdot O_{\beta}=-\operatorname{ad}_{q} O_{\beta} \cdot P_{\alpha}$. The generators are then defined by (25):

$$
e_{\alpha}=\prod_{s \in[i, j-1]}^{<}\left(\mathrm{ad}_{q} e_{s}\right) \cdot e_{j}, \quad f_{\alpha}=\prod_{s \in[i+1, j]}^{>}\left(\operatorname{ad}_{q} f_{s}\right) \cdot f_{i} .
$$

The generators e_{i}, f_{i} have a structure given in (29), two generators for each simple root of A_{n}.

References

1. Babelon, O.: Extended conformal algebra and the Yang baxter equation. Phys. Lett. B215, 523 (1988)
2. Belavin, A. A., Drinfeld, V. G.: Triangle equations and simple Lie algebras. Sov. Sci. Rev., Sect. C4, 93-165 (1984)
3. Bernard, D.: Vertex operator representations of the Quantum Affine Algebra $U_{q}\left(B_{r}^{(1)}\right)$. Meudon preprint No. 880681988
4. Burroughs, N.: In preparation
5. Burroughs, N.: In preparation
6. Drinfeld, V. G.: Quantum groups. ICM Berkeley 1986. Gleason, A. M. (ed). AMS, Providence 798 (1987)
7. Exton, H.: Q-hypergeometric functions and applications. Ellis Horwood Series: Mathematics and its Applications 1983
8. Faddeev, L.: Integrable models in $(1+1)$-dimensional Quantum Field Theory. Les Houches Summer School 1982
9. Fadeev, L., Reshtikhin, N., Takhtajan, L.: Quantisation of Lie groups and Lie algebras. Leningrad preprint LOMI E-14-87
10. Humphreys, J.E.: Introduction to Lie algebras and Representation theory. Berlin, Heidelberg, New York: Springer 1980
11. Jimbo, M.: A q-analogue of the $U_{q}(g l(N+1))$, Hecke Algebra, and the Yang-Baxter Equation. Lett. Math. Phys. 11, 247-252 (1986)
12. Jimbo, M.: Quantum R matrix for the generalised Toda system. Commun. Math. Phys. 102, 537-547 (1986)
13. Kosmann-Schwarzbach, Y.: Poisson Drinteld groups. Appears in topics in Sliton theory and exactly solvable nonlinear equations. Ablowitz, M. Fuchssteiner, B. Kruskal, M. (eds.). Singapore: World Scientific 1987
14. Kulish, P. P., Reshetikhin, N. Y., Skylanin, E. K.: Yang Baxter equation and representation theory: 1. Lett. Math. Phys. 5, 393-403 (1981)
15. Lawrence, R. J.: A universal link invariant using quantum groups. Oxford preprint. (Mathematical Institute.)
16. Moore, G., Seiberg, N.: Classical and quantum conformal field theory. IAS preprint IASSNS-HEP88/39
17. Skylanin, E. K.: New approach to the quantum nonlinear Schrödinger equation. Freiburg preprint THEP 89/2
18. Skylanin, E. K.: Exact quantisation of the sinh-Gordon model. Freiburg preprint THEP $89 / 3$
19. Smit, D. J.: The quantum group structure of conformal field theories. Utrecht preprint THU 88-33

Communicated by J. Fröhlich
Received May 24, 1989

[^0]: * Supported by a SERC studentship

[^1]: ${ }^{1}$ The dual of a Hopf algebra will always refer to the maximal Hopf algebra contained in the dual

[^2]: ${ }^{2}$ For example if $\xi \in U_{q} b_{+}^{\prime}$ then $\xi\left(X_{1} H_{1}\right)=\xi\left(H_{1} X_{1}\right)-2 \xi\left(X_{1}\right)$. All elements of the dual annihilate the commutation relations

[^3]: ${ }^{3}$ The generators of $U_{q} h$ are chosen to be the generators W, as opposed to J. This is because W_{i} is dual to H_{i}

[^4]: ${ }^{4}$ This formulation of the ordering in terms of the length of a word in the Weyl group was suggested by Gérard Watts. The ordering may also be expressed diagrammatically as a pyramid of positive roots with the simple roots on the base, and projecting horizontally

