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Abstract. We introduce a notion of quantum mechanical resonance that does
not rely on analytic continuation of resolvent or scattering matrix and relate it
to slow temporal decay of certain distinguished resonant states. We proceed to
prove existence of resonances for the generalized many body Schrόdinger
operator for a rather large class of potentials containing Coulomb and
Yukawa, but also nonsymmetric and nonanalytic potentials with Coulomb-
like singularities at the origin and certain differentiability and decay properties.

Introduction

There are several instances in classical quantum mechanics where a system
possesses quasi-stable states, that are not eigenstates of the associated Schrόdinger
operator. For these states ordinary spectral and scattering theory fails to explain
the longevity of these states

There have been several approaches proposed in the last fifteen years or so to
account for these states and to give estimates of their half-lives. The most notable
among these involve continuing the resolvent of the Schrόdinger operator across
the real axis onto the second sheet of the complex plane and identifying poles
of this continued resolvent. We refer in particular to Simon [SI] and to some
comments in Sect. 2 of this paper.

Such poles are called resonances and can be made responsible for
- longevity of associated quasi-eigenstates
- peaks in the spectral density of the operator
- peaks in the associated scattering amplitude.

In this paper we propose to study resonances based on limting absorption
principles applied to the Schrόdinger operator. This means we identify resonances
directly as isolated peaks in the spectral density function and proceed to make the

* Most of this work was done while the author was at Fachbereich Mathematik der Universitat
Frankfurt, D-6000 Frankfurt, Federal Republic of Germany
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connection to slow time decay. We make no mention of scattering matrix here, but
refer to a discussion on the relation between Livsic' matrix (or energy dependent
Hamiltonian) and the scattering matrix by Howland in [Ho].

The advantage for our technique is that restrictions on the potentials involved
are less strict. In particular, for the many body problem, which is treated in Sect. 3,
we need no analyticity or symmetry assumptions at all! Decay and differentiability
conditions suffice, hence the study of resonances is placed closer to many other
problems in spectral and scattering theory, such as existence and completeness of
wave operators, absence of singular continuous spectrum etc.

In the first section we state our definition of resonance and relate it to temporal
decay of the associated resonance state. In section two we show how some of the
existing notions of resonance can be compared to ours. Finally, in section three we
treat the many body Schrόdinger operator and identify resonances for a very
general class of potentials. In a follow-up paper [OP] we have treated the two
body Stark-problem of perturbation by a homogeneous field.

1. Resonances

Our main instrument in treating resonances will be the Livsic matrix (cf. Howland
[Ho]). For a self adjoint operator H in the Hubert space ffl and the finite
dimensional subspace K in D(H), the domain of if, we define it as follows. Let P be
the orthogonal projection onto K, P = I — P, H = PHP, and E the spectral
resolution of H.

Definition ίA. We call B(z) = PHP-PHP(H-z)-iPHP, initially defined for
ImzΦO, the Livsic matrix of H and K.

Theorem 1.2. The Livsic matrix has the following fundamental properties:

(i) (defining property) P(H-zyίP = (B(z)-z)-ί.
(ii) (dissipatίvity) For Imz>0, ImB(z) = (2i)-1(B(z)-B(z)*)^0.

(iii) (relation to E) Let B{z) have a continuous extension onto a real interval /, and let
JCl be such that no λeJ is an eigenvalue of B(λ) = lim B(λ + iε), then

E-+0

PE(J)P = π~ί J lm{B{λ)-λyγdλ.

Ifλel is an eigenvalue ofB(λ\ then

PE({λ})P = lim εlm(B(λ + iε)-λ-iεy1.
ε-»0

Proof (i) is seen by writing H as a perturbation of its diagonalisation with respect
to P, twice using the resolvent equation, then projecting and bootstrapping, (ii) and
(iii) are left to the reader. •

Remark. Notice that since P and (H — z)'1 need not commute, (B(z) — z)~1 is
not generally normal.

Condition 1.3. Let Ho be self adjoint in f̂, W closed and symmetric, such that
D(H0)nD(W) is dense in f̂. For small K, let H0 + κWcH(κ) be essentially self
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adjoint on D(H0)nD(W) and self adjoint on D(H(κ)). (This implies strong resolvent
continuity of H(κ).)

Let λ0 be an eigenvalue of finite degeneracy n of Ho, and K the associated
eigenspace. Define P = I — P, H(κ) = PH(κ) = PH(κ)P, Eκ as the spectral resolution
of H(κ). Let Λ = PWP and f(z,κ) = PWP(H(κ)-z)-1PWP; A is symmetric, let
λl9...,λn be its eigenvalues.

For Imz>0Im/(z, κ)^0, and the Livsic matrix for H(κ) and K is

In particular, if/(z, K) can be extended onto a real interval /, then so can B(z, K), and
Theorem 1.2(iii) applies.

Definition 1.4. We assume Condition 1.3 and define:
The operator family H(κ) has a simple resonance at λ0, if λ0 is nondegenerate

and if there are

- a real neighbourhood / of λ0,
- a real neighbourhood U of 0,
- a densely embedded subspace JΊ?+ of Jf with its dual f̂_,

such that
(i) for KE U, (H(κ) — z)~* has a continuous extension from <C/R onto ze J as an

operator in B{M?

+, Jf_). This continuation is Lipschitz-continuous with constant
L(κ) = o(κ~2).
(ii) K C ^ + , and W{K)C3tf+.

(iii) For κel/ and all possible eigenvalues μ(κ)eI of H(κ ), the associated
eigenvectors are in Jf+.

Remark, (i) We have given a similar definition in [Or], however (iii) is new. It allows
us to show, that no "unwanted" eigenvalues can exist in the vicinity of /. This
question was not addressed in [Or].

(ii) Condition (i) is made in order that κ2f(z, K) is Lipschitz-continuous in z, with
constant going to zero as /c-*0.
(iii) For Theorems 1.5 and 1.8 Lipschitz-continuity in (i) can be replaced by
nondegeneracy of lmf(λ0,0). In this case λ(κ) as defined in the following theorem
can be replaced by simply λ0.

Theorem 1.5 (spectral concentration). Let H(κ) have a simple resonance at λ0, let
λ(κ) be the unique solution of the fixed point equation

time ̂ ή- ->0. Let J{κ) = [_λ{κ)-δ{κ\ λ{κ) + δ(κ)l Then Eκ(J{κ))^P.
ό(κ)

Proof λ(κ) is found using Banach's Fixed Point theorem and Lipschitz-continuity
of/ Hence B(κ), Γ(κ) are well defined, and δ(κ) and J(κ) can be determined. Notice

let B{κ) = B{λ{κ\κ\ Γ(κ)= -lmB(κ). Now choose δ(κ)^0, such that for Γ(κ) = 0,

δ{κ) = 0, while for Γ(κ)ή=0 and κ->0, max ( δ{κ\ K L ^ K Λ _>0, but at the same
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that Γ(κ) = O(κ2), hence δ(κ) = o(mm(L(κy1,l)). We prove Eκ(J(κ))P±0: Let
ψeJtf, ε>0, then

\\EJiJ(κ))Fψ\\ ^ \\Eκ(J(κ))Eo(R\(λo-ε,λo + ε))ψ\\ + | | E o p o - ε ^ o + ε))Ptp||.

Choosing a small ε takes care of the second term, the first goes to zero as τc->0. We
prove Eκ(J(κ))P-**P: Let φ.ψeJ^: For sufficiently small K, J(K)CL Hence for K,

such that Γ{κ) + 0:

<φ, Eκ(J(κ))Pψ> =

by Lemma 1.6 to be proven below;

For K, such that Γ(κ) = 0: J(κ) = {λ(κ}}, B(κ) = λ{κ\ \B(λ(κ) + ίε, κ)\ ̂  κ2L(κ)ε, hence

, Eκ(J(κ))Pψ> = <Pφ, Eκ({λκ})Pψ} + o(l)

= lim

This proves weak convergence. Strong convergence follows after setting
φ = Pψ. •

Lemma 1.6. For K: 5WC/I ί/iαί Γ(/c)φO:

χ^WIm^α^-^^-Im^M-^-^O (1.1)

in ί/iβ I}(1R)-norm with respect to λ as κ->0.

Proof. Although both terms diverge, their difference converges, as can be seen by
making the substitution

λ'= -^ (λ-Mκ))> i e. λ = λ(λ\κ) = λ
1 (K)

Statement (1.1) becomes equivalent to

χr{κ){λf) lm{B{λ{λ\ κ\ K) - λ(λ\ K))" ^(K) - lm(B(κ) - λ(λ\ K))" ̂ (K^O (1.2)

in the ίί-norm with respect to λ' as κ->0.
Now fix i/eR, then for sufficiently small K, λ'eJ\κ\ i.e. \λ(λ\κ)-λ(κ)\^δ{κ)

and

\B(λ(λ\ K), K) - B(κ)\ ί κ2L(κ)δ{κ). (1.3)
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An indirect use of the resolvent equation yields

{B{λ{λ\κ\κ)-λ{λ\κ))-'

^B^-λiλ^KrVHBiλiλ^Kl^-BiKMBi^-λiλ^K))-^-1. (1.4)

Using (1.3), IB(κ) — λ(λ\ K)) "* | ̂  Γ(κ) ~1 and the assumptions on δ(κ), we see that in
(1.4) the expression in square brackets is invertible with a uniformly bounded
inverse and it converges to 1. Thus we have proven pointwise convergence of (1.2).
Now

Im(B(λ(λ', κ\ κ)-λ(λf, κ)Γ' = -(B(λ(λ\ κ\ κ)*-λ(λ\ K))'1

x Im B(λ(λ\ κ\ K) (B(λ(λ\ κ\ K) - λ(λ\ K))'1. (1.5)

By (1.3) \ImB(λ(λ\κlκ) + Γ(κ)\^κ2L(κ)δ(κ) and for sufficiently small K,
:). Using (1.4) yields

),κ)-λ{λ\κ)Y^(K)!Sc\lm(B(κ)-λ(λ\κ))~^(K)]. (1.6)

The proof is complete, since

- 1 - 1 1 1

1 + 2 / 2 (1.7)

Theorem 1.7 (absence of unwanted eigenvalues). // μ(κ) is an eigenvalue of H(κ)
for KGU, and μ(κ)el, then μ(κ) = λ(κ) and Γ(κ) = 0. Conversely if Γ(κ) = O
for sufficiently small K, then λ(κ) is an eigenvalue of H(κ).

Proof By assumptions (i) and (iii) of Definition 1.4 μ(κ) cannot be an eigenvalue of
H(κ). Hence, for an associated eigenvector ψ(κ\ Pψ(κ)φO. Hence

by similar arguments that lead to Theorem 1.2(i). Since by assumption, the term in
square brackets applied to ψ(κ) remains bounded, μ(κ) must be the unique fixed
point of B(z, K). The second statement in the theorem is really just a corollary to
Theorem 1.5, for Γ(κ) + 0 implies Eκ({λ(κ)})±P, hence Eκ({λ(κ)}) + 0 for suffi-
ciently small K. •

Theorem 1.8 (resonance behaviour). ForψeK, | |φ|| = l,

\(ψ,e-iH(κ)tψ>\ = e-Γ{κ)t + o{\) uniformly int.

Proof By Lemma 1.6

(ψ, e'mκ)tψy = (ψΛ e-ίHiκ)Έκ(J(κ))ψ}

= π~1 J
J{κ)

= π~ι J e
R

= e~iB(κ)t
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for K such that Γ(κ) ΦO, and by Theorem 1.4 and Corollary 1.6

= Γ ί A ( κ ) ί<φ, Eκ({λ(κ)})ψ} + o(l) = e-
iλ(

for K such that Γ(κ) = 0. •

Remark. In the case Γ0 = Im/(Λ0,0)4=0, we have the interesting result

\(ψ,e-iH{κ)tψ}\ = e-Γoκ2t + o(\), (1.8)

which is known as "Fermi's Golden Rule" in the literature (cf. Reed-Simon
[RSIV]). It follows from

\e-Γ(κ)t-e-Γoκ2t\^κh\Irnf(λ0,κ)-lmf(λ0,0)\e~κ2t9{κ\

where

g(κ):= inf
se[0,κ]

Note particularly, that in this case Theorem 1.7 shows that for κ φ θ there are no
eigenvalues of H(κ) in the vicinity of λ0.

We turn to the more general case, where λ0 is degenerate, of finite multiplicity.
We need to tighten assumptions slightly to exclude the occurrence of possible
nilpotents in the Livsic-Matrix.

Definition 1.9. We assume Condition 1.3 and define: The operator family H(κ) has
resonance at λ0, if there are

- a real neighbourhood / of λ0,
- a real neighbourhood U of 0,
- a densely embedded subspace Jf+ of Jf with its dual JfL,

such that
(i) for KGU, (H(κ) — z)~ι has a continuous extension from z e C/R onto z e I as an

operator in B(J^+ Jf_). This continuation is Lipschitz-continuous with constant

(ii) K C ̂ + , and W(K) C Jf +.
(iii) For feet/ and all possible eigenvalues μ(κ)el of H(/c), the associated
eigenvectors are in «^+.
(iv) All eigenvalues of yί are simple.

Remark. As in the case of simple resonance, to prove Theorems 1.12 and 1.14, the
Lipschitz-continuity in (i) can be replaced by nondegeneracy of Im/(/l0,0), cf. [Or]
for details.

Lemma 1.10. Let H(κ) have resonance at λ0, then for sufficiently small K,

det(β(Rez,κ)-z) = O (1.9)

has exactly one solution zj(κ) satisfying \zj(κ) — λ0 — κλj\ = o(κ).
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Set λJ{κ) = RezJ{κ), Γ3{κ)= -Imz/κ;), BJ{κ) = B(λJ{κ\κ); choose δ3{κ) such that

δj(κ) = 0 for I)(κ) = 0, while for Γ^ + O and κ->0, ^ ^/

κ2L(κ)δ(κ)\ Γ(κ) K J

1\J ->0 for some y<2, but at the same time ~rr{->0; finally set
δj{κ)

j

Jj{κ) = lλjκ)-δjlκ)9 λfκ) + δjκ)l Then for λeJfκ)9

WJM-λy^c/Γ/K), (1.10)

and Pj{κ% the projection onto the z ̂ -associated eigenvector of Bj(κ) satisfies

\(B/κ)-λ)-\I-Pjiκ))\^c/κ (1.11)

for λ e Jj{κ).

Proof Substituting z = λo + κy for κ=t=0 makes (1.9) equivalent to

det(Λ - κf(λ0 + K Rey, K) - y) = 0.

The iteration (over m): "Solve

det (Λ - κf(λ0 + K Reyf ~ "(K), κ)-y) = 0

and choose yf\κ) as the continuous solution satisfying yifn\O) = λj" con-
verges to a solution y3{κ\ satisfying yJφ) = λj. Set zJ{κ) = λ0 + κyJ{κ). The esti-
mates (1.10) and (1.11) are easily derived by using Cramer's formula on

The analogon to Lemma 1.6 is

Lemma 1.11. Let H(κ) have resonance at λ0. Using the notation in Lemma ί.ίO, we
have

χJj{κ)(λ)Im(B(λ, κ)-κ)-i-Pj(κ)* imiB^-λy'P^O (1.12)

in the I}QR)-norm with respect to λ as τc->0.

Proof Again to control the simultaneous divergence of the two terms, we
substitute 2/ = i](κ:)~1(A — λj{κ)). Proceeding as in Lemma 1.6 yields pointwise
convergence of

χrΛκ)(λ') lm(B(λμ\ κ)9 K) - λβ\ K)) " 'Γ3{κ)

r^W^O. (1.13)

Now notice that, remembering J'/(κ;)= — -^rτ> ~A~^ L
L Γj{κ) Γj{κ)j

\χrΛκ)(λ') Im (B(λμ\ κ)9 K) - λβ'9 K)) ~1 Γjκ)\

λ', κ\ K)* - λμ; KT1 im */*) (B(λμ\ κ\ κ) - λμ\ κ)y 'r^

Iκ)* ~ W> *))" ' κ2L(κ)H*) (B(λμ\ κ\ K) - λμ\ K)) ~1 Γfjc)\

^ 4\χrjiκ)(λ') Imp/*) - λβ\ κ))~ 'Γ^ + 4\χrjiκ)(λ') (Bfjc) - λβ\ K)) " "Γ^2,
(1.14)
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and

)~ ιPfjc)Γfjc)

κ) - λμ, K)) ~\I-

(1.15)

Using (1.10), (1.11) and |ImB3{κ)\ ^cκ2, we bound terms two and three in (1.15) by
CK. Hence we have established pointwise convergence for the substituted (1.12).

We turn to finding an L1-dominant. By assumption δJ{κ)/ΓJ{κ)^cκ~y for
some γ<2, hence κχrj(κ)(λ')^\λ'\~ily. Using this,

r AK) imyDAK) — AAA , Kj) JΓAK) — 1

and

=(zfμ) - λμ, K))-%K)P/iK) + (Bffc) - λμ, K)) "»(/ -
=(-i-λr ιP/ίκ)+(BfK) - xμ, K)) -'(i- pμwμ),

as well as the fact that

yields L1-dominants for all terms on the right-hand side of (1.15) and the remaining
second term of (1.14). The lemma is proven, since

* Y^Ϊ p/*H° i n L W D

Theorem 1.12 (spectral concentration). Let H(κ) have resonance at λ0. With the
notations in Lemma ί.ίO,

Eκ(JJ{κ))^Pj (κ^0),

where Pj = Pj{0) is the orthogonal projection onto the λf associated eigenspace of A.

Theorem 1.13 (absence of unwanted eigenvalues). // μ(κ) is an eigenvalue of H(κ)
for KEU, and μ(κ)el, then μ(κ) = λJ{κ) for one of the j=l, ...,n, and Γj{κ) = 0.

Conversely if one of the Γ3{κ) = 0 for sufficiently small K, then the correspond-
ing λj(κ) is an eigenvalue of H(κ).

Theorem 1.14 (resonance behaviour). For ψeK,

Σ
7 = 1

uniformly in t, where a^= \\P ψ\\2.

We omit the proofs of these theorems and turn to applications.



Many Body Problem 567

2. Resonances and Analytic Perturbation Theory

In this section we shall compare the theory developed in Sect. 1 with methods of
treating resonances using analytic perturbation theory.

Theorem 2.1 (eigenvalues). Let Ho be a self-adjoint operator in the Hilbertspace 2tf,
λ0 an isolated eigenvalue of Ho of finite multiplicity. Let W be symmetric and either
relatively bounded or relatively form-bounded with respect to Ho. If W satisfies the
nondegeneracy assumption in Definition1.9(iv), then H(κ): = H0 + κW has re-
sonance at λ0 in the sense of Definition 1.9.

In fact solutions z}{κ) of

detp(Rez,κ:)-z)- 1 ) = O

satisfying z3{κ) = λ0 + tcλj + o(κ) are real and analytic and represent all eigenvalues
of H(κ) near λ0.

Proof. The proof is a straightforward application of Theorem 1.13. Note that
(H(κ) — z)"i is analytic in both K and z near 0 and λ0, in particular lmB(λ, κ) = 0 for
small K, and in Definition 1.9 Jf+ can be chosen to be Jf.

Theorem 2.2 (resonances). Assume Conditions 13 to hold, in addition assume that
Assumptions 1.9 hold, except 1.9(ϊ), in fact, replacing 1.9(ϊ) we assume that forκeU
(H(κ;) —z)" 1 can be analytically continued across the real axis onto a complex
neighbourhood of λ0, as an operator from Jf+ to J4?_. Then for sufficiently small K,

dQt(B(z,κ)-z) = 0 (2.1)

has exactly one solution zj(κ) satisfying zJ{κ) = λQ + κλj + o(κ).
As in Lemma 1.10, set λJ{κ) = RezJ{κ), fj(κ)= —Imzjjc); choose Sj{κ) such that

Sfjc) = 0 for ΓjiK) = 0, while for fj(κ) + 0 and κ->0, max(8j(κ)/κ9 fcr^(κ:)/7}(κ:))^0 for
some y<2, but fj{κ)/S/κ)^0; set Jj(κ) = [_X3{κ)-Sj{κ), Xj(κ) + % ) ] , and let Pj{κ) be
the projection onto the Zj{κ)-associated eigenvector of B(Zj{κ), K). Then

(i) EjJjKfi^Pj,
(ii) there are no eigenvalues of H(κ) near λ0 that are not solutions of (2.1),

(iii) {ψ,e~iH(κ)tψ)= £ aje-ά*κ)te-^iκ)t + o(l),forψeKandaj=\\Pjψ\\2.

Proof Assumption 1.9(i) is actually implied by the stronger analyticity require-
ment, in fact L(κ) is then constant. Hence Theorems 1.12, 1.13, and 1.14 hold for
solutions Zj{κ) of Eq. (1.9). However, these are not a priori solutions of (2.1). Solutions
of (2.1) can be found using the corresponding iteration as in the proof of Lemma 1.10.
Now, Lipschitz-continuity yields

| / ( z » , K) - f(λfjc\ κ)\ ^ U\Xfκ) - λ3{κ)\ + Γ/κ)),

and the nondegeneracy of the eigenvalues of A lets us transfer this estimate to

hence
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and in particular

|£/K)-A/K)|^c2K

2fyc) and if/icJ-Γ/ie)! £c2κ2/>e). (2.2)

Having chosen J}{κ) as in the theorem, note that λj(κ) e J}{κ) and δj{κ) can be chosen
to satisfy conditions in Lemma 1.10, and JJ{κ) = JJ{κ). This proves (i). (ii) follows
from Theorem 1.13 and fj(κ) = 0oΓjlκ) = 0. (iii) is a consequence of Theorem 1.14
and

\e ~ »JOΦ _ e - i*A«)t\ ^ cκ2t min {/){4 Γfr)} max {e " ̂ (κ)ί, e ~ Γ'(κ)ί}

" ^ 0 for κ->0. Π

Remark, (i) Howland has proven a similar result in [Ho]. He uses analyticity of
B(z,κ\ not of {H(κ) — z)"1, he needs no non-degeneracy conditions on Λ. Using
function theoretic arguments, as he does, nilpotents can be treated. He cannot
prove absence of unwanted eigenvalues as in (ii), since he makes no assumptions on
(H(κ)-z)-1 outside of K.
(ii) Simon [SI] treats the many body Schrodinger operator H(κ) = —A + V+κW9

which we shall turn to in the next section, for dilation-analytic potentials V and W.
Using the technique of Aguilar-Combes [AC], Balslev-Combes [BC], he con-
tinues the resolvent <ip, (H(κ) — z)~ίψyϊorψin the densely embedded subspace of
dilation-analytic vectors. Then using analytic perturbation theory of Kato and
Rellich [Ka] applied to the non-self-adjoint dilated operator H(κ, Θ) he identifies
complex poles in the second sheet of the continued resolvent. He calls them
resonances. We shall show at the end of the next section, in Corollary 3.7, how
the assumptions of Theorem 2.2 are satisfied in his case.
(iii) Theorem 2.2 underlines the asymptotic character of our definition of
resonance. Resonance width as considered here is not a number nor a function of K,
but in actual fact an equivalence class of functions, where the equivalence relation
is given by (we just consider the case of simple resonance)

For if Γ(κ)~f{κ\ then the corresponding exponents in the time decay estimate of
Theorems 1.8 and 1.14 can just be interchanged, the difference just disappears in
the o(l) term in the decay estimate. Theorem 2.2 then just states: the resonance
widths in the analytic sense and in our sense are equivalent,
(iv) Nonetheless, the question may be asked, if perhaps Γ(κ) and Γ(κ) respectively
λ(κ) and X(κ) lie even closer together. For many body Schrodinger Operators this
question is not particularly interesting, since by a Paley-Wiener argument the o(\)
term must occur, cf. [S2, Her] and others. As Herbst pointed out in [Her], for
operators with the whole axis contained in their spectrum, the o(l) term is not
compulsory, in fact, for the Stark Operator, which is easily made to fit our
definition of resonance (cf. [OP] for details) be proved that this term can be
dispensed with.

Generically, however, (2.2) should be optimal, because
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should imply &, , . l τ Γίκ/ , , τ . , . , x ..
F > Γ(κ) ^c3\lmf(z(κ\ K)- Im f(λ(κ), κ)\,

if / is a nondegenerate analytic function. Hence we would have

It may be possible, by making K the space with respect to which the Livsic-Matrix
was formed depend suitably upon /c, to improve on the term τc2, which prefixes
/(z, K) in the expression for the Livsic Matrix, and to thus reduce the difference
between f(κ) and Γ(κ).

3. The Many Body Problem

As the principal application of the notions introduced in the first section, we shall
prove existence of resonances in the quantum-mechanical many body problem for
a very general class of potentials. We emphasize that we require only differentia-
bility and decay properties and no restrictions regarding analyticity and symmetry
of the potentials.

The resonances that occur are perturbations of embedded eigenvalues of
approximating systems, in which certain interaction-potentials are assumed to
vanish. For the Helium atom (i.e. the three body problem) this is known as the
Auger-effect [RSIV] (in the approximating system the e-e-interaction is
neglected).

Our method of proof consists in firstly establishing a uniform Mourre-type
positivity estimate for the commutator [H(κ\A\, where A is the generator of
dilations: Corollary 3.2. Equipped with this estimate we shall use Mourre's
original theorem on absence of singular continuous spectrum [Mo], and an
extension due to Jensen, Mourre and Perry [JMP] in order to establish validity of
assumptions in Definition 1.4.

Let X=Rw, #e = I3{X\ Xj C X be subspaces, ^{Xj) = U{X^ π, be orthogonal
projections satisfying R{πj) = Xj, let Vj be interaction potentials such that
VjE^XX^nL^Xj). Furthermore let f̂2, ^2(X,) be D(AX), D{ΔX) respectively,
and Jf_2, 3tf?-2(

x

J) the corresponding duals.

H:=-Ax + ΣVjπjίx)) (3.1)

is the generalized many body Schrόdinger operator that we shall consider here.
Denote by ^(H) the set of thresholds of if, i.e. the eigenvalues of all subsystems of
H, and let

A = Hx-Vx+Vχ.χ)

be the skew-adjoint generator of the dilatation group in Jf.
For these operators Perry, Sigal, and Simon [PSS], and later Froese, Herbst

[FH1] have proven the following theorem:

Theorem 3.1 (Perry, Sigal, Simon). Let X, Xp Vp and H be as above, λoelR\£~(H).

Let the Vj satisfy the assumptions

(i) VjeB(jr2(Xj), JT(Xj)) and compact

(ii) xXj VXjVjeB(Jtr2(Xj)9 ^-li^jί) and compact
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Then there is an open interval I,λ0el,anoc>0 and a compact operator K, so that

EH(I) [H, Λ2EH(I) ^ ocEH(I) + K. (3.2)

Furthermore, the set of thresholds 3~{H) is countable and eigenvalues of H
accumulate only in points of

We are here interested in the following perturbed version of this theorem (a
similar result appears in [AHS] by Agmon, Herbst, and Skibsted):

Corollary 3.2. Let H be as in Theorem 3.1, in addition let We Sf'{X)nL\oc{X) satisfy

(i)

(ii)

and define

H(κ): = H + κW on

Let λ0 be an eigenvalue but no threshold of H. Let P be the corresponding
(finitedimensional) eigenprojection, P — I — P, H(κ) = PH(κ)P. Then for an appro-
priate zero-neighbourhood U and an interval I around λ0 there is an α^O, such that
for KEU

EK(I) lH{κ), A\EK{I) ^ ocEκ(I). (3.3)

Here Eκ is the spectral resolution for H(κ).

Proof Notice that

E0(I) [i?(0), A\E0(I) ^ ocE0(I) + K

follows directly from (3.2), where K = PKP, and hence for appropriate Γd and
α'e(0,α),

E0(Γ) [_H(0), A]E0{Γ) ^ a'E0(Γ). (3.4)

Now, the range of the projector P lies in Jf2nD(A), hence conditions (i) and (ii) for
W carry over to W=PWP. Therefore \_H{κ),A\εB{3tf>

2,3tf-2) and norm-
continuous in K. For / e C ^ / ' ) , f(H(κ))eB(Jίf,J^2) and continuous, so that by
choosing / = 1 on some Γ C / and an appropriate α" e (0, on'), (3.4) implies (3.2), just
setα = α", / = /". •

Theorem 3.3 (Mourre). Let H{κ), λ0, P, H(κ) be as above, 2tf2, Jf_2 as introduced
before Theorems. 1, let the Vj satisfy

(iϋ) xxi

in addition to (i) and (ii) in Theorem 3.1. Let A be the skew-adjoint generator of
dilatations. Then

(a) D{A)n^f2 is dense in J^2.

(b) T(t) = etA leaves J)f2 invariant for φe^f 2 : sup || T(ί)tp||2-c oo.

(c) Bί{κ) = lH(κ),A]eB(J^2,J^) with a locally uniformly bounded norm.

(d) B2(κ) = [B1(κ), A~]e B(J^2, J^_2) again with a locally uniformly bounded norm.
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(e) There is an open zero-neighbourhood U, a compact interval I, and αnα>0, such
that for all KEU:

where Eκ is the spectral resolution for H(κ).
Furthermore for any compact interval I'd,

lim (IΛl + ir'iH^-λ-iμyWAl + iy1 (3.5)

exists and is uniformly norm-continuous in Γ x U.

Remark. The actual content of Mourre's theorem is proving (3.5), assuming (a)He)
in an abstract setting. Nowadays this proof is well known and shall be omitted. In
particular ^-dependence causes no new problems. Establishing (a)-(d) for the case
considered here is delicate, but the techniques are well known. Details can be found
in [Or]. Again ^-dependence demands nothing new. Lastly, (e) has just been
established in Corollary 3.2.

Theorem 3.4 (Jensen, Mourre, Perry). Let H(κ), λ0, P, H{κ), J^2, ̂ -1 be as above, in
addition to (i), (ii) in Theorem 3.1 and (iii), (iv) in Theorem 3.3, let the Vj satisfy
(v) (x^ Vx

(vi) {xτrVχ)
Then in addition to (a)-(e) in Theorem 3.3,
(d) B2(κ) e B(Jίf2, J f) with a locally uniformly bounded norm,
(d'j B^(κ):=\B2(κ),A~\eB(J^2,J^_2) with a locally uniformly bounded norm.
Furthermore for any I'd,

lim (\A\ + i)-2(H(κ)-λ-iμ)-2(\A\ + iy2 (3.6)

exists and is uniformly bounded in Γ x U.

Remark. Again the actual content of the theorem is proving (3.6) from (a)-(e), (c'),
(d') In fact in their paper [JMP] Jensen, Mourre and Perry have established the
link between controlling higher orders of commutators and continuity of higher
powers of resolvents.

We are now in position to prove existence of resonances for H(κ).

Theorem 3.5. Let H(κ), λ0, P, H(κ) be as in Corollary 3.2, let the Vj satisfy the
assumptions of Theorem 3.4. In addition, let W satisfy

and let all eigenvalues of PWP be simple. Then H(κ) fulfills requirements of
Definitions i.4 or i.9. Hence Theorems 1.5,1.7 and 1.8 or respectively 1.13,1.14, and
1.15 apply.

Proof We choose / and U as in Theorem 3.4, and jf+ =D(Λ2). By Theorem 3.3
(H(κ) — z)~x has the required continuous extension, and by Theorem 3.4 it is
Lipschitz-continuous, even with a uniformly bounded constant. Hence (i) holds in
Definition 1.4 and 1.9. (ii) and (iii) are consequences of decay and regularity
properties of eigenfunctions of the operators considered: Froese and Herbst



572 A. Orth

[FH2] have proven (more than) the necessary decay estimates, conditions on the
Vj imply that eigenfunctions are in D(A2\ and the conditions on W imply that W
leaves D(A2) invariant (details for (ii) and (iii) can be found in [Or] and
[AHS]). D

As a promised at the end of section two, we conclude by making the connection
to the analytic case that was treated by Simon in [SI]. To do this, we first state the
analogon of Theorem 3.1 for dilation analytic interaction potentials. The theorem
was proved in [BC] by Balslev, Combes.

Theorem 3.6 (Balslev, Combes). Let X, Xp Vp H be as before Theorem 3.1, let the Vj

satisfy the assumptions:

(i) VjEBiJί^iX^MriXj)) and compact,

(ii) Vj{Θ): = eΘAVf~ΘA has an analytic continuation onto the strip |Im<9|<α, for

some α>0.
Let Jfβ: = R(e~β^), for β<oc, a set of dilation analytic vectors, then

(i) the point spectrum of H is bounded and the set of its accumulation points is
contained in &~{H),
(ii) the eigenspace corresponding to an eigenvalue λoeJR\^(H) is in J^β,

(iii) the essential spectrum of H(Θ): = eΘAH e~ΘA is F(H) + e~2ΘWL+,
(iv) eigenvalues of H, not in ^~(H), are eigenvalues of H(Θ).

Corollary 3.7. Let H be as in Theorem 3.6, We^f(X)nL\oc(X) satisfy
(i) WeB{J?2,3tf),

(ii) W(Θ):=eΘAWe~ΘA has an analytic continuation onto the strip |Im<9|<α.

Define H(κ): = H + κWon D(H(κ)) = jf2. Let λ0 be an eigenvalue but no threshold
of H(0), let P be the finite dimensional eigenprojection for λ0, P: = I — P,
H(κ): = PH(κ)P, and let PWP have only simple eigenvalues.

Then Theorem 2.2 applies, that means we have resonances in the analytic sense,
and in our sense.

Proof Theorem 3.6 shows that P(Θ) = eΘAPe~ΘA has an analytic continuation
onto |Im<9| <α, hence so does H(κ, Θ) = eΘAH(κ)e~ΘA. Choose J^+ = J^fβ for some
β<a, then for |Im<9|</? and φ,xpe^ίf+:

Using analytic perturbation theory, it is easily seen, that for sufficiently small K
H(κ,Θ) has no spectrum in a complex neighbourhood of λ0. Hence (H(κ) — z ) " 1

has the required analytic continuation as an operator from J4f+ to Jf_.
Assumption (ii) in 1.9 follows directly from Theorem 3.6, (iii) is redundant since

after the above there are a priori no eigenvalues in the neighbourhoods considered,
finally (iv) has been assumed.
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