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Abstract. We study the problem of analytic extension of the resolvent for
Hamiltonians arising in scattering of atoms by a quantum surface. We prove
that the resolvent extends holomorphically to some regions of the lower half
plane with isolated singularities called Landau resonances which are branch
points of the resolvent. We study also the effect of impurities on the singularities
of the resolvent and show that the presence of impurities adds poles to the
Landau resonances.

Introduction

We study in this paper the theory of resonances for Hamiltonians arising in
atom-surface scattering. The theory of atomic or molecular collisions with surfaces
has been greatly developed by chemists in recent years since the measurement of
scattering of atoms by a quantum surface is a way to study the surface structure
of materials at atomic scales (see [Ge] for a review).

The typical form of the Hamiltonian is the following: H = — A + V(x9 y) on
R™~x x Ry, where y is the direction normal to the surface and V(x9 y) is an effective
potential describing the interaction between an atom and a crystalline or
non-crystalline material. Strictly speaking this Hamiltonian corresponds to a thin
slab of material since it is possible for atoms to pass through the crystal.
The Hamiltonian corresponding to an impenetrable material is the following:
H' = — A + V(x,y) on R™"1 x Ry

+ with Dirichlet boundary condition on 3; = 0.
We will concentrate on H but all results proved for H hold for H' under

corresponding hypotheses. (The proofs can be adapted almost verbatim.) When
the surface is a perfect crystal, V(x, y) tends to zero when y tends to infinity and
is periodic in x with respect to some lattice T in Rm~1. In this paper we will always
assume that V is exponentially decreasing in y in a suitable sense.

For crystalline surfaces, H is usually studied using Bloch's theory to reduce
the study of the resolvent (H — λ)~ι to the study of (Hp — λ)'1, where the
Bloch number p belongs to a fundamental domain of the dual lattice T*
and Hp = D* + (Dx + p)2 + V{x,y)9 DXi = {l/ί)d/dxi9 Dy = (l/i)d/dy is a reduced
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Hamiltonian on a cylinder Cτ = Fτx R, where Fτ is a fundamental domain of T.
It turns out that under classical hypotheses like exponential decay in y of V(x, y)

or dilation analyticity in y, it is possible to extend meromorphically (Hp — λ)~x to
some region in the lower half plane with poles at the resonances of Hp. This kind
of problem has been studied numerically. (See for example [Mo].)

Since H is obtained as a direct integral of Hp over p, one is naturally led to
the guess that all resonances of Hp are singularities of (H — λ)~ι, which in the
physical case m = 3 would lead to some closed set of positive measure as singularities

The main result of this paper is that this guess is wrong.
We will consider two kinds of problems:

i) Local Extension Problem', given λoeσ{H\ extend analytically (H — λ)'1 to a
small neighborhood of λ0 and describe its singularities,

ii) Global Extension Problem: extend analytically (H — λ)~ι to some given open
set % in C and describe its singularities.

For the local extension problem, we prove that for any λoeσ(H), there exist
some neighborhood ύlίλo of λ0, and a finite set Σ of points called Landau resonances
such that (H — λ)'1 extends holomorphically to the universal covering of ^ίλo\Σ.
The Landau resonances are usually branch points of (H — λ)'1 instead of poles.

For the global extension problem, we have to add to Σ a closed set of measure
zero Σ^ which corresponds to a complex essential spectrum (see Definition 4.5).
Then (H — λ)"1 extends holomorphically to the universal covering of W\Σ u l ^ .

The points of Σ are generated by "condensation" of resonances of Hp, or more
geometrically by pinching of some integration contours between some singularities
of (Hp — λy1. They are analogous to the Landau singularities of Feynman
amplitudes. (See Theorem 4.7.)

Σ^ looks more like essential spectrum in the sense that Σ^ acts as a natural
boundary for the extension of (H — λ)~1 between suitable weighted L2 spaces. Σ^
comes in part from the fact that we integrate operator-valued functions and that
we have to take care of domain considerations.

To make this remark more clear let us compare H with two-body Schrδdinger
operators with exponentially decreasing potentials. In the last case the resolvent
can be extended meromorphically to a strip {/leC|Im/ί> — α} for α depending
on the rate of decay of the potential. Σ^ plays a role similar to Im λ = — α in this
problem.

Let us remark that since V does not decay at infinity in all directions it is not
surprising to obtain more complicated singularities for (H — λ)~x than in usual
two-body Schrδdinger operators.

Under a geometric hypothesis we study the growth and ramification properties
of (H — λ)'1 near Σ and prove that (H — λ)"1 is of finite determination and of
moderate growth near the points of Σ. (See Theorem 4.9.)

In generic cases, we can give an asymptotic expansion for (H — A)"1 near a
Landau resonance λoeΣ and show that the typical behavior is in (λ — λoγ

/2

for αeZ or in (λ — >l0)
αlog(A — λ0) with a leading singularity of finite rank.

(See Theorem 4.10.)
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In simple cases, we can associate "resonant functions" to the leading singularities
oϊ(H-λyι atλ0.

In the last part of the paper we treat the case of a periodic crystal perturbed
by impurities. One of the main issues in scattering by non-crystalline surfaces is
to know what are the new effects in scattering quantities introduced by the presence
of impurities or defects.

We model the impurities by adding to the potential V an additional potential
W which is exponentially decreasing in (x, y).

Then we prove (see Theorems 5.1, 5.3) that the effects of impurities on
(H + W — λ)~1 is to add usual poles to the Landau resonances of (H — λ)~ι. This
can be of practical significance since the Landau resonances should create
logarithmic or square-root singularities on scattering cross-sections, which make
resonance shapes very different from the usual Breit-Wigner resonance shape
created by a pole.

The plan of the paper is the following:

In Sect. I, we introduce the Floquet-Bloch reduction which will be used in
subsequent sections.
In Sect. II, we study the spectral theory of the reduced operators Hp using Mourre's
commutator method.
In Sect. Ill, we prove the meromorphic extension in p and λ of (Hp — λ)~x and
give formulas for (Hp — λ)~ι using Fredholm determinants.
In Sect. IV, we prove the main results of the paper using the results of Sect. Ill
and tools from complex analytic geometry.
In Sect. V, we study the resonances created by the presence of impurities.

To conclude let us mention that the methods used in this paper can be applied
without much change to other similar problems: molecular scattering by surfaces,
electromagnetic or acoustic scattering by periodic obstacles, resonances for periodic
potentials.

We will come back to these problems in a subsequent publication.

I. Floquet Reduction

In this section, we recall the method of Floquet-Bloch to reduce the study of a
periodic Schrόdinger operator on Rm to the study of a family of Schrόdinger
operators on an m-torus. In our case, the Hamiltonian is periodic only in the
directions tangent to the surface of the crystal, and the reduced Hamiltonian will
live on a cylinder instead of a torus.

On Rm = Bζ~1 xRy, we consider the following Hamiltonian: H = (DX)
2 +

{Dyf + V(x,y\ where DXι = (l/ί)dXi,Dy = (1/05, and (Dx)
2 = Y (Dxf.

i-ί

We shall assume that V is a multiplicative potential which is T-periodic in the
x variable for some lattice T in R m l , i.e.: V(x + τ9y)= V(x9y) VτeT.

We will make in the next sections more precise hypotheses on the local
singularities and the decay in y of V(x, y).

We will follow the exposition of Skriganov [Sk] of the Floquet reduction.
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We denote by T* the dual lattice of Γ, which is defined as follows: if (au..., αm_ J
is a basis for Γ, a basis for Γ* is given by the (fc l5..., fcm_ x) such that <α ί } &,-> = 271(5̂ ,
where <,> is the Euclidean scalar product in R m - 1 .

We denote by Fτ a fundamental domain of Γ,FT* a fundamental domain of
Γ*, which are chosen to be diffeomorphic to the n—ί torus Πn~1. μτ(respectively
μτ*) will be the Lebesgue measure of Fτ (respectively Fτ*).

For φe£f(Rm), the Schwartz space of rapidly decreasing C00 functions, and for
peFτ*, we set:

Kpφ(x,y) = μψ £ 9(* + ^y)^^x\ (1.1)

The sum in (1.1) is convergent because of the rapid decay of φ, and Kpφ(x,y) is
Γ-periodic in x, and satisfies the equations:

Kp+p.φ(x,y) = J<P' x>KPφ(x,y), for p'eT*. (1.2)

If we consider Kpφ(x,y) as a function of (x,j;,p)e.Fτ X R X Ff, we see as in [Sk]
that the family Kp extends as a unitary operator Wτ:

L 2 (R w Hi?=ί L2(Cτ)dp,

φ\-+Kpφ{x,y).

Here Cτ is the cylinder Fτ x R.
Assume now that V is Γ-periodic in x and is relatively bounded with respect

to the Laplacian Δ = (DX)
2 +{Dy)

2 with relative bound strictly less than 1. Then
(see [Sk]), we can decompose H as a direct integral of operators:

WτHWτl= ] Hpdp where:
Fτ*

—Hp = (Dx + p)2 + (Dy)
2 + V(x,y) with domain H2(CT).

— W γ 1 is defined by the following formula:

m-ί)/2μr*112 J e-i<p^φ(x,y,p)dp. (1.3)
Fτ*

We will denote by K; 1:L 2(CΓ)-^L 1

2

o c(Rm) the operator

K;u.u^>e-K*x>u(x9y\ (1.4)

where M(X, J;) is extended to Rm by Γ-periodicity in x.
Taking the usual Sobolev space on the cylinder CT,H

2(CT) as domain for Hp

means that we consider eigenfunctions of Hp ("Bloch waves") which are Γ-periodic
in x, and in this version of the Floquet reduction, the p-dependence of the reduced
operator is in the operator and not in his domain as in the usual reduction.

We will denote by Ho p = (Dx + p)2 + (D2) the free reduced operator with domain
H\CT).

II. Spectral Theory of the Reduced Operators

In this section, we study the spectral theory of Hp and Ho p. The spectral theory
of Ho p is trivial by separation of variables. To get results on the spectrum of Hp,



Resonance Theory in Atom-Surface Scattering 267

we will use the method of Mourre (see for example [M], [C.F.K.S.]) and construct
a conjugate operator for Hp.

We will assume in this section that V satisfy the following hypotheses:

(H. 1) V(HO,P + 0 ~ * is compact.

(H.2) If A =^{y.Dy + Dy.y\ the form [F,L4] defined on H2(Cτ)nD(A) extends as
an operator bounded from H2(CT) to ί / " 1 ^ ) and compact from H2(CT) to
H~2(CT).
(H.3) The form [[F,L4],M] defined on H2(Cτ)nD(A) extends as a bounded
operator from H2(CT) to H~2(CT).

For example if VeC2(Cτ\ V and y.VyV tend to zero when y tends to infinity,
and y2S/2V is bounded, V satisfy (H.ϊ)i = 1,2,3.

II.A. Spectral Theory ofH0fP. Let ueH2{Cτ). Since u is T periodic in x, we can write:

Φ,y)= Σ κ(y)ei<n'x\
neT*

where

We have

•̂ 2 J e-'<n x>u(x,y)dx. (2.1)
lτ FT

)2)u{y)eKn'x\H0,pu(x,y) = Σ Ψ2y +(n + p)2)un{y)eK

neT*

This gives immediately the spectral decomposition of HOp: let us denote by F:

where ύn(ξ) = (2π)-^2μ-iyξun(y)dy.
F is obviously unitary from L2(CT) into Jf and we have:

For peFτ,, we will call thresholds of Hp the numbers (n + p)2 = {nι+pι)
2+

-(«*-i + P m - i ) 2 for nεΓ*, and denote by £ 0 ( P ) = inf {(n + p)2}

From the explicit spectral decomposition of HotP, we get immediately:

Proposition 2.1.

Finally we will write for later use the resolvent kernel of (HOp — λ): the kernel

p(x,y 9x\y\λ) of {HOp-λ)"1 has the following form:

KoA*> y,x,y,V-^e ^ { + )2)1/2 e . {LI)

KOtP is bounded from L2(CT) into H 2 (C T ) if Im((/ί-(n + p ) 2 ) 1 / 2 ) > 0 VneT*.
Equation (2.2) follows directly from the separation of variables used above.



268 C. Gerard

II.B. Spectral Theory ofHp. We will prove in this subsection the following theorem:

Theorem 2.2. Under the hypotheses (H.I), (H.2), (H.3), we have

*.Jfl,) = [ίo(A + °o[, (2.3)

the eigenvalues ofHp can accumulate only at the thresholds (n + p)2 for neT*, (2.4)

σsing(Hp) = 0 . (2.5)

Proof. (2.3) Follows directly from (H.I), Proposition 2.1 and WeyΓs theorem on
essential spectrum, (cf. [Re-Si]). To prove (2.4), (2.5), we will apply Mourre's
commutator method and we refer to the book [C.F.K.S.] for details.

As a conjugate operator we take A = ̂ (y.Dy + Dy.y). A is the generator of
dilations in the j ; direction, which is the only direction in which classical particles
can escape to infinity. Then we have

[Ho,,, iΛ] = 2{Dy)\ [Hp9 iA\ = 2(Dy)
2 - y.Vy V. (2.6)

We let the reader check that the technical hypotheses on H,A,\HJA~] and
[[H,L4],L4] needed to apply Mourre's theorem are satisfied with this choice of
A, under the hypotheses (H.I), (H.2), (H.3) (see [C.F.K.S.]).

Let now A a [£0(p), + oo[ be a closed interval not containing any threshold.
We will check that Hp satisfies a Mourre estimate on A.

Let XECQ(Δ) be a cutoff function with χ = l on 4 ' c c A Using that
(Hp+i)-1 - (H^p+i)"1 is compact by (H.I), we see that χ(Hp) - χ(HOfP) is compact
by a Stone-Weierstrass argument. (H.2) and (2.6) give that:

χ(H0JlHp, iA]χ{H0.P) = 2χ(H0J(Dy)
2χ(H0J + K,

where K is a compact operator.
Using the spectral resolution of HOp, we have

F(χ(H0,p)u)n = άn(ξ) x X(ξ2 + (n + P)2).

Since Δ does not contain any threshold, there exist some α > 0 such that: VneT*,
ξeR such that χ(ξ2 + (n + p)2) Φ 0, we have

This implies that

X(HO,P)LHP> MMHo,P) ^ 2aχ2(H0,p).+ K. (2.7)

If we replace χ(HOp) by χ{Hp\ we will introduce error terms of the type

and

which are compact, using (H.2) and (2.6).
So we get

χ(Hp)[Hp, iAMH,) ^ 2aχ2(Hp) + K, (2.8)

where K is compact.
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By composing (2.8) to the left and right by EΔ,(HP), we prove that Hp satisfies
a Mourre estimate on Δ\ and also on A if we enlarge a little A.

Using the theorem of Mourre (see [C.F.K.S.] Theorem 4.7 and Corollary 4.10)
we get (2.4) and (2.5). •

We make now a few remarks on this theorem:

Remark 2.3. The clinder Cτ is a special case of a Riemannian manifold with a
finite number of cylindrical ends. The spectral theory of the Laplace-Beltrami
operator on this kind of manifold (and also on more general ones) has been studied
recently by Froese and Hislop (see [F.H], [H]), and by Guillope ([G]). In particular
Froese and Hislop use Mourre's commutator method to get results on the spectrum.

Remark 2.4. We cannot exclude the existence of embedded eigenvalues as the case
of V(x,y)=V(y) shows. In this case, denoting by Λk,fceN the eigenvalues of
(Dy)

2 + V{y\ Hp has the eigenvalues {n + p)2 + λk9neT*,keN, with an infinite
number of embedded ones. However for a general potential, we expect that these
eigenvalues will dissolve in the continuous spectrum due to coupling between
different channels, and become resonances.

This mechanism is responsible for resonance creation in atom-surface scattering.

III. Analytic Extension of the Reduced Resolvent

In this section we will study the analytic extension in (p, λ) of the reduced resolvent
(Hp — λ)'1, when the potential V is exponentially decreasing in the y variable.

We will use a method originally used by Vainberg [Va] in the study of obstacle
scattering, which has the advantage of eliminating the continuous spectrum. We
will assume in general that VeL™(Cτ) = {V\e*<yyVeLcβ{Cτ)} for some α > 0 big
enough. Here <j> = (1 + y2)1'2.

This is certainly not the optimal class since we can allow local singularities of
V (see Remark 3.4).

We denote by L2(CT) = {ueLic(Cτ)\e*<y}ueL2(Cτ)} and Hl(Cτ) =
{ueHl^CT^e^^ue^iCγ)}, for αeR. We put on these Hubert spaces their natural
norms.

In studying the analytic extension in (p,λ) of (Hp — A)"1, we must take into
consideration the fact that for p fixed, (HOp — λ)~ι (and hence {Hp — A)"1) has
branch points in λ at the thresholds (n + p)2 for neT* (see (2.2)). When λ varies
continuously in some bounded open set % of C, and p in some bounded
complex neighborhood ΊV of Fτ* in C1""1, only a finite number of the functions
(λ — (n + p)2)112 can change their determination. Let us denote by «/ cz T* the
set of the n such that (λ — (n + p)2)1/2 can change of determination, and put

{}
To uniformize the functions (λ — (n + p)2)1 / 2 for n e / , we introduce the following

complex analytic set:

On Γ we have a particular region denoted by Γ^, which corresponds to the
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"physical sheet." Γ^ is the subset of JΓ, where Imz£ > 0, i = 1,..., N9 and on Γ^, Γ
is a smooth submanifold which can be parametrized by (p,λ). For peFτ*,λe<%,
Im/l>0, we can write the kernel of (HOtP — λ)'1 as the restriction to Γ^ of the
function:

N , 1 .

j = i ZZj

_L V J<n,x-x'} _ Oi{λ-{n + ρ)2)ιl2\y-y'\

(3.1)

We remark that Γ^ is the natural region where Ko is the kernel of an operator
K0(p,λ,z) which is bounded on L2(CT). We denote for simplicity by z the AΓ-uple
(zl9...9zN)9 and let z vary in some set Z of the type: Z = {zeC N | Imz £ ^ — ε} for
some ε > 0. We have the following Proposition:

Proposition 3.1. For a > ε, K0(p, λ, z) extends meromorphically in (p, λ
as a bounded operator from Ll{Cτ) into HLa{Cτ) with singularities on zf = 0,
i=l,. . . ,JV.

Proof. To study the boundedness of K0(p9 λ, z) from Ll(Cτ) into #!_ r t(CΓ), we have
to investigate the following reduced kernel:

| ^

For (p,A)e-)T x * , « e T * \ Λ we have:

uniformly for (p,λ)eW x %.
We use here the fact that Im ((λ - (n + p)2)112) > 0, for (p, A)eτT x <%, nφJ.
Finally we have:

(λ — (n + p) 2 ) 1 / 2 = i\n\ + 0(1) for (p,λ)eW x°li, nφJ. (3.2)

We can now prove the Proposition: since Ko splits on the direct sum decomposition
L2(CT)= 0 ei<n'x>®L2(R), we only have to estimate the following operators:

Mn:u{y)^e~i<n'x}M(ei<n>x>u{y))

for M = K r e d, dyKred, dx.Kred, i = 1,..., m - 1, as operators on L2(R). For M = X r e d,
we get an operator Mn with kernel:

Γ7τβ II n(tJr .
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Using (3.2) and the criterion of Schur, we get that Mn is bounded on L2(R) with
norm || Mn || ^ C uniformly in n, provided we take a > ε, z{ φ 0. For M = dyKτed or
dx.Krcd9 we get an operator Mn with kernel equal respectively to (if n = n,):

2\y-y'\

and

They satisfy the same estimates as above. The case nφJ~ is similar, which proves
the Proposition. •

We will need also the following lemma:

Lemma 3.2. The residues of K0(p,λ,z) at Zj = 0 are finite rank operators.

Proof. The singularity in zj1 at a threshold (w,- + p)2 comes from the singularity
of (D* - zjy1, which has the kernel: eίZjly~yΊ/2zj. We will show how to isolate this
singularity for (D2 — z])~γ and then come back to K0(p,λ,z).

We can write:

eiZj\y-y'\ = i + j izjiy-y'ie^y-y'^dt. (3.3)

Using (3.3), we can write:

(D2

y - zjy 'u = - 1 - J u{y')dy' + M(z>,

where by the same arguments as in the proof of Proposition 3.1, we see that M(zj)
is holomorphic in Zj as a bounded operator between Lj(R) and iίLf l(R), for
a> -Infί lmz^ ).

We can now come back to K0(p,λ,z): for ueL2(Cτ), if we put

πJu{x,y) = J<nfix>μϊ1 f e - ^ ^ ^ φ , ^ ^ ,

π7 is bounded on L2(CT).
We see directly by looking at expression (3.1) for K0(p, λ9 z\ that K0(p, λ9 z)(l — π̂ )

has no singularities on Zj = 0, as a bounded operator from L2(CT) into H^a(Cτ).
On the other hand:

K0(p, λ, z)njU = eKnrx\D2

y - z)yγ e'^^nju = ̂ u + M(p9 λ, z)u,
ZJ

where M(p, λ, z) is holomorphic near Zj = 0 and fίj is a rank one operator

πju = ei<nϊx\2μτy
ί J ^-ι<n>x>M(

This proves the lemma. •
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We need one more result before proving Theorem 3.5. Let us denote by C(Z)
the constant - Inf (Im z{). We have:

zeZ

Proposition 3.3. Assume that VeL™(Cτ) for α>2C(Z). Then VK0(p,λ,z) belongs
to the Schatten class J% on L2(CT), for a > C{Z\ (p,λ,z)eiV x °U x Z,zf φθ,k>m.

Proof It clearly suffices to prove that e~a<y>K0(p, λ, z) is in &k. Let us first remark
that if α > 2C(Z) + ε0 for ε0 > 0, we have that e~ia~ε°Ky> K0{p9 λ, z) is bounded from
L2

a{Cτ) into Hl(Cτ), for a>C(Z). This means that e{a-a+ε°Ky}Ko(p,λ,z)e-a<y} is
bounded from L2(CT) into Hι{Cτ\ or that

is L2{CT) bounded for {p,λ,z)eiT x f x Z , z ^ 0 .
To prove the Proposition, it suffices to show that:

e-Ό<y>(l + \Δ\y112 belongs to # \ for k> m on L2(CT). (3.4)

Using Theorem 4.1 of Simon [Si], which can be easily adapted to our case, we
see that (3.4) holds, which proves the Proposition. •

Remark 3.4. In order to include local singularities of V, we can introduce the space
Lk(Cτ) = {VeLk

ϊoc(Cτ)\e*<y}VeLk(Cτ)}. If VeLk(Cτ) for k>m,V belongs to
the Stummel class Sm (see [C.F.K.S.]) so H and Hp are self adjoint with
domains H2(Rm) and H2(CT) respectively. Using Theorem 4.1 of [Si] we see that
Proposition 3.3 still holds if VeLk

t(Cτ),k> m,α > 2C(Z).

Theorem 3.5. Assume that V belongs to Lk

a(Cτ) for /c>m,α>2C(Z). Then
(1 -f VK^p.λ.z))'1 can be written for (p,λ,z)eifr x°U xZ as

D(pΛz)

where D and f are holomorphic in (p,λ,z)eΨ* x°ll xZ as a bounded operator on
L2(CT) and as a function respectively, for a > C(Z).

Proof From Lemma 3.2 and his proof we see that K(p,λ,z) = VK0(p,λ,z) can be
written as:

N TV.

where

—M(p,λ,z) is holomorphic in (p,λ,z)eW x f x Z and satisfies the properties of
Proposition 3.3.

—Ujj = 1,..., N are rank one operators on L2(CT).

We will write:

We first consider (1 +M(p,i,z))~1. We will use the theory of regularized deter-
minants for operators in #"fe. We follow the exposition of [Si] paragraph 9. We
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consider for No Ξ> m + 1:

R(M) = (1 + M ) e x p ( - * £ * (-M) k /k)- 1.

R(M) is trace class with || R(M) \\Tr^C\\M \\No, where || || Tr is the trace norm and
|| ||No is the norm in ^No.

Then 1 + M is invertible if and only if the usual Fredholm determinant
det(l + R(M)) is non-zero, and:

( l + M ) - 1 = ( l + K ( M ) ) " 1 e x p ί -

R(M) is holomorphic in (p, λ, z)eΨ* x °U x Z as a bounded operator in La(Cτ) and
belongs to # \ with || R(M) \\ Tr ^ C uniformly in (p, A, z). So we are reduced to the
case when M is trace class. The Fredholm determinant of M is then: det(l + M) =

00

Σ DOm(M% where DOm(M) is a polynomial expression of the tr (Mk) for 1 ̂  k ̂  m,
m = 0

satisfying:

(see [Si]). To show that det(l + M) is holomorphic in (p,λ,z), it suffices to show
that DOiJM) (i.e. Tr(Mk)) is holomorphic in (p,/l,z). Then det(l + M) will be
holomorphic as a uniformly convergent series of holomorphic functions.

It is easy to check that Tr(Mk) is holomorphic in (p,A,z), which shows that
det(l + M) is a holomorphic function.

If det(l + M ) ^ 0 , (1 + M ) " 1 can be written as: D^pΛ^/detίl +M(p,/l,z)),
where Diίp, A,z) is of the form:

and Dlm(M) is a polynomial expression of the Mk, Tr (Mk) for 1 ̂  k ̂  m, satisfying:

^ (see [Si]).

As before, we prove that Dίm(M) and then D^p.λ^z) are holomorphic for
{p9λ,z)eΨ' x ^ x Z. So we can write (1 + M)" 1 as: D^p^zV/^p^z), and using
the estimates in the proof of Proposition 3.1, it is easy to check that (1 + M(p, λ9 z))
is invertible for peΨ*, Im λ » 1, Im z f » 1 which proves that /i(p5 λ,z) ̂  0.

From (3.6), we see that to invert (1 + K)~1, it remains to invert 1 + π(z)Dί(p, λ, z)j
N

g{z)f1{p9λ9z\ where π(z) = ]Γ ^ z x . . . z ^ ^ ^ ! . . .zN, and #(z) = zt.. .z^.

π(z)D1(p9λ9z)/g{z)f1(p9λ9z) can be written as π(p9 λ9 z)/h(p9 λ, z)9 where h = gxfu

and π has a fixed image F of finite dimension.
Now to solve

M + J M = Ϊ;, (3.7)
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we try u = (1 — πo)r + r, where π 0 is the orthogonal projection in F and reF. We get:

r + -r = πov--(l- πo)v = E(p, λ9 z)v. (3.8)
n n

The equation in the finite dimensional space F:r + (π/h)r = f can be solved by:
r = D(p, λ9 z)/h(p, λ9 z\ where D and h are holomorphic in (p, λ9 z) as an operator
and as a function respectively.

This follows from finite dimensional matrix theory.
Finally we solve (3.7) by

^ ^ φ . (3.9)
h(p,λ,z)

Putting together (3.6), (3.9), we get that (1 + K(p9λ9z))~1 can be written as:
D(p,λ,z)/f(p,λ,z) where D and / are holomorphic in (p,λ9z)eiΓ x% x Z as an
operator on L2(CT) and as a function respectively. This proves the theorem. •

IV. Analytic Extension of the Total Resolvent

In this section we will prove the existence of an analytic extension for the total
resolvent (H — λ)~1. As explained in the introduction, the singularities of (H — λ)~*
are different when one considers the local extension of (H — λ)~ι in a small
neighborhood of λQeR9 and when one considers the global extension of (H — λ)~x

to ΰU9 where % is a bounded set in C as in Sect. III.
In the local case, (H — λy1 extends holomorphically as a bounded operator

between some weighted L2 spaces to the universal covering of %λo\Σ, where °11XQ

is a neighborhood of λ0 and Σ is a discrete set of points in tfί9 called Landau
resonances.

In the global case in addition to Σ, (H — λ)~x can have singularities on a closed
set of measure zero Σ^ which correspond to a kind of complex essential spectrum.
We will study some properties of (H — λ)~ * like finite determination and moderate
growth under some additional hypotheses near the points of Σ. The points in Σ are
analogous to Landau singularities in quantum field theory. Using results of Leray
and Pham we will then study the behavior of (if — λ)'1 near generic points of Σ
and get asymptotic expansions which show that in general a Landau resonance is
a branch point of (H — λ)~γ rather than a pole.

In some cases it is even possible to associate to a Landau resonance a kind of
"generalized resonant state."

We start by proving some formulas.
From the discussion in Sect. I, we see that for Im λ > 0, (H — λ)"1 can be written

as:
for uεC%(Rm): (4.1)

) f e-ι^\
FT*

where C{m, T) = (2π)"" ( m-1 ) / 2^ / 2μf*1 / 2.



Resonance Theory in Atom-Surface Scattering 275

Using the second resolvent formula, we have:

(Hp-λ)'1=(HOtP-λΓ1(l + V(HOtP-λ)-1)-1

9 for ImΛ>0, peFΓ*.

On the other hand, (Ho p — λ)~1 is the restriction to Γ^ of the operator K0(p, λ, z):
if we denote for peF Γ *, Im λ > 0, by zf(p, λ) the determination of (λ — (nt + p) 2 ) 1 / 2

with positive imaginary part, we have: (HOp — A)"1 =K0(p,λ,z(p,>l)).
From Theorem 3.5, we can rewrite (4.1) as:

,«- xr... c(», r,^-.<.

For ΛGR, we denote by L^(Rm) the space

{weL1

2

oc(Rw)|β f l(<x>+<j;>)MGL2(Rm)}

and by H^(Rm) the space

L2(Rm) and #*(Rm) are Hubert spaces with their natural norms. We have the
following Proposition:

Proposition 4.1. // VeLk

a(Cτ) for fe>m, α > 2(C(Z) + sup|Imp| p e ^), M(p,/l,z)
extends holomorphically to (p,λ9z)ei^ x% x Z as a bounded operator from L 2 (R m )
mίo HL f l(Rm) /or α > {C{Z) + sup | I m p | p e i r ) .

Proo/. Using Theorem 3.5, we see that it suffices to prove that Kp (defined in (1.1))
extends holomorphically in p as a bounded operator from L 2 (R m ) into L2(CT) and
that (Kp)'1 (defined in (1.4)) extends holomorphically in p as a bounded operator
from HL β (C Γ ) into Hla{Rm). If α > C s u p | I m p \ p e i r such that | £ Γ α < x V < p x > | ^ β~£<x>

for p e ^ , it is clear that Kp is uniformly bounded from Lj(Rm) into L2(CT). Consider
now the function e~ι<p'x>u(x,y) for ueH^a(Cτ) extended by periodicity in x as a
function in Hlc(Rm).

We have to estimate:

If α > C s u p | I m p | p e ^ we have for p e ^ , xeFτ:\e'a<x+τye~ί<p'x+τ>\ ^ C β - ε | τ | for
some ε > 0.

So we get a convergent sequence in (4.3) «and we have:

We can estimate the derivatives of e~ί<p'x>w in the same way, which proves the
Proposition. •

We now use Cauchy's formula in order to eliminate the multivalued functions
Zi(p,λ). By making a linear change of coordinates in p, we may assume that



276 C. Gerard

We will consider the operator (H — λy1 for A near some point λoe% n {Im A > 0}.
Since /(p, A, z(p, A)) Φ 0 for peFτ*, Im A > 0, we can find some ε > 0 small enough
such that if p is in Fτ*,λ in a small neighborhood of Ao, and |z — z(p, A)| ^ ε, we
have /(p,A,z)#0, and such that zεZ if |z —z(p,A)| 5^ε. Let y^p) be the circle of
center (Ao —(n; + p) 2 ) 1 / 2 a n d of radius ε/2. By Cauchy formula, we have, since

) ^ l

iπ/(p,A,z(p,A)) iπ y i i ) /(p,A,zl9z2(p,A),...,zN(p,A)) z\-λ + (nx+ p)2 *'

By iterating this process, we can write (H — λ)~ί as follows: Let Δ be the m + JV — 1
dimensional cycle which is the image of [ — 1, l ] m ~ x x T N (here TN is the AΓ-torus)
under the map: (p,ω)->(p,z(p,z(p,A0) + (ε/2)ω)eCm~1 x CN. Then we have for A
near Ao:

4 Π
(4.2)

So we have written ( / ί - A ) " 1 for A near Ao as an integral on A of an operator
valued function G(p, A, z) which is holomorphic in (p, A, z) on the universal covering
( # x ^ x Z\S)* of iir x ^ x Z\5, where S is the analytic set defined by the
equations:

S = {(p,λ,z)eiT x f x Z |/(p, A,z) = 0

or A - (n£ + p)2 = 0 or zt - A -h (nt + p)2 = 0 for 1 ^ i ^ JV}.

It is well known that if G(p, A, z) is a usual holomorphic function on (W x% x Z\S)*
the singularities of J G(p, A,z)dz1 Λ ••• Λ dzN Λ dp1 A ••• Λ rfpm_i are much smaller

than the crude guess

§siπg = {A|3(P,Z)G4 such that {p,λ,z)eS}.

(Note that this guess would produce "lines" of singularities if m = 2 and "balls"
of singularities if m = 3.)

Indeed this integral is holomorphic as long as the integration cycle can be
deformed continuously avoiding the set S. This is the basis of the analysis of Landau
singularities in quantum field theory (see for example [F.F.L.P], [P], [B.P]), of
ramification of holomorphic integrals (see [V], [L], [K]) and of functions of the
Nilsson class (see [Me]).

The singularities of (H — λy1 will come from the following three types of
obstructions:

a) end point singularities: a boundary of the integration cycle is tangent to S.
b) pinching singularities: the cycle is pinched between some strata of S.
c) pinching singularities at infinity: the cycle is pinched between some stratum of

S and the infinity or the boundary of the holomorphy domain of G(p, A, z).

A problem very similar to ours (with usual holomorphic functions) has been
studied by Kobayashi [K] in relation to singularities of solutions of Cauchy
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problems in the complex domain. We will follow the exposition of Kobayashi. We
introduce now some notation.

We put: Y = WxWx Z\S,F^ = {(p,z)eiT x Z\Pί= ± 1} for i = l , . . . , m - 1,

where πPfZ is the projection (p,λ,z)\-*(p,z), and finally 5 the analytic set S u ( F x ^ ) .
If π:(p, λ, z)ι—• λ is the other projection, we will denote by Aλ the fiber π " 1(λ) n A

for λe%, A some set in iV x % x Z. To describe obstruction c), we will have to
replace the domain iV x Z of the fiber variables (/?, z) by a smaller domain having
a real analytic boundary. To this end, we consider the function

m - l / N \ - 1 JV

δ(p, z) = Co £ ( I m Pi)2 + C Λ Σ ( I m *, + C(Z)f + C2 £ ( I m Z ί ) 2 ,

where the constants C o, C 2 have to be chosen large enough and Cγ small enough.
We will replace iV x Z by one of the following sets:

J>r = {(p9z)siT x Z\δ(p,z)<r} for 0 < r x <r<r0.

We will now describe the singular set denoted by Σ corresponding to the
obstructions a), b). (We will see that obstruction c) occurs only for the global
extension problem.) The set S is a complex analytic set and has a stratification
with strata consisting of smooth submanifolds. Since the basis is one dimensional,
it is well known that there exist a stratification of (iV x ^ , S) such that the rank
of dπ is constant on each stratum and satisfying Thorn An condition. (See [Hil].)
(In the sequel we will always consider such a stratification.) We are indebted to
C. Sabbah for numerous discussions and indications concerning the Propositions
4.3-4.6 and Lemma 4.4.

Definition 4.2. Σ a fyl is the projection on % of M, for each stratum M of S in
ΊV x °U x Z, such that dπ\TM = 0.

Σ is analogous to the Landau variety in the study of Feynman integrals. We
will call the points of Σ Landau resonances. It is important to notice that the set Σ
in % depends on the set iV x Z used to make the contour deformations.

Proposition 4.3. Σ is a finite set of points.

Proof Since S is an analytic set in 1V x °U x Z which extends outside if x°U x Z,
the number of strata of S in iF x # x Z is finite. Let M be a stratum of S such
that dπ\TM = 0. By the curve selection lemma (see [Mi]), if (po,λθ9zo)eM9 there
exist a real analytic curve p:[O,εo[-»M such that p(0) = (po,/ίo,zo) and p(t)eM,
Vί > 0. Consider now the curve π°p(ή in όU. One has d(π°ρ(ή) = 0 since p(t)eM,
Vί > 0, so π°p(t) = π(/?0,λ0,z0) = λ0. By the connectedness of M, π(M) = λ0, which
proves the Proposition. •

Let us now describe the set Σ^ corresponding to obstruction c).
If M is a stratum of S in iV x % x Z, Mλ is a union of smooth submanifolds

for λe°U. This is obvious if dπ\TM φ 0, and follows from the proof of Proposition 4.3,
and Thorn Aπ condition if dπ\TM = 0. For λe°lί, we denote by D(λ) the set of
r e [ r i > r o ] s u c h t h a t f° r some stratum M of S,Mλ is tangent to dBr.
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We have the following lemma:

Lemma 4.4.
i) D(λ) is a finite subset of [rl9r0~\.

ϋ) K = (J {λ} x D(λ) is a closed set.

Proof.

i) can be proved as Proposition 4.4, using the critical variety cMλ of Mλ with

respect to the real analytic map δ. cJίλ is a real analytic set and we can apply the

real analytic version of the curve selection lemma to each connected component

of cJiλ to prove that D(λ) is a finite set.
Let us now prove ii).
Let λ o e ^ , r o G [ r l 5 r o ] , and assume that there exist a sequence {λn,rn)-+(λθ9ro),

λne^,rneD(λn). Then we can find a stratum M of S, a sequence (pn,zn)eMλn,
such that T{PnίZn)Mλncz TiPn>Zn)dBrn. By compactness we can assume that (pn,zn)
tends to some (p0, zo)edBro9 such that (p0, λθ9 zo)eM. If (p0, λ0, ZO)EM, T(PθtZo)Mλo <=
T ( p o,Z o )aB r o, and roeD(λo).

If (p0, A0,z0)eiV, for some stratum N oϊ S adjacent to M, then using Thorn ^4π

condition, TiPO>Zo)Nλo c T(POfZo)dBro, and roeD(λo), which proves that X is closed.

•
From now on, we replace i¥° x Z by jBro, and consider 3J5ro as the boundary

of the holomorphy domain of G(p, λ9 z) in the variables (p, z).

Definition 4.5. Σ^ is the set of λeW such that roeD(λ)

Proposition 4.6. It is possible to choose r0 such that Σ^ is disjoint from Σ and is
included in a closed subanalytic set of measure zero.

We refer to [Hil] for the definition of subanalytic sets.

Proof. We first check that it is possible to choose r0 such that Σ^ is disjoint from
Σ. From Proposition 4.5 ii), we can find some subinterval [/i,^] of [rurQ\ and
a small neighborhood iT of Σ in % such that [ri,r'0]ni)(/l) = 0 , VAGIΓ.

In the sequel the new r0 will be chosen in [ r j , ^ ] . We first take a semianalytic
stratification (M) of the pair (Φ x Bro, S) (see [Hil]) such that the strata of (Aί) in
^ x Bro are the strata of the stratification of (^ x Bro,S). Let us denote by Σ the
union of the sets of critical values of the mappings (p, λ9z)sM-^(λ9δ(piz))e% x
[ r^ro] , for all strata M of (M). It is easy to see that if reD(λ%(λ,r)eΣ. Moreover,
Σ is a subanalytic set as a proper image of a semianalytic set in % x Bro, and is of
measure zero by Sard's theorem. By Fubini's theorem, we can find some r 3 e [ r i , r'o]
such that the fiber 2"r3 in ^ of I 1 over r 3 is of measure zero. This fiber is again a
subanalytic set and contains the set Σ^ if we take ro = r3. This proves the
Proposition. •

We have the following theorem, which is the main result of this section:

Theorem 4.7. Assume that V belongs to Lk

a(Cτ\ for k> m, α > 0.
Then the following results hold:

i) Local Extension Problem: for any l o e f n R , there exist a neighborhood %λo of
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λ0 in °ti, such that (H — λ)~ι extends holomorphically from {Imλ > 0} n % λ o to the
universal covering (Wλo\Σ)*, as a bounded operator from L^(Rm) into H\.a(Rm) for
a > α/2.
ii) Global Extension Problem. (H—λ)'1 extends holomorphically from {Im λ > 0} c\tfl
to the universal covering ( ^ l u l ^ f , as a bounded operator from L^(Rm) into
Hla{Rm) for a > α/2.

Proof Since α > 0, we can find if and Z such that α > 2(C(Z) + sup | I m p | p e ^ ) ,
so that Proposition 4.1 applies to ΊV x ^ x Z. We will follow the proof of
Kobayashi [K]. Let us first prove ii). Let Δf = {(p,z)sΔ\pi = ± 1} be the
components of the boundary of Δ9 and let us denote by ω the operator valued
f o r m G(p,λ,z)dpί Λ ••• Λ dpm_1 A dzί Λ ••• Λ dzN.

Since ω is holomorphic of maximal degree, we have: dω\Yλ = 0, ω\p = 0. This
implies that if y is some chain in Yχ,\ω depends only on the homology class [y]

y ~

of y in the relative homology group Hm^1{Yλ,Fλ).
We consider now the problem of extending (H — λ)~x = J ω from Im λ > 0, to

some point Ax along a path *f:[0,1] -^^, with Im/(0) > 0 , /(I) = λ±. Applying the
result of Kobayashi ([K] Theorem 1.3), we get that (H — λ)'1 can be extended
holomorphically along ί if there exist a deformation γt:(Δ,Δf)^>(Ym,F^{t)) of
Δ such that y0 = Id and y:(ί,s)e[0,1] x Δ-+yt(s) is continuous. This reduces the
problem of holomorphic continuation to a problem of finding a continuous
deformation of the relative cycle Δ in Hm-1{Yλ,Fλ) along the path /.

Let now /: [0,1] -+ °U\Σ u l κ b e a path with /(0) = Ao, Im λ0 > 0. Let J be the
set of £e[0,1] such that zl can be deformed along f between 0 and t satisfying the
above conditions. J is obviously open and since [0,1] is connected it suffices to
prove that J is closed to prove that I = J.

Let tneJ a sequence with tn-> t0 when n-^ + oo.λ1= /(ί0) belongs to <%\Σ u Σ ^
and if V is a small neighborhood of λί9Mλ is transversal to dBro for all AeK, all
strata M of 5, if r 0 is defined in Proposition 4.6. Then we can apply to Bro x K
the local isotropy lemma of [F.K.]. This implies that π:Bro x V-*V is a locally
trivial fΐbration with respect to Sn(Bro x V\ Ff n(Bro x V).

This implies that one can find a deformation of γ^t) along the part of / which
stays in F, such that ym c Br\Sm and the faces of y/(ί) are in the submanifolds
F^ ( f ). This implies that / = J, hence that (H — λ)~x can be extended along any path

Then it follows from the monodromy Theorem that (H — λ) ~x extends as a
function on ( ^ ^ u l ^ f , which proves ii). Let us now prove i). From Lemma 4.5,
we can find some r 0 > 0, some neighborhood %λo of λ0 in °U, such that roφD(λ),
V'λetf/λo. Then the result follows by applying the arguments above to Bro x °Hλo.
This proves the Theorem. Π

We will now study the behavior of (H — A)"1 near a Landau resonance.
We first recall some definitions.

Definition 4.8. An operator-valued function M(λ) is of finite determination near some
point λ0 if there exist a neighborhood Ψ" of λ0 such that the branches of M(λ) over
any simply connected subset of i^\{λQ} span a vector space of finite dimension in

?R") , Hla(Rm)).
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M(λ) has a moderate growth at a point λoeΣ, if there exist a neighborhood V of
λ0 in °lί such that for any simply connected subset V of V\{λ0}, for any branch of
M(λ) on V, denoted by M(λ\ there exist C0,N0 > 0 such that:

\\M(λ)\\SC0\λ-λ0Γ
N°.

Here \\M(λ)\\ is the operator norm in ^(Lj(Rm\ Hia(Rm)).
— a n analytic set S in iV x °U x Z is a divisor with normal crossings if near any
point (p0, λ0, zo)eS, there exist holomorphic coordinates (zί,..., zm+N) such that -S
is given by the equation z1...zk = 0 near (p 0 ,λ 0 ,z 0 ) .

To study the growth of (H — λ)'1 near a point of Σ, we need a geometric
hypothesis on S.

We first add to S the fiber π " 1 ^ ) for each λoeΣ, which does not change the
set Σ.

Hironaka desingularisation theorem says that there exist an analytic space X
and a proper morphism j ί : I - ^ f x f x Z such that:
—β\X\β~x(S)-+Ψ* x % x Z\S is an isomorphism.
—S' = jS" 1^) is a divisor with normal crossings. (See [Hi2]).

We make the same hypothesis as in Mercier [Me]:
(T) There exist a stratification (M) of the pair (X, S') such that for each M there
exist a stratum M of (if x<% x Z,S) such that β\^:M-^M is a submersion.

The hypothesis is made to ensure that the strata of Sr intersecting β~1(dBro x V)
intersect it transversally.

We have the following theorem:

Theorem 4.9.

i) (H — λy1 is of finite determination near any point of Σ.
ii) if condition (T) holds, (H — λ)~x has a moderate growth near any point of Σ.

Proof Since the properties of finite determination and moderate growth are local,
we can consider (H — λy1 near a point λx eΣ. Let us consider a branch of {H — λ)~1

near λu obtained by analytic continuation along a homotopy class [y] in
^ l u l ^ , . The continuation of (H — λy1 in (^{Ai})*, where V is a small
neighborhood oίλl9 is obtained by deforming the integration cycle Δ in (4.2) inside
the set Bro. We claim that it is possible to choose r 0 in Proposition 4.6 such that
roφD(λ), VλeV and the following condition holds:

(T) any stratum of S intersecting dBro x % intersect it transversally. Indeed it
suffices to remark as in Lemma 4.5 that the set of critical values of δ on M is finite,
for all strata M of S.

Let λ0 a point in F ^ / ^ } . We will adapt the arguments of Mercier [Me] to
our problem. Let us assume that one branch of (H — λy1 at λ0 is obtained by
integrating in (4.2) on some relative cycle γ0.

We introduce the locally finite family of analytic sets given by SλQ9F^λo and
dBro. By Lojasiewicz Theorem (see [Me]), we can find a semianalytic triangulation
of Bro which is finite and compatible with this family. This induces a triangulation
of the pair (Bro\Sλo,Fλo) by (K,L\ where K is the simplicial complex made of the
simplexes of the previous triangulation which do not intersect Sλo and L is the
simplicial complex made of the simplexes of the previous triangulation which
intersect Fλo and not Sλo.
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Then H^^B^XS^FjJ is isomorphic to H^^Kl \L\) and we can write [y0]
using the simplexes of the triangulation of (|X|,|L|):[y0] = ^ bjσj9 bjGZ,J0 a
finite set. jeJo

For λ near λθ9 we can also take [yλ~\ = £ bjGj.

Then (H-λ)~1=Y fy J ω.
jeJ0 βj

It is clear that ω — G(p,λ,z)dpί Λ ••• Λ άpm-x Λ J Z J Λ Λ dz^ is of finite
determination on any of the simply connected subsets σj9 since the multivaluedness
of ω comes only from the (λ — (nf + p)2)112, which are of finite determination.

So (H — λ)~1 is a finite sum of the functions J ω, each of finite determination,
which proves i). σj

We prove now ii): we consider a point λoeΣ.

Let us denote by β: X -> HT x % x Z the desingularisation of S in iT x °U x Z.

We can write (H-λy1 = $ω = J ω = Jβ*ω, where / ^ ( j S " 1 ) ^ . (Here y'λ

exist because jS is an isomorphism outside S.) Using condition (T), we see that
β~1(dBro x ^ ) is transversal to all strata of S'. So denoting again S' by S, we are
reduced to the case where π"1(A0) c S,S is a divisor, and ββ r o x Φ is transversal
to all strata of S.

We fix a small neighborhood V of Ao, in which we will estimate the growth of
(H-λΓK

We can now finish the proof as in [Me].
We will only indicate the principal steps of the proof. Modulo a change of

coordinates, we can assume that λ0 = 0. The idea of the proof is to lift the radial
vector field on C : ζ = -(λ(d/dλ) + λ(d/dλ))= -r(d/dr), where r = \λ\, to a vector
field ξ in IV x V which is tangent to all strata of S and to dBro x V. This vector
field is then used to construct the deformations of yλ as λ tends to 0 along an
integral curve of {, which is of the form: α^/^) = λ1e~s for seR + .

Step 1: Construction of ξ.
We will construct ξ locally near any point of Bro x V and patch together the

local vector fields with a partition of unity.
1. near (Po,λ0,z0)eBro x V\(SudBro x V):

— + 2-=.
dλ dλ

2. near (pg,A0,z0)6Bro x Vn(S\dBro x F):
Since S is a divisor, we can take a coordinate chart near (p0, λ0, zo)9 (zl9...9zm+N)

such that S is given near (p0, Ao, z0) by the equation zί...zp = 0, and (po, λθ9 z0) =
(0,...,0). Since π " 1 ^ ) ^ ^ , by the Nullstellensatz (see [Me] p.82) we see that
π(z) = r^zl1 z£k, α x , . . . , α k e N , ro(0) / 0, fe ̂  p. Changing for example z l 5 we can
assume that π(z) = z*1 ---z^. We can take

and we have π^ξ = ζ.

1/3 3

« V dz± dz
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3. near {p0,λ0,z0)eBro x Vn(SndBrQ x V):
As before we can find a coordinate chart such that S has the equation zγ zp = 0,

and π(z) = z\1'"Zlh.
Since dBro is transversal to each stratum of S, we can extend the set of local

coordinates (Rez 1 , Imz 1 , . . . ,Rez p ? Imz p ) by up+l9Όp+u...9um+N9vm+N such that
up+1 — 0 is a C°° equation of dBr near (po,λo,zo). We take

1
ξ

£ is tangent to S and to d£ r o , and π^ξ = ζ.
4. near(pD,λo,zo)eBro x Fn(δJ5 r o x l/\S)

We can take

ξ is tangent to dBro. We now patch together ξ with a C00 partition of unity in
Bro+ε x Fε, where Fε is a small neighborhood of V. We obtain a vector field
supported in Bro+εxVε.

Step 2: Estimates
We want now to control the growth of (H — λ)'1 = j ω, when λ tends to 0

along a ray α^/lj = λxe~s. >Ά
Here for ^eK\{/lo},'yλ is a deformation of the cycle yλί which stays in the ball

Bro. The integral curves of the vector field ξ induce a 1-parameter family of
difreomorphisms7*s = exρ(s£), from (S r o\S λ l) x {ΛJinto(£ r o\Sα s ( ; i l )) x { α ^ J J . W e
use here the fact that ξ is tangent to dBro and S, and that π^ξ is the radial vector
field pointing inwards. Moreover j s is a homeomorphism from the pair

(Bro\SλίJλl) to the pair (Bro\Sas{λί),FMλi)).

Since Hm_ί(Bro\Sλ,Fλ) is a locally constant sheaf over V, (using for example the
triangulation in the proof of i)), we see that [yα s ( λ l )] = (js)*lyλj

So we can write:

(if-«,(*!))-*= J ω=fy ω.

To prove ii) it remains to show that || jfco\\ ^ Cecs, where || || is the norm induced
by the Riemannian structure on # x Z, uniformly on Bro and when λ 1 is on some
arc of circle, {θ0 ^ Aτgλx ^ θu \λ± \ = εo} This can be done as in the proof of [Me]
Theorem 3.1, with the modifications of [Me] Theorem 3.2. •

Behavior of the Resolvent Near a Landau Resonance in Generic Cases. We will now
study more precisely the behavior of (H — λ) ~x near some points of Σ. We consider
the case of a Landau resonance λoeΣ generated by a pinch of the integration cycle
at a point (pQ,z0)eBro. For simplicity, we will only consider Landau resonances
created by polar singularities, i.e. by strata of S away from λ = (nt + p)2i = 1,..., N.
However, monodromy formulas for {H — λ)~x near a Landau resonance created
by ramified singularities can be obtained using the results of Pham ([P]
Chapter VII).
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We make the following hypotheses;

(4.5) there exist neighborhoods V oϊλ0, W of (po,zo) such that if λeV, (p,z)eBro\W
then (p9λ9z)φS9 and (po>Λ)>zo) *s t n e only critical point of π in W x V.

(4.6) S

(4.7) near (po,Λo,zo) S is the union of the complex hypersurfaces Sί,...,Sk

intersecting in general position at (p0, λθ9 z0). This means that near (pθ9 λθ9 z0)

Si has a irreducible equation sf(p,/l,z) = 0 with s ί(po,/lo,zo) = 0, ds1,...,ds1c

linearly independent at (Po>^o>zo)-

(4.8) (po,/lo,zo) is a non-degenerate critical point of π for the stratum A = f] St

and is not a critical point of any other stratum of S. i=ί

(4.9) Sj are polar manifolds of

We note that it is possible to choose M(p,λ,z) and f(p,λ,z) near (po,λo,zo)
such that M(po,/ίo,zo) is a finite rank operator. This follows easily from the
holomorphic Fredholm theorem.

We consider the behavior of one branch of (H — λ)~1, denoted by (H — λ)~ι

obtained by integrating G(p,λ,z) on a cycle y, for Λ, near λθiλφλo.
Using (4.5), we can write y = y + σ, where σ is an absolute cycle in P^ and y

avoids Sλo.
So I G(p, λ,z)dp1 A Λ dpm_i Λdz1' - Λ dzjy is holomorphic for λ near λ0, and

modulo a holomorphic term, we can assume that y = σ is an absolute cycle. We
will denote by JV the intersection index of σ with the vanishing cell e defined by
the manifolds Sl9..., Sk. (See [P] Chap. V for the definitions of AT and e) Practically
N is zero when the path σ is not pinched between the Sl9...,Sk.

An interesting question is whether the set of potentials in L™(CT) such that
S has the above structure near any critical point in W x °U x Z is an open dense
set of L™{CT).

Under the hypotheses above, we can write near (po,Ao,zo), G(p,λ,z) as:

M(p,λ,z) αi,...,αkGN,MasM.
z)

The case when some αf are bigger than 1 means that there is a constant degeneracy
in the singularities of (1 + VK0(p9 λ, z))~1. This happens for example if the crystalline
material represented by the potential V has a symmetry group. We put then
α = α t + — h α k .

We have the following theorem:

Theorem 4.10. Under the hypotheses (4.1) i = 5,...,9, the branch (H — λ)~* can be
written for λ near λ0 as:

i) ifm + N + k is odd:

(H - λ);ι = E0(λ) + C0N(λ - λ0Y
m+N+kv2 ~1 ~α(M(p0 J λ09 z0) + (A -
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ii) ifm + N + kis even, m + N + k^2a + 2:

iii) ifm + N + k is even, m + N + fc < 2α + 2:

(H - λ);1 = E0(λ) + C0N(λ- λo

+ NLog(λ-λ0)xE2{λ),

iv) ifm + N = k:

where: Eθ9EuE2 are holomorphic functions in i?(L*(R m ), Hla(Rm)% and Co is a

non-vanishing constant.

Proof. We use the results of Leray [L] and Pham [P] as stated in the book of

Pham (see [P] Chap. VI).

We first reduce ourselves to a case when M(p, λ9 z) is independent of λ. To do

this, we use the fact (see [P] Sect. V.2) that under the hypotheses (4.7), (4.8), there

exist a neighborhood of (po>Λ,o,zo)
 s t ϋl denoted by W x V and a holomorphic

change of coordinates defined on W x V:(p, λ, z) -• (p(p9 z, A), λ) such that in the new

coordinates (p,A) the functions sl9...,sk take the simple form:

For simplicity, we will still denote by {p,λ,z) the new coordinates. We can also

assume that the cycle σ is contained in W9 by subtracting to (H — λ)'1 some

operator holomorphic in λ. This can be done as in the proof of VI.2.1. in [ P ] .

Using Taylor's formula, we can write:

' ) I Λ = / ( P ' Z > 1 2 *

α k . (4.10)

F r o m (4.8), it follows that (po,λθ9zo) is not a critical point of π for the

stratum S 2 n n S f e , hence jΛ(p,A,z)s^~α2 s^akdpx Λ Λ d p m _ i Λ d z x A ΛrfzN

is holomorphic near λ0.
 σ

So we are reduced to the study of JM / ? (p,z)5 1 " α i + / J 5^ α 2 5fc""
αkίi/71 Λ ••• Λ

dPm-ι Λ dz x Λ ••• Λ ί/zN for j8 ^ α x — 1. σ

Then the theorem follows directly by applying VI.2.1 in [ P ] to each of the

terms in (4.10). In (4.10) only the first term corresponding to M(p9f(p9z)z)

contributes to the leading singularity at λ = λ0. The only thing that we have to
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check is that some constant appearing in the formulas VI.2.1. of [P] is non-zero:
More precisely we can write:

ί = l
at (po,λo,zo).

Let us check that at φ 0 for i = 1,..., k. If for example aί = 0, then (p0, λ0, z0) would
be an element of the critical manifold of the stratum S 2 n n Sk, which is excluded
by (4.8). This concludes the proof of the theorem. •

Remark 4.11. The interest of Theorem 4.10 is that M(po,λQ,zo) is always a finite
rank operator, but M(po,λo,zo) can be equal to zero in some cases. When
^(Po?^o>zo) Φ 0, Theorem 4.10 shows that the leading singularity oϊ(H — λ)'1 at
a Landau resonance λ0 is of finite rank. Note however that Eί(λ%E2(λ) are in
general not of finite rank.

We will now apply Theorem 4.10 in some simple cases where it is possible to
compute explicitly M(po,λo,zo).

Landau Resonance Generated by a Simple Resonance Curve. We assume that
{s1(p,λ,z) = 0} is a component of {/(p, λ, z) = 0} and that (modulo a change of
indices) s^p, λ, z) = zf — λ + (nt + p)2 for i = 2,..., k. We denote by z" the rest of the
z variables. Since we have assumed that (zo,po, λ0) is away from the hypersurfaces
λ = (ni + p)2, we can find determinations of the functions (λ — (Wί + p) 2 ) 1 / 2 near
(λθ9 p0) such that zi0 = (λ0 — (nt + po)

2)1/2, for i = 2,..., k. Then it is easy to check
that (p0, λ0, z0) is a critical point of π for A if and only if (p0 ? Ao, z'ό) is a critical point of
π for the hypersurface given by s^p, λ9 {λ -(n2 - p) 2 ) 1 / 2 , . . . , (λ - (nk + p) 2) 1 / 2, z") = 0.
If we denote by s^p^λ.z") this new function, we have (dSi/dλ)(po,λo,ZQ)Φ0, i.e.
λ = λ0 is a simple root of S^PQ, A,ZQ).

For a function MeL2

oc(Rm), which is p0-Floquet periodic (i.e. eι<J>Ό'x>u is
Γ-periodic), we denote by # o M the following operator:

R0(λ)u= Σ (λ-zi-inj + p^e-'^^u^y),
njeJ

where un.(y) is the Fourier coefficient of order n 3 (in the x variable) of eKp°'x>u.
(In particular if k = N + l,R0(λ0) = 0.) We will assume for simplicity that m ^ 3.
Then we have the following corollary:

Corollary 4.12. Under the hypotheses above, M(po,λo,zo) is a finite rank operator
π 0 : satisfying: (H-λo + R0{λ0))π0 = πo{H -λo + R0{λ0)) = 0.

Proof. We can write for λ near λ0 :D(p0, K zo)/f(Po> K zo) = Eo(λ) + πo/λ — λ0, where
E0(λ) is a holomorphic operator.

In the Appendix Proposition A.I, we prove that: (Hpo —λo +R0(λ0))π0 =

πo(HPo -λo + R0(λ0)) = 0, where R0(λ) = eκ^R0{λ)e-Kp»>x\
We have G(po,/l,zo) = Eo(/l) + πo//l — Ao, where E0(λ) is holomorphic and

πou = c(m, T)e~ι<Po'x>π for ueL2(Rm). From this we get easily that π 0 satisfies the
corollary. •

In paricular if k = N + 1, the singular part of (H — λ)~1 at λ0 is associated with
p0-Floquet periodic solutions of Hu — λou = 0.
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V. Resonances Created by Impurities

As discussed in the introduction, one of the main problems in atom-surface
scattering is to investigate what are the effects introduced in scattering quantities
by the presence of impurities. (See [Ge] Sect. Π.C). We will consider the periodic
potentials as a background potential and treat the impurities as a relatively compact
perturbation.

Let us assume that the effect of impurities can be described with an additional
real potential W{x,y) with WeL?(Rm) = {VeL»{Rm)\e*{<xy+<y})VeL»{Rm)}. As in
Sects. Ill, IV, we can allow local singularities of W. (See Remark 5.2.)

We denote by H the Hamiltonian H = H + W with domain H2{Rm). Then we
have the following theorem.

Theorem 5.1. Assume that V belongs to Lk

a(Cτ) for k> m, α > 0 and WeL$(Rm) for
α' > 0. Then the following results hold:

i) Local Extension Problem: for any 2 0 e f n R , there exist a neighborhood ΰUλQ of
λ0 in % such that (H — λ)'1 extends meromorphically from {Im Λ, > 0} n < Âo to
(<%λo\Σ)* as a bounded operator from L*(Rm) into Hla(Rm) for a >£(α + α'), with
poles in (^Ao\X)* having finite rank residues.
ii) Global Extension Problem: (H — λy1 extends meromorphically from {Im/l>0}
to ( f ^ u l ^ ) * as a bounded operator from Lj(Rm) into Hla(Rm) for a > £(α + α'),
with poles in ( f ^ u l ^ ) * having finite rank residues.

We will call resonances of H the poles of (H - λy1 in (<%λo\Σ)* or ( f \ I u I J * .

Proof As in Sect. Ill, we use the second resolvent formula: For Im λ > 0, we have:

(ϊi - λy1 = (H - λy'ii + W(H - λy1)-1 = (H - λy'ii 1

From Theorem 4.7 and the fact that WeL?(Rm) for α > 0, we see that K(λ) extends
holomorphically from Imλ > 0 to ( ^ l u l ^ ) * as a compact operator on L^(Rm).
Since ( ^ l u ^ ) * is connected and 1 + K(λ) is invertible for Im λ » 1, the theorem
follows from the analytic Fredholm theorem. •

Remark 5.2. As in Sect. Ill, Theorem 5.1 still holds if

e««*>+<y»W{Δ + 1)"1 / 2 is compact for α > 0.

Let us make some comments on this result:
The resonances of H live on the universal covering (^ΣKJΣ^)* which means

that one can discover new resonances by turning around the Landau resonances
ofH.

The physical interpretation of resonances in "upper sheets" o f ί ^ l u l ^ ) * is
not clear to us.

We have the following corollary:
Corollary 5.2. Let us denote by ΓR the set of resonances of ίi in
{Imλ ^ 0}, and by ΣR the set ΣnR. Then:

p p R R R p p

ii) σsc(H) is empty and the eigenvalues ofH can accumulate only at ΣR.

Proof i) Can be proved easily by using an idea of Balslev-Combes [B.C]. We
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have the following formula, if dEλ denotes the spectral measure of H:

Eλ^^-E,.^λ[ = s lim (z-AKH-z)" 1 .

Let λoeσpp(H). Then E^^^^-E^^^^E^^ΦO. Since L%(Rm) is dense in
L2(Rm), we can find some φeL2(Rm), such that (E{λo}φ,φ) = lim (z — λ0)

((H — z)~1φ,φ)^0. Then (H — z)~x must have a singularity at z = λ0, so
λoeΓRuΣR. Suppose now that λoeΓR, and that λoφσpp(H). Then for any
φί,φ2eL2{Rm), we have lim ( z - A o ) ( ( H - z ) " 1 φ 1 , φ 2 ) = 0, which is

z-»λo,lmz>0

impossible if we choose φ1 and φ2 correctly with respect to the residue in the
Laurent expansion of {H — z ) " 1 at λ0. This proves i). To prove ii), we notice that
Theorem 5.1 implies that σsc(H) aΓRvΣR (see [Re-Si]). ΓRvΣR is a set of points
having only a locally finite set of accumulation points, so it cannot support a
continuous measure, which proves that σsc(H) = 0 . The properties of the eigen-
values of (H) follows directly from i). •

Concerning the problem mentioned at the beginning of the section, we see that
the effect of impurities is to add poles to the Landau resonances already present
for a perfect crystalline surface. An obvious example where an impurity can create
a pole of (H — λ)~x is by taking W ^ 0 sufficiently negative to create a bound state
of H, i.e. a real pole of (H — λ)~1. According to Theorem 4.10, the Landau resonances
are typically branch points of (H — λ)~x (the case of a polar singularity is very
unusual), and should be still singularities of (H — λ)~1. (See the discussion below.)
So the presence of impurities should be seen on scattering cross-sections or spectral
functions since polar singularities give rise to the well-known Breit-Wigner shapes
and singularities like (λ — λo)~112 or log(λ - λ0) produce very different resonance
shapes.

We will now briefly discuss the singularity of (H — λ)'1 near a Landau resonance
λ0, assuming that the hypotheses (4.5),..., (4.9) of Theorem 4.10 hold. Recall that
it follows from this theorem that the Riemann surface on which (H — λy1 is
holomorphic and univalued for λ near λ0 is the Riemann surface T of (λ — λo)

1/2

if m + N + k is odd and of Log (λ — λ0) if m + JV + k is even. Then we have the
following result:

Theorem 5.3. Under the hypotheses of Theorem 4.10, if m + N + k>2a and
m + N + k^2a + 2 if m + N + k is even, the number of resonances of H on a sheet
ofT in a small neighborhood of λ0 is finite.

Proof From (5.1) and Theorem 4.10, we have:

1 + W{H -λ)~1 = l+ E0(λ) + d(λ)(K1 +(λ- λo)E1(λ)),

where E0(λ),Ex(λ) are holomorphic and compact operators on L2(Rm),K1 is a
finite rank operator and:

) = (λ-λo)
im+N+k)/2-*-ί if m + Λί + fcisodd

) = (λ- ^0)(m+N+k)/2-a-1 L o g ^ _ λ^ i g m + ]v + fc is even.

Since m + N + k> 2α, d(λ)(λ - λ0) = 0((λ - λof) for some ε > 0.



288 C. Gerard

Assume first that m + N + k is odd. The if we introduce the variable (A — Ao)
1/2,

i.e. we uniformize the Riemann surface T, the theorem follows directly from the
meromorphic Fredholm theorem.

Assume now that m + N + k is even. Without loss of generality we can put
λQ = 0. Using the fact that Eo (λ) is compact and holomorphic in λ, we can write:

with | |K(A)| |=0(|A-A o | ) , |ΛOI ^ 1/2,

Ko of finite rank. If we introduce the dummy variable t = λd(λ\ we can invert
1 + Ro + R{λ) + tEx(λ) by a Neumann series for \λ\ ̂  ε 0 , | ί | ^ ε0. (1 + Ro + R{λ) +
tE^λ))'1 = 1 + F{t9λ)9 where F(t,λ) is holomorphic for |A| S so> UI ̂  e0.

Using again the second resolvent formula, we see that we are reduced to the
inversion of 1 + K0(t, λ) + d^K^U λ) for t = λd(λ\ where Kt(t9 λ) = Kt(l + F(ί, λ)).

As in the proof of Theorem 3.5, we are reduced to the inversion of a
finite dimensional matrix l + K0{t,λ) + d(λ)K1{t,λ)=l/λ{λl + λK0{t9λ) + tK1(t9λ)) =

So λ with 0 < I A| ^ ε0 is a resonance of H if and only if f(λd(λ),λ) = 0, where

U) = det(M(α)).
Using Taylor's formula in λ, we can write:

f λNg(t9λ), with aN(ήφ0.

(We use here the fact that g(t9 λ) ψ 0, since the resonances of H are discrete in
{A|0<|/l |^ε o } . We can replace f{t,λ) by g(t,λ), and since aN(t)ψ09 there exist
NoeN such that d?°g(0,0)^0. Using Weierstrass preparation theorem, we can
hence replace g(t,λ) by a polynomial in t of degree NQ:

By Puiseux theorem, the solutions of g(t, λ) = 0 are branches of analytic functions
i,.(A), ί = l , . . . , M 0 , with:

ίι(A) = Aβ'(cl + O(Aβ)λ α«eQ, ε > 0 , if ίi(0) = 0.

It is then easy to check that the number of solutions of λd(λ) = tt(λ) on a sheet of
T is bounded, which proves the theorem.

Remark 5.4. If the hypotheses of Theorem 5.3 are not satisfied, it may happen that
(H — λ)'1 has an essential singularity at λoeΣ. This is due to the fact that the
singular part of (H — λ)~ * at λ0 is in general not of finite rank.

Appendix

We prove here the result used in the proof of Corollary 4.12.

Proposition A.I. The residue π 0 of D(pθ9λ9zo)/f(pθ9λ,zo) at λ = λ0 satisfies the
following identities:

(Hpo -λo + R0(λ0))π0 = π0(Hpo -λo + R0(λ0)) = 0.

Proof. Since VeLk

a(Cτ\ k>m,m^3, using Sobolev inequalities, we} see that Hpo



Resonance Theory in Atom-Surface Scattering 289

is bounded between Hla(Cτ)jιnd HZl{Cτ\ and between H2

a(Cτ) and L2

a(Cτ).
Let us put G(po,λ,zo) = D(po,λ,zo)/f{po,λ,zo). It is easy to see by analytic

continuation that one has:

(Hpo - λ + R0(λ))G(p0,λ,z0) = l i, G(Po,λ,z0)(HPo - λ + R0(λ)) = 12,

where \ί is the injection of L2(CT) into HZl(Cτ) and 12 is the injection of Hl(Cτ)
into Hla{Cτ).

Then we have, if γ is a small circle around λ0:

(Hpo -λo + R0(λ0))π0 = ±- J (Hpo -λo + R0(λ0))G(p0, K zo)dλ

= -?- j 1 + O(λ - λo)G(Po, K zo)dλ = 0.

On the other hand, let φeH2(Cτ\ and u = {HPo -λo + R0{λ0))φsL2

a{Cτ\ We have:
G(po,λ,zo)u = φ + G(p0iλ,z0)O(λ — λo)φ, so G(po,λ,zo)u is holomorphic near
λ = λθ9 which implies that πou = 0. This proves the proposition. •
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