
Commun. Math. Phys. 126, 249-262 (1989)

Physics
© Springer-Verlag 1989

Expansiveness, Hyperbolicity and Hausdorff Dimension

Albert Fathi
Department of Mathematics, University of Florida, Gainesville, Florida 32611, USA
CNRS UA1169, Universite Paris-Sud, F-91405 Orsay, France

Abstract. We show that there exists a simple upper bound on the dimension of
a hyperbolic compact set of a dynamical system in terms of topological entropy
and a uniform contraction rate on the stable and unstable manifolds. This allows
us to give proofs of several apparently unrelated theorems.

0. Introduction

Iϊf:X-*X is a continuous map on the compact space X, we write ent(/) for its
topological entropy—see [Wa]. If μ is a probability measure on X invariant under
/, we write h{μ,f) or h(μ) for the measure theoretic entropy of / with respect to
μ—see [Wa].

If (X, d) is a metric space, we will denote by HDd (X) its Hausdorff
dimension—see [Fl] or [HW] for the definition. Since our theorems refer in fact
to the upper capacity Cd(Y)—called also the entropy dimension, we are going to
recall the definition. Let (X, d) be a metric space, call ΛΓ(X, ε) the minimum number
of balls of d-radius ε needed to cover X, we define:

= (iri v logN(X,ε)
Cd(X) = hm sup / .

ε-o -logε

Recall that HDd(X)SCd(X) and that these two quantities depend only on the
Lipschitz class of the metric d. If the Lipschitz class of the metric d is clear from
the context, we will drop the index d; this will be for example the case when X is
a subset of a smooth manifold, because in that case the preferred Lipschitz structure
will be the one coming from the smooth structure of the manifold.

In this work we show that there exists an easily established inequality between
the Hausdorff dimension and the entropy for a hyperbolic compact invariant set.
In fact, if K is a compact invariant hyperbolic set for the C^diffeomorphism /
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and / (respectively f'1) contracts stable (respectively unstable) manifolds by
p < 1 then:

2

-log/?
Surprisingly, although the relation given above is straightforward to establish it
does not seem to have appeared in print. The most interesting fact about this
relation is that it applies in apparently different contexts.

In a first application we show that the Hausdorff dimension of the union of
the hyperbolic Aubry-Mather sets in twist diffeomorphisms is 0. The question of
the Hausdorff dimension or even the Lebesgue measure of the union of the
Aubry-Mather cantor sets (including the non-hyperbolic ones) was raised several
times by Y. Sinai during the London Mathematical Society Meeting on Dynamical
Systems in Durham in July 1988. In a different geometrical setting the inequality
gives a proof of the Birman-Series theorem which says that simple geodesies in
surfaces of negative curvature form a set of Hausdorff dimension one. In the two
cases above, the result follows from the fact that we are able to show on general
grounds that the topological entropy of the dynamical system restricted to the set
isO.

The same kind of technique allows us to give a proof of Mane's theorem which
states that a compact set which admits an expansive homeomorphism must have
finite topological dimension. This is done by showing that there exists a metric
whose Hausdorff dimension is finite; this is essentially a result that was conjectured
by David Fried. Another consequence of our methods is that expansive
homeomorphisms with zero topological entropy can exist only on compact totally
disconnected sets.

We introduce more notations. If X is a manifold TX is its tangent bundle, if
KczX then TKX is the part of the tangent bundle above K, if XEX the tangent
space at x is TXX, if / is a C1 map Txf is the tangent map at x. More generally,
we will use the same type of notations for arbitrary fiber bundles.

For convenience, a partial C1 flow ft:U-^>X, where U is an open subset of
the smooth manifold X, is a C1 map (x, t)\-*ft(x) defined on a neighborhood of
U x 0 in U x R and such that fo(x) = x and ft+t>(x) = ft(fr(x)) whenever this makes
sense. Remark that for any compact subset K of U there exists some ε > 0 such
that ft(x) exists for x in a small neighborhood of K and |ί | < ε. So it makes sense
to say that K is invariant under ft and in this case one can define ft for all time
t on K; remark that when K is /, invariant, for xeK, the derivative Txft is defined
for all time £eR. Recall that a stationary point of/f is a point x that satisfies ft(x) = x.

1. Hausdorff Dimension of Hyperbolic Sets of Diffeomorphisms and Flows

We recall the notion of hyperbolic invariant set for diffeomorphisms and flows in
order to fix notations

Definition 1,1.a) Let f:U^>X be a C1 diffeomorphism of the open subset U of the
manifold X onto some open subset of X. We say that a compact subset K c U is
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hyperbolic for / if it is invariant under / and there exists a T/-invariant
decomposition TKX = EsφEu such that:

lim -log(max| |T*/ w |£ s | | )<0
n^ + ooΠ \ xeK J

and

lim ilog(max||T»/-"|JE"||>)<0.
n-^ + ooW \ xeK )

Remark that the two quantities above are independent of the choice of a
Riemannian metric on X—this uses the compactness of K. The fact that
the limits exist is a consequence of the subadditivity of both sequences

logfmax || Txf
n\Es\\)) and flogfmax || Txf~

n\Eu\\)) .
\ xek //we|N V \ xeK ///ie|N

b) Let ft: U -> X be a partial C1 flow defined on the open subset U of the manifold
X. We say that a compact subset K a U is hyperbolic for ft if it is invariant under
/„ it contains no stationary point and there exists a Γ/Γinvariant decomposition
TKX = ES®EU@E°, where E° is the direction tangent to the flow and:

lim -logf
H + oo t \ χeκ

and

lim -logfmax \\Txf_t\Eu\\)<0.
t-» + oo t \ xeκ J

Remark that the bundle E° is isomorphic to the trivial bundle K x R, because K
does not contain stationary points.

The proofs of the next two theorems are quite similar, we will prove the second
one since it requires more care.

Theorem 1.2. Let K be a compact subset of the manifold M. Suppose that K is
hyperbolic for the C 1 diffeomorphism f Define:

lim -logfmax || Txf
n\ Es\\\ lim -logfmax || Txf-"\EU\\)\

n-> + aon \ xeK J n ^ + oofl \ xeK /J

then we have:

HD(K) ^ C(K) S 2 e n t ( / j K ) .
— A

Theorem 1.3. Let K be a compact subset of the manifold M. Suppose that K is
hyperbolic for the partial C 1 flow ft. Define:

λ = maxΓ lim *log(max \\Txft\Es\\\ lim *log(max || Txf _t\E«\\)].
L ί ^ + o o ί \ xeK Jt-+ + aot \ xeK /J

then we have:
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Proof. We choose some Riemannian metric on TK(X) = Es © Eu © E°. We fix some
ε > 0, subject to the condition λ + ε < 0. To simplify the notations, we define:

p = exp(A + ε ) < l . (1)

Since the conclusion of the theorem does not change if we replace ft by fkt with
k> 0, we can assume that:

VxeK, ||Γ3C/1|JE | | < Λ \\TJ^\Eu\\<p. (2)

We can find a smooth map Θ:Θ -+X defined in a neighborhood of the zero section
of T(X) above K, such that for every xeK the derivative of θx = θ\ΘnTX{X) at
0x is the identity—such a map can be obtained from the exponential map associated
to the Riemannian metric on X.

Call E the bundle Es © Eu © R over K, call πs, πM and π 0 the projections of the
bundle E on £ s , £" and X x R respectively, we define for veE, \\υ\\ =
m2ix(\\πs(v)l\\πu(υ)l\\πo(υ)\\).

We define a map μ'M-*X on a neighborhood % of the zero section in the
bundle E = ES®EU®R over K by (ϋ s,ιM)^/f(&c(^κ,0)) if (vs,vu)eEx®Eu

x. For
each xeK call μx the restriction of μ to Ex, the family μχixeK is a C^-family, i.e.
each μx is C 1 and the derivatives depend continuously on xeK. The derivative at
0^ is given by (vs, vu, t))-^(vs9 vu, tV{x)\ where V(x) = (dft(x)/dt)\t = 0. This implies that
μx is a C 1 diffeomorphism of some open neighborhood of 0x in Ex onto some
open neighborhood of xeX.

For each xeK, we define /* = M/i(x)/iMχ Due to the compactness of X, there
exists some r > 0 such that for every xeK, the open C 1 embedding / x is defined
on B(0x, r), the ball of center zero and radius r in Ex and maps into Efl{x). Moreover,
it has the form:

This follows from the fact that μx takes the R factor of the fiber Ex onto trajectories
of the flow ft. For each xeK, the derivative of fx\Es@Eu at 0x is equal to
Tχ/ilE 5® E". It follows from (2) and (3) that there exists some α0 > 0 such that:

\/xeK, \/v = (vs,vu,t)eB(0x,ao),

klUkll). (4)

We define Px(a,b,c) = {υ = (υS9vU9t)eEx\\\υs\\ ^ α , \\vu\\ £b,\t\ ^c}—of course, we

have Px(a, α, a) = B(0x, a). Since (μx)xeK is a C 1 family and K is compact, by making
α 0 smaller if necessary, we can find C > 0 such that:

VXGK, Vα<αo, , ^

B(x, C- M c μ,(F,(α,α, α)) cz B(x, Cα), ( j

where β(x, r) is the ball of radius r in x for the Riemannian metric that we fixed
in the beginning. Since for xeK and b^a the set Px(a,a,b) is contained in the
union of (b/a) + 1 balls of radius a in Ex, by making C larger, if necessary, we can
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assume that:

VXGK, V0<α^fc<α o, (6)

μx(Px(a, α, b)) a in the union of at most (b/a) + 1 balls of radius Ca in X.
For xeK, neN and α rg α0 where denote by 2?M(0x, α) the set of veEx such that

||t>||£α and for j=l , . . . ,n, ||//,_,(,)-7^)11 ^ α and WfJ^.^yf^m
From (3) we have:

VneN, ΰ n ( O χ , α ) c P x ( Λ A α ) . (7)

Let us call N(n, α) the minimum number of sets of the form μx{Bx(n, α)) needed to
cover K. By (5) and the definitions, for xeK a set μx(Bx(n,oc)) contains

i = n _ .

Π / i T W i {x)> C ια)nK]. If we take images by/ n, we see that N(n, α) is smaller
i= -n

than the minimum cardinality of an (2n + l,C~1α)-spanning set for fχ\K—see
[Wa, §7.2 page 168] for the definition of a spanning set. It follows that:

lim lim sup l o 8 N ^ α ) g 2 ent (/i | K). (8)
α-*0 n ̂ oo W

from (6) and (7):

r logiV(n,α)
/»r/ NΓ -M ,-.x hmsup—-—-—-

Vα<αo, C ^ ^ l i m s u p 1 0 8 ^ " ' ^ ; ^ 1 1 ^ " ^ , W +1. (9)
K-oo -log(C/9nα) ~ logp

(The first inequality above follows, for example from [Ft, Lemma 6.2, page 197].)
From (1) logp = λ + ε. The theorem follows from (8) and (9) by letting α and ε
tend to 0. •

Remark 1.4. The preceding theorem is very close to [Ft, Theorem 6.3]. The
advantage here is that we do not use the existence of the stable and unstable
manifolds. The first proof we found of Theorem 1.2 was using the stable and
unstable manifolds and the local product structure defined by the two foliations
but that introduces a constant which is the Holder exponent relating the Lipschitz
structure obtained from the smooth structure. Of course, here like in [Ft] we are
using the main observation of [DO], which is how to compute capacity and
Hausdorff dimension with parallelotopes instead of cubes. Using the same
ideas, it is possible to find a better estimate than the one above by using uniform
Lyapunov exponents.

Corollary 1.5. Let f:U^>X be a C 1 diffeomorphίsm of the open subset U of the
manifold X into X. Suppose K is a compact subset of U which is invariant and
hyperbolic under f. If ent (/1K) = 0, then we have:

Corollary 1.6. Let ft:U-+X be a partial C 1 flow defined on the open subset U of
the manifold X into X. Suppose K is a compact subset of U which is hyperbolic for
ft. If K is not empty and ent (fx \K) = 0, then we have:

= C(K)=1.
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Proof. Remark that HD (K) ̂  1 because K contains at least one orbit of the flow
and there are no stationary points of ft in K. •

2. Dimension of Hyperbolic Aurbry-Mather Sets

Denote by A the annulus (R/Z) x R. Call π the projection of A onto the first factor
R/Z. A twist C1 diffeomorphism of A is a diffeomorphism/(x, y) = (/i(x, y\ f2(x, y))
isotopic to the identity and such that there exists k>0 with {dfjdy)(x, y)>k for
all (x, y)eA. See [AL], [Ch], [Ka] and [Mt] for facts on twist diffeomorphisms.

An ordered orbit for / is an orbit which projects under π injectively into R/Z
and such that the bijection obtained from / on the projection extends to a
homeomorphism of the circle R/Z. From [Ka, Corollary 1 page 188], it follows
that the closure of an ordered orbit consists or ordered orbits, moreover, the union
of the ordered orbits is a closed set. Aubry-Mather theory shows that conservative
twist diffeomorphisms which admit a Hamiltonian have a large set of ordered
orbits. For the sake of simplicity, let us say that an ordered orbit is hyperbolic if
its closure is hyperbolic in the usual sense. Remark that the set of ordered
hyperbolic orbits is in general not closed but is anyway a countable union of
compact hyperbolic sets with each one of them a union of ordered orbits—see
the proof 2.1 below.

In [MK], Robert MacKay showed that an Aubry-Mather hyperbolic Cantor
set has upper capacity 02. The result of MacKay is an improvement of [Ka,
Proposition 4 page 193] in the (uniformly) hyperbolic case (the reader should
notice that in [Ka] the word hyperbolic means that there is no zero Lyapunov
exponent). Our goal is to give a simple proof of the following fact, which generalizes
MacKay result:

Theorem 2.1. In a twist C 1 diffeomorphism f of the annulus the union of the hyperbolic

ordered orbits has Hausdorff dimension 0. Moreover, any compact subset of that set

has also upper capacity 0.

Proof, Fix some Riemmanian metric on the annulus A, call || v || the norm of a
tangent vector for that Riemannian metric. For each zeN, we say that a compact
set K invariant under / satisfy the condition Pt if K a (R/Z) x [ — i, ί] and there
exists a decomposition TKA = ES®EU into two Γ/-invariant subbundles such
that:

| Tf\v)\\ g i[\ -j

s i 1 - - w

It is well known that the union Kt of the sets satisfying P( is compact and satisfies
also Pi. Of course, any compact invariant hyperbolic subset is contained in Kt for

2 Notice that the second argument in that note, deducing the result from L. S. Young work, is not correct
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all large enough i. Moreover, from [Ka, Corollary 1 page 188], it is clear that Lt

the intersection of Kt with the set of ordered orbits is a compact invariant hyperbolic
subset for /. Also any compact subset of the union of hyperbolic ordered orbits
is contained in Lt for all large i and the union of all hyperbolic ordered orbits sets
is the union of the L f's.

To prove the theorem, using 1.5, we have to show that the topological entropy
ent(f\Li) is zero. Since the topological entropy of a map is the supremum of its
measure theoretic entropy for ergodic invariant measures—see [Wa, Corollary
8.6.1 page 190], it suffices to prove that the metric theoretic of an /-invariant
ergodic measure supported by Lt is 0. Such an /-invariant ergodic measure μ
supported by Lt is in fact supported by the closure of an ordered orbit. By the
definition of ordered orbit, we are, in fact, trying to compute metric theoretic for
an invariant measure of a homeomorphism of the circle, it follows that the measure
theoretic entropy of / for μ is 0. •

An ordered orbit of a twist diffeomorphism comes with a rotation number in
R/Z, namely the rotation number of the homeomorphism of R/Z that is obtained
by extending the map induced by the diffeomorphism on the projection of the
orbit under π.

Theorem 2.2. For a generic conservative twist C 1 diffeomorphism of the annulus which
admits a Hamίltonίan, the map from the union of the ordered orbits to R/Z which
maps a point on the rotation number of its orbit is not Holder.

Proof. We will have to work in the universal cover A of the annulus A. From
[LC], for a generic conservative twist C1 diffeomorphism there is an open
non-empty interval / in R such that any ordered orbit in A whose rotation number
is in I is hyperbolic. Since by Aubry-Mather theory we get any rotation number
in the conservative case, we find that the map which takes a point of an ordered
orbit onto the rotation number sends a set of Hausdorff dimension zero on an
interval which has Hausdorff dimension 1, hence it cannot be Holder. •

Remark, a) An Aubry-Mather set is a minimal set which is the closure of an
ordered orbit—hence it is itself a union of ordered orbits. In particular, the union
of the hyperbolic Aubry-Mather sets has Hausdorff dimension 0.
b) There are cases where all ordered orbits are hyperbolic—see [Go] or [He].

3. Geodesic Laminations and Entropy

Our goal is to give a dynamical system proof3 of the following result—see [BS]:

Theorem 3.1. (Birman and Series). Let M be a surface on which we have a
Riemannian metric of strictly negative curvature. Call S(M) the unit tangent bundle
and call p:S(M)-+M the canonical projection. A geodesic in M is called simple if it
is defined for all time and it has no transverse self intersection. Call & the subset
ofS(M) consisting of vectors tangent to some simple geodesic. Any non-empty compact

This proof is also known to W. Thurston
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subset of &, invariant under the geodesic flow, has Hausdorff dimension 1. In the
case where M is compact then & itself is a compact set of upper capacity and
Hausdorff dimension equal to one.

The proof is very analogus to the one of Theorem 2.1 above. We do not claim
that it is either shorter or easier than the original proof of Birman and Seires, it
is just a different perspective on the result.

We will need the concept of geodesic lamination see either [BC] or [Th].

Lemma 3.2. Let M be a surface on which we have a Riemannian metric of strictly
negative curvature. Suppose that @ is a compact subset ofίf which contains a geodesic
dense in &, then p\& is at most two to one, moreover the image p(^) is a compact
geodesic lamination.

Proof. Call g a geodesic whose lift to S(M) is contained in ^ and is dense in ̂ .
Since ^ is contained in &*, the closure of g in M is a geodesic lamination. Moreover,
the closure of g is precisely p(^). The fact that p\& is at most two to one follows
from the fact that above a point in a geodesic lamination there is exactly two unit
vectors tangent to that lamination (of course, they are opposite vectors). •

Lemma 3.3. (L. S. Young). Suppose that ίF is a goedesic lamination in a surface N,
then the topological entropy of any flow defined on 3F is zero.

Proof. (Sketch). We use the arguments of [Yol]. Take enough closed disjoint
simple geodesies not contained in 3F to obtain the flow as a suspension. Since the
return map on the union of these closed geodesies is a piecewise monotone bijection,
we can apply [Yol, Lemma 1, page 469]. •

Corollary 3.4. Let M be a surface on which we have a Riemannian metric of strictly
negative curvature. Suppose that KaS? is a compact subset which is invariant under
the geodesic flow, then the topological entropy of the geodesic flow restricted to K is 0.

Proof. Any ergodic invariant measure of the geodesic flow restricted to K is carried
by a compact invariant set ^ which contains a dense orbit. From 3.2, we can
assume, by taking if necessary a ramified cover of our surface, that ^ is a geodesic
lamination sitting in a surface. From 3.3, it follows that the measure theoretic
entropy of the ergodic measure is zero. Of course, since the topological entropy
is the supremum of the measure ergodic entropy of ergodic invariant measures,
we obtain that the topological entropy is also 0. •

Proof of Theorem 3.1. We use that any such set K is, in fact, hyperbolic for the
geodesic flow. Moreover, by 3.4, the topological entropy of the geodesic flow
restricted to K is 0. We conclude by 1.6 that the upper capacity and the Hausdorff
dimension of K are both 1. To prove the last part of the theorem we have to
remark that £f is always closed because its complement is defined by an open
condition—namely, to have at least one transversal intersection. •

Remark 3.5. If we define &k as the set of geodesies whose projection on the surface
have at most fc-transversal intersections then we can use the same proof to get
the corresponding theorem. The only thing that we have to remark is that if a
geodesic g is in Sk and is not closed then its ω-limit set is a geodesic lamination,
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because any transversal intersection in the ω-limit set would force g to have
infinitely many intersections.

4. Hausdorff Dimension of Compact Invariant Subsets of Geodesic Flows
of Riemannian Manifolds of Constant Negative Curvature

Theorem 4.1. Let M be a Riemannian manifold of constant negative curvature — k2.
Let K be a non-empty subset of the unit tangent bundle s(M). IfK is invariant under
the geodesic flow, call hκ the topological entropy of the geodesic flow restricted to
K. Then we have:

Proof. All the positive (respectively negative) Lyapunov exponents of the geodesic
flow are uniform in the direction transverse to the flow and have k (respectively
— k) as their common value. The inequality C(K) ^ {2hκ/k) + 1 follows from
Theorem 1.3. We will show that the other inequality HD(X) ^ (2hκ/k) + 1 follows
from [LY] or [Yo2]. In fact if μ is any probability measure on S(M) invariant
under the geodesic flow, we have from the flow version of [Yo2, Corollary 5.1, page
122]:

If μ{K) = 1 then of course HD(μ) :£ HΌ(K). Moreover, we have:

Sup{h(μ)\μ(K)=l} = hκ. D

5. Expansive Sets are Hyperbolic. Consequences

A homeomorphism h:C-+C of the compact metric space C is expansive, if there
exists ε > 0 such that:

sxxpd(hn(x),hn(y))>£,
neZ

where d is any metric defining the topology of C.
After we finished writing down this section, Sheldon Newhouse brought to our

attention the work of David Fried [Fe2]. In this paper, David Fried uses Frink's
metrization theorem to find a metric which is contracted on the stable sets and
dilated on the unstable sets of an expansive map. What we prove in 5.1 is that
this metric verifies a stronger inequality than the one you would expect if you do
not have a local product structure. It is this stronger inequality that allows us to
prove Corollary 5.5, in order to give a proof of Mane's Theorem 5.6. Other
previous instances of use of Frink's metrization theorem in dynamics are due to
Coven, Reddy and Fried—see [CR, Re and Fel] . We learned Frink's theorem in
the form we are using it from Patrice Assouad; we are most grateful to him for
that knowledge.
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Theorem 5.1. (Expansive homeomorphisms are hyperbolic). If h:C->C is an
expansive homeomorphism of the compact metric space C, then there exists a metric
d on C defininig its topology and numbers k > 1, e > 0 such that:

Vx, yeC, max(d(h(x)9h(y))J(h-\xlh-\y)))^mm(kd(x,y\ε).

Moreover, both h and h~γ are Lipschitz for d.

Proof. Choose some metric δ on C defining its topology. Call ε some expansive
constant for ft, i.e.:

Vx^yeC, supδ(hn(xlhn(y))>s.
neZ

For x, yeC, define n(x, y) by:

foo, if x = y ( 1 )

max δ(hn(x),hn(y))> e\ if
\\ύ )

" ( * ' j ) |minjnoeN
I I \n\ύn0

Fix some α > 1, and define a function p : C x C - > R + by p(x,y) = oc~n(x'y). Clearly
p(x? y) = p(y,x) and p(x, y) = 0 if and only if x = y. Moreover, although it is not
a metric, the function p defines the topology of C, because h is an expansive
homeomorphism.

We have:
If

max pWixlhXy))^-,

then
max{p{hn{x\h\y)\p{h-\x\h-n{y)))^ α>(x, y). (2)

We will now make precise the choice of α. We can find an integer m such that
δ(a, b) > ε/2 implies n(a, b) ̂  m. Now choose α such that αm ̂  2. Let x, yeC, if ZGC,
then either n(z, ̂ ) ^ m + n(x, y) or w(z, x) ^ m + π(x, y)—this follows from the
triangular inequality for the metric δ and the definition of m. We obtain the
following inequality:

p(x, y) ̂  2 max (p(x, z), p(z, y)). (3)

We are now in the position to apply Frink's metrization theorem—see [Fn, page
135]. There exists a metric D on C such that:

D(x,y)^p(x,y)^4D(x,y). (4)

This implies that D defines the topology on C. From (2) and (4), we get

If max DihKlhK))^

then max(D{h\x\h\y)\D(h-\x\h-\y))) ^ °^D(x,y). (5)
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Choose n0 such that K = (ocno/4)> 1. Let k = K1/no. Using the Mather trick, we
define a metric d by:

d(x,y)= max v v . v . (16)
| i | £ l k ι

Of course, the metric d defines the topology of C.
By direct inspection, it is easy to establish the following inequality:

^ max ̂ f^ 1 1 (7)

Now this last quantity is the maximum of the following two quantities A and B:

A= max m^μ = k m a x \
0<m<mo k1'1'1 0 < | i | < n 0 fc|lf

and

_ max (D(/ιW0(x)? ft^y)), D(/ι-w°(x)? h~n%y)))

kno '

Suppose now that φc, y) < —-, then by (5) (6) and the definition of fe, we get:
4αfe"° 1

B^kD(x,y). (10)

It is easy to conclude from (8) and (10) that we have:

Iϊd(x,y)<1

then maxidiKx^y^dih'^h^y)))^kd(x,y). (11)

Since C is compact, we can find ε > 0 such that:

If d(x, y) > — — 7

then max(d(h(x%h{y)\d(h~\x)9h'\y))) ^ ε. (12)

From (11) and (12), we obtain:

Vx, yeC, max(d(h(x)My)ld(h-\x),h-\y)))^mm(kd(x, y),ε). (13)

To prove -that h and /i"1 are Lipschitz,.we remark that they are Lipschitz with
Lipschitz constant α for p; after that all the metrics we defined were in the same
Lipschitz class as p. •

Definition 5.2. We propose to call a metric like the one in 5.1 an adapted hyperbolic
metric. Remark also that any homeomorphism that admits a hyperbolic metric is
expansive—see 5.3 below.
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Theorem 5.3.4 Let h:X-+X be a homeomorphism of the compact metrizable space
X. Suppose that there exists a metric d on X defining its topology and numbers
k> 1, ε > 0 verifying:

Vx, yeX, m2Lx(d(h(x)My))J(h~\xlh-\y)))^min(kd(x, y\ε).

Then h is expansive and we have:

In particular, the upper capacity Cd(X) and the Hausdorff dimension HΏd(X) are
finite.

Proof An induction on n gives:
If

then

m2ix{d{h\x)My))Λh-χx\h-\y))) = m^d{h\x\h\y)) ̂  W(x, y).

This shows that h is expansive. Moreover, for all α<(ε//c), the set

Bn(χy α) = < y max d{h\x\ h\y)) ^ α > is contained in the ball of center x and radius

fc~nα. On the other hand, if we call iV(n,α) the minimum number of sets of the
form Bn(x,α) needed to cover X, then, as in 1.3, we have:

As in 1.3, it follows that:

2ent(h)

log/c'

The last part of the statement follows from the fact that the topological entropy
of an expansive homeomorphism is finite—see [Wa, Corollary 7.11.1, page
177]. •

Corollary 5.4. (Mane). If a compact metric space admits an expansive homeomorphism
then its topological dimension is finite.

Proof. From 5.1 and 5.3, there exists a metric defining the topology of the space,
for which it has finite Hausdorff dimension. But the topological dimension of a
compact space is less than it has finite Hausdorff dimension for any metric defining
its topology—see [HW, Sect. 4, page 107]. •

4 Taken together with Theorem 5.1, this corollary proves a conjecture of David Fried [Fe2, page 506,
end of Remark 4]
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Corollary 5.5. If a compact metric space admits an expansive homeomorphism whose
topological entropy is 0 then its topological dimension is zero.

Proof. This is a consequence of 5.1 and 5.3. •

To complete the picture let us recall that Kushnirenko's theorem [Ku] can be
given the following form, see [It] and [St]:

Theorem 5.6. Let (X, d) be a compact metric space. Its lower capacity Cd(X) is
defined by:

Cd{X) = lim inf
- v o

m inf \ ,
ε-o -logε

where as before N(X, ε) is the minimum number of balls of radius ε needed to cover
X. Of course Cd{X) ^ Cd(X).

Let h'.X^Xbe a continuous map. Define:

τ i /M r d{h(x),h{y))
Liplocd(h) = hm sup v :. h V".

e^Od(x,y)<ε d(X, y)

If LiploCj (h) < oo and Cd{X) < oo, then:

ent (ft) ̂  Cd(X) max (log Liplocd (ft), 0).
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