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Abstract. We identify the statistical dimension of a superselection sector in a
local quantum field theory with the square root of the index of a localized
endomorphism of the quasi-local C*-algebra that represents the sector. As a
consequence in a two-dimensional theory the possible values of the statistical
dimension below 2 are restricted to a given discrete set.
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1. Introduction

In this paper we shall exhibit a natural connection between the statistics of local
quantum fields and the index theory of subfactors. In particular the statistical
dimension of a superselection sector [7] will appear as the square root of the index
of an associated inclusion of von Neumann algebras [19]. The restriction on the
possible values of the index [19] then imposes a corresponding restriction on the
possible values of the statistical dimension. In particular for a two space-time
dimensional quantum field theory the range of the statistical dimension consists
of a discrete series and possibly of a continuous part.

* Supported in part by Ministero della Pubblica Istruzione and CNR-GNAFA
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We now explain in more detail the ideas and the results in our investigation.
Index of subfactors and the joint modular structure. If one compares Jones index

theory of subfactors [19] with the analysis of the joint modular structure of an
inclusion of von Neumann algebras [21-24] one finds several analogies. The most
evident one is that in both cases one starts with an inclusion of von Neumann
algebras NczM and builds up a canonical chain of von Neumann algebras
••• c Mn cz Mn+1 a • •; this construction is initially (and step by step) given by the
same formula

Mx=JMN'JMi

where JM is the modular conjugation of L2(M). In [19] however M is a finite factor
and one constructs the chain by using trace of Mn and represents at each step the
von Neumann algebras on the different Hubert spaces L2(Mn).

On the other hand in [21] M is properly infinite, no privileged state exists, but
one may choose a common cyclic separating vector Ω for N and M and associate
with Ω a cononical endomorphism yΩ:M-*N of M into N. Setting Mn = yn

Ω(M)
one has indeed

The arbitrariness in the choice of Ω is compensated by the fact the all the
construction is made on the initial Hubert space and by the uniqueness (Radon-
Nikodym property) of the canonical endomorphism. It seems that these constructions
are extreme cases of the same method.

As pointed out to us by V. Jones the index of an inclusion of II1 factors N cz M
may be defined as the scaling factor λeR,

τ-yΩ=λτ

of the trace of M®F by the canonical endomorphism yΩ.M®F^>N(χ)F
(F a type 1^ factor).

In fact we shall show that, by using Takesaki duality and the Radon-
Nikodym property of the canonical endomorphism, one may define an index for
arbitrary inclusions of factors.

A definition of the index for infinite factors already existed due to Haagerup
and Kosaki [18]. Our definition agrees with that one, but our approach appears
natural for our purposes.

In particular Jones theorem [19,18] restricts the values of the index / to

Ie< 4cos2 —, n = 3,4,... >u [4, oo].

The index of an inclusion of factors N cz M depends on the choice of a normal
faithful conditional expectation ε of M onto N. An interpretation of this index
/ = Indε (N9 M) as the square of a dimension requires however that /1 / 2 must satisfy
an additive property, namely if {pj is a partition of the unit by projections of
Nr CΛM then

where It = Indε. [iVp., MPJ is the index of NPi cz Mp. induced by ε.
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It turns out that this additive requirement fixes ε uniquely, assuming that / is
finite, and in fact ε will appear as the unique conditional expectation that minimizes
the index (the space of the conditional expectations will be compact and the function
ε-• Indε (Λf, M) continuous and strictly convex on tracial expectations, thus the
minimum is taken at a unique point). A different characterization of this expectation
has been independently obtained in [17].

A natural and useful point in our analysis is the extension to infinite factors
of an inquality due to Pimsner and Popa [29] in the finite case, namely
λ = lndε(N9M)~1 is the best constant such that

ε(x) ̂  λx

for all xeM+1.
A further result consists of the connection between the index of an inclusion

of factors N aM and the index of the fixed point algebra inclusion Na c Mα under
a dominant action of a compact group.

In fact our analysis originated in our previous study of the modular structure
of a crossed product by a group dual [27].

As a corollary we find examples of subfactors of a factor M with trivial relative
commutant and index w2, weN, that are associated with a prime action of a compact
group G on M and an irreducible representation of G. By our results, also two
dimensional quantum field models furnish examples of subfactors with trivial
relative commutant a non-integral index. Their analysis is presently under
investigation.

The Index of a Super selection Sector. Beside the usual Fermi-Bose particle
statistics, Quantum Mechanics provides a theoretical description of parastatistics
[15] where the symmetry of the n-particle wave function is realized by a
representation of the permutation group Pπ of dimension possibly greater than
one (the isotopic identification of proton and neutron or quarks are examples cf.

[7])-
In [7] Doplicher, Haag and Roberts described the structure of the superselection

sectors in a local Quantum Field Theory. They showed that a superselection sector
corresponds to (an equivalence class of) a localized endomorphism ρ of the
quasi-local C*-algebra si = KJS/(Θ)~.

The statistics of the sector ρ is then completely described by an associated
statistics parameter λρ. If ρ is irreducible then λρ is a scalar and its possible values are
restricted to

λρe{0,±,l,±i±f..}.

In general d(ρ) = I/IJ"1 is an integer, the statistical dimension of ρ.
If one compares this structure with Jones work, one discovers a similarity both

in the results and in the methods.

1 This inequality has also been considered in [34] and in a recent announcement [16]
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We shall show that in general

where 0 is a sufficiently large region of the Minkowski space so that ρ is localized
in a double cone within Θ and Ind denotes the minimal index as discussed above.

Of this result, we shall give two proofs that will cover different needs. The first
proof assumes the existence of a field algebra and a gauge group, with normal
commutation relations, and has the merit of a transparent revealing of the
underlying structure and of the ultimate reason for the validity of the result.
Furthermore these hypotheses have been recently derived from first principles [9].

The second proof only uses observables and relies on the analysis in [7] and
Theorem 4.1. It has the merit of being the starting point of a further analysis where
the field algebra is unknown. In fact the validity of the results in [7] relies on the
fact that the Minkowski space has space-time dimension d > 2. Our result also
extends to the more general setting of charges localized in space-like cones [4]
provided d > 3.

The Statistics in Two-Dimensional Theories. It has long been realized that in two
space-time dimensions the statistics of local fields does not always reduce to
ordinary Bose and Fermi parastatistics but one has the appearance of exotic
statistics, a fact tied up to the possibility of abnormal field commutation relations,
see [14,33] and references therein.

Recently this subject is receiving interest also because of its connections with
such different topics as soliton quantization, conformal field theory and superstring
theory, and polynomial invariants for knots and links, see [14]. It is then natural
to extend our previous analysis to this case.

In two dimensions however the full analysis in [7] is not applicable. The
geometric reason is that the space-like complement of a point is no longer a
connected region, but one has to care about the left and the right space-like
complement. It is widely known to experts that this amounts to replacing the
permutation group by the braid group, a fact that shall play an implicit role in
our analysis.

Assuming that the sector ρ admits a conjugate sector ρ, we shall see that the
statistical dimension d{ρ) = I ^ Γ 1 is still definable and as above for large Θ,

where the index is relative to a standard left inverse of ρ that, under a regularity
condition, turns out to be the minimal index.

One immediately deduces that

The continuous part [2, oo] in the range of d(ρ) is probably not optimal, being
related to the open problem on the index values of subfactors with trivial relative
commutant in the injective case, see the Outlook.

There is a natural continuation of our work by an analysis of the braid group
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representations that appear, by relating d(ρ) with the central charge in conformal
quantum field theory (see [13]) and others that we discuss in the Outlook.

Our results have been announced in [26].

2. Index of Subfactors (Semifinite Case)

We begin here a study of the index of an inclusion of von Neumann algebras
N c M; without further discussion we restrict ourselves to the case of von Neumann
algebras with separable preduals, although this restriction is not needed for the
essential part of this paper.

Denote by End (Λί, N) the semigroup of the endomorphisms of M mapping N
into N and by Aut (M, N) the corresponding automorphism subgroup.

If τ is a normal faithful semifinite trace of M and α e End (M) ( = End (M, C)), τ α
is a trace on M. The modulus of α is the Random-Nikodym derivative

mod (α) = modτ (α) = (dτ a: dτ\

namely mod(α) is the unique positive operator h affiliated with the center Z(M)
of M such that

τ(a(x)) = τ(hx\ xeM+

(if α is an endomorphism h is allowed to be oo on a subspace).
We shall consider the subgroup G(τ) of Aut (M, JV),

G(τ) = {αeAut (M, JV),mod(α)e(O, oo)},

and shall say that τ is centrally ergodic if G(τ) acts ergodically on Z(M).
Assuming that JV and M are properly infinite there exists a normal faithful

state ωeM^. represented (in the GNS construction) by a vector ΩeL2(M) cyclic
and separating for both M and N (briefly a cyclic state for N and M) [10].

The associated canonical endomorphism yω:M->AΓ is the endomorphism
yωeEnd (M,JV) given by

yω(x) = ΓxΓ*, xeM,

where Γ = JNJM with JN and JM the modular conjugations of N and M respectively
with respect to Ω [21].

Lemma 2.1. mod(yω) depends only on M9N and τ and not on ω.

Proof. If φ is another cyclic state for JV, M, there exists a unitary ueN such that [22]

yφ = uya(
m)u*,

hence

τ(yφ(x)) = ΦVωM"*) = ΦcoM) = τ(mod(7ω)x), xeM+,

thus mod (yφ) = mod (y J . O

A trace τ of M such that modτ(y) is a scalar will be called a scalar trace.

Proposition 2.2. J/τ is centrally ergodic then τ is a scalar trace and modτ(y) ^ 1.
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Proof Let h = modτ(yω) and αeG(τ). Since

we have by Lemma 2.1

τίία yω α-'X*)) = τ(yφ.Jx)) = τ(hx), xeM+

On the other hand

τ((α yω α- \x)) = mod (cήτ(yω(a-\x)) =

thus α(/z) = h and /ιe[0, oo] by the ergodicity of G(τ).
If h< 1 choose x e M + with 0 < τ ( x ) < oo; then τ(7^(x)) = /ιπτ(x)-^0. On the

other hand γn

ω converges pointwise weakly to a faithful conditional expectation ε
[21]. By the lower semicontinuity of τ we have τ(ε(x)) :§ limM τ(yn

ω(x)) = 0, thus JC = 0
because τ is faithful. This contradiction shows that h ̂  1. O

By Lemma 2.1 we may define the index ofN in M as the operator (scalar in the
above case)

Ind τ(iV,M)Ξmod τ(yω)

that we shall later relate to the Jones index.

Remark. If M is a II ̂  factor the fundamental group of M is {mod (α), αe Aut (M)}.
One can also consider the fundamental semigroup of M, (mod(α),αeEnd(M)};
the index value for the subfactors of M thus appears as a sub-semigroup of the
latter where one considers only canonical endomorphisms.

Proposition 2.3. If τ is a scalar trace and Ind τ(M, JV)< oo, there exists a type 1^
subfactor F of N such that Ff nM is a finite von Neumann algebra. In particular
there exists a normal faithful conditional expectational expectation of M onto N.

Proof. If Indτ(iV, M) < oo τ-γφ is a semifinite trace on M, thus τ\γφ(M) is semifinite.
Choose F a type 1^ subfactor of yφ(M) such that A = F nyφ(M) is finite and set
B = F'nM. Then we have the tensor product decompositions M = B®F and
yφ(M) = A®F, where τ = τ r ® Tr with τ' a trace of B. Since τ'\A is semifinite and
A is finite, τ' is finite on A, i.e. τ^l) < oo, thus also B is finite. O

Example. Let M = M o ®Fn,N = Mo (x) 1, with F π a type /„ factor and M o a properly
infinite von Neumann algebra. Then yφ:M-+N is inner and H(yφ) = {veM\yφ(x)v =
vx.xeM} is a Hubert space in M of dimension n2 [22].

Thus if τ is a trace of M

Φ φ W ) = Σ Φi x : ί ;?)= : Σ

andIndτ(iV,M) = n2.

Proposition 2.4. Denote by Mί = JMN'JM the extension ofM by N. Ifτ is a scalar
trace on M and h = Indτ(ΛΓ, M) < oo, there exists a canonical trace onτ on Mx that
extends τ. This τ is a scalar trace for M czM1 and Indτ(M, M1) = h.

Proof By choosing a cyclic state ω for JV and M the unitary Γ = JNJM implements
a canonical endomorphism yω:M1 -»M (because J M l = JMJNJM\ thus Ίω restricts
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to the canonical endomorphism of M into N. If h~ι is bounded we may put

τ{x)^τ(y(h~ιx)\ xeM.

Thus τ is a trace on M1 and if xeM

τ(x) = τ(y(h~ 1x)) = τ(hh~ ίx) = τ(x).

To check that τ is a scalar trace for M c M l 9 notice that since y is a canonical
endomorphism of Mx into M, we have

τ(y(x)) = φ(/Γ V (x)) = τ(WΓ ^ (x)) = τ(y(x)) = τ(fcx), xeM,

that concludes the proof. O

3. A Formula for the Canonical Endomorphism

Let N c M be an inclusion of Neumann algebras on a Hubert space Jf and ί2 a
common cyclic separating vector for N and M. Suppose there exists a normal
faithful conditional expectation ε of M onto N; we wish to describe the canonical
endomorphism γΩ:M->N in this case.

Let ω = ( ί2,ί2)GM:i., φ = ω-εsM^ and ξeL2(M)+ the positive vector re-
presentative of φ.

The projection

commutes with JM. Since ξ is separating for AT, the homomorphism

φ:N->Ne, x-^xe

is an isomorphism. Let

V: 2tf = L2(N, Ω)

the unitary standard implementation of φ that we regard as the isometry of
with final projection e such that

φ(x) = xe, XEN

VΩeL2(Ne,ξ) + .

The modular conjugation of L2(Ne, ξ) is

therefore

and

or

Γ=V*JMVJM

because J ^ = J ^ as ξeL2{M,Ω)+.
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Proposition 3.1. With the above notations,

where V, W are isometries with final projection eeM, VeNf and W = JMVJMeMl9

Proof. Immediate by the above considerations. O

Remark. The above proposition remains true if Γ = JNJM, where JN and JM are
modular conjugations of N and M with respect to different vectors. In fact any
other modular conjugation J'N of N is given by J'N = uJNu* with u a unitary of N.

Let i c ΰ b e an inclusion of finite von Neumann algebras, ξ a cyclic (thus
separating) trace unit vector for B and Bλ = JBA'JB the extension of B by A.

Let τB = (-ξ,ξ) be the corresponding tracial state of B. By considering the
inclusion

where F is a type 1^ factor, we see by Proposition 2.4 that τβ(χ)Tr extends to a
trace τ = τBι(g)Tr of Mx =B^®F, where τBl is a trace of Bx. Put e0 = \^Aξ']eB1.

In the case where A and B are factors the next proposition shows that Indτ (iV, M)
coincides with the II ̂ index of A in B [19] and follows a comment by V. Jones.

Proposition 3.2. // G(τ) acts ergodically on Z(N) then

Proof. Let Ω=ξ®η where η is a cyclic separating vector for F. We want to compute

(τB®Ίr)(y(x)) xeM,

where γ:M-+N is a canonical endomorphism. By Proposition 3.1,

where I/ΊΛ;-> WXW* is an isomorphism of M into JVe,e = e0(χ)l, and φ is the
reduction of N onto ΛΓe;

= τβ<8) Tr(y(x)) = τB® Tr ( ψ - ^ M ) )

where τ^ e o is the trace of Ae0 given by

Let ε be the conditional expectation of Bx onto J3 preserving τBl. If αGG(τβ(x)Tr)
it extends to an automorphism ac of Bί®F that commutes with ε® id and fixes e
by canonicity.

Moreover as in [19, Proposition 3.1.7] if xeB and εA is the τBί-preserving
conditional expectation of B1 onto A we have
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that shows ε(e0) = εA(e0)eZ(A) (because eoeA'nB^. Since ε(e0) is fixed by G(τBl),
it must be a scalar ε(e0) = τBι(ε(e0)) = τBι(e0).

We have

τ B l ( ^ 0 ) = τBι(yε(e0)) = τBl(eo)τBl(y)9 ye A

that shows the equality

τAe0 — τBι \eθ) τBι \Ae0

It follows that if xeM+,

= τBί(eoΓ
1τBι®Ίτ(WxW*)

= τBι(eoy
1τBι®Ίτ(xW*W)

= ^BMOΓ^B, ® Tr (x) = τBl(eoy

that implies

γ) = τBι(e0y
1. O

As a corollary we have in this setting an inequality of [29] that we shall
generalize later.

Corollary 3.3. Let N czM be an inclusion of properly infinite von Neumann algebras
and τ a centrally ergodic trace for N czM. Then λ = Indτ (N9 M)~ι is the best constant
such that

where ε is the τ-preserving conditional expectation of M onto N.

Proof Let γ:M-+ N be a canonical endomorphism, then M is the extension of N
by y(N). By using this fact and Proposition 2.4, the proof follows the same argument
in [29] because ε(e) = λ9 where e is the Jones projection as in the proof of Lemma 3.2.

O

4. Index of Subfactors (General Case)

Let N c M be an inclusion of factors with separable preduals. In order to define
the index of N in M we may assume that N and M are infinite, otherwise replacing
NcM by N®FczM®F, with F a type /„ factor.

We assume the existence of a normal faithful conditional expectation β of M
onto N and we denote by C(M,N) the set of all normal conditional expectations
of M onto TV.

Given a faithful normal state φoeN^ the modular group σφ of the state φ = φo-ε
leaves N globally stable and we have an inclusion of semifinite algebras [31]

N c M ,

where N = N x σ^R, M = M x σ?R are the crossed product von Neumann algebras.
The inclusion N czM does not depend on φθ9 up to isomorphism, because iϊψoeNχ
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is another faithful state and φ = φo'εeM^9 then the Connes cocycle

(Dφ:Dφ)t = (Dφ0:Dφ0)t

belongs to N [6].
The canonical trace τ of M is relatively invariant under the dual action

©:R->Aut(M,JV),

Since Θt\Z(M) is ergodic, τ is a scalar trace by Proposition 2.2 and we define

An immediate verification shows that if N cz M are semifϊnite, and τ0 is a trace on
M then

where εoeC(M,N) is the τo-preserving conditional expectation that exists if
IndT0 (N9 M) is finite by Proposition 2.3.

Let φ be the dual weight of φ on M,

φ(χ) = φ($Θt(x)dt), xeM+.

Then φ|JV equals φ 0, the dual weight of φ 0, and in particular it is semifinite on
N. The modular group σΦ of φ is given by

where the Us are the usual unitaries in M; in particular σφ\^ = σΦo and by Takesaki
criterium [32] there exists a faithful expectation εeC(M,N) that preserves φ; it
follows that

ε|M = ε, ε{Us)=Us.

Let K be the infinitesimal generator of U and H = e~κ, thus H is a positive operator
affiliated to N and

τ = φ(H )
It follows that

τ(ε(x)) = φ(Hε(x)) = φ(ε(fίx)) = φ(Hx) = τ(x), xeM+,

where the equalities are justified by the spectral theorem; in other words ε is the
τ-preserving conditional expectation of M onto N.

We are now ready to extend the Pimsner-Popa inequality [29] to the general
case.

Theorem 4.1. Let N c M be an inclusion of infinite-dimensional factors, εeC(M,N)
a faithful conditional expectation and set λ = lndε(N,M)~1. Then λ is the best
constant such that

ε(x)^/lx, xeM+ .

Proof We may assume that M is properly infinite. Following the previous



Index of Subfactors and Statistics of Quantum Fields. I 227

notations the extension ε of ε satisfies

ε(x)^Ax, x e M + ,

by Corollary 3.3 (because M is semifϊnite), hence ε = ε |M also satisfies this
inequality. To show that A is the best constant consider the bidual weight φ on
M x ΘR. Then ε extends again by Takesaki criterium to a conditional expectation
ε of M x Θ R onto N x ΘR that preserves φ. Since under the isomorphism of M x ΘR
with M®F,φ is mapped to φ(g)Ύr and i V x 0 R onto N®F, we have that ε is
mapped to ε®id (by the φ-invariance). It follows by the proof of Corollary 3.3
that there exists a projection eeMcM x Θ R ~ M ® F such that

(ε®id)(e) = A.

Now if we choose a type 1^ subfactor Fx of N with infinite relative commutant
the tensor product decomposition

M~(F'ίnM)®F1

gives an isomorphism of N c= M with N®F1<^M®F1 that maps ε to ε (x) id, hence
there exists a projection peM with s(p) = A and A is the best constant such that
ε(x)^Ax, x e M + . O

Remark. If M is finite dimensional, I n d ^ M j N ) " 1 is not the best constant in the
inequality of Theorem 4.1. For example if M = B(Cn), N = C and ε is the normalized
trace, then Indε(M,ΛΓ) = n2 but the best constant is ί/n. However λ is always the
best constant such that ε — λ-id is completely positive.

Corollary 4.2. Let N<^M be an inclusion of factors and εeC(M,N) a faithful
conditional expectation. Then Indε (N9M) coincides with the Kosaki index [18].

Proof. By Theorem 4.1 λ = \nάε(N,M)~ι is the best constant that satisfies the
inequality ε(x)S^ Ax, xeM + . But the same proof of [29, Proposition 21] shows
that the inverse of the Kosaki index is such a best constant by applying
[18, Lemma 3.1]. O

Corollary 4.3. Let NczM be an inclusion of factors and εeC(M,N) a faithful
expectation. Then Indε (N, M) belongs to {4 cos2 π/n, n = 3,4...} u [4, oo].

Proof Immediate by Corollary 4.2 and the extension of Jones theorem to infinite
factors [18]. O

Corollary 4.4. Let N a M,ε and λ be as in Theorem 4.1. Then

Proof If xeM+ then ε(x) ^ Ax, thus || ε(x) || ^ A || x ||. On the other hand there exists
a projection eeM with ε(e) = A, thus || ε(e) || = A = A || e || and A is the best constant
for that inequality. O

Proposition 4.5. IfNc^NίciM are factors, ε1eC(M,Nί),ε2eC(NuN) are faithful
then

Indε (M, N) = Ind ε i (M, ΛΓJ Indε 2 (iVx, N)
with ε = ε2*ε1.



228 R. Longo

Proof. This follows immediately by the chain rule for the canonical endomorphism
(yω:M-»iV is the product o(γω:M-+N1 and yω:N1-^N) and the definition of the
index. O

Corollary 4.6. If N^Mi are inclusions of factors and s^eCίM^N^) are faithful
expectations (i =1,2) then

IndεiΘε2(Nί®N2,Mί®M2) = Ind ε i (NuM1)lndε2(N2,M2).

Proof. lϊNί = M1 or N2 = M2 the corollary follows immediately by the definition
of the index. In general we apply Proposition 4.5 to the inclusions Nί®N2cz
M1®N2aM1<g) M2 so that

= Ind β i Θ M (JV 1 ®N 2 ,M 1 ®JV 2 )Ind M Θ β 2 (M 1 ®N 2 ,M 1 ®M 2 )

= Indβl(JV1,M1)Indβa(N2,M2). O

5. The Space of the Conditional Expectations

Extending the analysis made in [22] and in Sect. 3 we study here the relationship
between the canonical endomorphism and the conditional expectations and the
dependence of the index on the latter.

Let JV c M be an inclusion of infinite factors and y = yω:M-*N the canonical
endomorphism associated with the cyclic state ωeM^.

The space

H(y) = {veN\y(x)v = vx,xeN}

is a Hubert space of isometries in N (possibly with left support less than 1).
In fact if v,weH(y) then

w*vx = w*y(x)v = xw*v, xeN,

thus w*veZ{N) = C.
Denote by S the unit sphere of H(y\ S = {veH(y)\ \\υ\\ = 1}; every element veS

is an isometry in N.
If we put

ευ(x) = v*γ(x)v, xeM,

then we get a map εv:M^N; in fact Proposition 5.1 will show that εveC(M,N)
and all normal expectations arise in this way.

Next proposition was obtained in a discussion with J. L. Sauvageot.

Proposition 5.1. The map

veS->εveC(M,N)

is a continuous and surjective (S carries the strong topology and C(M, N) the pointwise
weak topology).

Proof Since y(M) c iVwe have at once that

εΌ(N) = v*γ(N)Ό<=.N.
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Moreover if xeN then

εv(x) = v*y(x)v = xv*v = x,

so εv\N = id. It follows immediately that εv is normal and εveC(M,N).
lϊ vn-^v strongly, then v* -> v* weakly and

fi«Jx) = v*γ{x)vn -+ v*y{x)υ = sv(x)

(weak convergence) thus v -» £„ is continuous.
It remains to show that surjectivity. Let then εeC(M, N) and put φ = ω ε, where

the cyclic state ω = (Ώ9Ω) is represented by the vector Ω. Let ξeL2(M,Ω)+ be the
vector representative of φ. The map

V0:xΩ-^xξ, XEN

determines an isometry VoeN'. Set

so that p = JMpJM, where JM is the modular conjugation of L2(M,Ω). If we set

V=JNV0JNeN,

where JN is the modular conjugation associated with N, Ω and JΓ = JNJM> then

where Jξ

N = J M | ]^ | is the modular conjugation of JVp, ξ so that V0JN V% = Jξ

Ή.
Hence

and

εv(x)= V*y(x)V= V*ΓxΓ*V= V%xV0

= nP*Pfo = n # ^ o = ̂ oβWn = ε(x),

Moreover VeH(γ) because

y(x)V = ΓxΓ*V=ΓxVo = ΓVox = Vx, xeN. O

Corollary 5.2. // Ind (N, M)<oo then C(M, N) is compact.

Proof. By the above theorem it suffices to show that H(γ) is finite dimensional. If
{vh iel} is an orthonormal basis of H(y), then et = vtvf is an orthogonal family of
projections in y(N)rnN. However the canonical endomorphism N-+y(N) equals
γ2 [22] and this implies that Ind (γ(N), N) < oo (taking crossed product) thus
γ(N)' n N is finite dimensional and / is a finite set. O

Proposition 5.3. Let N aM be an inclusion of factors. If there exists a faithful family
of conditional expectations in C(M, N), then C(M, N) is affinely homeomorphic to
the normal state space S(Nr n M) of Nr n M.

In particular there exists a faithful expectation in C(M,N).

Proof. Let y:M->N be the canonical endomorphism and H(y) c N be as above.
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Let z be the left support of H(γ). Then zey(N)' nN and since

uH(γ)u* = H(y)

for all unitaries in y(N)'nN,z belongs to Z(y(N)'nM). By using a maximality
argument one obtains z = 1.

By [22] y | N is inner and there exists a faithful conditional expectation in
C(M,JV).

Now the map

is affine and continuous. Let φ0 be a faithful normal state of N and φ = φ o ε,
where εeC(M,ΛΓ) is faithful. Then σ^ leaves JV and Nr nM stable, hence ε factors
through Nί = Nv (N'nM),

ε = ε2 ε1, ε2eC(Nl9N), ε^CiM.N^.

It follows that N v (N'nM) is naturally isomorphic to N(x)(i\ΓnM) and any state
φeS(N'nM) gives a normal conditional expectation εφ in C(JVl5 JV).

Note that we have N\nM c:Nu hence (^(M,^) contains only one element
εx. The conditional expectation εφ εί obviously satisfies

εφ ε1\N'nM = φ9

and we have a continuous inverse of ε -> ε | JV' n M. O

It is now not difficult to check that the map

εeC(M,N)-+Indε(N,M)e[l + oo]

is continuous and has a convex restriction to expectations corresponding to tracial
states of N'nM. If Ind(N,M) < oo, it attains a minimum at a unique point.

We shall in fact give an explicit formula for such a minimal conditional
expectation based on a formula in [18] (next Proposition 5.4), that we prove in
our setting.

If N c M are factors and e is a projection of N' n M, then for any faithful
εεC(M,N) the formula

defines an element of C(MP, Np).

Proposition 5.4. // {pj is a partition of the unity in N'nM that belongs to the
centralizer of ε\N'nM then

Indε (AT, M) = £ ε(PiΓ
1 Indε (iVPi, MΛ).

Proof With the notations of Sect. 4, pf belongs to Z(iVrnM). The problem is thus
reduced to the semifinite case, (inclusions of semifinite von Neumann algebras with
a centrally ergodic trace) hence to the finite case by Proposition 1.3 and one applies
the argument in [19, Lemma 2.2.2] by using Lemma 3.2. O

Notice that if Ind(JV,M) < oo then N'nM is finite dimensional; if NrnM = C
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then C(M, N) contains only one element; if N' n M is a factor there exists a canonical
expectation εeC(M,N), namely the one such that ε\Nf nM is the trace of N'nM.
It follows straightforwardly by Proposition 4.5 that this canonical expectation is
the unique one that minimizes Ind(M,A/)

If N' n M is not a factor we choose a partition of the unit by minimal projections
ZιeZ{N'nM). Proposition 5.4 shows that the minimum of Indε(M,JV) is taken
when ε|N' nM is a trace and to specify ε we should determine the coefficients ε(zι).

Theorem 5.5. If N a M is an inclusion of factors with finite index, there exists a
unique conditional expectation εeC(M,N) that minimizes lndε (N,M).

If {zj is the family of the minimal central projection ofN'nM, then ε is given by

ε\Nf nM is a trace

if12

Φi) = τ r l / 2 '

where It = Ind (Nzί9 Mzt) is the index ofNz{ ofMzt given by the trace of (Nf n M)zt.
The minimal index is given by

Ind (JV,M)1/2 =

More generally the above formula holds if {zj is any partition of the unity by
projections in ε\N'nM and It denotes the minimal index lnd(NzhMZi).

Proof By the above considerations and Proposition 5.4 we must minimize the
expression

?•
with the conditions tt > 0, £ ί f = 1. The theorem is then obtained by an elementary
application of the Lagrange multipliers theorem. O

Remark. If N c M is an inclusion of finite factors with finite index, the minimal
expectation in C(M9N) does not always coincide with the trace preserving
conditional expectation. This fact is related with the inequality between the entropy
and the logarithm of the index [29].

Corollary 5.6. IfNt a Mt are inclusions of factors (i = 1,2),

= Ind(iV 1 ?M 1)Ind(iV 2 ?M 2).

Proof It is easily seen that we may assume that ladiN^M^ is finite (ί = 1,2). Let
then εiβCiMi^Ni) be the minimal expectations. By Corollary 4.6 we have only to
show that ε1(χ)ε2 is the minimal expectation in C(M1(χ)M2,N1(χ)iV2). Since the
relative commutant of Nί ® N2 in Mί (x) M 2 coincides with (N\ nM1)®(N2n M 2),
Theorem 5.5 immediately entails the corollary. O

For future use we include the following.

Proposition 5.7. IfN a M is a finite index inclusion of factors, then every conditional
expectation ε of M onto N is normal.
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Proof, By a straightforward extension of the argument in [29, Proposition 1.3] to
arbitrary factors, M is a finitely generated right Λ/-module, i.e. there exist finitely
many elements λί9...9λneM such that every xeM may be written uniquely as

It follows that

thus ε is normal. O

6. Index and Compact Actions

Let M be a von Neumann algebra and α:G-»Aut(M) an action of a compact
group G on M. We denote by E the α-invariant conditional expectation of M onto
the fixed point algebra Mα,

lϊφoeM% is a faithful state of Ma then φ = φ0ΈeM^ is a faithful α-invariant state
of M. The modular group σφ of M associated with φ restricts to σφo on Mα and
we have the inclusions

Mα c M

n n

Lemma 6.1. The dual trace τofMxσφR restricts to the dual trace τ0 ofM* x / 0 R .

Proof. The argument is the same as the one given in Sect. 4. By using the notations
there given, τ = φ{H ) and τ 0 = φo(H-), where Ut = Hi% are the usual unitaries in
Mα x σw>R c M x σ«?>R. Since φ extends φ 0 also τ extends τ 0 . O

Note now that the action α extends to an action α:G-*Aut(M), where
M Ξ M X ^ R , determined by

&β\M = 0Lg9 &g(Ut)=Ut9 teR geG,

where the Ut are the usual unitaries in M, as follows easily because α and σφ

commute.

Lemma 6.2. T/ie α-fixed point subalgebra Mα o/M is Mα x σ<PoR.

Proof Obviously Mα x σ^0R is contained in Mα. To show the reverse inclusion we
consider the conditional expectation EeC(M,M*\

E = jάgdg.

By the definition of α, we have

= E, E(Ut)=Ut9

in particular E(M) = Mα. Since the finite sums
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form a weakly dense subalgebra of M and E is normal, from

we deduce that Mα~ c Mα x σ*0R. O

For simplicity we assume now that M is a factor and consider a α-invariant
subfactor JV of M. Suppose εeC(M,N) is a faithful conditional expectation that
commutes with α, so that ε0 = ε|MαeC(Mα, JVα).

Theorem 6.3. //α|JV is dominant then Indε (JV, M) = Indε o (JV*, Mα).
Before proving the theorem recall that an action α:G-> Aut(JV) of a compact

group G on a von Neumann algebra JV is dominant if JVα is properly infinite and
the monodial spectrum of α is complete, i.e. for every πeG there is a α-invariant
Hubert space of isometries H in N such that α|ίf is equivalent to π, see [30, 24].

Elementary examples (e.g. with M a finite dimensional factor and JV = C) show
that Theorem 6.3 may fail without the dominance assumption, instead one has the
following.

Proposition 6.4. With the above notations

Ind 6 (JV, M) ^ Ind ε o (iV
α, M α )

{without any dominance assumption).

Proof. \ίλ = Ind ε(JV,M)"\ then by Theorem 4.1,

ε(x)^λx xeM+,

hence

showing the desired inequality again by Theorem 4.1. O

Lemma 6.5. Let α: G -• Aut (M, iV) fo^ an action of a compact group G on the inclusion
of von Neumann algebras N a M. IfωeM^ is a OL-invariant cyclic state for N c: M,
then ωo = ω\Ma is a cyclic state for iVαc=Mα and the canonical endomorphism
y<oo:M<x-*Nat ίs t h e restriction to Mα ofγω:M-+N.

Proof Let Ω be the vector representative for ω, cyclic and separating for JV and
M, and U the infixing unitary implementation of α, i.e. UgxΩ = α̂  (x)ί2, xeM.geG.
The subspaces [Mαί2] and [Λίαί2] coincide since they are both equal to the subspace
of the U-ήxed vectors, therefore ω 0 is a cyclic state for JVα a Mα. Since [Mαί2] is
an invariant subspace for the modular conjugations of M and JV with respect to
Ω [32], it follows immediately that yω restricts to yωo. O

Proof of Theorem 6.3. Let φ0 be a faithful normal state of JVα and

φ = φo β EeM^

the extension of φ 0 to M by ε E (since E and ε commute ε £eC(M,JVα)). The
modular group σφ of φ leaves JV, Ma and JVα globally invariant; if we also denote
by σψ restrictions of σφ, we have to show by Lemmas 6.1 and 6.2 that the index
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oϊ N xσφRin M xσφR with respect to the dual trace τ o f M x ^ R i s equal to the

index of Na x σΨR in Mα x σφR with respect to τ 0 = τ |M α :

Let E = §agdgeC(M,N) be as in Lemma 6.2. Since <x\N is dominant and α| JV = a\N

also α IN is dominant.
Let ωoeM^ be a cyclic state for N a M (we may assume that N and M are

infinite) and

As in [24] ω is a cyclic state for NczM and by Lemma 6.4 the canonical
endomorphism yωo:M

cc->Na is the restriction of yω:M->N; since

Φ ω M ) = τo(yωo(x)) = τo(kx) = τ(fcx), xeMα,

where /z = mod t(yω), /c = mod t o(γω o), it follows that E(h) = k. Since M is a factor
fte[l, oo] and τ 0 is a scalar trace

Indτo (N
α", Mα~) - Tndτ (N, M). O

Denoting as before by Ind (N9 M) the minimal index of N in M, a natural
question is whether Ind (iVα, Mα) = Ind (iV, M) in the above theorem, namely
whether the minimal conditional expectation εeC(M,N) restricts to the minimal
conditional expectation εoeC(Mα,iVα). We give here a positive answer under
conditions that suffice for our applications.

Recall that the centralizer Mε of ε on M is equal to {xeM\ε(xy) = ε(yx), ysM).

Corollary 6.6. Let α:G-»Aut(M,iV) be as in Theorem 63 with Na,Ma factors.
Assume further that there exists a partition of the unit by projections et of (Nr nM)a

such that

Then Ind (JV, M) = Ind (N\ Mα).

Proof First we assume that {ej contains only one element, i.e. Na' nMa = C. In
this case there exists a unique element ε0 in C(Ma, Na); if εeC(M, N) is the minimal
expectation (we assume N cz M has finite index) then ε commutes with α by
canonicity and ε |Mα = ε0 and Theorem 6.3 applies. In general we denote by

/£ = Ind(ΛΓβ|,Meι)

the minimal index, then by the above comments

/, = Ind (Net9 Mβt) = Ind (N«, M'ei).

Since e{eMε also e^M11)80', by Theorem 5.5,

Ind(JVα,Mα)1/2 =Σl}/2 = Ind(iV,M)1/2

that concludes the proof. O
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Corollary 6.7. With the assumptions of Theorem 6.3, if G is abelian then

Ind(JVα,Mα) = Ind(JV,M)

assuming that ΛΓα,Mα are factors.

Proof. We may assume Ind (N9M) < oo. Let εeC(M,N) the minimal expectation,
we have to show that ε0 = ε|Mα be the minimal expectation ε'o in C(Ma,Na). It is
sufficient to show that ε'o extends to a faithful α-invariant expectation ε' in C(M, N),
since then we have by Theorem 6.3

Indε, (M, N) = Ind ε 6 (Mα, iVα) ̂  Indε o (Mα, JVα) = Indε (M, N) = Ind (M, N),

and ε = ε' by the uniqueness of ε given in Theorem 5.5.
To this end let ω o eM* be a faithful εΌ-invariant state, ω = ωo E and

0:G-»Aut(Mα, JVα) the dual action of α. By its uniqueness ε'o commutes with θ,
thus the modular group σω of ω leaves N globally invariant [32] and we have a
conditional expectation ε'eC(M, N) that leaves ω fixed. Since ε' |Mα leaves ω 0 fixed
ε'|Mα = ε'o as desired. O

The implications of Theorem 6.3 are also examplified by the Galois cor-
respondence established in [1] that we state in the case of a prime compact action.

Corollary 6.8 [1], Let α:G-> Aut(M) be an action of a compact group G on a factor
M such that Mα n M = C. // N c M is a a-ίnvariant von Neumann subalgebra
that contains Mα, there exists a closed normal subgroup H of G such that

Proof. By considering a quotient of G we may assume that g-+ag\N is one-to-one
and show that N = M. By tensoring M by a type /^ factor we may assume that
Mα is infinite, thus α| AT is dominant. By Theorem 6.3 we have

Indε (JV, M) = Ind (Mα, N«) = 1,

thus N = M (the conditional expectation εeC(M,N) exists by an argument in

[27]). O

The interest in the above proof stays in the fact that extends to the case of
locally compact actions [27].

We now restrict our attention to a special case of Corollary 6.6 that will appear
in the next section.

Let α:G-> Aut(M) be an action of a compact group G on the factor M and
denote by jf α(M) the set of the α-invariant Hubert spaces in M, see [30,24]; if
HeM?a(M), the inner endomorphism ρH of M implemented by H

where {vh iel} is a basis for H, depends only on H and not on the basis, hence ρH

commutes with α. In particular ρH restricts to an endomorphism ρ0 of the fixed
point algebra Ma.

Proposition 6.9. If M*'nM = C and oc\H is irreducible, then ρo(May r\Ma = C.
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Proof. We only sketch the proof of this proposition. The detailed proof will be
found in [27].

Let xeρ o (M α ) 'nM α , namely xeM* and

ρo(y)x = xρo(y)9

or

Σ vtyvfx = Σ xviyv* yeM*

with {vi9iel} a basis of H as above. Multiplying both sides of this equality by t?f
from the left and by υk from the right we get

yv%xvk = v%xvky, yeM\

namely v* xvkeMa' n M = C.
Let Ψbe the isomorphism of M onto Matn{M) = M®Fn, where Fn is the type

/„ factor, n = dim (H) given by

Ψ(a) = {Όtaυk}9 h,kel,

then Ψintertwines α with α ® a d π , where πeG is given by a\H.
The condition v%xvkeC then means

Since xeMα, we have ?P(x)6(M Θf1,,)"®110* thus Ψ(x)eC because π is irreducible.

O

Let H be as above. Setting

(H, H) = lin. span {z w* | v, weff},

recall that (H,H) is a type J factor isomorphic to #(i/) and one has the tensor
product decomposition [30]

Mc*ρH(M)®(H9H).

Corollary 6.10. With the above notations assume that Mα ' r\M = C, then

Ind (ρo(Mα), Mα) = (dim H)2.

Proof. We may assume that M is infinite. We notice first that α | QH(M) is dominant,
in fact α commutes with ρH thus α|ρH(M) = ρ H α ρ ^ 1 and α is dominant. By
Theorem 6.3,

Ind ε o(ρ0(Mα),Mα) = (dim/f)2,

where εoeC(Mα,ρo(Mα)) is the restriction to Mα of the expectation εeC(M,ρ(M))
given by the trace on ρ(M)'nM = (H,H% i.e. ε is the minimal conditional
expectation. In fact by the example following Proposition 1.3 and by Corollary 5.6
we have

Ind(ρH(M),M) = (dimtf)2.

We have to show that ε0 is the minimal conditional expectation in C(Ma, ρo(Mα)).
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If oc\H is irreducible it follows by Proposition 6.9 that QO(M*)'nMa = C, thus
CiM^QoiM*)) contains only one element and we have nothing to prove.

In general we consider the partition of the unity by the projections ejE(H, H) =
ρ(M)'r\M onto the irreducible components of u\H. Then the e7- are α-invariant
and (ρ(Ma)f nMa)ej = Cej because of Proposition 6.9, and we may apply Corollary 6.6
to conclude. O

By the above corollary we have in particular examples of subfactors with trivial
relative commutant and index w2,πeN, that in general do not come from the
crossed product construction.

Theorem 6.11. Let M be a factor (finite or infinite) and α:G-> Aut(M) an action of

a compact group with M"' nM = C. Ifπ is a unitary representation of G on a Hilbert

space H of dimension n, then

Ind (Mα ® 1, (M ® B{H))a®adπ) = n2

and ifπ is irreducible M α ® 1 has trivial relative commutant in (M(χ) B(H))a®adπ.

Proof. By tensoring M with a type /^ factor we may assume that M is infinite,
thus α is dominant. Let HeM?<x(M) be chosen such that α | ϋ is equivalent
to π. Then we have a tensor product decomposition M ~ ρH(M) (x) (H, H\ where
α becomes α(χ)adπ (see the proof of Proposition 6.9). The rest follows by
Corollary 6.10. O

It would be interesting to extend Theorem 6.11 to quantum groups and square
integrable representations of locally compact groups.

7. Index and Parastatistics

In this section we shall exhibit a connection between the statistical dimension of
a superselection sector in Quantum Field Theory and the index of certain
subfactors, that will rely on the previous analysis in this paper (local observable
von Neumann algebras are properly infinite, see [25]).

Let

be the net of local observable von Neumann algebras associated with the set JΓ
of double cones of the Minkowski space of space time dimension d.

In this section we assume d > 2 so that the analysis is [7] is applicable. There
is an analogous version of our results in the case of charges localized in spacelike
cones [4], provided d > 3.

We use the usual assumptions on the net stf(&) as in [7]. In particular we
assume Haag duality

where Θ' denotes the space-like complement of Θ, and for an unbounded region
ΘeRd,s/(Θ) is defined as the C*-algebra generated by {s^(Θί);Θ1 c tf^eJf },

In a Wightman theory duality automatically holds for the net Θ -• sί(O')' that
may be used as well in our analysis [2].

As explained in [7] the physically relevant representations of the quasi-local
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C*-algebra

(norm closure, union over 0 e J f ) are realized as localized endomorphίsms of s/,
namely endomorphisms ρ of s/ that restrict to the identity on s/(G') for some
Θetf (ρ is localized in G) at least in short range interaction theories.

Denote by δ the semigroup of all localized endomorphisms of s/. Note that
if ρeδ is localized in 0, then if Tes/(Θ),Sejι/(Θ'),

thus by duality

ρ(s/{0)) c s/ψ')' = s/(Θ\

and we get inclusions of von Neumann algebras ρ(s/(G)) a s/(G) (ρ is automatically
locally normal).

Two endomorphisms ρ,ρfeδ are equivalent if they are equivalent as represent-
ations of s/; equivalently there exists a unitary uestf such that

ρ/(Γ) = i4ρ(7>*, Te^ (7.1)

(automatically ues/(G) for some d?eJΓ).
Let δc be the semigroup of the ρsS that are equivalent to all their space-time

translated. The set of the equivalence classes of Sc corresponds to the superselection
sectors.

If ρeSc one chooses ρ'eSc in the same equivalence class [ρ] of ρ so that ρ and
ρ' are localized in space-like separated regions and a unitary uesrf such that (7.1)
holds. The unitary

eρ = u*ρ(u) (7.2)

depends only on ρ and not on ρ\ u; moreover ε is selfadjoint (one uses here the
assumption d > 2).

Associated with ρ there exists a left inverse φ of ρ, i.e. a completely positive
map φ:s/-+s# with

If ρ is irreducible the statistic parameter of ρ

λe = Φ(ee)

is a scalar depending only on [ρ]. Its possible values are

More generally if ρ is reducible there exists a standard left inverse φ, namely a
left inverse such that λ* = φ(ερ)

2 is a scalar. The inverse oϊ\λρ\

(with the convention 0 " 1 = oo) is the statistical dimension of ρ. If d(ρ) < oo (ρ has
finite statistics) the standard left inverse is unique.
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For simplicity we shall assume in the sequel that sί{β\ ΘeJf, is a factor. This
assumption, rather general, can be avoided either with minor modifications of the
arguments or replacing 0 with a wedge region W (a Poincare translated of the
region x1 > \xo\), since it follows automatically that sl(W)" is a factor of type IIIί9

see [25].

Theorem 7.1. If ρe$c is an endomorphism of'si localized in the double cone
then

for all ΘeCtiΓ that contains Θρ.

) 2ρ

Notice that Theorem 7.1 states that d(ρ)2 is equal to the minimal index of
ρ{slψ)) in sl(G\

As explained in the introduction we shall give two proofs of this theorem. We
give now a first proof of Theorem 7.1 by assuming the existence of a field net
Θ -• $F(@) of von Neumann algebras, a compact group G (the gauge group) and
an action α:G-> Aut(^), where & = (J &(&)', such that

ΘeJf

sέ\(9) is the α-fixed point algebra

and there exists an element g0 in the center of G with gl = id such that Bose and
Fermi fields

localized in space-like separated regions commute or anticommute according to
one of them is a Bose field or borh of them are Fermi fields.

If He Jf \^(&)) is a α-invariant Hubert space then the inner endomorphism
ρH implemented by H on ̂  restricts to si to an endomorphism ρH|^e<ί, localized
in G and we assume that all elements in Sc arise in this way.

We further assume that α is a prime action, namely

that implies that a\^(G) is dominant because sl(G) is properly infinite [25].
This structure has been recently announced by Doplicher and Roberts to follow

from general assumptions of Quantum Field Theory [9].

Lemma 7.2. a) If φ is a left inverse of ρs$c, then

eφ = ρ-φ

is a conditional expectation of si onto ρ(sl) and εφ(s/(G)) = ρ(s/(G)) ifθ 3 Gρ9 ΘeJf.
Conversely ifε is a conditional expectation of si onto ρ(sl) then

is a left inverse for ρ.
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b) Ifd(ρ) < oo then every left inverse of ρ, thus every conditional expectation of
srf onto ρ(srf\ is automatically locally normal

Proof a) Clearly φ maps sί(G) onto Q{S/{G)) and Q{S/{G)) C st\β) if 0 => Go. If
Tesf(0), then

thus εψ|ρ(.a/) = id. Since φ is completely positive and unital, φ has norm 1, hence
εφ has norm 1 and is a conditional expectation. The rest is immediate.

b) This follows by a) and Proposition 5.7 and the following inequality
(7.5). O

First proof of Theorem 7.1. Let ρe$c be the restriction to si of the inner
endomorphism ρH of &F implemented by the α-invariant Hubert space He Jf α

where ΘeJf as above.
By Corollary 6.10

Ind (ρ(s/(G), s/(G)) = (dim H)2.

We may assume dim H < oo (the argument that follows will also cover the case
dim H infinite).

Let ε be the conditional expectation of !F onto ρH{^) such that ε|(ρH(#y n #")
is the trace of (H, H) (one has a tensor product decomposition J^ ^ QH(^) ® (H9 H)).
Then ε\&(Θ) is the minimal expectation in C(&{G\QB(&(0)). NOW ε0 = ε\sί is a
conditional expectation of si onto ρ( stf) and by Theorem 6.3 and Corollary 6.10
ε0 is the minimal expectation in C{si(G\Q(si(G)). By Lemma 7.2 φ = ρ" 1 ε0 is a
left inverse of ρ and we have to show that φ is the standard left inverse of ρ and

By definition φ = ρ~1 εQ thus, by the previous notations,

λ6 = φ(eρ) = ρ-\s0(6β)l

and we have to prove that the square of

e(eρ) = εo(eρ) = λρ

is a scalar and \λρ\ = (dimif)"1.
Let {vuiel} be a basis of H that we may choose so that vie#r + jel+ and

^ G J ^ - J Z E / . , where / + u / _ =/.
Let K be Hubert space in Jfα(J2Γ((P1)), with ί^eJf space-like separated to G

such that α|X is equivalent to a\H and let {wi? IG/} be a basis of K that corresponds
to {vhiel} under the unitary equivalence.

The space
(X, H) = lin. space {wt>*, weK, veH}

is α invariant and isomorphic to the tensor product of K and H*. The restriction
α I (K, H) is equivalent to π ® π, where π = α | H and π is the conjugate representation
of π. It follows that the unitary

iel-
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is α-invariant, thus u and w+,w_ belong to s/. Since

ρ' = ρ l̂ si = uρH'(-)u*\si = uρ(-)u*

is localized space-like to ρ, it remains to check that

A direct computation (see [27]) shows that ε is given by

1 v

where n = dim H; hence

1 _

= - Σ ViVjwjV* = - Σ Q(v*Wj)
" Ujel n jei

= - ( y W ι > * - y wt;Λ = - (u
n \iei+

 J J jei- J J ) n

where we have used the normal commutation relations between Vj and w7 .
In conclusion

1
Q n + ~ +

= 1 (U*u -u*u ) = -
n n

where

hi Λ.
 =z / V:V:

X / ' I I

iel±

are orthogonal projections with sum 1 and

Q n2 + ~ n2

Notice that in the above proof we have implicitly proved the following.

Proposition 7.3. If ρe$c has finite statistics, a left inverse of φ of ρ is the standard
left inverse of ρ iff εφ = ρ-φ restricts to the minimal conditional expectation in
C(st(Θ),ρ(s/(O)) for some, hence for all, ΘeJf, Θ => ΘQ.

We shall give a direct proof of Proposition 7.3 in the second proof of
Theorem 7.2. This proof will be at the observable level, making no use of the field
algebra and the gauge group. We begin with the following.

Lemma 7.4 If ρeSc is localized in (9 then Q(sί)'nst

Proof. Let Γ e ρ ( j / ) ' n i ; since ρ\srf{Θ1) = \ά if Θx is a spacelike to 0, we have
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, hence Tej*(OJ = s/(Θ) by duality. Hence

O

In the second proof of Theorem 7.2 we shall consider for simplicity only elements
ρeSc with finite statistics and shall prove that

where eeC(s/(Θ), ρ(stf(Θ)) is the restriction to s/(Θ) of εφ = ρ-φ, where φ is the
unique left inverse of ρ.

The statement of Theorem 7.2 that d(ρ) equals the minimal index of ρ(stf(Θ))
in s/{Θ) can be obtained by further assuming that

Q(s/(Θ)Yns/{Θ) = C (7.3)

whenever ρ is irreducible and localized in ΘeJf.
We shall comment about the validity of the relation (7.3) in Proposition 7.5.

Second proof of Theorem 7.2. We begin by assuming that ρ is irreducible. In this
case Lemma 3.8 of [7] shows that

| |φ(Γ*T) | |£λ ρ

2 | |Γ 7Ί|, Ύesd. (7.4)

Since φ = ρ~ι'Sφ by Lemma 7.1 and ρ is isometric we have

| | ε φ ( Γ * Γ ) | | ^ 2 | | Γ*Γ||, Test,

hence by Theorem 4.1

Ind [β(s*(Θ))9 stfψ)-] S λ; 2 = d(ρ)2. (7.5)

By Theorem 4.1 we have to show that \λρ\ is the best constant such that
λ | | T|| Tes/(Θ)+ or equivalently s ρ

^ λ*|| T||, Tes/(Θ)+, or equivalently such that

Let e" be the representation of the permutation group Pπ associated with ρ
[7], neN, and E\ the totally symmetric or anti-symmetric projection in the group
algebra C[PJ . Then by [7, Lemma 5.1] with Fn

± = en

ρ(En

±i one has

= λ2

QF\1 or

where n = d(ρ\ according to whether λρ = ± 1/n. It follows that

where * = + or — and λ2 is the desired best constant.
It remains to consider the case where ρ is reducible. We apply [7, Proposition 6.6]

and assume d(ρ) < oo so that ρ(j/)'rW is finite dimensional. If φ is the standard
left inverse of ρ and £φ = ρ*φ, then

εφ\ρ(s^ns/ = φ|ρ(Λ/y n. j* = Tr( ),

where Tr is a faithful tracial state. Let Et be a partition of the unit by minimal
projections of ρ(j/) rnj/. Then T^ρ{T)Et is an irreducible representation of si
that corresponds to a ρ^e^ and

Setting Ii = lnd\_ρi(s/(Θ)\j^(Θ)^\ the above discussion shows that
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Iff2 = Ind [ft(.fl/(0)), ^ ) ] 1 / 2 = Ind lρ(sf(Θ))Ei9 st(O)E^2 = d(Qi) = Tr (£

where we have used Lemma 7.4 that entails that Eieρ{s^{Θ))'r\stf(Θ) and ρt is
localized in Θ. It follows by Theorem 5.5 that

We now consider a property that will improve Lemma 7.4. Denote by M v N
the von Neumann algebra generated by M and N. lΐΘeJf let J ^ be the C*-algebra
generated by the union s/(0) v s/φ^ Θ1aΘ\G bounded. By duality »G is
irreducible.

Proposition 7.5. Let ρeScbe localized in Θ. If d(ρ) < 2, then

In general the above relation is equivalent to the irreducibility of ρ\@&.

Proof If d(ρ) < 2, the above proof shows that Ind [ρ(s/{Θ)9 stf{β)~\ < 4, hence (7.3)
automatically holds e.g. by Theorem 5.5 because the index is always greater or
equal to 1. In general if ρ(β^) is irreducible we will show the reverse inclusion in
Lemma 7.4. Let Teρ(s/(Θ))' nstf(Θ)9 thus in particular Te^(ΘJ if Θ1 a & and,
since ρ is localized in Θ, Γ e ^ j / ^ ) ) ' . Therefore

Teρ(sf(Θ)Ynρ(s/(O1)Y = IQ(S/{0)) V ρ W J ) ] ' = Q(S/(O) V ^(tf1))',

and by assumptions Teρ(ό#Θ)' = C. The rest is now clear. O

8. The Statistics of Low Dimensional Theories

As mentioned in the introduction the results in Sect. 7 are valid under the
assumption that the Minkowski space Rd has dimension d > 2. When d = 2 the
structure is more complicated and exotic statistics arise.

In this section we assume d = 2 and will extend Theorem 7.1 to this case by a
further analysis of the second proof of that Theorem. Note that the correspondence
between superselection sectors and localized endomorphisms is also valid in
particular in a conformal theory [5],

While the inequality corresponding to (7.4) will put an a priori bound on the
index of a sector, for the exact evaluation of the index we shall need the existence
of a conjugate sector; this assumption is rather general and has been discussed in
[8, appendix] and in [12].

Since our proof will rely on lemmas that are natural adaptations of arguments
in [7,8] we shall be sketchy in the sequel and indicate the points where the argument
is extended.2

We use the assumptions and the notations of Sect. 7.
If ΘaR2, Θe^Γ, is a double cone, its space-like complement & has two

connected components. We shall say that (PjcRMs left (right) space-like to Θ if
Θγ lies in the left (right) connected component of Θ'.

2 While this paper was being typed, we received a preliminary form of [11] that contains in particular
a more complete description of some lemmas then in this section
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With ρsSc a localized endomorphism of si — vs/(Θ)~9 we choose a unitary
uesf such that ρ' = uρ(;)u*e$c is localized left spacelike to ρ and put

€ρΞΞU*ρ(l<). (8.1)

As before €ρ is independent of w. If u had been chosen so that ρ' were localized
right space-like to ρ, then (8.1) would have given another unitary €*. An
elementary but basic observation is the following.

Lemma 8.1. β* is the adjoint ofeρ.

Proof. Let ρt = uiρ( )u'ieS'c with ut unitaries of si (i = 1,2) such that ρx and ρ 2 are
localized respectively left and right space-like to ρ. As in [7, Lemma 2.6] the unitary

is independent of uuu2. Setting u2 = 1 we see that v = eρ. Setting ux = 1 we see
that v* = e* O

Following the argument in [7, Lemma 3.3] we may construct a left inverse φ
of ρeSc. If ρ is irreducible φ(eρ)eC. In general we may consider a standard left
inverse, namely a left inverse ^ such that

is a multiple of a unitary (the argument in [7, Proposition 6.3] gives the existence
of a standard left inverse, unique if φ(€ρ) φ 0 for some left inverse ρ, but we shall
not need this fact here).

In this case λ*λρ is a scalar and we may define the statistical dimension of ρ by

Lemma 8.2. // ρ1,ρ2e$c are irreducible with left inverse ψ1,ψ2 then Φ2Φ1 *s a

standard left inverse of ρίρ2 and

Proof. This lemma is proved by an extension of the argument in [7, Lemma 6.7],
see also [11]. O

Lemma 8.3. Let ρeSc be an endomorphism with a standard left inverse φ. If E is a
minimal projection of ρ(s/)'c\si such that the reduction of ρ by E is equivalent to
the identity representation of si, then

Proof. The proof is obtained by applying [7, Proposition 6.5] to the special case
where ρ\E is equivalent to the identity id, because e id = 1. O

Recall that an endomorphism ρeSc is conjugate to ρ if ρρ contains the identity
subrepresentation. If ρeSc is irreducible and ρ exists, then ρ can be chosen
irreducible and ρρ contains the identity subrepresentation with multiplicity 1 [8].

Lemma 8.4. Let ρ,ρe$c be irreducible conjugate endomorphisms. Then

d(ρ) = d(ρ).
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Proof. The proof of [8, Theorem 3.1] still applies and shows that λQ — λ-. O

We now give the desired interpretation of d(ρ). For simplicity we deal with
irreducible sectors. The general case is then a consequence of the additivity of the
statistical dimension [7, Proposition 6.6] and the additivity of the square root of
the minimal index (Theorem 5.5).

Theorem 8.5. Let ρeScbe an irreducible localized endomorphism. If there exists a
conjugate endomorphism ρ, and ΘeJf is sufficiently large that ρ and ρ are both
localized in Θ, then

where ε is the restriction to stf(Θ) of the conditional expectation ρ φ associated with
the unique left inverse φ. In particular ifd(ρ) < oo and the property in Proposition 7.5
holds then ε is the minimal expectation of srf(&) onto

Proof As mentioned before we may choose ρeSc irreducible so that η = ρρe$c

contains the identity representation with multiplicity 1. Let Eeη{stf)'cλstf be the
minimal projection corresponding to the identity subrepresentation and note that
Eeη(jtf(Θ)yr\j/((9) by Lemma 7.4. With φ the left inverse of ρ, φφ is a standard
left inverse of ρρ by Lemma 8.2 and by Lemma 8.4,

= d(ρ)d(ρ) =

By applying Lemma 8.3 we have

As in Sect. 7 we have

\\φ(T)\\^\λρ\\\Tl Γ e ^ + , (8.2)

and we have to show that \λρ\ is the best constant in this inequality and then apply
Theorem 4.1.

Now Eeη(srf)' Cλstf, thus

= £ρ(ρ(T)),

and if we evaluate φ on both sides of this inequality we have

ρ(T)φ(E) = φ(E)ρ(n

namely φ(E)eρ(jtf)' n s4 = C.
It follows that

showing that \λρ\
2 is the optimal constant in (8.2). O

Corollary 8.6. Ifρe$c is the direct sum of irreducible sectors all having a conjugate
sector then

Proof Immediate by Corollary 4.3 and Theorem 8.5. O
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9. Outlook

This work bring up the need for further analysis. We partly mention here some
developments connected with the statistics problem.

First of all one should pass from the identification of the index of ρ(s/(Θ)) c stf(&)
to the analysis of the "higher order" information contained in this inclusion. On
one hand this amounts to the computation of the Jones tower [19] or of the tower
ψ(stf{&)\ where y:s/(Θ)-+ρ(<p/(Θ)) is a canonical endomorphism [22], and to the
identification of the Ocneanu graph invariant [28].

On the other hand one has to study the braid group representations giving the
statistics (a first analysis is now contained in [11]) and relate it to the tower
structure.

The paragroup arising in this way [28] should be related to an extended "gauge
group." For example if the superselection structure is singly generated, most if not
all the information on the gauge group are to be contained in the tower associated
with the generator and in the braid group representation.

Further a priori restrictions on the values of the statistical dimension are tied
up with the existing problem on the values of the index for subfactors with trivial
relative commutant of the hyperfinite II x -factor [19]. This is a point where the
algebraic structure of the single local algebra enters. By considering for example
a wedge region, we know that the associated observable von Neumann algebra is
a factor of type 111^ and (assuming the split property) injective, see [25, 3]. Our
analysis by Takesaki duality then reduces to the consideration of the injective
factor of type II γ.

Another relevant point would be to describe the rather apparent relation
between the statistical dimension and the central charge in two dimensional
conformal field theory, cf. [13]; this would confirm the general feeling of an existing
relation of the central charge with the Jones projections, see [20].

Finally we mention a widespread hope that the analysis of low dimensional
statistics might lead to a better understanding of low dimensional critical pheno-
mena as high temperature superconductivity and fractional Hall effect.
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Note added in proofs. The analysis of the low dimensional statistics according to the lines here proposed
proceeds in [35]. The conjugate sector p is described in general by the formula p = p~ί y where

tf(Θ) is a canonical endomorphism, so that the corresponding tower is stf(Θ) => p(stf(Θ)) =?
> ρpρ(srfψ))=> •••. In the case of a selfconjugate sector p such that p2 has two irreducible

components the field theoretical braid group representation is identified with a Jones representation.
In particular the Jones link invariant polynomial VL is explicitly attached to the sector:

where €<,M) is the field theoretical representation of the braid group Bn determined by e^fo) = pι~ 1(ep).
The assumption on the existence of p in Theorem 8.5 is unnecessary, since it may be constructed

by the Stinespring dilation of φ by applying Lemma 7.2, b.
Related facts are contained in the final version of [11] (to appear in Commun. Math. Phys.).






