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Abstract. We identify the statistical dimension of a superselection sector in a
local quantum field theory with the square root of the index of a localized
endomorphism of the quasi-local C*-algebra that represents the sector. As a
consequence in a two-dimensional theory the possible values of the statistical
dimension below 2 are restricted to a given discrete set.
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1. Introduction

In this paper we shall exhibit a natural connection between the statistics of local
quantum fields and the index theory of subfactors. In particular the statistical
dimension of a superselection sector [ 7] will appear as the square root of the index
of an associated inclusion of von Neumann algebras [19]. The restriction on the
possible values of the index [19] then imposes a corresponding restriction on the
possible values of the statistical dimension. In particular for a two space-time
dimensional quantum field theory the range of the statistical dimension consists
of a discrete series and possibly of a continuous part.

* Supported in part by Ministero della Pubblica Istruzione and CNR-GNAFA
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We now explain in more detail the ideas and the results in our investigation.

Index of subfactors and the joint modular structure. If one compares Jones index
theory of subfactors [19] with the analysis of the joint modular structure of an
inclusion of von Neumann algebras [21-24] one finds several analogies. The most
evident one is that in both cases one starts with an inclusion of von Neumann
algebras N =M and builds up a canonical chain of von Neumann algebras
-~aM,c=M,,, <--; this construction is initially (and step by step) given by the
same formula

M, =JyN'Jy,

where J,, is the modular conjugation of I*(M). In [19] however M is a finite factor
and one constructs the chain by using trace of M, and represents at each step the
von Neumann algebras on the different Hilbert spaces L*(M,).

On the other hand in [21] M is properly infinite, no privileged state exists, but
one may choose a common cyclic separating vector Q for N and M and associate
with @ a cononical endomorphism y,:M — N of M into N. Setting M, = y%(M)
one has indeed

M, =77 (M) =JyNJ).

The arbitrariness in the choice of £ is compensated by the fact the all the
construction is made on the initial Hilbert space and by the uniqueness (Radon—
Nikodym property) of the canonical endomorphism. It seems that these constructions
are extreme cases of the same method.

As pointed out to us by V. Jones the index of an inclusion of 11, factors N =« M
may be defined as the scaling factor AeR,

T Yo=AT

of the trace of M®F by the canonical endomorphism Yoo M@ F >N®F
(F a type I, factor).

In fact we shall show that, by using Takesaki duality and the Radon—
Nikodym property of the canonical endomorphism, one may define an index for
arbitrary inclusions of factors.

A definition of the index for infinite factors already existed due to Haagerup
and Kosaki [18]. Our definition agrees with that one, but our approach appears
natural for our purposes.

In particular Jones theorem [19, 18] restricts the values of the index I to

Ie{4coszg,n=3,4,...}u[4,00]-

The index of an inclusion of factors N « M depends on the choice of a normal
faithful conditional expectation ¢ of M onto N. An interpretation of this index
I =Ind, (N, M) as the square of a dimension requires however that I'/2 must satisfy
an additive property, namely if {p;} is a partition of the unit by projections of
N A M then

11/2 — Z Iil/Z’

where I; =Ind, [N, M, ] is the index of N, = M, induced by &.
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It turns out that this additive requirement fixes ¢ uniquely, assuming that [ is
finite, and in fact ¢ will appear as the unique conditional expectation that minimizes
the index (the space of the conditional expectations will be compact and the function
¢—Ind, (N, M) continuous and strictly convex on tracial expectations, thus the
minimum is taken at a unique point). A different characterization of this expectation
has been independently obtained in [17].

A natural and useful point in our analysis is the extension to infinite factors
of an inquality due to Pimsner and Popa [29] in the finite case, namely
A=1Ind,(N, M)~ is the best constant such that

g(x) = Ax

for all xeM 1.

A further result consists of the connection between the index of an inclusion
of factors N = M and the index of the fixed point algebra inclusion N* = M* under
a dominant action of a compact group.

In fact our analysis originated in our previous study of the modular structure
of a crossed product by a group dual [27].

As a corollary we find examples of subfactors of a factor M with trivial relative
commutant and index n2, neN, that are associated with a prime action of a compact
group G on M and an irreducible representation of G. By our results, also two
dimensional quantum field models furnish examples of subfactors with trivial
relative commutant a non-integral index. Their analysis is presently under
investigation.

The Index of a Superselection Sector. Beside the usual Fermi-Bose particle
statistics, Quantum Mechanics provides a theoretical description of parastatistics
[15] where the symmetry of the n-particle wave function is realized by a
representation of the permutation group P, of dimension possibly greater than
one (the isotopic identification of proton and neutron or quarks are examples cf.
7D

In [7] Doplicher, Haag and Roberts described the structure of the superselection
sectors in a local Quantum Field Theory. They showed that a superselection sector
corresponds to (an equivalence class of) a localized endomorphism ¢ of the
quasi-local C*-algebra o/ = u./(0)".

The statistics of the sector ¢ is then completely described by an associated
statistics parameter 4,. If ¢ is irreducible then 4, is a scalar and its possible values are
restricted to

AQG{O, i913 i%i%"’}-

In general d(g) = Mgl_l is an integer, the statistical dimension of g.
If one compares this structure with Jones work, one discovers a similarity both
in the results and in the methods.

! This inequality has also been considered in [34] and in a recent announcement [16]
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We shall show that in general
d(o) = Ind [o(#(0)), #(0)1'?,

where 0 is a sufficiently large region of the Minkowski space so that g is localized
in a double cone within ¢ and Ind denotes the minimal index as discussed above.

Of this result, we shall give two proofs that will cover different needs. The first
proof assumes the existence of a field algebra and a gauge group, with normal
commutation relations, and has the merit of a transparent revealing of the
underlying structure and of the ultimate reason for the validity of the result.
Furthermore these hypotheses have been recently derived from first principles [9].

The second proof only uses observables and relies on the analysis in [7] and
Theorem 4.1. It has the merit of being the starting point of a further analysis where
the field algebra is unknown. In fact the validity of the results in [7] relies on the
fact that the Minkowski space has space-time dimension d > 2. Our result also
extends to the more general setting of charges localized in space-like cones [4]
provided d > 3.

The Statistics in Two-Dimensional Theories. It has long been realized that in two
space-time dimensions the statistics of local fields does not always reduce to
ordinary Bose and Fermi parastatistics but one has the appearance of exotic
statistics, a fact tied up to the possibility of abnormal field commutation relations,
see [14,33] and references therein.

Recently this subject is receiving interest also because of its connections with
such different topics as soliton quantization, conformal field theory and superstring
theory, and polynomial invariants for knots and links, see [14]. It is then natural
to extend our previous analysis to this case.

In two dimensions however the full analysis in [7] is not applicable. The
geometric reason is that the space-like complement of a point is no longer a
connected region, but one has to care about the left and the right space-like
complement. It is widely known to experts that this amounts to replacing the
permutation group by the braid group, a fact that shall play an implicit role in
our analysis.

Assuming that the sector ¢ admits a conjugate sector g, we shall see that the
statistical dimension d(g) = Mé,l_1 is still definable and as above for large 0,

d() = Ind [o((0)), #(0)]'?,

where the index is relative to a standard left inverse of ¢ that, under a regularity
condition, turns out to be the minimal index.
One immediately deduces that

d(g)e{Z cos%,n =3,4... }u [2, 0]

The continuous part [2,00] in the range of d(g) is probably not optimal, being
related to the open problem on the index values of subfactors with trivial relative
commutant in the injective case, see the Outlook.

There is a natural continuation of our work by an analysis of the braid group
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representations that appear, by relating d(g) with the central charge in conformal
quantum field theory (see [13]) and others that we discuss in the Outlook.
Our results have been announced in [26].

2. Index of Subfactors (Semifinite Case)

We begin here a study of the index of an inclusion of von Neumann algebras
N c M; without further discussion we restrict ourselves to the case of von Neumann
algebras with separable preduals, although this restriction is not needed for the
essential part of this paper.

Denote by End (M, N) the semigroup of the endomorphisms of M mapping N
into N and by Aut(M, N) the corresponding automorphism subgroup.

If 7 is a normal faithful semifinite trace of M and «eEnd (M) (= End (M, C)), 7"«
is a trace on M. The modulus of « is the Random—Nikodym derivative

mod (a) = mod, («) = (dt-a:d7),

namely mod () is the unique positive operator h affiliated with the center Z(M)
of M such that

t(o(x)) =1(hx), xeM,

(if o is an endomorphism 4 is allowed to be co on a subspace).
We shall consider the subgroup G(z) of Aut(M, N),

G(t) = {aeAut(M, N),mod (2)€(0, 0)},

and shall say that 7 is centrally ergodic if G(t) acts ergodically on Z(M).
Assuming that N and M are properly infinite there exists a normal faithful
state we M, represented (in the GNS construction) by a vector 2eI?(M) cyclic
and separating for both M and N (briefly a cyclic state for N and M) [10].
The associated canonical endomorphism y,:M — N is the endomorphism
y,€End (M, N) given by

Yo(X)=I'xI*, xeM,

where I = Jy J,, with J and J,, the modular conjugations of N and M respectively
with respect to €2 [21].

Lemma 2.1. mod (y,,) depends only on M,N and 1 and not on w.
Proof. If ¢ is another cyclic state for N, M, there exists a unitary ue N such that [22]
Vo = ol )u*,
hence
1(7,(X)) = Ty, (x)u*) = (3 ,(x)) = t(mod (y,)x), xeM™,
thus mod(y,) =mod (y,). O
A trace t of M such that mod,(y) is a scalar will be called a scalar trace.

Proposition 2.2. If T is centrally ergodic then t is a scalar trace and mod,_(y) = .
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Proof. Let h=mod,(y,,) and aeG(z). Since

Ot'Yq,'a_l = Vs
we have by Lemma 2.1

(@76 %" 1)(X) = T(go(x)) = T(hx), xEM™.
On the other hand
(@76 e~ (%)) = mod (@)t(y (e~ (x)) = mod (a)z(ha ™ * (x)) = (e(h)x),

thus a(h) = h and he[0, co] by the ergodicity of G(z).

If h<1 choose xeM™ with 0 < 1(x) < oo; then t(y"(x)) = h"t(x)—0. On the
other hand 9}, converges pointwise weakly to a faithful conditional expectation &
[21]. By the lower semicontinuity of T we have 7(g(x)) < lim, t(y%(x)) =0, thus x =0
because 7 is faithful. This contradiction shows that A =1. O

By Lemma 2.1 we may define the index of N in M as the operator (scalar in the
above case)

Ind, (N, M) = mod,(y,,)
that we shall later relate to the Jones index.

Remark. If M is a II , factor the fundamental group of M is {mod («), xe Aut (M)}.
One can also consider the fundamental semigroup of M, {mod (x),ceEnd (M)};
the index value for the subfactors of M thus appears as a sub-semigroup of the
latter where one considers only canonical endomorphisms.

Proposition 2.3. If 7 is a scalar trace and Ind (M, N) < oo, there exists a type I,
subfactor F of N such that F'nM is a finite von Neumann algebra. In particular
there exists a normal faithful conditional expectational expectation of M onto N.

Proof. If Ind, (N, M) < oo 7y, is a semifinite trace on M, thus t|y,(M) is semifinite.
Choose F a type I, subfactor of y,(M) such that A =F ny,(M) is finite and set
B=F nM. Then we have the tensor product decompositions M = BQ F and
7,(M) = A® F, where 7 =1"® Tr with 7’ a trace of B. Since 7’| A is semifinite and
A is finite, 7' is finite on A4, i.e. 7'(1) < oo, thus also B is finite. O

Example. Let M = M ® F,,N = M,® 1, with F, a type I, factor and M, a properly
infinite von Neumann algebra. Then y,: M — N isinner and H(y,) = {veM |y (x)v =
vx,xeM} is a Hilbert space in M of dimension n? [22].

Thus if 7 is a trace of M

1(7,(x) = Y. t(oixv¥) = Y 1(xv}v;) = n’z(x)
i=1 i=1
and Ind, (N, M) = n?.

Propesition 2.4. Denote by M, = J, N'J,, the extension of M by N. If © is a scalar
trace on M and h = Ind, (N, M) < oo, there exists a canonical trace on T on M that
extends t. This T is a scalar trace for M < M| and Ind.(M,M )= h.

Proof. By choosing a cyclic state w for N and M the unitary I" = JyJ,, implements
a canonical endomorphism y,: M, — M (because J;, = JyJyJ ), thus p,, restricts
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to the canonical endomorphism of M into N. If ™! is bounded we may put
#(x)=1(p(h~1x)), xeM.
Thus 7 is a trace on M, and if xe M
#(x) = t(p(h~*x)) = t(hh~*x) = 1(x).

To check that 7 is a scalar trace for M = M,, notice that since y is a canonical
endomorphism of M, into M, we have

T(y(x) = tly(h™ ' y(x)) = t(hh™ p(x)) = 1(y(x)) = t(hx), xeM,
that concludes the proof. O

3. A Formula for the Canonical Endomorphism

Let N « M be an inclusion of Neumann algebras on a Hilbert space # and Q2 a
common cyclic separating vector for N and M. Suppose there exists a normal
faithful conditional expectation ¢ of M onto N; we wish to describe the canonical
endomorphism y,:M — N in this case.

Let 0 =(02,2)eM,, ¢ =wceM; and £el*(M), the positive vector re-
presentative of ¢.

The projection

e=[NE&leN’
commutes with J,,. Since £ is separating for N, the homomorphism
¢:N—>Ne, x-—Xxe
is an isomorphism. Let
Vi# =I1*(N,Q2)—>e# =(N,,©&)

the unitary standard implementation of ¢ that we regard as the isometry of #
with final projection e such that

VxV* = ¢(x) = xe, xeN
VQel*(Ne,¢)..

The modular conjugation of I?(Ne, ¢) is

Iy, =Jylef,
therefore

In=JZ=V*Jy,V
and

Ta=J2I2 =V*I, VI,
or

because Ji7 = J5; as E€l*(M, ), .
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Proposition 3.1. With the above notations,
I =V*W,
where V, W are isometries with final projection eeM, VeN' and W =J, VJyeM,,
(M, =JyN'Jy).
Proof. Immediate by the above considerations. O

Remark. The above proposition remains true if I" = JyJ,,, where Jy and J,, are
modular conjugations of N and M with respect to different vectors. In fact any
other modular conjugation Jy of N is given by Jy, = uJyu* with u a unitary of N.

Let A = B be an inclusion of finite von Neumann algebras, £ a cyclic (thus
separating) trace unit vector for B and B, = JzA'J the extension of B by A.
Let 5= (¢ &) be the corresponding tracial state of B. By considering the
inclusion
N=AQFcM=BQ®F,

where F is a type I, factor, we see by Proposition 2.4 that 1;® Tr extends to a
trace 7 =15, ® Tr of M| = B; ® F, where 15, is a trace of B;. Put e, = [A{]€eB,;.

In the case where A4 and B are factors the next proposition shows that Ind, (N, M)
coincides with the II,-index of 4 in B [19] and follows a comment by V. Jones.

Proposition 3.2. If G(t) acts ergodically on Z(N) then

Indt(N3 M) = tBl(eO)— 1'
Proof. Let 2= ¢ ®nwhere nis a cyclic separating vector for F. We want to compute

(z®@Tr)(y(x)) xeM,
where y:M — N is a canonical endomorphism. By Proposition 3.1,

y=¢""y,
where y:x— WxW?* is an isomorphism of M into N,,e=¢,®]1, and ¢ is the
reduction of N onto N,;
1(9(x)) = @ Tr(3(x)) = 5@ Tr (¢~ ' (Y(x)))
=1,Q@Tr(¢™'(Y()), (t4=15l4)
TAeo ® Tr (l/l(x))z

where 1,4, is the trace of Ae, given by
Taeo(Veo) =74(y), yEA.

Let ¢ be the conditional expectation of B; onto B preserving 7p,. If aeG(153® Tr)
it extends to an automorphism a of B; ® F that commutes with e ®id and fixes e
by canonicity.

Moreover as in [19, Proposition 3.1.7] if xeB and ¢, is the 7p,-preserving
conditional expectation of B; onto A we have

Tul(xeo) = 1p,(eoxeo) = ‘CB1(EA(x)eO) = Tul(XSA(eo))
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that shows ¢(ey) = €4(eo)eZ(A) (because eqe A’ N By). Since &(e,) is fixed by G(tp,),
it must be a scalar &(e) = Tp,(e(e)) = 73,(€o)-
We have
tg,(yeo) = 5,(ye(eo)) = 7p,(€0)75,(y), yeA

that shows the equality

Theo = Tnl(eo)_ ITB; | 4eo-

It follows that if xe M ™,

(X)) = Taeo ® Tr (Y(x))
=1g,(e0)” 115, @ Tr(WxW*)
=1p,(€0) 15, @ Tr (xW* W)
=1g,(e0) ' 15, ®Tr(X) = 75,(€0) ™ ' 7(x)
that implies
mod, (y) = tp,(e0) . O

As a corollary we have in this setting an inequality of [29] that we shall
generalize later.

Corollary 3.3. Let N = M be an inclusion of properly infinite von Neumann algebras
and t a centrally ergodic trace for N = M. Then A = Ind, (N, M)~ ! is the best constant
such that

e(x) = Ax, xeM™,
where ¢ is the t-preserving conditional expectation of M onto N.

Proof. Let y:M — N be a canonical endomorphism, then M is the extension of N
by y(N). By using this fact and Proposition 2.4, the proof follows the same argument
in [29] because ¢(e) = 4, where e is the Jones projection as in the proof of Lemma 3.2.

O
4. Index of Subfactors (General Case)

Let N = M be an inclusion of factors with separable preduals. In order to define
the index of N in M we may assume that N and M are infinite, otherwise replacing
NcMby NQFcMQ®F, with F a type I, factor.

We assume the existence of a normal faithful conditional expectation ¢ of M
onto N and we denote by C(M, N) the set of all normal conditional expectations
of M onto N.

Given a faithful normal state ¢,€ N, the modular group ¢ of the state ¢ = @, ¢
leaves N globally stable and we have an inclusion of semifinite algebras [31]

Nc< M,
where N = N ><~,,¢0RLA7I =M x R are the crossed product von Neumann algebras.
The inclusion N = M does not depend on ¢, up to isomorphism, because if e N,
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is another faithful state and y =y, ee M, then the Connes cocycle

(DY:D@), = (DY o: Do),

belongs to N [6]. B
The canonical trace t of M is relatively invariant under the dual action
O:R—- Aut(M,N),

T 0,=e 't, tekR.
Since @,lZ(M) is ergodic, 7 is a scalar trace by Proposition 2.2 and we define
Ind, (N, M) = Ind, (N, M).

An immediate verification shows that if N = M are semifinite, and 1, is a trace on
M then

Ind, (N, M) = Ind,, (N, M),

where e,eC(M,N) is the t4-preserving conditional expectation that exists if
Ind,, (N, M) is finite by Proposition 2.3.
Let @ be the dual weight of ¢ on M,

P(x)=o(f O,(x)dt), xeM*.

Then ¢|N equals @, the dual weight of @,, and in particular it is semifinite on
N. The modular group ¢” of @ is given by

o’ |M =0*, o?(U)=U,, t5seR,
where the U, are the usual unitaries in M; in particular ¢°|; = 6% and by Takesaki
criterium [32] there exists a faithful expectation §eC(M, N) that preserves @; it
follows that
EM=¢, &Uy)=U,.
Let K be the infinitesimal generator of U and H = e X, thus H is a positive operator
affiliated to N and
T=@(H").
It follows that

1(E(x)) = p(HE(X)) = $(E(Hx)) = G(Hx) =(x), xeM™,

where the equalities are justified by the spectral theorem; in other words £ is the
T-preserving conditional expectation of M onto N.

We are now ready to extend the Pimsner—Popa inequality [29] to the general
case.

Theorem 4.1. Let N = M be an inclusion of infinite-dimensional factors, ee C(M, N)
a faithful conditional expectation and set A =1Ind,(N,M)~'. Then A is the best
constant such that

g(x)=Ax, xeM™,

Proof. We may assume that M is properly infinite. Following the previous
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notations the extension £ of ¢ satisfies
Bx)=Ax, xeM*,

by Corollary 3.3 (because M is semifinite), hence ¢=&|M also satisfies this
inequality. To show that 1 is the best constant consider the bidual weight ¢ on
M x gR. Then & extends again by Takesaki criterium to a conditional expectation
§of M x gR onto N x R that preserves . Since under the isomorphism of M x gR
with M ®F, § is mapped to ¢ ®Tr and N x gR onto N® F, we have that £ is
mapped to ¢®id (by the @- invariance). It follows by the proof of Corollary 3.3
that there exists a projection eeM = M x gR ~ M @ F such that

(e®id)(e) = A.

Now if we choose a type I, subfactor F, of N with infinite relative commutant
the tensor product decomposition

M ~(F,AM)®F,

gives an isomorphism of N ¢ M with N® F, « M ® F, that maps ¢ to ¢ ®id, hence
there exists a projection pe M with ¢(p)= 4 and 1 is the best constant such that
gx)= ix, xeM™*. O

Remark. If M is finite dimensional, Ind, (M, N)~! is not the best constant in the
inequality of Theorem 4.1. For example if M = B(C"), N = C and ¢ is the normalized
trace, then Ind, (M, N) = n® but the best constant is 1/n. However A is always the
best constant such that ¢ — 4-id is completely positive.

Corollary 4.2. Let N <=M be an inclusion of factors and ¢eC(M,N) a faithful
conditional expectation. Then Ind, (N, M) coincides with the Kosaki index [18].

Proof. By Theorem 4.1 A =1Ind, (N, M)~! is the best constant that satisfies the
inequality &(x) = Ax, xeM .. But the same proof of [29, Proposition 217 shows
that the inverse of the Kosaki index is such a best constant by applying
[18, Lemma 3.1]. O

Corollary 4.3. Let N <M be an inclusion of factors and ¢eC(M,N) a faithful
expectation. Then Ind,(N, M) belongs to {4cos*n/n,n=3,4...}U[4, 0].

Proof. Immediate by Corollary 4.2 and the extension of Jones theorem to infinite
factors [18]. O

Corollary 4.4. Let N =« M, ¢ and A be as in Theorem 4.1. Then
A=sup{t=0,[lex)| = t|x|l,xeM,}.

Proof. If xe M , then g(x) = Ax, thus ||&(x)|| = A || x||. On the other hand there exists
a projection ee M with ¢g(e) = 4, thus ||e(e)|| = A= A|le]| and A is the best constant
for that inequality. O

Proposition 4.5. If N« N; € M are factors, ¢,€C(M,N,),e,€C(N,, N) are faithful
then

Ind, (M, N) =1Ind,, (M,N,)Ind,,(N,,N)
With &= 82'81.
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Proof. This follows immediately by the chain rule ~for the canonical endomorphism
(yo:M — N is the product of y,:M — N, and y,:N,; — N) and the definition of the
index. O

Corollary 4.6. If N, M; are inclusions of factors and ¢;eC(M;, N,) are faithful
expectations (i=1,2) then

Indel®62(N1 ®N2, Ml ®M2)= In(i‘,;1 (Nl,Ml)Indgz(Nz, Mz).

Proof. If N, = M, or N, = M, the corollary follows immediately by the definition
of the index. In general we apply Proposition 4.5 to the inclusions N;® N, <
M, ®N,cM,®M, so that
Ind, &, (Nt @ N, M, ® M)
=1Ind, ¢;i(Ny®N,, M; ®N,)Indyg,,(M; ®N,, M, @ M)
=In(l81 (NI’MI)Indez(NZ’MZ)‘ O

5. The Space of the Conditional Expectations

Extending the analysis made in [22] and in Sect. 3 we study here the relationship
between the canonical endomorphism and the conditional expectations and the
dependence of the index on the latter.

Let N = M be an inclusion of infinite factors and y =y,:M — N the canonical
endomorphism associated with the cyclic state weM .

The space

H(y) = {veN|y(x)v = vx,xeN}
is a Hilbert space of isometries in N (possibly with left support less than 1).
In fact if v, we H(y) then
w¥ox = w¥y(x)v = xw*v, xeN,
thus w*veZ(N) = C.
Denote by S the unit sphere of H(y), S = {ve H(y)| | v|| = 1}; every element veS

is an isometry in N.
If we put

g,(x) =v*y(x)v, xeM,

then we get a map ¢,:M — N; in fact Proposition 5.1 will show that ¢,e C(M, N)
and all normal expectations arise in this way.
Next proposition was obtained in a discussion with J. L. Sauvageot.

Proposition 5.1. The map
veS —»¢,eC(M,N)

is a continuous and surjective (S carries the strong topology and C(M, N) the pointwise
weak topology).

Proof. Since y(M) = N we have at once that
&,(N)=v*y(N)v < N.
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Moreover if xeN then
£,(x) = v¥y(x)v = xv*v = x,

so &,| N =id. It follows immediately that ¢, is normal and ¢,e C(M, N).
If v, — v strongly, then v} - v* weakly and

£0,(X) = VY (X)0, = v*Y(x)v = £,(x)

(weak convergence) thus v— ¢, is continuous.

It remains to show that surjectivity. Let then ee C(M, N) and put ¢ = w-¢, where
the cyclic state w = (-£2, ) is represented by the vector . Let £eI?(M, ), be the
vector representative of ¢. The map

Vo:x2->x¢, xeN
determines an isometry VyeN'". Set
p=VoV§=[N{]eN',
so that p=J,pJ,., where J,, is the modular conjugation of L*(M, Q). If we set
V=JyVoJyeN,
where Jy is the modular conjugation associated with N, Q and I" = JJ,,, then
I'*V=T*JyVoJy=JyuVody=JIyuJ5Vo= Vo,

where J§ = Jy |3z is the modular conjugation of Np,¢ so that VoJyV§ = J§.
Hence

V¥(X)V=V*I'xI'*V=VixVy=xV§Vy=x, xeN
and
e (X)=V¥*(x)V=V*I'xI'*V =V§xV,
=VEpxpVy =VEe(x)pVy = Voe(x)VE =¢(x), xeN.
Moreover VeH(y) because
yX)V=IxI'*V=IxVo=ITVyx=Vx, xeN. O

Corollary 5.2. If Ind (N, M) < co then C(M, N) is compact.

Proof. By the above theorem it suffices to show that H(y) is finite dimensional. If
{v;,iel} is an orthonormal basis of H(y), then e; = v;v} is an orthogonal family of
projections in y(N)Y n N. However the canonical endomorphism N — y(N) equals
y? [22] and this implies that Ind(y(N), N)< oo (taking crossed product) thus
P(N) NN is finite dimensional and [ is a finite set. O

Proposition 5.3. Let N = M be an inclusion of factors. If there exists a faithful family
of conditional expectations in C(M, N), then C(M, N) is affinely homeomorphic to
the normal state space S(N'nM) of N'n M.

In particular there exists a faithful expectation in C(M, N).

Proof. Let y:M — N be the canonical endomorphism and H(y) = N be as above.
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Let z be the left support of H(y). Then zey(N) NN and since
uH(y)u* = H(y)

for all unitaries in y(N)Y "N,z belongs to Z(y(NY nM). By using a maximality
argument one obtains z = 1.

By [22] y|N is inner and there exists a faithful conditional expectation in
C(M, N).

Now the map

eeC(M,N)—>¢|N'nMeS(N'n M)

is affine and continuous. Let ¢, be a faithful normal state of N and ¢ = ¢, ¢,
where ee C(M, N) is faithful. Then ¢? leaves N and N’ n M stable, hence ¢ factors
through N, =N v (N'n M),

e=26,'¢;, &€C(N{,N), &eC(M,N,).

It follows that N v (N’ n M) is naturally isomorphic to N ® (N’ n M) and any state
@eS(N’'n M) gives a normal conditional expectation ¢, in C(N, N).

Note that we have NynM < N, hence C(M, N,) contains only one element
¢;. The conditional expectation ¢, ¢; obviously satisfies

&, [N'OM = o,
and we have a continuous inverse of e—»¢|[N'nM. O
It is now not difficult to check that the map
eeC(M, N)—- Ind, (N, M)e[1, + o]

is continuous and has a convex restriction to expectations corresponding to tracial
states of N'n M. If Ind (N, M) < oo, it attains a minimum at a unique point.

We shall in fact give an explicit formula for such a minimal conditional
expectation based on a formula in [18] (next Proposition 5.4), that we prove in
our setting.

If N= M are factors and e is a projection of N'n M, then for any faithful
e¢eC(M, N) the formula

&,()=e(p) 'e()p xeM,
defines an element of C(M,, N ).

Proposition 5.4. If {p;} is a partition of the unity in N'nM that belongs to the
centralizer of | N'n\ M then

Ind,(N,M) =} &(p)” "' Ind, (N,,M,).
Proof. With the notations of Sect. 4, p; belongs to Z(N' n M). The problem is thus
reduced to the semifinite case, (inclusions of semifinite von Neumann algebras with
a centrally ergodic trace) hence to the finite case by Proposition 1.3 and one applies
the argument in [19, Lemma 2.2.2] by using Lemma 3.2. O

Notice that if Ind (N, M) < oo then N'n M is finite dimensional; if NnM =C
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then C(M, N) contains only one element; if N’ n M is a factor there exists a canonical
expectation ee C(M, N), namely the one such that ¢] N'n M is the trace of N'n M.
It follows straightforwardly by Proposition 4.5 that this canonical expectation is
the unique one that minimizes Ind (M, N).

If N’ M is not a factor we choose a partition of the unit by minimal projections
z;€Z(N'nM). Proposition 5.4 shows that the minimum of Ind, (M, N) is taken
when ¢|N'n M is a trace and to specify ¢ we should determine the coefficients &(z;).

Theorem 5.5. If N = M is an inclusion of factors with finite index, there exists a
unique conditional expectation ee C(M, N) that minimizes Ind, (N, M).
If {z;} is the family of the minimal central projection of N'n\ M, then ¢ is given by
e|N'nM is a trace
I}

&(z;) = W,

where I;=Ind (Nz;, Mz,) is the index of Nz; of Mz, given by the trace of (N’ nM)z,.
The minimal index is given by

Ind (N, M)!/2 =Y I}12,

13

More generally the above formula holds if {z;} is any partition of the unity by
projections in ¢|N'n M and I, denotes the minimal index Ind (Nz;, Mz;).

Proof. By the above considerations and Proposition 5.4 we must minimize the
expression

Y

i

with the conditions ¢, >0, ) ¢; = 1. The theorem is then obtained by an elementary
application of the Lagrange multipliers theorem. O

Remark. If N = M is an inclusion of finite factors with finite index, the minimal
expectation in C(M,N) does not always coincide with the trace preserving
conditional expectation. This fact is related with the inequality between the entropy
and the logarithm of the index [29].

Corollary 5.6. If N; = M; are inclusions of factors (i=1,2),
Ind(N;®N,,M,;®M,)=Ind(N,,M,)Ind(N,, M,).

Proof. It is easily seen that we may assume that Ind (N;, M) is finite (i = 1, 2). Let
then g;e C(M;, N;) be the minimal expectations. By Corollary 4.6 we have only to
show that ¢; ® ¢, is the minimal expectation in C(M; ® M,, N, ® N,). Since the
relative commutant of N; ® N, in M, ® M, coincides with (N, "M ;) ® (N, M),
Theorem 5.5 immediately entails the corollary. O

For future use we include the following.

Proposition 5.7. If N = M is a finite index inclusion of factors, then every conditional
expectation ¢ of M onto N is normal.
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Proof. By a straightforward extension of the argument in [29, Proposition 1.3] to
arbitrary factors, M is a finitely generated right N-module, i.e. there exist finitely
many elements 4,,...,4,eM such that every xe M may be written uniquely as

xzzxili, xieN.
It follows that
e(x) =Y x;e(Ay),

thus ¢ is normal. O

6. Index and Compact Actions

Let M be a von Neumann algebra and a:G — Aut(M) an action of a compact
group G on M. We denote by E the a-invariant conditional expectation of M onto
the fixed point algebra M*,

E = [a,()dg.

If poe My, is a faithful state of M® then ¢ = ¢, E€ M is a faithful a-invariant state
of M. The modular group 6% of M associated with ¢ restricts to ¢*° on M* and
we have the inclusions

M* < M
N N
Maxa,lpoRCM XUWR

Lemma 6.1. The dual trace T of M x #R restricts to the dual trace ty, of M* x _«R.

Proof. The argument is the same as the one given in Sect. 4. By using the notations
there given, t= @(H-) and 1, = @o(H"), where U, = H" are the usual unitaries in
M*x «RcM x oR. Since § extends @, also 7 extends 7. O

_ Note now that the action o extends to an action &:G— Aut (M), where
M =M x R, determined by

6,M=a, &U)=U, teR geG,

where the U, are the usual unitaries in M, as follows easily because o and o*
commute.

Lemma 6.2. The G-fixed point subalgebra M® of M is M* X _«R.

Proof. Obviously M* x R is contained in M°®. To show the reverse inclusion we
consider the conditional expectation Ee C(M, M"),

E={g,dg.
By the definition of & we have
EIM=E, EU)=U,
in particular E(M)= M® Since the finite sums

x=2in,'. xiEM, tiGR,
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form a weakly dense subalgebra of M and E is normal, from
E(x) =Y E(x)U,eM" x 4R,
we deduce that M* = M* x wR. O

For simplicity we assume now that M is a factor and consider a a-invariant
subfactor N of M. Suppose eeC(M, N) is a faithful conditional expectation that
commutes with a, so that g, = ¢| M*e C(M?* N?).

Theorem 6.3. If «|N is dominant then Ind,(N, M) = Ind, (N* M?®).

Before proving the theorem recall that an action a:G — Aut(N) of a compact
group G on a von Neumann algebra N is dominant if N* is properly infinite and
the monodial spectrum of o is complete, i.e. for every neG there is a a-invariant
Hilbert space of isometries H in N such that a|H is equivalent to =, see [30, 24].

Elementary examples (e.g. with M a finite dimensional factor and N = C) show
that Theorem 6.3 may fail without the dominance assumption, instead one has the
following.

Proposition 6.4. With the above notations

Ind, (N, M) = Ind, (N* M%)
(without any dominance assumption).
Proof. If A=1Ind,(N, M)~ !, then by Theorem 4.1,

gx)=Ax xeM™,

hence

go(y)=e(y)Z 4y, yeM*,
showing the desired inequality again by Theorem 4.1. O

Lemma 6.5. Let o:G — Aut(M, N) be an action of a compact group G on the inclusion
of von Neumann algebras N ¢ M. If weM , is a a-invariant cyclic state for N = M,
then wy=w|M* is a cyclic state for N* = M* and the canonical endomorphism
Ywo: M*— N* is the restriction to M* of y,:M — N.

Proof. Let 2 be the vector representative for w, cyclic and separating for N and
M, and U the Q-fixing unitary implementation of o, i.e. U, x2= o, (x)42, xe M, geG.
The subspaces [M*2] and [ N*£2] coincide since they are both equal to the subspace
of the U-fixed vectors, therefore w, is a cyclic state for N* = M* Since [M*Q2] is
an invariant subspace for the modular conjugations of M and N with respect to
€0 1[32], it follows immediately that y,, restricts to y,,. O

Proof of Theorem 6.3. Let ¢, be a faithful normal state of N* and
o=@y elkeM,

the extension of ¢, to M by ¢ E (since E and ¢ commute ¢- EeC(M, N*)). The
modular group ¢? of ¢ leaves N, M* and N* globally invariant; if we also denote
by ¢* restrictions of ¢%, we have to show by Lemmas 6.1 and 6.2 that the index
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of N x «R in M x R with respect to the dual trace © of M x R is equal to the
index of N* x »R in M* x R with respect to 7, = 1| M*:
Ind,, (N% M%) = Ind, (N, M).

Let E = j&gdgeC(JVI, N) be as in Lemma 6.2. Since «| N is dominant and &|N = o| N
also &| N is dominant.

Let woeM « be a cyclic state for N = M (we may assume that N and M are
infinite) and

o=wyEeM,,.
As in [24] o is a cyclic_state for N<cM and by Lemma 6.4 the canonical
endomorphism y,,,:M*— N* is the restriction of y,: M — N; since
©(y,(%)) = 1(hx), xeM,
1(70(X)) = T0(o (X)) = To(kx) = T(kx), xeM®,

where h=mod,(y,), kK =mod,(y,,), it follows that E(h)=k. Since M is a factor
he[1,00] and 1, is a scalar trace

Ind, (N, M%) =Ind,(N,M). O

Denoting as before by Ind (N, M) the minimal index of N in M, a natural
question is whether Ind(N* M*)=1Ind(N, M) in the above theorem, namely
whether the minimal conditional expectation ¢e C(M, N) restricts to the minimal
conditional expectation ¢,eC(M®* N*). We give here a positive answer under
conditions that suffice for our applications.

Recall that the centralizer M® of ¢ on M is equal to {xe M |&(xy) = &(yx), ye M}.

Corollary 6.6. Let o:G— Aut(M,N) be as in Theorem 6.3 with N% M* factors.
Assume further that there exists a partition of the unit by projections e; of (N' N M)*
such that

e,eM?,  (N* nM%)e, = Ce;.
Then Ind (N, M) = Ind (N%, M*).

Proof. First we assume that {e;} contains only one element, ie. N nM*=C. In
this case there exists a unique element ¢, in C(M* N%); if e C(M, N) is the minimal
expectation (we assume N < M has finite index) then & commutes with a by
canonicity and ¢| M* = ¢, and Theorem 6.3 applies. In general we denote by

I;=Ind(N,,M,)
the minimal index, then by the above comments
I;=Ind(N,,M,)=1Ind (N%, M2).
Since e;e M* also e;e(M*)*; by Theorem 5.5,
Ind (N, M*)'? =Y I}?> =1Ind(N, M)'?
that concludes the proof. O
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Corollary 6.7. With the assumptions of Theorem 6.3, if G is abelian then
Ind (N* M*) =Ind (N, M)
assuming that N* M* are factors.

Proof. We may assume Ind (N, M) < 0. Let eeC(M, N) the minimal expectation,
we have to show that ¢, = ¢| M* be the minimal expectation ¢, in C(M*% N*). It is
sufficient to show that &, extends to a faithful a-invariant expectation ¢' in C(M, N),
since then we have by Theorem 6.3

Ind, (M, N) = Ind,, (M*, N%) < Ind,,(M* N*) = Ind, (M, N) = Ind (M, N),

and ¢ = ¢ by the uniqueness of ¢ given in Theorem 5.5.

To this end let w,eMy be a faithful ey-invariant state, @ =w, E and
0:G — Aut(M* N%) the dual action of «. By its uniqueness &, commutes with 0,
thus the modular group ¢ of w leaves N globally invariant [32] and we have a
conditional expectation ¢ e C(M, N) that leaves w fixed. Since ¢'| M* leaves w,, fixed
g|M*=¢, as desired. O

The implications of Theorem 6.3 are also examplified by the Galois cor-
respondence established in [1] that we state in the case of a prime compact action.

Corollary 6.8 [1]. Let a:G — Aut(M) be an action of a compact group G on a factor
M such that M* "M =C. If NcM is a a-invariant von Neumann subalgebra
that contains M® there exists a closed normal subgroup H of G such that
N = {xeM|a,(x)=x, geH}.

Proof. By considering a quotient of G we may assume that g —o,| N is one-to-one
and show that N = M. By tensoring M by a type I, factor we may assume that
M?* is infinite, thus «|N is dominant. By Theorem 6.3 we have

Ind, (N, M) = Ind (M? N%) = 1,

thus N =M (the conditional expectation eeC(M, N) exists by an argument in
[27). O

The interest in the above proof stays in the fact that extends to the case of
locally compact actions [27].

We now restrict our attention to a special case of Corollary 6.6 that will appear
in the next section.

Let a:G — Aut(M) be an action of a compact group G on the factor M and
denote by #*(M) the set of the a-invariant Hilbert spaces in M, see [30,247]; if
He#*(M), the inner endomorphism g, of M implemented by H

ou(x)= Z vxv¥, xeM,
where {v;,iel} is a basis for H, depends only on H and not on the basis, hence gy

commutes with «. In particular gy restricts to an endomorphism g, of the fixed
point algebra M*.

Proposition 6.9. If M* "M = C and «|H is irreducible, then 9o(M*Y "M*=C.
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Proof. We only sketch the proof of this proposition. The detailed proof will be
found in [27].
Let xego(M®) N M* namely xe M* and

0o(y)x =x0o(y), yeM*®
or

YoyvFx =Y xvyvf  yeM*

with {v;,iel} a basis of H as above. Multiplying both sides of this equality by v}
from the left and by v, from the right we get

YUR XU, = vF X0y,  yeM?,

namely v} xv,eM* "M = C.
Let ¥ be the isomorphism of M onto Mat,(M)=M ® F,, where F,, is the type
I, factor, n = dim (H) given by

Y(a) = {viav,}, hkel,

then ¥ intertwines o with o ® ad ©, where neG is given by «|H.
The condition v} xv,eC then means

¥(x)el ®F,.

Since xeM* we have ¥(x)e(M ® F,)*®*" thus ¥(x)eC because = is irreducible.
O

Let H be as above. Setting
(H, H) = lin. span {vw*|v,we H},

recall that (H, H) is a type I factor isomorphic to B(H) and one has the tensor
product decomposition [30]

M ~¢y(M)®(H, H).
Corollary 6.10. With the above notations assume that M* nM = C, then
Ind (0o(M*), M*) = (dim H)2.

Proof. We may assume that M is infinite. We notice first that o| 9y (M) is dominant,

in fact o commutes with g, thus alog(M) =gy o0z’ and o is dominant. By
Theorem 6.3,

Ind,, (0o(M*), M%) = (dim H)?,

where g, C(M? 0,(M?)) is the restriction to M* of the expectation ee C(M, o(M))
given by the trace on ¢(M)nM =(H,H), ie. ¢ is the minimal conditional
expectation. In fact by the example following Proposition 1.3 and by Corollary 5.6
we have

Ind (9(M), M) = (dim H)*.

We have to show that ¢, is the minimal conditional expectation in C(M*, go(M®)).
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If «|H is irreducible it follows by Proposition 6.9 that g9,(M*) nM*=C, thus
C(M?* 0,(M%)) contains only one element and we have nothing to prove.

In general we consider the partition of the unity by the projections e;e(H, H) =
o(MY nM onto the irreducible components of a|H. Then the e; are a-invariant
and (o(M*) "M*)e; = Ce; because of Proposition 6.9, and we may apply Corollary 6.6
to conclude. O

By the above corollary we have in particular examples of subfactors with trivial
relative commutant and index n? neN, that in general do not come from the
crossed product construction.

Theorem 6.11. Let M be a factor ( finite or infinite) and o:G — Aut (M) an action of
a compact group with M* "M = C. If n is a unitary representation of G on a Hilbert
space H of dimension n, then

Ind (M*® 1,(M ® B(H))*®*") = n?
and if 7 is irreducible M*® 1 has trivial relative commutant in (M ® B(H))*®I™,

Proof. By tensoring M with a type I, factor we may assume that M is infinite,
thus o is dominant. Let He #*(M) be chosen such that o|H is equivalent
to 7. Then we have a tensor product decomposition M =~ ¢,(M)® (H, H), where
o becomes a®adn (see the proof of Proposition 6.9). The rest follows by
Corollary 6.10. O

It would be interesting to extend Theorem 6.11 to quantum groups and square
integrable representations of locally compact groups.

7. Index and Parastatistics

In this section we shall exhibit a connection between the statistical dimension of
a superselection sector in Quantum Field Theory and the index of certain
subfactors, that will rely on the previous analysis in this paper (local observable
von Neumann algebras are properly infinite, see [25]).
Let
OeR?— </(0)

be the net of local observable von Neumann algebras associated with the set ¢
of double cones of the Minkowski space of space time dimension d.

In this section we assume d > 2 so that the analysis is [7] is applicable. There
is an analogous version of our results in the case of charges localized in spacelike
cones [4], provided d > 3.

We use the usual assumptions on the net o7(0) as in [7]. In particular we
assume Haag duality

A (O)=AL(O), OeX,

where (0" denotes the space-like complement of ¢, and for an unbounded region
OeR’, /(0) is defined as the C*-algebra generated by {/(0,);0, = 0,0,eX}.
In a Wightman theory duality automatically holds for the net ¢ — o/(0')Y that
may be used as well in our analysis [2].
As explained in [7] the physically relevant representations of the quasi-local
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C*-algebra

o =\)A0)”
(norm closure, union over OeX") are realized as localized endomorphisms of </,
namely endomorphisms ¢ of .o/ that restrict to the identity on 2/(¢’) for some
OeA (o is localized in () at least in short range interaction theories.

Denote by & the semigroup of all localized endomorphisms of .«. Note that
if ged is localized in O, then if Te/(0), SeL(O'),

o(T)S = o(TS) = o(ST) = Se(T),
thus by duality
o(L(0)) = A(O) = A(0),

and we get inclusions of von Neumann algebras o(+Z(0)) = </ (0) (¢ is automatically
locally normal).

Two endomorphisms g, ¢’e& are equivalent if they are equivalent as represent-
ations of .&/; equivalently there exists a unitary ue.</ such that

o' (T)=ug(Tw*, Tes (7.1)

(automatically ue.</(0) for some OeX).

Let &, be the semigroup of the ged that are equivalent to all their space-time
translated. The set of the equivalence classes of &, corresponds to the superselection
sectors.

If ge&, one chooses ¢'eé&, in the same equivalence class [¢] of ¢ so that ¢ and
¢’ are localized in space-like separated regions and a unitary ue./ such that (7.1)
holds. The unitary

€,=u*o(u) (7.2)

depends only on ¢ and not on ¢’,u; moreover ¢ is selfadjoint (one uses here the
assumption d > 2).

Associated with ¢ there exists a left inverse ¢ of g, i.e. a completely positive
map ¢:f - with

¢-0=id.
If ¢ is irreducible the statistic parameter of g
3, = ble,)
is a scalar depending only on [¢]. Its possible values are
A,=0,+1,+% 5.

More generally if g is reducible there exists a standard left inverse ¢, namely a
left inverse such that /lg2= ¢(8g)2 is a scalar. The inverse of |4,

d(@) =14,

(with the convention 0™ ! = o) is the statistical dimension of . If d(g) < oo (¢ has
finite statistics) the standard left inverse is unique.
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For simplicity we shall assume in the sequel that &/(0), Oe A, is a factor. This
assumption, rather general, can be avoided either with minor modifications of the
arguments or replacing ¢ with a wedge region W (a Poincaré translated of the
region x; > |x,|), since it follows automatically that .«/(W)" is a factor of type I11,,
see [25].

Theorem 7.1. If ge& is an endomorphism of s/ localized in the double cone O, e A",
then
d(0)* = Ind [o(4(0)), #(0)]

for all Oe A" that contains O,.
Notice that Theorem 7.1 states that d(g)? is equal to the minimal index of

o((0)) in (0).

As explained in the introduction we shall give two proofs of this theorem. We
give now a first proof of Theorem 7.1 by assuming the existence of a field net
0 — % (0) of von Neumann algebras, a compact group G (the gauge group) and
an action a:G — Aut(¥), where # = () #(0)", such that

OeX
2(F(0)=F(0), g<G.
2 (0) is the o-fixed point algebra of Z(0),
A(0)=F(0),

and there exists an element g, in the center of G with g2 =id such that Bose and
Fermi fields

F, ={TeF|a,(T)= £ T}

localized in space-like separated regions commute or anticommute according to
one of them is a Bose field or borh of them are Fermi fields.

If He#*(# (0)) is a a-invariant Hilbert space then the inner endomorphism
oy implemented by H on & restricts to & to an endomorphism gy| €&, localized
in @0 and we assume that all elements in &, arise in this way.

We further assume that a is a prime action, namely

LOYnF(O)=C, OeA

that implies that «|% (0) is dominant because .o/(0) is properly infinite [25].
This structure has been recently announced by Doplicher and Roberts to follow
from general assumptions of Quantum Field Theory [9].

Lemma 7.2. a) If ¢ is a left inverse of pé& ., then
Ep = e ¢ k

is a conditional expectation of s/ onto ¢(#) and e,(/(0)) = o(£(0)) if O > 0, O A
Conversely if ¢ is a conditional expectation of o/ onto 9(</) then

b.=0 e

is a left inverse for .
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b) If d(g) < oo then every left inverse of g, thus every conditional expectation of
o onto 9(f), is automatically locally normal.

Proof. a) Clearly ¢ maps «/(0) onto o(/(0)) and ¢(#(0)) = #(0) if 0> 0,. If
Te s/ (0), then
es(e(T)) = ¢ ¢-o(T)=o(T),

thus ¢,]o(#) = id. Since ¢ is completely positive and unital, ¢ has norm 1, hence
¢, has norm 1 and is a conditional expectation. The rest is immediate.

b) This follows by a) and Proposition 5.7 and the following inequality
(7.5. O

First proof of Theorem 7.1. Let geé&, be the restriction to of of the inner
endomorphism g, of # implemented by the a-invariant Hilbert space He #%(Z (0)),
where OeJ” as above.

By Corollary 6.10

Ind (o(/(0), 4 (0)) = (dim H)>.

We may assume dim H < oo (the argument that follows will also cover the case
dim H infinite).

Let ¢ be the conditional expectation of # onto gg(%) such that ¢|(gg(F) N F)
is the trace of (H, H) (one has a tensor product decomposition # ~ g54(#)® (H, H)).
Then €| (0) is the minimal expectation in C(F(0), 0yz(F (0)). Now ¢, =¢|./ is a
conditional expectation of .2/ onto g(«/) and by Theorem 6.3 and Corollary 6.10
&0 is the minimal expectation in C(=/(0), o(#/(0)). By Lemma 7.2 ¢ =p *-¢, is a
left inverse of ¢ and we have to show that ¢ is the standard left inverse of ¢ and
d(o) =dim H.

By definition ¢ = ¢~ '-g, thus, by the previous notations,

j‘Q = ¢(€g) = Q— 1(80(€g))’
and we have to prove that the square of

&(€,) =&o(€,) = 4,

is a scalar and |4,| = (dim H) ™.

Let {v;,iel} be a basis of H that we may choose so that v,e% . ,iel, and
v;e# _,iel _, where I, vl_=1

Let K be Hilbert space in #*(F (0,)), with 0,eX" space-like separated to ¢
such that «| K is equivalent to «| H and let {w;, i€} be a basis of K that corresponds
to {v;,i€l} under the unitary equivalence.

The space

(K, H) =lin. space {wv*, we K, ve H}

is a invariant and isomorphic to the tensor product of K and H*. The restriction
o|(K, H) is equivalent to 7 ® 7, where = = o| H and 7 is the conjugate representation
of . It follows that the unitary

“=2Wi”?‘= Z wivf + Z woF=u, +u_

iel iel + iel -
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is a-invariant, thus u and u,,u_ belong to /. Since
o' = oxl o = uoy (Ju*| o = ug(Ju*
is localized space-like to g, it remains to check that
2= g(u*o(uw))? = (dim H) ™2,
A direct computation (see [27]) shows that ¢ is given by

8(x)— Z vv¥xvuf, xeZ,
n i jer
where n = dim H; hence
* * 1 % % *
e(u) = Z vivFuouf == Y, vp¥wofou]
n ijer n i jkel

== Z vivFwF = Zlg(v;"wj)
n je

n i jel

1 . AYE

=0 ; w;v} Z w;v} =;Q(u+—u_),
iel + jeI -

where we have used the normal commutation relations between v; and w;.
In conclusion

fle) = o) = e()*0() =, —u_)elus +u_)

= ou, —utu)= o(E. ~E_)

where
= Z vvf
iel 4

are orthogonal projections with sum 1 and
2 1 2 1
)} =—5e(Es —E-Y)=—. O

Notice that in the above proof we have implicitly proved the following.

Proposition 7.3. If oeé, has finite statistics, a left inverse of ¢ of ¢ is the standard
left inverse of o iff e, =g restricts to the minimal conditional expectation in
C(£(0), o(4(0)) for some, hence for all, Oe X", 0 > 0,.

We shall give a direct proof of Proposition 7.3 in the second proof of
Theorem 7.2. This proof will be at the observable level, making no use of the field
algebra and the gauge group. We begin with the following.

Lemma 7.4. If geé, is localized in O then o(f) Nnf < o(HL(O)) N AL(0O).
Proof. Let Tep() nof; since o|A(0,)=id if O, is a spacelike to (), we have
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Teo(A(0,)) = L(0,), hence TeHL(O') = L(0) by duality. Hence Teg() N
#(O) = (A O)) " (0). O

In the second proof of Theorem 7.2 we shall consider for simplicity only elements
0€é&, with finite statistics and shall prove that

Ind, [o(£(0)), #(0)] = d(o)%,

where eeC(#(0), o(#£(0)) is the restriction to &/(0) of ¢, =o' ¢, where ¢ is the
unique left inverse of g.

The statement of Theorem 7.2 that d(g) equals the minimal index of ¢(/(0))
in &/(0) can be obtained by further assuming that

(A (O)) nst(0)=C (7.3)

whenever g is irreducible and localized in Oexf".
We shall comment about the validity of the relation (7.3) in Proposition 7.5.

Second proof of Theorem 7.2. We begin by assuming that g is irreducible. In this
case Lemma 3.8 of [7] shows that

IS(T*T) | 2 21 T*T||, Tes. (7.4)
Since ¢ =0~ '+, by Lemma 7.1 and g is isometric we have
leg(T*TII Z 2 T*T|, Ted,
hence by Theorem 4.1
Ind [o(+£(0)), #(O)] < 4, * = d(0)*. (7.5)
By Theorem 4.1 we have to show that |4,] is the best constant such that
leg(T) | 2 2211 T, Te£(0)*, or equivalently such that
oM Z TN, Test(0) .

Let €, be the representation of the permutation group P, associated with ¢
[7], neN, and E", the totally symmetric or anti-symmetric projection in the group
algebra C[P,]. Then by [7, Lemma 5.1] with F", = €(E".), one has

PF)=A2F""1 or G(FL)=A2F" 1,
where n = d(g), according to whether A, = + 1/n. It follows that
IFIN = AZNFy I =47,

where * = 4 or — and A? is the desired best constant.
It remains to consider the case where g is reducible. We apply [7, Proposition 6.6]
and assume d(g) < oo so that g(of) N/ is finite dimensional. If ¢ is the standard

left inverse of ¢ and ¢, = ¢ ¢, then
gglo(A) N = plo(A) N =Tr(),

where Tr is a faithful tracial state. Let E; be a partition of the unit by minimal
projections of o(«Z) no/. Then T — o(T)E; is an irreducible representation of o/
that corresponds to a g;e&, and

d(g;) = Tr (E;)d(o).
Setting I; = Ind [0,(#(0)), #(0)] the above discussion shows that
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I} =Ind [0/ (0)), 4 (0)]"? = Ind [o(/ (0))E;, # (O)E]'* = d(g;) = Tr (E;)d(0),
where we have used Lemma 7.4 that entails that E;eo(/(0)) n/(0) and g; is
localized in @. It follows by Theorem 5.5 that

Ind [o(/(0)), #(0)1'* =} I}"* =d(e). O

i

We now consider a property that will improve Lemma 7.4. Denote by M v N
the von Neumann algebra generated by M and N. If Oe A" let %, be the C*-algebra
generated by the union /(0) v «(0,), O, < ¢',0 bounded. By duality 4, is
irreducible.

Proposition 7.5. Let ge&, be localized in O. If d(g) < 2, then
oL (O)) nL(O)=C.
In general the above relation is equivalent to the irreducibility of ¢lg,-

Proof. If d(p) < 2, the above proof shows that Ind [¢(+/(0), &/ (0)] < 4, hence (7.3)
automatically holds e.g. by Theorem 5.5 because the index is always greater or
equal to 1. In general if g(%,) is irreducible we will show the reverse inclusion in
Lemma 7.4. Let Tep(H(0)) nZ(0), thus in particular Te/(0,) if O, = 0" and,
since g is localized in 0, Teo(Z(0,)). Therefore

Teo(#(0)) no(#(01)) = [e(#(0) v o(#(0,))] = o(L(0) v H(0,)),
and by assumptions Teg(%,) = C. The rest is now clear. O

8. The Statistics of Low Dimensional Theories

As mentioned in the introduction the results in Sect. 7 are valid under the
assumption that the Minkowski space R? has dimension d > 2. When d =2 the
structure is more complicated and exotic statistics arise.

In this section we assume d = 2 and will extend Theorem 7.1 to this case by a
further analysis of the second proof of that Theorem. Note that the correspondence
between superselection sectors and localized endomorphisms is also valid in
particular in a conformal theory [5].

While the inequality corresponding to (7.4) will put an a priori bound on the
index of a sector, for the exact evaluation of the index we shall need the existence
of a conjugate sector; this assumption is rather general and has been discussed in
[8, appendix] and in [12].

Since our proof will rely on lemmas that are natural adaptations of arguments
in [7, 8] we shall be sketchy in the sequel and indicate the points where the argument
is extended.?

We use the assumptions and the notations of Sect. 7.

If ®<R? Oex’, is a double cone, its space-like complement (¢ has two
connected components. We shall say that O,  R? is left (right) space-like to O if
0, lies in the left (right) connected component of ¢".

2 While this paper was being typed, we received a preliminary form of [11] that contains in particular
a more complete description of some lemmas then in this section
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With geé, a localized endomorphism of o = U /(0)~, we choose a unitary
ues/ such that ¢’ = ug(Ju*eé, is localized left spacelike to ¢ and put

€, =u*o(u). 8.1)

As before €, is independent of u. If u had been chosen so that o' were localized
right space-like to g, then (8.1) would have given another unitary €} An
elementary but basic observation is the following.

Lemma 8.1. €} is the adjoint of ¢,

Proof. Let g; = u;0()u;eé, with u; unitaries of .« (i = 1,2) such that ¢, and g, are
localized respectively left and right space-like to g. As in [7, Lemma 2.6] the unitary
v=Q(uy)*ufusouy)
is independent of u;,u,. Setting u, =1 we see that v =¢,. Setting u; =1 we see

that v* =€} O

Following the argument in [7, Lemma 3.3] we may construct a left inverse ¥
of geé.. If g is irreducible Y(€,)eC. In general we may consider a standard left
inverse, namely a left inverse ¥ such that

A, =Y(e,)

is a multiple of a unitary (the argument in [7, Proposition 6.3] gives the existence
of a standard left inverse, unique if Y(e,) # 0 for some left inverse ¢, but we shall
not need this fact here).

In this case ¥4, is a scalar and we may define the statistical dimension of ¢ by

(@) =14,I"".

Lemma 8.2. If 0,,0,€8, are irreducible with left inverse Y,V then Y,y is a
standard left inverse of 9,0, and

d(010,) = d(g,)d(e,)-

Proof. This lemma is proved by an extension of the argument in [7, Lemma 6.7],
see also [11]. O

Lemma 8.3. Let geé&, be an endomorphism with a standard left inverse . If E is a
minimal projection of 9(/) "< such that the reduction of ¢ by E is equivalent to
the identity representation of </, then

d(e)=y(E)™".

Proof. The proof is obtained by applying [7, Proposition 6.5] to the special case
where g| is equivalent to the identity id, because €, =1. O

Recall that an endomorphism geé, is conjugate to g if g contains the identity
subrepresentation. If ged, is irreducible and ¢ exists, then ¢ can be chosen
irreducible and gg contains the identity subrepresentation with multiplicity 1 [8].

Lemma 8.4. Let 9,08, be irreducible conjugate endomorphisms. Then

d() = d(2)-
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Proof. The proof of [8, Theorem 3.1] still applies and shows that 4,=4;. O

We now give the desired interpretation of d(g). For simplicity we deal with
irreducible sectors. The general case is then a consequence of the additivity of the
statistical dimension [7, Proposition 6.6] and the additivity of the square root of
the minimal index (Theorem 5.5).

Theorem 8.5. Let geé&, be an irreducible localized endomorphism. If there exists a
conjugate endomorphism @, and OeX’ is sufficiently large that ¢ and ¢ are both
localized in O, then

Ind, [o(#(0)), #(0)] = d(0)*,

where ¢ is the restriction to o/ (0) of the conditional expectation ¢~y associated with
the unique left inverse . In particular if d(g) < co and the property in Proposition 7.5
holds then ¢ is the minimal expectation of o/ (0) onto (< (0)).

Proof. As mentioned before we may choose geé, irreducible so that y = goed.
contains the identity representation with multiplicity 1. Let Een(«/) N/ be the
minimal projection corresponding to the identity subrepresentation and note that
Een((0)) n/(0) by Lemma 7.4. With y the left inverse of g, Y/ is a standard
left inverse of gp by Lemma 8.2 and by Lemma 8.4,
d(n) = d(e)d(@) = d(e)*.
By applying Lemma 8.3 we have
(@)™ =d(n)™" = yy(E).

As in Sect. 7 we have

(T 214, IIT), Tes™, (82

and we have to show that |4,| is the best constant in this inequality and then apply
Theorem 4.1.
Now Een(«Y N/, thus

0(e(T))E = Eg(e(T)), Tes,
and if we evaluate Y on both sides of this inequality we have
e(TW(E)=¥(E)e(T), Teo,

namely J(E)eo(#) N =C.
It follows that

Y(E)=y(E) =4, =4,/
showing that | |* is the optimal constant in (8.2). O

Corollary 8.6. If 9€é&. is the direct sum of irreducible sectors all having a conjugate
sector then

d(g)e{Zcos%,n = 3,4,...}\)[2, w].

Proof. Immediate by Corollary 4.3 and Theorem 8.5. O
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9. Outlook

This work bring up the need for further analysis. We partly mention here some
developments connected with the statistics problem.

First of all one should pass from the identification of the index of o(+/(0)) = «(0)
to the analysis of the “higher order” information contained in this inclusion. On
one hand this amounts to the computation of the Jones tower [19] or of the tower
Y((0)), where y:.9/(0)— 9(£(0)) is a canonical endomorphism [22], and to the
identification of the Ocneanu graph invariant [28].

On the other hand one has to study the braid group representations giving the
statistics (a first analysis is now contained in [11]) and relate it to the tower
structure.

The paragroup arising in this way [28] should be related to an extended “gauge
group.” For example if the superselection structure is singly generated, most if not
all the information on the gauge group are to be contained in the tower associated
with the generator and in the braid group representation.

Further a priori restrictions on the values of the statistical dimension are tied
up with the existing problem on the values of the index for subfactors with trivial
relative commutant of the hyperfinite II,-factor [19]. This is a point where the
algebraic structure of the single local algebra enters. By considering for example
a wedge region, we know that the associated observable von Neumann algebra is
a factor of type 111, and (assuming the split property) injective, see [25, 3]. Our
analysis by Takesaki duality then reduces to the consideration of the injective
factor of type II,. ;

Another relevant point would be to describe the rather apparent relation
between the statistical dimension and the central charge in two dimensional
conformal field theory, cf. [13]; this would confirm the general feeling of an existing
relation of the central charge with the Jones projections, see [20].

Finally we mention a widespread hope that the analysis of low dimensional
statistics might lead to a better understanding of low dimensional critical pheno-
mena as high temperature superconductivity and fractional Hall effect.
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Note added in proofs. The analysis of the low dimensional statistics according to the lines here proposed
proceeds in [35]. The conjugate sector p is described in general by the formula p=p~*-y where
y:24(0)— 2/(0) is a canonical endomorphism, so that the corresponding tower is 2/ (0) > p(/(0)) >
pp(A(0)) > ppp(£(0)) > ---. In the case of a selfconjugate sector p such that p? has two irreducible
components the field theoretical braid group representation is identified with a Jones representation.
In particular the Jones link invariant polynomial V; is explicitly attached to the sector:

Vi(@) = (—d(p)"" (= ph(4,) "' ¢ (e(e))

where € is the field theoretical representation of the braid group B, determined by €%(c;) = p'~ !(e,).
The assumption on the existence of g in Theorem 8.5 is unnecessary, since it may be constructed
by the Stinespring dilation of ¢ by applying Lemma 7.2, b.
Related facts are contained in the final version of [11] (to appear in Commun. Math. Phys.).








