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Abstract. In this paper we consider distributions of the form 1/P and
j dy/P(x, y), where P is a polynomial. Using results by Kashiwara and Kawai we
give fairly accessible proofs that these expressions can be defined as regular
holonomic distributions by utilising a meromorphic parameter. We also discuss

distributions of the form μ/P and their direct image f — -, when one knows
J P(x,y)

that μ is a regular holonomic distribution. All these distributions are relevant to
the study of renormalised Feynman integrals.

1. Introduction

In [1] Kashiwara and Kawai develop a micro-local theory of holonomic systems
with regular singularities. This theory is then applied to show that an analytically
renormalised Feynman function satisfies a holonomic system of linear partial
differential equations with regular singularities, and as a by-product of their general
theory they show that the Feynman functions are all Nilsson class functions [2] (see
also [3]). They have also proved that the system of differential equations
corresponding to a Feynman function has a Lagrangian characteristic set which is
contained in the extended Landau variety in 77*(CN), for some integer N. This
implies that the wave front set of the Feynman function (also for complex momenta)
is contained in the extended Landau variety. We refer to [4,5] for further discussion
about the relevance of regular holonomicity to physics. In this paper we will show
that a similar class of expressions, given by rational functions with singularities, also
can be defined as regular holonomic distributions. Indeed, it follows from these
results that the analytically renormalised Feynman integrals are regular holonomic
(see the remark in Sect. 4). We do not claim essential originality because some of our
main results are implicitly contained in the work [6]. However, the algebraic theory
of regular holonomic ^-modules has its special features and is for example
presented in [7]. Here we offer reasonably self-contained proofs concerned with
existence of meromorphic extensions of certain tempered distributions, which



158 R.Kallstrδm

culminate in the discovery that these distributions in addition satisfy regular
holonomic systems. Let us also remark that regular holonomic ^-modules are of
particular interest in the theory of algebraic groups and their representations thanks
to a far-reaching equivalence of categories. See for instance [7].

Let P(x, y) be a real-valued polynomial, ( c, y) e R" + m. The main purpose of this
work is to find a natural definition of the expression

as a tempered regular holonomic distribution. The problem consists of two parts :

first define the distribution — , and then find an extension of the concept of direct
P 1

images of distributions. Since any reasonable definition of — results in a tempered

distribution, one can always extend this distribution to projective space along the
fibre of integration, R"xR m ->R"xP m , Pm = Rmu#, so that the projection
π: R" x Pm-*RΠ, (x,y)-*x is proper. However, the Lebesgue form dy is singular at

the hyperplane at infinity //, so it is not clear how to define the distribution π^ I — 1.

The recipe to deal with these problems is to consider the distribution as a member of
a family of distributions with an analytic parameter, and establish the existence of
meromorphic extensions in which we take the finite part in the Laurent expansion at
the interesting value of the parameter.

The contents of the paper are as follows. In Sect. 2 we define the regular

holonomic distribution — , in Sect. 3 we find a regular holonomic direct image of a

regular holonomic distribution, and finally in Sect. 4 we discuss the case — and the

problems associated with finding a direct image, when we know that μ is a regular
holonomic distribution on a totally real submanifold of a quasi-projective algebraic
variety. We also include appendices about the generalised Stokes formula and the
fact that regular holonomic distributions are tempered.

2. The Distribution 1/P

Let An+m be the Weyl algebra over R"+m, i.e. the algebra of differential operators
with complex-valued polynomial coefficients. Let Γc(Rw+m) be the test forms, that is
C°°(w+w)-forms with compact support. An+m acts on Γc: for a vector field δ in
An+m and with ω 6 Γc, we define δ ω = — Lδ(ω), where Lδ is the Lie derivative along
δ. It is easy to see that this gives a right action on Γc. Consequently, An+m acts from
the left on the distributions W(RM+m), and it is clear that the space of tempered
distributions is a left ^M+m-submodule of &£(Rn+m).

Let χ be the characteristic function of {(*, y):P(x,y)>0}. If A is a complex
number with Re λ > 0, we get a locally integrable function, and hence a distribution,
p*=χpλ. pλ also is a generator for the module An+m[λ]Pλ, for which we have a
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functional equation
1 , Q(λ)eAn+m[λ] ,

where b(λ)eC[λ] is the Bernstein-Sato polynomial. This is explained in [11].

Proposition 1. The functional equation is also an equality between tempered
distributions:

Proof. We first let Re λ > 1 and observe that the action of vector fields on P+ then is
the same as the corresponding action in An+m[λ]Pλ. If η is a vector field with
polynomial coefficients, we get by Federer's generalised Stokes formula (see
appendix)

where <50 is the dirac measure. So η(χPλ) = χη(Pλ) in W(Rn+m), if Re λ > 1 . It is now
clear that the functional equation holds when Re λ > 0. Furthermore, the right-hand
side is analytic when Re λ > — 1 — ε, for some small number ε > 0, so λ-*P+ e Q}& is
meromorphic then. One can iterate the functional equation any number of times,
which shows that the map λ-+P+ E@£ is meromorphic in C. Consequently, the
functional equation is an equality between meromorphic families of distributions,
with poles determined by the polynomial b(λ).

Define the tempered distribution — by taking the finite part in the Laurent
expansion at λ= — 1,

μ = P.f.(Pί,λ=-l) .

Let / be the order of the zero of the polynomial b(λ) at λ= — 1, i.e.
b±(λ), &i( — 1)ΦO. We then get the more explicit expression

where Q^ = —^-( —1). Of course, this representation is not unique.

Remark. This method of defining — was invented by M. Riesz to solve the Cauchy

problem for the wave equation. I. N. Bernstein and I. S. Gelfand [8] and,
independently, M. Atiyah [9] used Hironaka's resolution of singularities to
establish the meromorphic continuation in the general case. When the existence of
the functional equation was proved one also got an elementary proof of the
existence of meromorphic continuations [10].

Proposition 2. μ is a regular holonomic distribution.

In the proof of the proposition we shall need the following: consider the left
^M+w-module An+m[λ]Pλ and put

J=\QεAn+m:QPλ = £ (Λ + l)vρvP
λ, QveAn+,

( v > / £
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From [6] we have

Theorem 3. An+m/J is a regular holonomic An+m-module.

Proof of the Proposition. First note that the identities in the ideal / are satisfied by
the distribution />+, when Re λ > 0. Indeed, this follows from the generalised Stokes
formula, as in the proof of the previous proposition. The equalities for any λ follows
from meromorphic continuation. By the theorem above it suffices to prove that the
left ideal /annihilates μ in the left ^4n+m-module of tempered distributions. To prove
this let ge/, ωeΓc, and g* be the corresponding action on ω (the adjoint):

= p . f λ = - ι ,

since the order of the pole of QP+ at λ= — 1 is at most A. Thus /μ = 0, which
completes the proof.

3. The Direct Image of l/P(x,y)

Now we construct a distribution theoretic direct image of any regular holonomic
distribution μ. In Appendix 2 we discuss the fact that μ is tempered, i. e. μ extends to
a distribution on projective space PΠ(R). Actually this result is not necessary if we
are considering the case μ=\/P(x,y) as defined above, since it is seen to be
tempered by construction. The construction of the direct image goes as follows.
Let π:R" + m->R", (x,y)^>x be the projection and dy be the pull-back of the
Lebesgue form on Rm. Select any real-valued non-vanishing positive polynomial
r(y), such that r(y)-*ao, when j->oo, and introduce the analytic family
μλ = r~λμe W(Rn+m). By Sard's lemma there exist positive constants C and δ such
that \r(y)\ ^ C(l + \y\)δ

9 and since μ is tempered we see that the following expression
defines a tempered distribution when

λ-»<π#μλ,ω>
where ωeΓc(R").

Proposition 5. The map C3λ-^π^μλe W(Rn) is meromorphic.

Proof. Since μ is tempered it is clear that λ->π^μλ is analytic when Reλ>0, with
derivate A^^(log(r)juA), for any ωeΓc(R"). We demonstrate the continuation
to any comlex number λ by using functional equations in local coordinates for
R n xP m . Let U0 = {[(t0,tl9...,tJ]:t0*Q} be the embedding of Rm in Pm, and
ί/ί = {[(ί0?ί l 5...,ί ιn)]:ί ί=t=0}5 z = l,2,...,ra, which completes an affΐne covering
of Pm. By a partition of unity subordinate to this coordinate covering, 1 = Σφi9 it
is sufficient to show that /l-^<μλ,ωΛ Vj> is meromorphic when ωeΓc(R"), and
v—φiWdyeΓ^Ui), / = 0,!,...,«. It is obvious that A-»<μ λ,ωΛ v0> is analytic, so
let 1^/^/2, and (yί,y2,> , ym) be local coordinates in Ut, i. e. the transition from U0

looks like
X t X; -i J. X: _ι_ -i XMI

- λ
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In C/o π Ut we have r(x) =y^drί (y), where rfis the degree of r(x) and r^y) is another
polynomial, and vi = φiy^m"ldy. When Re IX) we have

Let χf be the characteristic function of {^f>0}. μ is holonomic, so
^ -̂  Xi J7^ ~ m ~ 1 μ 6 Sfo? ( t/f ) is mer omorphic by the functional equation for holonomic
modules (see [1 1 ]), and by the fact that dtxt = δ0 (;;,.). It is easy to see that r1 (y) is a
unit in [/., so Λ->rf λ is analytic and r1~

λ(;;) is real-analytic for any fixed λ. It follows
that the map

is meromorphic. So λ^>π^μλ= ]Γ (μ^coΛV;) also is meromorphic, and by
i = 0

analytic continuation independent of the partition of unity, since any two partitions
give the same definition when Rei^O. This completes the proof.

Define the direct image π^ I — j as the finite part at λ = 0 of λ->π#μλ,

Obviously, μ^ is a tempered distribution in R". Note that the definition of μ^ is
independent of the choice of the non-vanishing polynomial r(y\ if only r(j;)->cx),
when y->co. This can be seen as follows :

= P.f. (λ=-m-1, <χf y}μ, φt(y)ω Λφ» .

Remark. Of course, this definition of j coincides with the ordinary direct

image when dy is replaced by an ra-form with compact support.

Theorem 6. μ^ is regular holonomic.

Proof. Let «0 be the order of the pole at /l = 0 of A-^π^μ^. Set

ί £ d

I=<QeAn:QeJ+2 —P\^P\^^n-\
I 1 ^v

where

v. v > n o

Jr is an ideal of An + m which depends on the choice ofr(y). Here ζ) can be considered
to act in An+m[λ]r~λ®μ, where the distribution μ is a generator for a regular
holonomic module. Take ωeΓc(R"), so
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Let Qel, i.e. Q = S+Σ — PveAn, for some Se/,, PveAn+m. We get

P* RM

Here An is considered as a subring of ^M+m. We have, for any operator S in An+m,
Sdy = S°dy, where 5° is the zero-order part of S; here it is important that the ideal Jr

consists of global sections along the fibre of integration and that dy is translation
invariant, meaning δ(dy) = 0 when δ is a vector field. It follows that (S*π*ω) Λ dy

= S*(π*ωΛ£/y). Since - — π*(ω) = 0, we find

V > M O

The last equality follows because the order of the pole at λ = 0 of the map

is at most n0 . Hence we have proved that / annihilates μ^ . The theorem now is a
consequence of the following result.

Theorem 7. An/I is a regular holonomic An-module.

Sketch of Proof . In general let M be a regular holonomic ^4M+m-module. In the
category of modules over differential operators the projection π : CM+m-^C" gives
the direct image π+M. The construction of π+Mis explained in detail in [7]. Here
we can use that CΠ+m is affine and directly conclude that π+M can be identified
with the complex of left ^-modules obtained by the usual Koszul-complex

J f l M ; - — ,..., - — ] shifted in degree — m. In particular the left ^-module

I m d
M ^- — M is a cohomology module of π+M. By the results of Bernstein as

/ i ^ FV
explained in Sect. 12, Chap. 7 of [7] π+ preserves regular holonomicity. Hence

/ m d
M /Σ a — M ^s a regular holonomic ^-module. In particular let M=An+m/Jr.I i vy\
Using results from [6] it follows that M is a regular holonomic An + w-module. Now it

/ m d
is clear that AJI is a submodule of M I Σ ̂  — ̂  an(i thus regular holonomic.
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μ
4. Extension of the Results to Distributions of the Form —

In this section we discuss possible extensions of the preceding results. Let M be a
totally real submanifold of a quasi-projective manifold X-+Pm(C). On X there exists
the sheaf of rings &x of differential operators with algebraic coefficients and one can
restrict the elements of 2X to M. Assume that we are given a distribution of finite
order μ on M which satisfies a regular holonomic system £?<=:@x ®cAn(R). Here &
is a sheaf of ideals and X is equipped with the Zariski topology. So βμ = 0 if
Q 6 JSf (ί/), where Uis Zariski open. Let P(x, y) be an affine function in R" x X, such
that the restriction to R" x Mis real-valued. Since μ is of finite order, it follows from
Sard's theorem that we can define the distribution P+ μ on Rn x M when Re /ί>0.
For an affine neighbourhood U^XwQ have in R" x (U ΦM) a functional equation
for holonomic modules [11]

where Q (λ) is a polynomial in λ with coefficients in An + m . By the Stokes formula this
equation also holds in the distribution sense

It follows that the map λ-+P+ is meromorphic, whence we can define

Kashiwara and Kawai [6] have proved the following parallel to Theorem 3.
Consider the sheaf of ideals

where Q(λ) is a polynomial with coefficients in @x®cAn(R). Then we have

Theorem 8. @X®CAΛ(R)/J is a sheaf of regular holonomic modules.

As in the proof of Proposition 2 we then can use this to prove that μ/P is regular
holonomic.

The problem of naturally defining π# ί — I as a regular holonomic distribution is

one of existence of global sections and an invariant integration form. Suppose there
exists a nonvanishing volume form dy on M that is translation invariant, meaning
δ (dy) = 0 when δ is a vector field, and such that dy has tempered growth at dM.
Furthermore, assume that there exists an affine function r(y), yeX such that
r(y)ή=0 when yeM and r(y) = 0 when yedM. One can then prove a parallel to
Proposition 12 in Appendix 2, so μ is tempered at δMcPm(C), whence one can use
Sard's lemma and functional equations in affine charts to prove that

defines a meromorphic family of distributions in R". Here π:RMxM-*RΠ is the
projection and ω e Γ0 (R

n). In order to carry through a proof similar to the proof of
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Theorem 6 we need that the ideal / above ( where Pλ is replaced by rλ, μ by — ,
\ V P

and λ -f 1 by λ I contains enough global sections so that one can prove an analogue

of Theorem 7. We believe that the conditions for this procedure are fulfilled when M
is an algebraic group, in which case dy is the Haar measure and the vector fields in
@x are left invariant.

Remark. It is possible to prove that the above procedure is applicable in the case
M=Rm. Knowing this it is easy to see that the analytically renormalised Feynman
integrals are regular holonomic by iterating the construction when P is the Klein-
Gordon polynomial in various subsets of coordinates in Rm, and μ in the first step is
the dirac function corresponding to the conservation of momenta in Rw x Rm at the
vertices in the Feynman diagram. Note that

which is defined for any real- valued polynomial P and any λ e C by taking the finite
part in a Laurent expansion of the right-hand side. Here Pi (x) = \P(x)\λ, when
P(x) < 0, and zero elsewhere. In particular we see that the Feynman propagator is a
linear combination of two regular holonomic distributions and hence regular
holonomic.

Appendix 1. The Generalised Stokes Formula

The Stokes formula is usually pro ved for sets Ω with boundary dΩ of class C1, that is
dΩ is a differentiable manifold so that the implicit function theorem applies and dΩ
locally can be straightened out. Often this is not enough for applications, and it is
easy to see that one can allow some small singular subset of dΩ. Actually, the
following quite optimal generalisation is not hard to prove and is contained in a
theorem by H. Federer [12]

Theorem 9. Let Ω be a Lebesgue measurable set in R" with boundary
where Γ is of class C1 and the Hausdorff dimension ofΣ, dimH Σ < n — 1 . Suppose that
the area measure dS on Γ extends to a measure on R" such that Σ is a null set with
respect to dS. Let χΩ be the characteristic function of Ω.

Then djχΩ = njdS, where n^ is the exterior normal field on Γ.

That dS extends to a measure on R", and in particular to dΩ, such that Γ is a null
set essentially means that Γ locally has finite area.

Proof. Since dS extends to a measure on Rn it suffices, by a partition of unity, to
prove the theorem for sets ωnΏ, where ω is an open relatively compact set. If
ωnΓ = 0 the regular Stokes formula applies. Suppose ωnΣΦ0. Let π:RM->Rw~1

be the projection on the plane Xj = 0. Select a sequence φv of C°° -functions in R""1

such that, for any v, </>v = 0 in a neighborhood of π(Σnω). We can assume that
0^φv^ 1 holds and </>v-»l,7'-κx), uniformly on compact subsets of R/ί~1\π(Σnω).
By the usual Stokes formula we then have the following identity between
distributions in
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since φv does not depend on Xj. Now, since dimHΣ<n — 1 implies π(Σ) is a
Lebesgue null set in R""1 it follows that π~^(n(Σ)]r^ω is a null set in Rn and
Φv^j(x)~^^j(x)^ v->oo, almost everywhere. Finally one verifies that φv->l almost
everywhere with respect to n^dS, which proves the theorem.

In the proof of the existence of functional equations for distributions we need
the following theorem due to Whitney [12].

Theorem 10. Let P(x) be a real-valued polynomial in R". Then the set
Ω = {x:P(x)>U] satisfies the conditions for the generalised Stokes formula.

We have djχ(P) = (djP)δ0(P\ where δ0 is the dirac measure.

Appendix 2. Regular Holonomic Distributions are Tempered

In this appendix we discuss the following two basic results

Proposition 11. A regular holonomic distribution μe^(C") is tempered.

Propsotiion 12. A regular holonomic distribution μe W(R") is tempered.

Proposition 1 1 is due to Kashiwara [1 3], but here we offer a sketch of a proof in
the spirit of [7], as explained to me by J.-E. Bjόrk. Although we do not give a
complete proof of Proposition 12 it might be instructive to see how it is proved in a
special case. The general case is covered by Proposition 11 and the work in [14]
about the tempered Horn-functor which concerns comparison theorems between
regular holonomic ^-modules of hyperfunctions and distributions respectively.

Proof of Proposition 11. By Theorem 9.1 in Chap. 7 of [7] every sheaf of coherent
regular holonomic ̂ -modules on PΠ(C) is generated by global sections. Using this
fact we easily reduce the proof to the following case : there exists a coherent sheaf of
left ideals & of ̂ Pn such that S>PJ^ is a sheaf of regular holonomic ̂ Pn-modules,
and moreover identifying C" with Pn(C)\H, where His a hyperplane, £f\cn is equal
to the sheaf of left ideals in ^cn which annihilates μ. Next it is well-known that
Γ(PM, J2?), i. e. the global sections of JS? over PΠ, is a left ideal which after restrictions
to CΠ gives a left ideal of the Weyl algebra An(C) which is equal to the annihilator of
μ in the cyclic ̂ -module generated by μ. It remains to see that μ is tempered. To
prove this we use the main result in Kashiwara's work [13]. Namely by Proposi-
tion 5 in [13] the sheaf

contains a global section y which is an extension of μ.

Sketch of Proof of Proposition 12 when dim(supp(μ)) = fl. We indicate how the
proof can be reduced to the corresponding result for distributions in CΠ. First we
have the natural embeddings R"->PM(R)-»PW(C), where Pn denotes the real and
complex projective space respectively. Working in an affine chart at a hyperplane at
infinity the distribution μ is defined outside a hyperplane H in R". We want to be
sure that μ has tempered growth at this hyperplane. To do this we introduce the
ideal Lμ = {β e An(C) : Qμ = 0} and consider the set Sμ = {z e C" : 3 ζ Φ 0, ζ e C", such
that σ(β)(z,ζ) = 0 for all βeLμ}, where σ ( Q ) ( z , ζ ) is the principal symbol of Q.
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One can prove that Sμ is an algebraic variety. That μ is holonomic implies
dimcSμ^n — l, so in particular Sμr\Rn is contained in an algebraic hypersurface.
Let Ω be some connected component of Rn\Sμ. Since the analytic wave front set
WFA (μ) c (Sμ n RM) x R" and dim (supp (μ)) = n, it follows that μ determines a non-
vanishing real-analytic function in Ω. One can prove that, starting from the germ at
any x0eΩ, μ builds up a multi-valued analytic function F in Cn\Sμ, such that
LμF= 0. We refer to Chap. 5, Sect. 7 in [1 1 ] for more details. Now, since An(C)/Lμ is
a regular holonomic left y4n(C)-module it follows from a general theorem in [1 ] that
F belongs to the Nilsson class, which in particular implies that the real-analytic
function μ in Ω has tempered growth at S^nT/cS^nR", as asserted.
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