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Abstract. An alternative proof of the Ward-Takahashi identity for perturba-
tive quantum electrodynamics is given which makes no use of a gauge
invariant regularization such as the Pauli-Villars loop subtraction or dimen-
sional regularization. Instead, it is shown, in the presence of an arbitrary high
momentum cutoff 4, that the exact W-T identity holds with an error of O (1)
A~ *with 0 < & < 1. The proofinvolves a perturbative analysis of the Euclidean
functional integral for QED by the tree expansion method.

1. Introduction

A distinguishing feature of QED, and one which leads to considerable difficulties,
is its gauge invariant character. The action for classical electrodynamics has a
large symmetry group, known as the U (1) gauge group, and this leads to the well-
known problem of a functional integral which is constant along orbits of infinite
volume, and is hence infinite.

The standard method for handling this problem is known as gauge-fixing. An
extra term is added to the action, which has the effect of introducing decay along
the gauge orbits. The original gauge invariance is broken, but is replaced by a
weaker invariance characterized by a functional equation known as the Ward-
Takahashi identity. If the W-T identity can be demonstrated in the renormalized
perturbation theory, various important questions can be answered. For example,
it can be shown that the theory is perturbatively unitary and that the S-matrix is
independent of the choices involved in gauge-fixing [7].

Thus, an essential part of the problem of perturbative renormalization of QED
is to demonstrate the W-T identity appropriate to the choice of gauge-fixing. A
formal derivation of the correct W-T identity can be obtained by a change of
variables in the unrenormalized functional integral provided the action has no
non-invariant terms other than the gauge-fixing term. The problem is to prove
that the identity one arrives at in this way actually holds after renormalization.
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The first treatments of QED [10, 5, 12, 2] noted that non-invariant counter-
terms were apparently forbidden: This observation was made more concrete by
the identities proved by Ward [13] and generalized by Takahashi [11]. Their idea
evolved into what is now the standard solution of the problem [1, 3]. Working in
the presence of a gauge-invariant regularization for QED, we suppose inductively
that no non-gauge-invariant counterterms have been introduced up to the »'*
order of perturbation theory. Then the W-T identity holds to order n + 1, by the
change of variables argument. But it can then be shown using this W-T identity
that no non-invariant counterterms are needed in order n+ 1. Examples of
suitable invariant regularizations are the Pauli-Villars loop subtraction [9] and
dimensional regularization [7].

The proof of W-T identities presented here is quite different, in that no use is
made of a gauge-invariant regularization. It is based instead on the following
intuitively obvious idea. QED, if it is to be gauge invariant, should, when
regularized in some arbitrary way by a cutoff with parameter N and then
renormalized appropriately, satisfy an identity of the form

WN+oWN=0, )]

where W*® =0 is the exact W-T identity and  W" goes to zero as the cutoff is
removed. This should be true because the regularized theories uniformly
approximate the non-cutoff theory. In fact, such a condition should be both
necessary and sufficient for the theory to be gauge invariant. A proof along these
lines has often been suggested, and is now feasible because of the development of a
powerful method for bounding perturbation theory known as the renormalized
tree expansion [6, 3]. The proof of the W-T identity given in this paper involves two
types of analysis: the first is a derivation of a functional identity of the form (1) for
the theory with cutoff V, and the second is the detailed use of a variation of the tree
expansion estimates to directly bound the error term S W™,

In this paper, we consider Euclidean QED where, to avoid infra-red
complications, we take a non-zero photon mass. By use of the method developed
in [8], it should be possible to extend the present approach to the special case of
zero mass photons and electrons. In Sect. 2, we state the W-T identity and indicate
how it can be derived formally. A sequence of regularizations is chosen in Sect. 3,
and the renormalized tree expansion estimates of [3] are reviewed. The approxi-
mate identity satisfied by the regularized theory is derived in Sect.4, and a tree
expansion for the error term is proved. This tree expansion is especially simple due
to the special nature of the renormalization prescription adopted in Sect. 3.
Finally, in Sect. 5, tree expansion bounds are derived which show that the error
term in the approximate W-T identity vanishes as the cutoff is removed. This is the
main result of the paper.

The method developed in this paper should be applicable to pure Yang-Mills
theory (YM,), where it would yield a renormalization scheme without the need for
dimensional regularization. Such a scheme has been developed as part of a
constructive program by Feldman, Magnen, Rivasseau, and Sénéor [4], but their
results, in particular for perturbation theory, are as yet unpublished.

This paper makes substantial use of the results of [3] and follows the notation
set down there.
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2. The Ward Identity

Euclidean quantum electrodynamics involves a vector field 4, (which we take
with a non-zero mass) and spinor fields , y with the partition function

Z=(dAdydy exp

—JEELF" +30,4)° +3myA, A" +§(—if+m +ed)y]. @
Here (0 - A)? is a gauge fixing term,
A=y'4,, F=y",, ©)
where the 4 x 4 anti-hermitian Euclidean Dirac matrices satisfy
PEY YTy = =207, 4)

and F,,=0,4,— 0,4, and e is the bare electric charge. The free field photon
covariance is D*"(x, y) = 6*'(— 0% + m2) ;" and the free field electron covariance
is S(x,y) =(—if—m,)'. For convenience in what follows, we suppose that the
masses m,, m, are > 1.

Continuing in a formal way (i.e. by ignoring all questions of renormalization),
we introduce the external effective potential V,(®,), which is the generating
functional for the connected Green’s functions amputated by the free field
propagators, by the functional integral

V,(®,) =log [dP () exp(V+6V) (D +D,). (5)

If we now consider changes of variables 4 = A', y = e**y/’, y = e~ **y" in (5) for
arbitrary real scalar fields y (x), we can arrive at the following Ward identity:

0= ~0, sguesy — [y 505 ler(95(x.9) + €S () HONW ()
+ [y (0 iex (06, ) + e () S 53,5

+efdx i (x) () w (). ©)
The non-linear form of this identity is
VoA, y, ) = V(A + 0y, (1 +eSFp) ey, fre'* (1 + ey S))
+ige ey +e Py Sh) ety )

Even though the derivation here is formal, (7) is the identity we expect for the
renormalized effective potential.

3. Regularized QED

We now review the renormalized tree expansion for the renormalized effective
potential V,. Following [3, Sect. 2], we introduce a logarithmic scale decompo-
sition of the propagators

D= Z D®: S= hgo S® ®)

h=0
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subject to bounds (for M > 1 a fixed number)
|07DP(x)| <O (1) MP1iDh exp — M"| x| ©)
[67S®(x)|<0(1) METIDE exp — M"| x]|. (10)

The choice of scale decomposition is essentially arbitrary, but for concreteness
we take the a-parametric decomposition

DW(x)=Q2n)"" [dua?exp—am?—(4a)”'x2, 1)
In

SP(x)=Qn)~" [dua”?(if+m,) exp—am?—(4o)” ' x2, (12)
In

Where 2h 2h+2
(M7 M) >0,
Ih—{[l,oo) ifh=0. (13)

For each integer N > 0, the regularized free field propagators and measure are

N N
h=0 h=0
dPy(®P) = dAdy dij exp —3 (4, Dy ' A) — (7, Sy 'y, (15)

where we use (-, ) to denote the standard inner product on L? (R%).
The renormalized regularized effective potential has the functional integral

VY(@,) =log [ dPy(®) exp VY (D +D,). (16)

Here the bare interaction VY is “local” and lies in the span of the following
monomials:

Vi=f:4-4:, V:*=|:gy:, 17
V3i=[:F-F:, V*=[g(—if)y:, V> =[1idy:, (18)
Ve={:(0-A4):, V' =[:(A4-A):. (19)

We write VY =V + dV", where the unrenormalized part is V' = —eV> and the
7

counterterms are 6VN=— 3 A"NV' The counterterms are now completely
i=1

determined by the renormalization condition
LV = —eV3, (20)

where L, the localization operator, projects functionals of @ onto the span of the
monomials Vi, i=1, ..., 7. We will see the real reason for the particular choice
(20) in Sect. 4.

The renormalized tree expansion for VY is

@)=V(@)+ T Y TV (mehd,), 1)
") & 2

trees t
T nontrivial
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where g is a choice of the label R, of C, for each fork fe # () and his a choice of
scale label %, for each fe # (1), subject to the ordering

and h, iz, = —1if Fis the lowest fork of 7. The value ¥” (z, ¢, h, @) is calculated as a
sum over connected Feynman graphs G whose vertices represent the interaction
—ef: 9 Ay :, whose lines represent either S® or D*? or S, or D, , whose legs
(external lines) represent fields @, and where 7 defines a connectedness property of
G with respect to hard lines.

The crucial fact about this expansion is the following bound on the
contribution of a given graph G to ¥" (7, 9, h, ®):

IGiso®) [] MOstew@n, (23)

fe#F (1)

22)

where the renormalized degree of divergence has the property that

{5(Gf)g—1 if o, =R

0<3(G)<2 ifg,=C. (24)

Here || - | is a suitable measure of the size of the distributional kernel G represents.
One easily shows from (23) and (24) that the sum over h is bounded, uniformly in
the cutoff N. Thus the UV limit

V,= Iéim vy 25)
exists as a formal power series in e.

It is now our goal to prove that the W-T identity is satisfied by VY, with an
error which is O (M V). It then follows that V, defined by (25) satisfies the exact
W-T identity (7).

As aremark before proceeding, we note that these approximate W-T identities
do not imply that noninvariant counterterms are less divergent than their degrees
indicate. In fact, they get large for large N with their natural degree of divergence.
The correct intuition is this: The large noninvariant counterterms introduced into
VN are necessary to approximately cancel invariance breaking terms caused by
the noninvariant cutoff.

4. The Identity for V7

We now fix the cutoff M at some arbitrary value, and derive a functional identity
for VY. Many equivalent statements are possible, but the derivation here leads to
the most manageable formula for comparison with the exact identity (7).

We follow the formal derivation of (7) as far as we are able, and retain the error
terms which arise from the non-invariant cutoff, and the non-invariant counter-
terms in d7~. In contrast to the formal derivation, however, all manipulations we
do now are well-defined by virtue of the finite cutoff. Consider changing variables
in the functional integral by

px)=e"y'(x), g=e Ty, A=A (26)
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for y any (bounded) smooth scalar field. We note that
Vid+ A,y ey, 0+, i%d
Vi@ +®,)= { VA +e " y,, §' + ey, 27)
+V3(ed, v +e My, y'+ety,)  i=4.
and by a standard identity for gaussian measures
dPy(®) = cydPy(®') exp —[: (7', e xSy e*y'): +:(9, Sy ')l (28)
where cy is a constant we ignore. If N=co, [Sy !, e®*] = e Jy, so we write
dPy(®) = dPy(®') exp —: (W', e dyy’):
xexp— [, e “*[Sy !, eMy): + (', edyy)]. (29)
Insertion of these expressions into (16) yields the identity
Ve(®,) =log [dPy(®) exp(V+0VN) (A+ A, ' +e "ty , ' +e*,)
x exp —eA*V3(y, y' +e ™y, ' + e ry,)
X €Xp _—eVS (a)(s ‘//Is V?()
x exp 1(', (e7*X[Sy !, e*] —ef)y):. (30)

In the formal derivation of (7), eA* = A3, V" has no V2, V'® or V7 part, and so the
V3 terms above can be shifted into ¥+ 6V'Y. We do the same shift here:

Ve(®@,) =log [dPy(P') [exp(V+0VN) (A'+ A, +0x, ¥/ +e **y,, §'+e1iF,)

o~

xexp e[V (0x, w' +e ¥y, ' + e y,) — V3 (0x. v, )]
8 [exp —(eA* =22 V3(0x, w'+e ¥y, '+ M)

xexp ), MV 44,401y +e Hy,, 7'+ e,

i=2,6,7

— VA +A., ¥ +e *y,, l/7'+eiexv7e)]] (31
Let PV denote the operator
5 .
dx y(x) | ——
i) [5x(x)

which extracts linear y terms. We have

0=PWY [VY¥(A,+ dx, (1 —iex +eSy ) We, W.(1+iex +eFySy))
+ 1 e efy +e FySydrle  y.]
+ P [log [ dPy(®) exp(V + V™) (P + D,)
x exp [Ay(t, v, ) + 64y, D+ D]
=WV owN, (33)

X=0:| 32)



Soft Breaking of Gauge Invariance 521

where
AL, 9) = —ef: () [ISy ' (x, ) X () —x ()]

— () 0(x, ]y (p): dxdy (34)
and

AN ®+D,) =0 =1%) V3 (o, @+ D,) + Y AV, o+, (35)
i=2,6,7
with
Vi=2[:01-4:, Vi={:yphv:,
Ve=2[:(0-9x) 0-4):, Vi=4[:(0x-A)(4-4):. (36)
The first term WV of (33) clearly converges to the right-hand side of the Ward
identity (7) as N — 0. To prove (7) it is sufficient to produce an O (M ~*V) bound
on the second term W™ of (33).

We can write 6W" as a sum over unrenormalized Feynman graphs,
constructed with ¥ and 6V vertices, and exactly one insertion of either 4 or d4. As
we shall now see, there is a simple renormalized expansion for SW", similar to the
expansion (21) for ¥V, except with one V-insertion replaced by a A-insertion. In

other words, we will show that the terms d4 in (33) act as exact counterterms to
renormalize all subgraphs which contain the A-insertion.

Lemma 1. The local parts L(W™) and L(6W™) are both zero.

Proof. Following [3, Sect. 4], in particular [3, Lemma 4.4], where properties of the
localization operator are discussed,

LIWN(y, A, y, )]
=pP® io T,V (A+ 0y, (1 —iex +eSy gy, (1 +iex +edy Sy))
+] '/;;ie"[eﬂﬁezﬂx&vﬂx] eyl
=pW i TILVY)(A+0x, (1 —iex+eSyfr)w, ¥ (1 +iex +edxSy))
+J vi/;?""[eﬁerezﬂxSNﬁx] ety 37

The renormalization condition says LVY = —eV°, and by use of the argument
which proves [3, Lemma 4.3], we find

d
LWN)y=—LEW)=PV Y Tl-efydy—e|ypry+elv iyl
s=0
=0. O (38)
Corollary 2. The following renormalized tree expansion holds for SW™:

4
1 1@ (39)
Wh=| + Y n) L Y PR

—1 nontrivial 0 he# (z,0) -1
trees eF=R hnr)=—1
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where exactly one endpoint of the tree © represents a A-insertion, and the remaining
endpoints represent V-insertions.

Proof. In the proof [3, Theorem 2.3] of (21), the renormalized tree expansion, it
was necessary to verify the following conditions on the family of effective
potentials {V}¥},__, . s

1) Vyespan {Vi}ioy . 4,
if) LV_, =—eV5,

and to prove an inductive step relating VN_, to VN forr =0, ..., N. The proof here
is exactly parallel. From (33) we see that OWR =4+ 54" satisfies

OWyed+span {V'};_5 5.6 (40)

and Lemma 1 implies
LowN, =0. 41)

The inductive step relating sWY_, to SWY is

OWN, =WV 4+ Z (m+1) el,(VN, ..., VN, owl), 42)

m=

where the m™ term involves the usual m+ 1-fold truncated expectation. This
inductive step can easily be shown if ¢ W is defined by the tree expansion (39) with
the root taken at an arbitrary scale r rather than — 1. It only remains to show that

4

1
W= + — pw
N IL nonlEr;‘vial n (T) ZQ: he.};(t,g) @ (43)

trees er=C ha(r)y=N
N

equals 4 plus local counterterms, verifying condition (40), and that the local part
of the right-hand side of (39) is the local part of

4

-1

which vanishes because 4 is a Wick monomial depending on y, i but not on v,
., verifying condition (41). O

A priori, the renormalized expansion for 6 W might have been much more
complicated than this: the relatively simple expansion here exhibits exact
renormalization cancellations because of the special renormalization condition
(20) and the careful choices made in splitting (33) into two terms. Using (39) it is
now possible to give a direct proof that SW¥ is O (M ~¢¥). Very roughly, it is clear
that a 4-insertion into a Feynman graph will be O (M ~¢¥) if the graph is suitably
convergent: the renormalized tree expansion has the effect of rendering all
subgraphs suitably convergent.
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We now state the main result:

Theorem 3. Let G be a graph in the renormalized tree expansion for SW™ associated
with a tree 1. Then for any 0 < g <1 there exists a constant ¢,(G) such that

1GIl < ¢, (G) MV, (44)
Therefore
lim SWN=0 (45)

and V, satisfies the exact Ward identity (7).

5. Proof of Theorem 3

The renormalized tree expansion for VY and §W" differ by the replacement of
exactly one vertex V' =—e[:9(x) A,(x) y (x): by a vertex 4 which we write

A=—ie [ (x) Ay, X)) =2y )+, (46)

where
AN(X’J’)ESIGHX,J’)‘S_I(X,J’)- (47)
The kernel 4, goes to zero as N—oo provided it is integrated against
something sufficiently regular. But it turns out that the renormalized tree
expansion ensures this regularity and it is possible to prove Theorem (3) by

essentially pure power counting. We shall find a bound for an arbitrary graph G
contributing to 6 W™ by direct comparison to the bound

Gl <ck® Y, [] MoCnbshmr) )
h feF ()
for a corresponding graph G which contributes to VY. Recall that in (48)
< - ifo.=

and that &, g, = 0 for the bottom fork of 7.
The graph G is obtained from G by the following “local” replacement

Ae
. ss A s S Se (50)
G: ———GEED————e—>Go * -
X r4 z X X z X
which we suppose occurs at the fork fy. Let {fy, f1, . . . . f, = F} be the chain of forks

hanging down from f; to F, and let their scales be h = hy,
In the unrenormalized case we write the value of G and G as follows:

G= —ie [dxdx'dzdz' dy Sy(x,z) Ay (z,2") [x(2) — x ()] Sy (', x")

x K(x,x',y) [T (x,x',y) (51)
G=—efdxdx'dzdy S,(x,z) A(2) S;(z,x')
x K(x,x',y) Il (x,x,y), (52)

where the kernel K and Wick monomial I7 are the same in both formulas.
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Note that due to the presence of the difference y(z') — x(z) in 4, a zero™ order
localization applied at any of the forks f; is zero. This fact is used to improve the
R-operation for free at these forks: When the superficial degree is J; < —1, R, is
defined to be a first-order Taylor subtraction instead of the identity operation.
With this modification we can afford to treat the y(z’) and y(z) terms of (51)
separately.

Consider the term of G containing y(z'): After doing the z integral we have

[Rin(x,2") x(2') Sy (2, x") K(x,x",y) I (x,x",y) dxdx'dz' dy , (53)
where
Ry=S, *dy. (54)
For a soft line / of scale 2 < N, the Fourier transform of R is
Riy(p) = Ry"(p) =[exp — M ~>*~Dp?] [exp M =V p? —1]. (5%
If /is a hard line of scale 42 < N then
Riy(p) =R (p) = Ri"* 1 (p) — R3" (), (56)
but for h=N,
R (p)=1+exp— M~*"p? — R3V(p). (57)

Taking care of the delta function in R{" (x, y) requires some delicacy in the proof.
It is easy to verify the following bounds

[OXRY (x, p)| < ¢, M*O =M M@+ 1mDh exp — M*|x — p| (38)

4 . 4
for any 0 <& <2, where 0% =[] <£7) and |n|= ) n;. Of course, the delta
i=1 i i=1

function in RY{" does not satisfy (58) but the two other terms in R{"’ do. We see
that, except for the delta function in R{", all R-lines have bounds consistent with
standard power counting dimension 4 = 3 + 1, times a decay factor M**~M) The
extra +1 in the dimension of R-lines compared to S-lines is to be expected if we
think of 4 as a dimensionless vertex. This extra +1 is compensated by extra
renormalization derivatives at the forks f; which occur because in the definition of
localization at these forks, the exterior field y has dimension 0 compared to 1 for
A,. We can immediately conclude that, except for a delta function term which
occurs if / is a hard 4 = N line, (51) has the bound

cclo(G)M—sN IZZ Mehn H Mé(G"f)(hf-hn(f)):I , (59)
h S

where

056(G)<3 ifg,=C.

Now h; = h; for some 0 < I < n, and we distribute the factor M*" down the tree
from f; to f;: n
M = 1_[ MeEBi—his 1)’ (61)

i=1I
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(where A, ; =0). Since 6 (G ) +e<0if o, = R, provided we take 0 <& <1, (59) is
bounded by
OMN)M™ ¥ forany0<e<l1. (62)

When [ is a hard 2= N line, we still have the delta function term to worry
about, which in the unrenormalized case looks like this

f)((x) Sy (x, x") K(xe, x',y) II(x, x',y) dxdx'dz'dy . (63)

This corresponds to a graph with one fewer V-vertex than G, and with an extra
external field y attached at one vertex. Unfortunately, there is no completely
trivial reason why this contribution is small for N large, but in fact a factor A~V
can be extracted. The only way to see this seems to be to analyse the different ways
this term is renormalized.

Theline /enters at the fork f;, and /; = N. By the scale ordering on the tree 7, all
the branches emanating upward from f; join to endpoints or C-forks but not to
R-forks, and thus the generalized vertices of the reduced graph g, are all local.
Also by the scale ordering, we know that f;, defined to be the highest R-fork with
J =1, has scale N.

Suppose g,, has v local vertices v = 3, one of which is a 4-vertex or 64
counterterm. The delta function contribution converts g, into a graph, callith, ,
with v —1 =2 vertices. We can think of 4, as coming from a graph H with
standard power counting

Z 1’"[ M&(Hf)(hf_hﬂ(f))' (64)
h S

However, because the fork f; is at the fixed scale N, and 6(H,,) < —1 < —e¢, the

factor M°#Hs)hs=hs+0) can be replaced by M~V [] M= ~Hh+2_ Just as before
the result is an O (1) M ~*" bound. i=J+1
Suppose, finally, that there are exactly 2 local vertices feeding into £, , one of
which contains the A4-insertion. In this case, one can easily check that a Taylor
derivative T, will always give zero for the term coming from the delta function in
R{M. But we have argued that there is at least one Taylor derivative acting at f;,
whether ¢, = R or C. Therefore, there is no contribution to G in this case, and we
have proved the bound
IGlso)yM N (65)

forany0<e<1. O
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