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Abstract. Billiards are considered on two-dimensional, smooth, compact
Riemannian manifolds with dispersing scatterers. We prove that these billiards
are ergodic if only Vetier's conditions for the absence of focal points hold.

0. Introduction

Consider a two-dimensional twice continuously differentiable, compact, closed
oriented Riemannian manifold. A simply connected, open subset of the surface will
be called a scatterer if its boundary is a twice continuously differentiable curve with
strictly positive geodesic curvature from inside. If we have a number of disjoint
scatterers, then we call the complement Q of their union a billiard table.

The billiard on Q is a dynamical system corresponding to a motion with unit
velocity along geodesies inside Q combined with elastic reflection at the scatterers,
i.e. on dQ. In particular, if the surface is the torus, then we recover the celebrated
Sinai billiard.

In billiards on a surface with scatterers two kinds of behavior can compete: the
sufficiently good mixing one caused by the scatterers and a possibly integrable one
inside the surface. In 1982 Vetier (Vi (1982), i=l,2) was able to give conditions
under which no focal points arise and thus mixing prevails. He also established the
hyperbolic theory for these billiards. Under his conditions the Lyapunov
exponents are uniformly bounded away from zero implying the a.e. existence of
fibers and properties called the absolute continuity of the foliations. His main
conclusion is that the ergodic components of these billiards are positive V(1987).

Here we prove that under Vetier's conditions the billiard is ergodic. By the
traditional Hopf-Sinai strategy this follows from a version of the fundamental
theorem and, in fact, this is the main result (Theorem 5.1) of our paper.

The proof of the fundamental theorem we separate into two parts. The chief
aim of the first, geometric part is to formulate lemmas permitting us to think and
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measure in euclidean terms while the second, combinatorial-geometric one should
show for any irregular configuration of singularity lines arising at the powers of the
Poincare map of the billiard that their bad effect prohibiting the existence of
sufficiently long fibers is locally arbitrarily small.

The first part of the paper consisting of four sections is devoted to the geometric
aspects. To make the paper possibly self-contained the first three-sections also
recollect definitions and properties from the papers of Vetier. Section 1 summa-
rizes the basic notions and conditions. In Sect. 2 the uniform hyperbolicity and the
existence of fibers is discussed. Section 3 introduces and analyses the Poincare
map. In Sect. 4 we deduce the main geometric lemmas to be used in the second part
consisting of Sects. 5 and 6. In the previous one, we formulate and prove the
fundamental theorem. The proof is closely related to that of Bunimovich and Sinai
(1973) and the induction is borrowed from Sinai (1980). Our argument, however -
with the lemmas provided - is almost purely combinatorial and its structure is
simple: there are only two kinds of discarded sets, all the estimates are relative
ones, and we do not have to separate the discussion of neighborhoods of double
points. Consequently, the relation of the numerous constants also simplifies and is
treated explicitly. Finally, Sect. 6 is devoted to the proof of the ergodicity. Section 7
contains some brief remarks while, for completeness, the Appendix gives the
necessary information about measurable fibrations.

An efficient way for the first acquaintance with the essence of the paper is to
read Sect. 5 having understood the statements of Lemmas 4.2, 4.6, 4.10, and 4.11.

1. Preliminaries - The Definition of the System
"Dispersing Billiards on a Surface"
and its Elementary Properties

In the course of this paper we make an attempt to use a system of notations
compatible with that of Bunimovich and Sinai's work [Bu-Si (1973)] on dispersing
billiards and with that of Vetier's two works [VI (1982)] and [V2 (1982)] on
dispersing billiards on a surface. The elementary facts concerning the object
studied here will be quoted from the papers cited above. The boundary of the
billiard-table, which will be denoted by dQ, consists of the union of the boundaries
of the scatterers.

The state of the particle is determined by its position and velocity. So a state
x means its position q and a direction v together: x = (q,v). The state x can be
identified with a unit vector of the tangent plane at the point q. The set of all states
is called the phase-space and it is denoted by M.

The projection π:M-><2 is defined in the following way: if x = (q,v)eM,
then π(x): = qeQ.

In the moment when the particle hits the boundary of the billiard-table, the
position q of a particle is well-defined, but its velocity is not. If the particle arrives at
the boundary with an incoming velocity ι;_, then its outgoing vector v+ after the
reflection in the same moment has the following connection with ι;_: the sum of the
vectors ι?_ and v+ is a tangent vector of the boundary of the billiard-table.

The Riemannian metric of the surface induces an area-measure μQ on the
billiard-table. The set Eq of all unit vectors of the tangent plane at the point q can be
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obviously identified with the boundary of the unit circle in this tangent plane. The
length-measure on the boundary of the circle corresponds to a measure σq on Eq by
this identification. Since M= (J Eq, the measure μQ and the measures σq(q€Q)

together define a measure μ on M:

μ(X): = f σq(XnEq)μQ(dq) (XcM).
Q

The motion of the particle defines the dynamics {Sί}_00<ί<00 on the phase-
space: if the particle is in the state x at time 0 then S*x means its state at time
t (— oo<f<oo). The states S*x (— oo<ί<oo) together constitute the trajectory
of the state x. {π^xJ .f^O} is called a ray.

It is known (cf. e.g. [K-S-F (1980)]) that the measure μ is invariant under the
dynamics.
Definition 1.1. The dynamical system (M,{S*}, — co<£<oo,μ) will be called a
billiard on a surface, for brevity a billiard.

Now we enumerate the conditions providing that the machinery developed by
Vetier works.

Condition 1.2. There exists a constant τmin>0 such that the distance of two
scatterers is greater than τmin.

Condition 1.3. The free path is bounded, i.e. there exists a finite value τmax such that
the length of any geodesic on the billiard-table cannot be longer than τmax.

Let k(q) denote the geodesic curvature of the boundary of the billiard-table at
q (q E dQ), and let kmin: = min k(q) > 0. Let K(q) denote the Gaussian curvature of

the billiard-table (geβ), and let Kmax:= ma\K(q).

Condition 1.4. Kmaκ ^ 0 or (Kmax > 0, ]/Kmax - τmax < f and
<arctg(fcmίn K-aV

2)).

2. Uniform Hyperbolicity and Existence of Fibers

In order to shorten the description of our further considerations let us make some
conventions:

(i) all curves in Q and in M are supposed to be smooth;
(ii) the curvature of a curve gcQ always means its geodesic curvature;

(iii) the constants depending only on the billiard-table are called universal; in
general; the dependence on the billiard table will not be indicated;

(iv) if {Sty:t>Q,yεg} is a family of trajectories, π({Sty:t>Q,yeg})cQ is
called a family of rays.

Definition 2.1. The local Lyapunov exponent κ(q) of a family of rays at a point
qeQ is the signed curvature of the orthogonal curve to the family passing
through q.
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The following lemma describes the evolution of κ(x) under the action of

Lemma 2.2. Let {πffiy): yeg,t>0}bea family of rays and set κ(t): = Kfa^y)) for a
fixed y eg. If t is not a moment of collision then

If t is a moment of collision, then

lim κ(τ)- lim κ(τ)=
τ^f + O τ-+r-0 COSφ

where φ is the angle between the outcomίng ray and the outer normal of the
scatter er ( — f < φ < f ) and qeQ.

For the proof of this lemma cf. [VI, pp. 1092-1094].

The following lemma explains the name local Lyapunov exponent [VI (1982)].

Lemma 2.3. Let us choose a ray of a family of rays, and two points of this ray. Let
ti (i = 1, 2) denote the length-parameter value belonging to these points. Let dt (i = l, 2)
denote the distance of another ray infinitesimally close to the chosen ray at these
points, measured along orthogonal trajectories. If κ(t) denotes the local Lyapunov
exponent of the family of rays along a , chosen ray (as in the preceding lemma), then

lim -p=exp( ]κ(t)dt }.
dltd2^od1 \tl )

See Lemma 3.5 of [VI (1982)].

Lemma 2.4. There exists a universal constant ω > 0 such that, for a family of rays
starting from a curve g having curvature greater than /cmίn, the local Lyapunov
exponent is greater than ω at every point π^y), y e g.

For the proof cf. Theorem 3.1 of [VI (1982)].
A family of rays starting from a point q (a "degenerate curve") obviously

satisfies the condition of Lemma 2.4 (see Fig. 1).

Lemma 2.5. There exists a universal constant ωmax such that the local Lyapunov
exponent κ(t) of a family of rays starting from a point qedQ is bounded by ωmax at
every point of the family of rays just before a collision.

Fig.l
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Fig. 2

For the proof cf. Theorem 3.3 of [VI (1982)].
A consequence of Lemmas 1.1 and 1.2 is the uniform hyperbolicity of a billiard

on a surface under the Conditions 1.2-1.4 (cf. Corollary 3.6 of [VI (1982)]). More
precisely the following statement holds:

Lemma 2.6. // a family of rays starts from a curve g of arc-length 10 satisfying the
condition of Lemma 1.2, then the arc-length of S*g is bounded from below by
IQ - exp(ωί), where ω is the same constant as in Lemma 1.2.

An analogous statement holds for families of rays starting from a curve g of
negative curvature less than — femin if t is changed by — t.

Next we turn to the definition of stable (unstable) fibers. Let g be a curve on the
billiard table Q and let v(q) be a unit vector perpendicular to g at each point q; the
curve in the phase space corresponding to this construction will be denoted by g.
Obviously π(g) = g.

Definition 2.7. A curve H(s\x) (H(u\x)) in M is called a stable (unstable) fiber iff
H(S\H(U}) passes through x and for each yeH(s\x) (yeH(u}(x)) S*y (S'^) tends
to Stx(S'tx)as f-*oo.

In [VI (1982)] the following theorem was proved:

Existence Theorem. Under the Conditions 1.1-1.3 for almost all xeM there exist
stable and unstable fibers being continuously differentiable curves in M (see Fig. 2)

Definition 2.8. The set (J {SΉ(s)(x)} ί\J SΉ(u\x)\ is called a stable (unstable)
leaf containing x. * \* /

Corollary 2.9. The arc-length of a stable (unstable) fiber tends to zero exponen-
tially when ί-»oo (t — oo).

3. The Poincare Mapping

The usual way to prove the ergodicity of a flow {S*} is the reduction of the problem
to the proof of ergodicity of a discrete time parameter dynamical system - a
mapping T - derived from
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' T x = T + x

Fig. 3

Definition 3.1. Let dM denote the set of such states y = (q, v) that q e dQ and v is
directed inwards the billiard table and let, moreover, τ(x) = inf{ί ̂  0: S'x e dM} for
x e M. Define the mapping T+ : M -> dM as follows T+ x : = Sτ(x) + °x. The restriction
T of the mapping T+ to dM is the Poincare mapping derived from the dynamics
{$*}. We say that a curve in M is outgoing if g = T+g.

The dual notion of an outgoing curve is an incoming one which is outgoing in
the time reversal dynamics (i.e. g = T_g, where T_x: = Sτ(x)~°x).

It is clear that T+ is invertible (see Fig. 3).

Each component dMt is topologically a cylinder; let us introduce on it the
coordinates (rf, φ^), where r is the length parameter of the boundary of the ϊth

scatterer and — f ̂  φ ̂ f is the angle of v measured from the outer normal vector of
the scatterer (see Figs. 3 and 4).

Lemma 3.2. The mapping T preserves the measure dv: = const dr dφcosφ.

For the proof see Sect. 4 of [VI (1982)].

Γis obviously continuous on dM\\J(Sί 9θuT~1S ί>0), where

Next we summarize the elementary facts concerning the connection between
the dynamics {S1} and the mapping T. Their proofs can be found in Sinai's classical
paper [S (1970)] and in the majority of later works on billiard systems.

Lemma 3.3. If g = φ(r) C dM is an outgoing curve and κ+(q) is the curvature of π(g)
in the point q = π(r,φ), then φ'(r) = κ+(q) cosφ —

The following lemma is a consequence of the preceding two ones:

Lemma 3.4. // g is an incoming (outgoing) curve and π(g) has a positive (negative)
curvature, then Γ+g(T_g) is an increasing (decreasing) curve φ(r) in dM.

As a consequence of Lemmas 2.4, 3.3, 3.4, one gets the following two lemmas

Lemma 3.5. // a curve g = π(g) in Q has curvature greater (less) than femin( — femin)
then for every n>0(n<0) the curves φn(r): = TnT+g in dM are increasing
(decreasing).
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Lemma 3.6. There exist two universal constants 0 < Cder < Cder < oo such that if an
increasing (decreasing) curve φ(r) is the T+ image a curve g satisfying the condition
of Lemma 3.5, then

r ^d(p»^r***(r *> d(tUder<-ΓΓ<(- <-der< T

/or n>0 (n<0), w/zere φπ(r) ϊ's ί/ze same as m Lemma 3.5.

Corollary 3.7. The curves TS0, Γ2S0,...(T~1S0,Γ~2S0,...) are increasing (de-
creasing) curves with derivatives between two universal positive (negative)
constants.

Lemma 3.8. Let us denote by dr0 and dr'0 the projection on the r axis of an
infinitesimal segment of the curves φ(r) and Tφ(r) at the points (r0,φ0) and
(rό> ψ'oY = T(r0, φQ\ respectively. There exists a universal positive constant Cdil such
that, if φ(r) satisfies the condition of Lemma 3.6 and it is increasing, then

dr'0cosφ'0 Cdil^ i
dr0cosφ0 cosφ0

The statement of Lemma 3.8 is an elementary geometrical fact from the
theory of the classical Sinai billiard, where Cdil can be chosen Cdil = τmin femin.
The proof exploits the local geometry of the collisions, only. Condition 1.4
formulates a global relationship between the curvature of scatterers dQ and the
Riemannian metric on Q, providing the hyperbolicity of {S*}. This condition -
roughly speaking - hinders the focusing of a family of rays until the next collision,
if it starts from a curve having curvature greater than kmin. So analyzing Vetier's
proof of Lemma 2.4 one can check the validity of Lemma 3.8 - with a possibly
less but positive constant Cdil - for the billiards on a bent able, too.

Corollary 3.9. Let drff denote the projection on the r axis of an infinitesimal segment
of the curve Tnφ(r) at the point (r(

0

n),φ(

0

n)): = Tw(r0,φ0). Then

t
> t-diii1 + ̂ dii)αr0

4. Main Geometric Lemmas

First we notice that the ergodicity of the dynamical system (M, {S*},//) can be
deduced from that of (dM, T, v). Moreover, for this end it is enough to prove the
ergodicity of the iVth iterate TN, where N is an arbitrary natural number. For a
technical reason we choose N in such a way that Cdίl(l -f-Cdίl)

N>9.
From the point of view of the geometrical structure there is only one difference

N

between T and TN, namely: the set of discontinuity lines of TN, SN: = (j T'kS0,
k = 0

has points in which four segments of SN intersect each other. This fact is the
consequence of the possible double tangencies of the rays (see Fig. 4). We assume
that there are no tangencies with multiplicity more than 2, which is true for a
typical billiard table.
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TΓ
" 2

Fίg.4

From now on we will only consider TN and its powers and for simplicity we use
T instead of TN and e.g. Sk instead oίSkN. Moreover, the choice of N provides that
for every increasing curve φ(r) satisfying the conditions of Lemma 3.8,

dr'cosφ' Λ , dr'cosφ'
—-->9 and — — >9,

dr drcosφ

where (r', φ'} already refers to the new mapping T.
Let us introduce two types of measures for the length of increasing (decreasing)

curves φ(r) having derivatives between two positive (negative) constants.
Lemma 3.6 guarantees that all curves occurring in our arguments will satisfy

this condition with constants ± Cder and ± Cder. So in the sequel - speaking about
monotonous curves - we shall not mention this condition.

Definition 4.1. Let y: = φ(r) be a monotonous curve in <5M; denote by ρ(y) the
length of the projection of y on the r axis and set ρ(y):= f cosφdr.

Let us formulate a lemma on the structure of singularity lines.

Lemma 4.2. There exists a universal positive constant ε0 such that for every
increasing curve y and for every quadruple of points x1? x2, x3, x4eynS1 ordered
by the coordinate φ,

1, X2), Q(*2> X3\ 0(*3> *4)) > £0

The following lemma justifies the introduction of the notion of ρ-distance.
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Fig. 5

Fig. 6

Lemma 4.3. // dg is an infinitesimal piece of an incoming curve, then the arc-length
ofπ(dg) = ρ(T+dg).

Definition 4.4. The ρ-distance between a point x e dM and a monotonous curve y
is defined by the formula

&x,y):= min #y).
{y: y has the opposite monotonicity

as γ and connects x with y}

Definition 4.5. A quadrilateral G in δM with increasing lower and upper sides and
decreasing left and right sides (see Fig. 5) is said to be C-regular if

sup ρ(x,γu)

inf ρ(x,γu)
xeγι0

G is strongly C-regular if, moreover,

sup {ρ(y,yr)}

inf {ρ(y,yr}}
ye vie

Lemma 4.6. For every C>ί there exists a number Cest > 1 depending only on C such
that for any strongly C-regular quadrilateral G,

sup sup {e(x,y «(%)}.

Proof. An easy Riemannian integral approximation works. The regularity of 0
enables us to construct an arbitrarily fine grid in &, using only piecewise linear
increasing and decreasing curves which connect the neighboring grid points to
each other by straight lines (see Fig. 6). We can also suppose that each cell of the
grid is (1 + τ/)-regular with arbitrary small positive η. Thus, by the definition of the
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measure v for every cell G' we have

Here the constant C'est is universal. Summing up this inequality for all cells
constituting the grid and using the strong C-regularity of G we can find an
appropriate Cest for which the statement of the lemma holds.

Remark. The upper estimation can be derived supposing the C-regularity, only.

The image of an increasing (decreasing) curve γ under the mapping T~ ί(T) is
not necessarily increasing (decreasing).

Definition 4.7. A curve 7 is w-decreasing (n-increasing) if Ty, T2y, ...,Tny(T~ίy,
T~2y, ..., T~"y) are decreasing (increasing) curves, too.

Lemma 4.8. Let Uxc8M be a neighborhood of x. If Tn is continuous on Ux, then
there exists an n-decreasing curve γx passing through x, such that γxr\ boundary of
I/»Φ0.

Proof. Take, in T"UX, the vertical line y* defined by the equation r = r(Tnx) up to
the boundary of TnUx. Then yx=T~ny* fulfills the desired conditions in the
lemma.

Definition 4.9. A quadrilateral G with increasing lower and upper sides ylo and yu

and with 1 -decreasing left and right sides yle and yr is called n-narrow of δ-size iff
max(ρ(ylo\ρ(γu))>2~nδ and, for every xeγlo the inequality ρ(x,yu)<S~nδ holds.

Lemma 4.10 (Cutting). Let G be an n-narrow, C-regular quadrilateral of δ-size
such that T is continuous on G. Then there exists a constant Ccut depending on C
such that, if GtCT(G) is any quadrilateral having power (upper) side yUo (̂  „)
greater than 2~"~1 -δ which is a subset of the lower (upper) side of T(G), then
there exist two quadrilaterals G l s ί and G2>ί such that G ί\(G l j ίuG2 f ί) has 1-decreas-
ing left and right sides, and, moreover,

i) Ccut

Proof. Let us assume that the left side of G has ρ-length δ' - 8~" (δr <δ), and the
lower side of Gf has ρ-length δ" 2~n (δ">δ). It follows from Lemma 3.8, the
choice of N and the C-regularity of G that the ρ-lengths of the left and right sides
of Gt. are less than C - 8 ~" - δ' (see Fig. 7).

There exists a universal constant Cu such that in order to obtain a quadrilateral
G ί\(G1>ίuG2f f) having 1-decreasing left and right sides it is enough to choose G^ Λ

and G2, , such that all their sides are less than Cu Creg 8 ~"<5'. Applying Lemma 4.3
we get the estimate:

^

Lemma (Shape) 4.11. For every C0 there exists a constant C1 such that for every n
if G is a C0-regular quadrilateral with increasing lower and upper sides and



Dispersing Billiards Without Focal Points 449

Fig. 7

n-decreasing left and right sides such that Tn is continuous on G, then TnG is C±-
regular.

Proof. We shall follow the ideas of Vetier's proof of the absolute continuity of the
fibers for {S*}. To do this we should quote the necessary information from [V2
(1982)].

Let dg be an infinitesimal curve in M, passing through the state x e M. The pair
a: = (x, 0 is called the state-curvature pair defined by dg, if the curvature of dg is
equal to /, |/|>fcmin. Let a(t) be the state-curvature pair defined by S*dg (ί>0). Set

/(α, tx)= 'f a(s)ds. Lemma 1 of [V2 (1982)] states:
o

Ifai = (xb lt) is a state-curvature pair (i= 1,2) and the states SsXι and x2 belong
to the same stable leaf, then the limit

ΔI(al9a2): = lim (I(al9t + s)-I(a2,t))

exists.

The proof of this statement is based on the uniform hyperbolicity of {S*}.
Consequently, for \s\ < τmax, ΔI(ai9 α2) is bounded by an absolute constant CΔ. Due
to Lemma 2.6,

arc-length π(Sldg^) arc-length π(Sfdg2ι

arc-length n(dg^) ' arc-length π(dg2)
<CΛ

Notice that analogous assertions are true for state-curvature pairs with
positive (/>/cmin) curvature lying on the same unstable leaf if ί-> — oo. In order to
prove the lemma we need these "reversed" statements.

Let *! and x2 be two points in TnG. Suppose that yί and y2 are two
1-decreasing curves joining the lower and upper sides of G (see Fig. 8) passing
through xί and x2, respectively (see Fig. 8).

Consider two infinitesimal curves dgγ = π^gj and dg2 = π(dg2) with curvatures
less than — /cmin such that xt e T~~1 T+gt c γt (i = 1, 2). So the above reasoning could
be applied to α£ defined by xt and gt if xί and x2 were on the same unstable leaf.
Vetier's proof exploits in fact only the exponential convergence of the trajectories
belonging to the same leaf. Therefore in order to derive Lemma 4.11 from Vetier's
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Fig. 8 % ' 1

lemma it is enough to prove the uniform exponential convergence of the
trajectories S~tx1 and S~tx2 until the nih collision in the past. But this "finite"
convergence is a consequence of the condition that Tn is continuous on G.

Finally, observe that replacing by 1-decreasing curves the decreasing curves
connecting x with γlo in the definition of ρ(x, ylG) we make a multiplicative error
bounded by an universal constant (remember that the slope of a decreasing curve is
between two universal negative constants) κv So one can choose C^ = C0 CΔ - κλ.

5. The Fundamental Theorem

In this section we formulate and prove the so-called Fundamental Theorem for
dispersing billiards on surfaces. The origin of this theorem for Sinai-billiards can
be found in [Sin (1970)] and in [Bu-Sin (1973)].

Theorem 5.1. (Fundamental Theorem for Dispersing Billiards). For every positive
number α (α < 1) there exist a positive number Cα > 1 and a positive integer feα such that
for every quadrilateral G with left, right, lower and upper sides, yle, yr, ylo, yw

respectively and for every δ > 0, if
(a) yu and γr are fcα+l decreasing;
(b) C~iδ^mm(ρ(γlo),ρ(yu))^max(ρ(ylo), ρ(γJ)£Caδ, and for every xeylo

(c) Tka + 1 is continuous on G,
then v(G00) ̂  αv(G), where G00 = {xeG: there exists a local stable fiber in G passing
through x and connecting ylo with yu}.

Proof. First we notice that there exists a universal constant C2 such that max(ρ(yIO),
Q(JU)) < C2 so <5 must be less than Cα C2 : = <5max. Let 0 < α < 1 be fixed. Suppose that
the numbers Cα> 1, fcα and the quadrilateral G are given in such a way that the
conditions (a)-{c) are fulfilled. Proving the inequality v(G00)^αv(G) we shall get
some necessary conditions on the numbers Cα and feα which can be satisfied by an
appropriate choice of them.

In fact, we shall give an algorithm for a construction of a subset of G. Let us
start the algorithm from the quadrilateral Tk"G. For every integer fc^kα we
construct a family <^(k}: = {Gf): 7' = 1,2, ...,wk} in such a way that

(i) for every fc^/cα the elements of &(k} are mutually disjoint, Cί -regular,
fe-narrow quadrilaterals of (5-size,

(ii) for every fe^feα, Gfc: = uG(k)cΓfcG and G^T'^-n,
(iii) for every fe^fcα and \^j^nk, ylo(Gf ) C T*ylG(G) and
(iv) for every fc^feα, T is continuous on Gk.
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Here the number CΊ is given by Lemma 4.1 1 using C0 = C%. The construction is
going on as follows: Put fc = fcα, nka = l and G(k<x) = Tk<xG. Now only (i) can be
problematic. If Cα and fcα satisfy the condition

(i*)
then (i) is fulfilled which can be seen using the condition imposed on N, (the
expansion (contraction) coefficient for both the metrics ρ and ρ is greater (less) than
9 (1/9)) and using Lemma 4.11.

Suppose that the construction of the systems ^(ί) of quadrilaterals is done for
/ = fcα, fcα + l, ...,fc. We construct G(k+1} as follows. We start from the connected
components of the set TGfc\5j (remember that Sj is the set of discontinuities of T).
Each connected component G is a polygon whose boundary consists of a finite
number of smooth increasing or decreasing curves. Let G" e &(k) be the unique
element of ̂ (k) for which TG" D G'. We keep the polygon G if its boundary contains
two connected increasing curves such that the ρ-length of the lower one is greater
than δ 2~k, otherwise we drop the entire G. For a remaining G we apply
Lemma 4. 10 with the following cast G = G", n = k, and Gf = G'. So we drop two
polygons (usually quadrilaterals) from G' in such a way that G' becomes a Cr

regular (k + 1 )-narro w quadrilateral Gf + 1 } of <5-size. Of course (ii)-(iv) are satisfied.
(Lemma 4.11 ensures the C1 -regularity.) Thus the construction of the systems of

00

quadrilaterals G(fe) is complete. The set P: = f| T~kGn is a subset of the set G^, so
k = kα

it is enough to estimate v(G\P) from above. This is the purpose of the rest of this
section.

There are two types (I and II) of the "loss" of measure:

I. The dropped polygons (quadrilaterals) from the quadrilaterals G according to
Lemma 4.10. The total loss of this type is less than

v(G) Ccut £ 4'fc = v(G) - Ccut 4
1 -fc« - i < ~ v(G) (A)

., k = k« J 2.
lf 8Γ

'
II. The entirely dropped quadrilaterals G'.

In this case ρ(y10(G'))^δ 2~* (y10(G') can be empty). From the
narrowness of the quadrilateral G" it follows that ρ(yu(G'))^δ 2~k+ί. Let us call
G" the father (or ancestor with rank 1) of G. The father of G" is called the ancestor
with rank 2 of G etc. We get the chain of ancestors with rank 1, 2, .... Let G* be the
unique ancestor of G with the smallest rank (say /) for which ρ()Ί0(G*)) > β0, where
ε0 is the constant in Lemma 4.2. If there is no ancestor G* of G for which ρ(7ι0(G*))
> ε0, then we take G* : = TfeαG = G?β) (with rank k + 1 - feα). We say that G* is the
forefather of G. We want to estimate the ratio v(Gr)/v(G*). If G* φ G?"0, Lemma 4.6
gives us

/^*\ ^ ̂ est " ^ ' y (.1)
v(G*) ε0
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By virtue of Lemma 4.11, the C t -regularity of G* holds for a well determined
Ci and, if feα (lower bound for the index fc + 1 — / of G) is large enough, then G* is
strongly Cί -regular as well because it is (k -h 1 — /)-narrow. As far as the strong Cj-
regularity of T~1G is concerned, we see that the usual C^ -regularity of T~lGf is
weaker than that of G* and the strong version of it is not necessary for the upper
bound of the measure v(T~lGf) in Lemma 4.6. If G* = G?β), then Lemma 4.6 gives
us

v(G') C2

estCx 2-* 9-'

v(G*)

In this case we can say about the applicability of Lemma 4.6 the same as above.
The estimation (1) is weaker than (2) if

_. (3*)

So we consider only (1). /^
We should estimate the sum Y from above for a fixed forefather G*. This

G' V(G*)

is the kernel of the proof of Theorem 2.1. Let m denote the index of the forefather

G*, i.e. G* e <&(m\ For an estimation of the sum Σ (ΓL we must investigate the

father-son relationship between two quadrilaterals G" and G. (G" is the father and
G is his son). The discontinuity lines Sx split the image TG" of G" into many pieces
(connected components). Some of them are connecting two branches of Sγ and we
call them long because the ρ-length of their lower side is greater than ε0 (cf.
Lemma 4.2). The other pieces are called short. We say that the father-son
relationship between G" and G is of the first type iff there is no long piece of TG"
with φ coordinates greater than the φ coordinate of G. Otherwise the relationship
is called of the second type. The quadrilateral G is called of the first type iff every
father-son relationship in its chain of ancestors G*-»G' is of the first type,
otherwise G is called a quadrilateral of the second type. Figure 9 helps the reader
to clarify the different types of father-son relationship.

First we give an upper estimate for the sum

Σ v(G/)

G' is a quadrilateral v(G*)
of the first type

(G* is a fixed forefather of G). Let us observe that for a fixed father G" there are at
most four of his sons with father-son relationship of the first type. The reason of
this assertion is that at most four branches of S1 go to a double point of S l5

moreover, at most three of them go into that point from the left direction (smaller r
coordinates) and an analogous statement is true for the right direction. So the
number of quadrilaterals G' for which the fixed quadrilateral G* is their forefather
with rank / (i.e. the index of G' is equal to m + /) is at most 4*. Using (1) we get

G' is a quadrilateral v(G*) 1=1
of the first type

9 Γ2 δ
^ ^est^max . 2~m (3)

3ε0
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Let us consider a quadrilateral G of the second type for which G* is its forefather.
In this case there is a unique quadrilateral G** in the chain of ancestors G*-»G'
with the largest index such that the father-son relationship between G** and its son
is of the second type. Let m^ denote the index of G**. Among the long pieces of G**
there is a unique one (denoted by G***) which is the right neighbour of the son of
G** being an element of the chain of ancestors G*-»G'. (The pieces are ordered by
the coordinate r from the left to the right.) We say that G*** is the godfather of G'.
(Obviously G* * * is not an element of the chain of ancestors G* -> G.) Let the index
of the running G' be equal to mx + / (/ ̂  1). The estimation (1) can be used to estimate

v(G')
the relative measure

v(G***)'

v(G***)
(4)

For a fixed G*** and ίeN there are at most 4/ suitable quadrilaterals G'. The
reason is again the structure of discontinuity lines S^ This fact and (4) imply that
for a fixed godfather G***,

v(G') CL <5m 2~ ί + 1 9~l+1 -4l

Σ v(G***)
G*** is a godfather

of G' ^est ' ^max m

3βn

Summing up (5) from W j = w to mi = oo we get

v(G') Ce

2

st

G' is a quadrilateral
of the second type

whose forefather is G*

v(G*)
5 _ m

(5)

(6)

Fig. 9

o Father-son
relationship of
the first type

x Father-son
relationship of
the second type
(son of G**)
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Inequalities (3) and (6) result in

τ v(G') 34-CL ^ax

5 HGΪ)< ^ 2 (7)

G* is the forefather
of G'

This shows that the v-measure of the entirely dropped quadrilaterals G" divided by
v(G) is less than

so if ^ 132 Ce

2

st a
3 d-α)ε0 '

Ί _

then the relative loss of v-measure is again less than — — . Collating this result with
v(P) 2

(A) we obtain that — — < α which we had wanted to prove. The proof is correct if
v(G)

the inequalities (l*)-{4*) are fulfilled, but this can evidently be achieved.
The dual of Theorem 5.1 is, of course, also true. To obtain it we just make the

following changes: yι&<^>yι0, yr<-»ytt, decreasing <-> increasing, τfcα+1<->T~(kα+1),
stable «-> unstable. Since both forms of the theorem will be applied, we will use the
notation G^ for G^ appearing in the original form and the notation G(£ arising in
the dual one. The constants Cα and fcα can be chosen equal in both versions.

The proof of the ergodicity will be based on the following

Corollary 5.2. For every α (0<α<l) there exist a number Cα>l and a positive
integer fcα such that, for every quadrilateral G, for every δ>0 and for every neN,
the conditions

a) 7ie(G) and yr(G) are kΛ + n -\-\-decr easing,
b) Tk°+n + ί is continuous on G,
c) C-ίδ^mm{ρ(ylo(TnG))9 ρ(yu(TnG))}^max{ρ(ylo(TnG)\ ρ(yu(TnG))}^Ca δ

and, for every x e ylo(T«G), C~ M ̂  ρ(x, yu(T"G)) ^CΛ-δ
imply v(GJ^av(G).

Remark. This corollary allows G to be thin in the unstable direction (and the dual
corollary in the stable direction), a fact that will be important in proving the
ergodicity.

6. Έrgodicity Follows from the Fundamental Theorem

First we prove a local version of the ergodicity: For almost every point xedM
some neighborhood of x belongs to one ergodic component of the dynamics T

00

Lemma 6.1. If xe dM\ (J Sk9 then there exists a neighborhood U(x) of x such
k=-oo

that for every subset R C U(x) of v-measure zero there exists another subset
ARCU(x) with the following properties:

(i)
(ϋ) v

(iii) for any pair of points y, z e ARλ,
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there exist two sequences of local stable and unstable fibers γ\9 ys

2, ...,y
s

k and y",
72? ••-j?fcj respectively, such that

(b)
(c)

Remark 6.2. A standard Hopf-Hedlund argument shows that U(x) belongs to one
ergodic component of the dynamics T.

Proof of Lemma 6.1. Choose an α (0<α<l). Then Theorem 5.1 gives us two
numbers Cα and fcα. Let U(x) be a quadrilateral containing x as an inner point and
not intersecting Skχ + „ + ^ u S _ feα _ „ _ t . (The number n is a large natural number.) We
claim that such a neighborhood U(x) satisfies all the conditions (i)-(m) f°r every
subset R C U(x) of v-measure zero. First we prove that the subset A'R = (Int U(x)\R)
r\F would be good if we dropped the conditions yjny" C AR and y"ny}+ i C A'R from
(c). [Here F C dM is the set of those points y e dM for which there are local stable
and unstable fibers containing the point y as an inner point. Of course, v(F) = 1.]
The conditions (i) and (ii) are obviously satisfied. Let y, z be two points in A'R
= (lntU(x)\R)nF. Using the properties l/(x)n(SJkβ+n+1uS_ fcβ_II_1) = 0, y, zeF
and applying Lemma 4.8 it is easy to see the existence of a sequence of
quadrilaterals GS

1? G", . . ., Gs

k, Gl and of a sequence of positive numbers δ\, δ", . . ., <5£,
δ% with the following properties:

(α)

(β)G5CC7(x)Ί

G3fCC7(x)J J~ ' "•" '

(γ) G} satisfies the conditions (a)-(c) in Corollary 5.2 with the number δ
replaced by 5J(/ = l,2,...,k),

(δ) G" satisfies the dual conditions (a)-{c) in the dual of Corollary 5.2 with the
number δ replaced by δ" (/ = 1,2,..., fc),

(ε) GJnGJ is a quadrilateral such that yιe(G]nGJ)Cyle(G5), y^G^nG^CyXG^),
yioίGJπG^CyJGJf) and yu(Gsj^)Cyu(G^.

(Q GJnGJ+! is a quadrilateral such that yle(G;nGJ+ JCy le(GJ+1), y,(G^nG}+ J
C7r(G}+1), ytoίGJπGJ+JCyJG^ and y^nG^^Cy^).

The choice of n to be large enough (see the Remark after Corollary 5.2)
guarantees the narrowness of Gjin the unstable direction and the narrowness of G"
in the stable direction, so the quadrilaterals Gs

l5 G",..., G£, Gl can fulfill (ε) in this
way. Now Corllary 5.2 ensures the validity of (iii) in Lemma 6.1 without the
conditions y]^yUjCA'R and y^y^+^CA^. But up to now only the properties
(G$?Φ0 and (G^Φ0 have been used from Theorem 5.1.

The absolute continuity of the partitions of the phase space dM into local
stable and unstable fibers gives us that v(A'R) = v(U(x}\ where

A'R = {yeA'R: the relative arc-length measure of the
set ys(y)r\A'R in the curve ys(y)r\ U(x) equals 1
and an analogous statement holds for γu(y)}.
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Similarly, v(A'R) = v(U(x)\ where

AR = {yeAR: the relative arc-length measure of the
set ys(y)nAR in the curve ys(y)nU(x) equals 1
and an analogous statement holds for γu(y)} ,

and so on. The intersection AR = A'Rr^ARnARn . . . satisfies all the properties (i)-(m)
in Lemma 6.1. Only (iii) can be problematic. The construction of the quadrilaterals
GI, GI, . . ., G£, GI for any two points y, z e AR is going on as earlier. But now, if ys is a
piece of a local stable fiber connecting ylG(G;) with yM(G* ) and if X C 75π(G")(^ is a set,
measurable by the arc-length measure on ys, then this arc-length measure of £ is
positive if and only if the set

has positive v-measure. This is also a consequence of the famous absolute
continuity. Of course, the analogous statement (stable-unstable) holds as well.
Using these assertions and the definition of the set AR we get the validity of (iii) in
Lemma 6.1.

oo

Remark 6.3. The condition xedM\ (J Sk in Lemma 6.1 is not necessary; it is
k = - o o

enough to suppose that x φ S0 and x is not a double-point, i.e. x belongs to at most
one discontinuity line. If, for instance, x e Sk for a positive integer fc, then we can
also connect the points y and z with a chain γ\, y", ...,yj, y£, perhaps crossing the
line of Sk by some y".

Consequently, if x φ S0 is not a double point, then some neighborhood of it
belongs to one ergodic component. The set of these points is arcwise connected in
each component of dM. (Topology: The complement of any countable set in a
two dimensional connected manifold is arcwise connected.) Consequently,
cylinders are subsets of the ergodic components. Now, if there were at least two
nonempty invariant sets consisting of cylinders, then a perturbation argument
around the joint tangent of scatterers belonging to different ergodic components
implies that these two scatterers are in the same component. Hence the ergodicity
follows.

7. Remarks

1. Among the geometric lemmas it is only the shape lemma which uses the
absolute continuity of the fibration. Analogously as was done in Gallavotti's
lectures G (1975), we could have included in the fundamental theorem an assertion
about absolute continuity with a bound on the Radon-Nykodim derivative and
could have proven this within the fundamental theorem. Here and in the proof of
ergodicity we preferred to shorten the exposition and accepted the absolute
continuity as proven by Vetier.

2. Dispersing billiards on a surface are generalizations of Sinai billiards in a
smooth potential field. The connection is explained in [VI (1982), Sect. 6].

3. Vetier's results are strongly related to the approach of [K-S (1986)]: they
generalize Pesin's theory (cf. [P (1977)]) for a wide class of smooth maps with
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singularities and they show that, if the Lyapunov exponents are not zero, then the
ergodic components are positive. It is an intriguing question to find conditions
when the fundamental theorem extends to their class.

4. In Sects. 1-6 all prerequisites for proving the Bernoulli property has been
prepared (cf. [G-O (1974)]); consequently Vetier's billiard is a Bernoulli system
and a fortiori it is a K-system.
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