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Abstract We consider the energy dependent Schrόdinger operator
N

JL= Σ ^(εί d2 + %), which we have previously shown to be associated with
i = 0

multi-Hamiltonian structures [2]. In this paper we use an unusual form of the
Lax approach to derive by a single construction the time evolutions of the
eigenfunctions of 1L, the associated Hamiltonian operators and the Hamil-
tonian functionals. We then generalise the well known factorisation of
standard Lax operators to the case of energy-dependent operators. The simple
product of linear factors is replaced by a A-dependent quadratic form. We thus
generalise the resulting construction of Miura maps and modified equations.
We show that for some of our systems there exists a sequence of N such
modifications, the rth modification possessing (N — r + 1) Hamiltonian
structures.

1. Introduction

In a number of recent papers [1-4] we discussed the two generalised Schrodinger
equations:

/JV-l \

= λNψ, (1.1 a)

ψ, (Lib)

where a is a constant. We have shown that the isospectral flows of each of these
spectral problems possess (JV + 1) compatible Hamiltonian structures B0, ...,BN.
When N = 1 these spectral problems give rise respectively to the KdV and Harry
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Dym hierarchies, both bi-Hamiltonian. When N = 2, (1.1 a) includes the dispersive
water waves (DWW) and Ito hierarchies, both tri-Hamiltonian.

In the present paper we consider the Miura maps and modified equations
associated with these spectral problems. In fact, we construct a sequence of N
Miura maps and modifications for the TV component system. The rth modification
possesses (N—r+1) compatible Hamiltonian structures. The single Hamiltonian
structure of the Nth modification is a constant coefficient, first order differential
operator.

Our method of construction is an extension of the factorisation of differential
operators [5-8]. To incorporate the spectral parameter we need to introduce a
quadratic form in place of the pair of linear factors required for the simple KdV
case. To each quadratic form there corresponds a different map. We exhibit one
particular sequence of N quadratic forms, defined by matrices Ar, which enable
each of our Hamiltonian structures to be (separately) brought to constant
coefficient, first order form. When ε0 = 0, the corresponding maps are invertible, so
are just a change of co-ordinates. When ε0 Φθ, the maps are non-invertible and of
Hamiltonian type, thus qualifying as genuine (see [8] and the definition below)
Miura maps. Indeed, under the action of the Miura map Mr associated with Ar, the
pre-images Br,..., EN of Br,..., BN are locally defined in terms of the modified
variables, Br being constant coefficient and first order. When r = N only BN, given
by (3.9b), is locally defined. The mapping MN can be decomposed into a sequence
of N maps Mk

N (k = N,..., 1), relating the feth and (k — l)th modifications. We are thus
led to the beautiful picture of Fig. 1.

For the remainder of this introduction we present some of the basic facts
concerning Hamiltonian structures and Miura maps. Section 2 is concerned with
the Hamiltonian formulation of the isospectral flows of (1.1). We add some proofs
and bring some hindsight to these results. More importantly, we adopt here a
completely different approach from that of [2], In the present paper we start with
the spectral problem (2. la) and in one construction derive the time evolutions of the
eigenfunctions of (2.la), the associated Hamiltonian operators and the Hamil-
tonians. We employ an unusual form of the Lax approach, which leads to a
surprisingly simple and elegant derivation of our results. Miura maps and
modifications are introduced in Sect. 3. The results are so simple to present that we
give the general formulae. As examples we have chosen the DWW equations and a
2-component extension of the Harry Dym equation. Since both of these are tri-
Hamiltonian they each possess 2 modifications. Our second modification of the
DWW equations is genuinely different from both of Kupershmidt's [9], in that
there is no invertible transformation of co-ordinates connecting them.

Hamiltonian Property

In this paper we are concerned with systems of NLEEs [in (1 + l)-dimensions]
which can be written in Hamiltonian form ut = RδJ4f, where B is a Hamiltonian
operator and b$? the variational derivative of functional 3C (all defined below).
In the context of analysis and physics one would then deal with constants of
motion and Poisson brackets in their integral form, respectively:

{K,H}= Sδ^BδJt? dx, (1.2)



Factorisation of Energy Dependent Schrόdinger Operators 467

which would involve particular boundary conditions on the functions u^x). To
avoid any such considerations it is customary to work within the framework of
differential algebras. We briefly present a few of the basic facts below. For detailed
discussions of the Hamiltonian theory of NLEEs, see [10-12].

Let Au be the (differential) algebra of differential functions of
u = (w0,...,%_ t)

Γ, that is the associative algebra of functions of uk and (a finite

number of) their x-derivatives, together with the derivation d:Au-+Au,d=-^- (the

total x-derivative). The algebra of differential operators on A» = Au x ... x Au

(TV-times) will be denoted by A%[8]. A skew-adjoint operator B e A%[d~] (B1 = -B,
where B1 is the formal adjoint of B) is Hamiltonian iff the (Poisson) bracket {,}5:
Au X A.U—+A.U)

{G,H}B = δGBδH (1.3)

satisfies the Jacobi identity (modlmδ). The Euler operator δ:Au->A*,
ζ

δ = (δθ9...,δN,1)
τ,δi = -r—, will sometimes be written as δu to distinguish it from its

OUi

counterpart δv:Av-^A^ on the algebra of differential functions in the modified
variables vt.

Remark. For two Hamiltonians to Poisson commute with respect to (1.3) means
that the right-hand side of (1.3) is an exact derivative. In the analytic context the
right-hand side is a boundary term which can only be "thrown away" with an
appropriate choice of boundary condition.

For any HeAu and B e A^\β~\ the formula dHu = EδH defines an evolutionary
(meaning that [δ,3H] = 0) derivation dH of Au. When B is Hamiltonian the
commutativity of dH and dG is equivalent to {G, #}β = 0(modlmδ).

Since Ker<5 = Imδ, δ:Au-+A% is essentially defined on the quotient space
jtfu = AJImd, and the Poisson bracket {G,H} and evolutionary derivative dH

depend only upon the equivalence classes ^,^fe^uoϊG,HE Au. We will usually

write — instead of dH, when describing the Hamiltonian flow:
ot

ut = BδJP, (1.4)

where t is the corresponding evolution parameter.
A system of evolution equations is said to be bi-Hamiltonian if there exist two

Hamiltonian operators B0 and E1 and two Hamiltonians ^ and ffl such that

ut = E0δ^ = E,δ^f. (1.5)

It is particularly interesting if the operator B0 + Bt is also Hamiltonian, in which
case BO and B^ are said to be compatible (in general the sum of the Poisson
brackets would fail to satisfy the Jacobi identity). The importance of compatibility
is that it enables us (under certain conditions) to construct an infinite hierarchy of
(Poisson commuting) Hamiltonians. This important condition was first noticed by
Magri [13]. To clarify this we introduce a definition:

Definition. A differential operator D: A^-^A^ is said to be degenerate if there is a
nonzero differential operator D:A^-^A^ such that D D = 0.
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With this definition in hand it is now possible to state a useful lemma (see [11]
for a proof).

Lemma. // B0 and Bj are compatible Hamiltonian operators, with B0 non-
degenerate, and

B0K, (1.6)

then there exists a function tf such that K = <
To prove the existence of an infinite hierarchy of Hamiltonians, J"fw, related to

compatible Hamiltonian operators B0, B1? we need to check that three conditions
hold:

(i) BO is non-degenerate.
(ii) 3 an infinite sequence of vector functions K0, K1? . . . satisfying BίKn = B0KΠ + 1.

(iii) 3 two function(al)s Jf0 and ̂  s.t. K0 = (5^f0, K^^.

It then follows from the lemma that there exist function(al)s 3(n such that

Remark. Condition (ii) is not always easy to check, although it is for our systems.
Indeed, it may not even be satisfied, as shown by an example of Kupershmidt [14].

For this construction, it is of no advantage for a system to be more than bi-
Hamiltonian. However, the existence of multi-Hamiltonian structures does lead to
a rich supply of (multi-) Hamiltonian modifications.

"A Remarkable Explicit Nonlinear Transformation"

Miura presented his famous transformation 20 years ago [15]. He showed that if:

u=-Vχ-v2 (l.7a)

and v satisfies the MKdV equation:

vt = vxxx — 6v2vx (1 .7b)

then u satisfies the KdV equation

At the same time Miura et al. [16] used (Gardner's generalisation of) this to prove
the existence of an infinite number of conservation laws for both the KdV and
MKdV equations and to derive the linear Schrόdinger equation (1 .1 a) (with N = 1).
It was later noticed that (1.7a) could be used to construct the second Hamiltonian
structure of the KdV equation out of the single Hamiltonian structure of the
MKdV equation. This is the property of most interest for this paper.

Equation (1.7b) can be written in Hamiltonian form

From the Miura map (1.7a) we have
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If we denote (1 .7a) by u = M[v], the operator ( — d — 2v) is the Frechet derivative M'
of M. Using the formula δΌJ^ = (M^δuJ(f9 where jT[u] is defined by jfr[υ]
= j#ΌM[v\9 we find

ut = M'( - d) (M/)t δu #e . (1 .8c)

When M is given by (1.7a), Eq. (1.8c) can be written in terms of u and its derivatives
to give the local equation (1.7c). However, for an arbitrary differential mapping
u = M[v] this process would take us out of the differential algebra setting, since:

(i) there would not generally be a (locally defined) functional &£ [u] satisfying

(ii) the differential operator M'( — d)(M')^eAυ[d~\ would not be an element of
Au[d~] since its coefficients would not be locally defined in terms of u and its
derivatives.

It is a remarkable fact that neither of these problems arise for the mapping (1.7a),
since taking ^f = ̂ u2 we have

and

e Au[_d~] . (1 .8e)

The Hamiltonian nature of the third order differential operator (1.8e) follows from
that of (-d) through the formula M'(-d)(M^. Then (1.8c) is a Hamiltonian
description of the KdV equation (1.7c).

Remark. The operator (1.8e) is the second Hamiltonian structure of the bi-
Hamiltonian KdV equation. This construction gives no information regarding the
existence of a first Hamiltonian structure.

In a more general algebraic setting, let u = (w0, . . . , UN _ ̂  and v = (t;0, . . . , VN _ ̂
be the (respectively) unmodified and modified variables. Then

Definition. The mapping u = M[v], Me A», is a Miura map for Hamiltonian
operator Be ̂ [3] if:

(i) M is not invertible
(ii) B = MΈ(MTL=MMe^[3].

This definition is adopted from [8].

Remark. The problem concerning the locally defined functional 2f \u\ does not
arise here since we use the map M to "push forward" Hamiltonian operator B and
"pull back" arbitrary functionals 3tif[u]. This "pull back" is, of course, not
surjective.

Remark. The Hamiltonian nature of the operator B follows from that of B
provided Miura map u = M[v] is nondegenerate (see [8, 10] for a more detailed
discussion of this). It is often the case that 8 is of much simpler form than B, thus
giving a simple proof of the Hamiltonian nature of B. This is the case in example
(1.8c) above.
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Factorisation of Differential Operators

The relationship of Miura maps to the factorisation of differential operators is
discussed in [5-8]. The map (1.7a) can be obtained from the Schrόdinger operator

through the identification:

The spectral problem lΛpi=λ\pί for the KdV equation can be used to define that
for the MKdV equation:

This notion is easily extended to higher order Lax operators [6]. In [8]
Kupershmidt and Wilson proved that the map obtained through the factorisation
of the general Lax operator (but independent of spectral parameter) is genuinely
Miura by their criteria.

In Sect. 3 we generalise this construction to the case of the spectral dependent
Schrόdinger operators (1.1 a, b).

2. The Spectral Problem

In this paper we consider a fairly general second order scalar spectral problem:

where ε and u depend polynomially upon the spectral parameter λ:
N N

o o

with εf being constant and u{ functions of x.
We look for time evolutions of the wave function ψ of the form:

where P and β are functions of u{ and their x-derivatives, and of the spectral
parameter λ. A simple calculation leads to

JLt-lPίJL-] = ut + 8Qxx-^Pux + ̂ s(Pxx + 4Qx)d + εPxd
2. (12a)

Evidently, we cannot expect the usual Lax equation to hold. However, the
integrability conditions of (2. 1 a, c) imply that (ΊLt — [P, 1L]) ψ = 0 for eigenfunctions
of (2. la). To match the coefficient of d2 we must take:

L,-[P,L] = PXL (2 2b)

This further implies that Pxx + 4QX = 0, so that (2.2b) takes the remarkably simple
form:

ut = $ ε33 + \ (ud + du))P = JP . (12c)
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Remark. On the phase space defined by just one function w, the operator J, defined
by (2.2c) is Hamiltonian, being (when ε = 1) just the second Hamiltonian structure
of the KdV equation. The operator J is the basic unit out of which all our
Hamiltonian operators are built.

With ε and u defined by (2.1b), the operator J takes the form:

N

J=Σo

where

Equation (2.2c) then takes the form

N / N

Substituting a polynomial expansion for P:

m

JP= y Pί^.1 m —

(2.3a)

(2.3b)

(2.3c)

(2.4a)

we find the recursion relations for the coefficients Pm-k and the equations of
motion for M f :

..+J»Pk = Q, k = 0,...,m-l (2.4b)

+ ................ +<^fΛt

J0P«-κ+1 + ... +/W-lPm (2.4C)

UNtm

 =«^0^

We prove below that, whenever εN = 0, (2.4b) can be algebraically solved
recursively for P0, ...,Pm_1 ? starting with P0eKerJN. However, without further
restriction, Pm is undetermined. There are just 2 cases:

Case L UN constant. Take UN= — 1
Then, the first of equations (2.4c) takes the form (2.4b) with k = m. The remaining
equations of (2.4c) are the equations of motion for w0,...,%_!:

(2.5a)

We refer to this as the (generalised) KdV case. The operator JN = — d is constant
coefficient.

Case 2. UN non-constant
Pm is unconstrained. We may thus set Pm = 0. The last of (2.4c) then implies
u0=— a2, a constant. The remaining equations of (2.4c) are the equations of

~U0

MM 1TV — i

=

*m

ro

Λ[_ 0

,J° 1

• J N 1 _|
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*m-N

Λn-1

(2.5b)

We refer to this as the (generalised) Harry Dym case. The operator
J0 = ig03

3_ a

2Q is constant coefficient.

It is a remarkable fact that the scalar recursion relation (2.4b) can be written as
an N x N matrix equation in exactly N different ways:

where P(k) = (Pk_N+1, ...,Pfc)
τ and the matrix differential operators Bw are

determined by the following requirement: BM is skew adjoint and the nth row of
each matrix equation (2.6a) is just (2.4b), the remaining ones being identities.
Explicitly, Bn are:

B =

Ό J0

^ 0 ** n 1

0

0

- ϊ -Ί** n+ 1 t " N

-JN 0_

(2.6b)

and satisfy the formal relation BM = RBM_1 ? where

Γ°
1

_o

o

0

Ί

— 7 7"1

0 N

— «/!«/#

-Ji-S

-

-1

R = B1Bn = *• . (2.6c)

Our next step is to prove 3 basic facts:

1. The operators BM are each Hamiltonian and, furthermore, are mutually
compatible.
2. For each w^O, the recursion relation (2.4b) can be successively solved for all
polynomial expansions (2.4a) subject to the condition SN = 0.
3. The vectors P(k) given by (2.6a) are variational derivatives of a sequence of
function(al)s 3fn (the Hamiltonians).

Then it follows from (2.6a) that the equations of motion (2.5) can be written in
Hamiltonian form in (N-hl) distinct ways:

(2.7)
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The Operators BM

The algebraic form of the operators Bw is so simple that (1) can be shown by direct
calculation. We omit the details here, preferring to give an independent proof of the
Hamiltonian character of the operators (2.6b), based on the existence of Miura
maps, in Sect. 3.

The Recursion

The sequence of equations (2.4b) can be used to recursively define Pk in terms of
differential functions of wf if, for each fc,

X JΛ-N+ιeImJN. (2.8)
;=o

Rather than check this at each step we prefer to use a different method. We prove
that there exists a formal infinite series solution:

& = Σ V (2.9a)
n = 0

of the equation J^ = 0, i.e.

4 *&xxx + u^x + 2 ux& = 0 (2.10a)

with Pn being differential functions of u0, ...,%. Then:

(2.9b)

where ( )+ means only terms with non-negative (for the KdV case) or positive (for
the Harry Dym case) powers of λ, is of the form (2.4a) and gives us a solution of
(2.4b).

Equation (2.10a), when multiplied by ,̂ can be integrated to give:

u&2 + ε(±0>0>xx - ±&l) = C(λ) , (2.10b)

where C(λ) is a /l-dependent constant of integration. With u and ε given by (2.1b),
εN = 0, we set C(λ) = CλN and sequentially calculate Pn. The first two terms are

« N - ι P o - i v - Λ , χ + % - ι ί - (2-lOc)

Since the leading term in the coefficients of λN~n is 2P0Pn we can always solve for Pn

in terms of previously calculated (differential) expressions in w0, . . . , UN.
In the following discussion we concentrate on the (generalized) KdV choice, so

that UN= — 1, and (2.10c), with C= — 4, gives us

Po = 2,P1=tιN.1. (2.10d)

Variational Derivatives

To establish the Hamiltonian character of the corresponding flows (2.5a) we must
prove that P(k), defined by (2.6a), are variational derivatives of some functional

•&><^SΓβ.

(Ί \\<Λ\\£ 1 1 a j
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From (2.10d) it follows that P(Q) = δ^0, P
(1) = <5jf1 with

Formula (2.1 la) thus follows from (2.6a) and the lemma of the introduction.
We summarise these results as follows:

Theorem. There exists an infinite sequence of isospectral flows of (2. la) which can
be represented as the ίntegrabίlity conditions (2.2) of (2. la) and (2.1c) with P defined
by (2.9). These equations are Hamiltonian with respect to the (N + ί) mutually
compatible Hamiltonian operators (2.6):

l, / = 0,.. .,JV,m = 0,l,.... (2.12)

All the flows (2.12) commute.

λ-Expansion of the Riccati Equation

In the paper [2] we used an alternative method of generating an infinite sequence
of Hamiltonians for the isospectral flows of the energy dependent Schrόdinger
spectral problem (2.1). A formal power series solution:

y= Σ jvf (2-13)
— oo

of the Riccati equation

ε(yx + y2) + u = Q (2.14)

associated with the linear problem (2.1) through y = — , ξ2 = λ, gives us an infinite

sequence of conserved quantities yr (half of which are trivial). To prove that the
resulting (nontrivial) Hamiltonians J k̂ are compatible with the multi-Hamiltonian
ladder

Enδ^k = En^δ^k+l (2.15)

we consider Eq. (2.14) as defining a change of variables u = F[y~] = — ε(yx + y2). The
usual transformation properties of variational derivatives give

. (2.16a)
oy ou

Acting on y we obtain

ε(^-2^) = l , (2.16b)

δy
where 0>= — . Differentiating (2.16b) twice and making use of (2.14) we arrive at

ou
δy δy

Eq. (2.10a). Since & = — differs from - — only by a factor of λn this proves that the
ou oun

variational derivatives of Hamiltonians obtained from the Riccati equation (2.14)
satisfy (2.10a). Thus the Hamiltonians J f̂e themselves satisfy (2.15). The advantage
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of using the Riccati equation (2.14) and the expansion (2.13) instead of (2.10a) and
(2.9b), respectively, is that we end up with Hamiltonians rather than just their
variational derivatives thus rendering the lemma of Sect. 1 superfluous.

Remark. The apparent inconsistency of power series expansions (2.13) in the
powers of ξ and (2.9a) in the powers of λ = ξ2 is resolved by the fact that half of yr

are trivial so that the corresponding variational derivatives vanish. Thus we are
effectively left with a power series expansion in the powers of ξ2 = λ only.

Inverse Hierarchy

In [2] we discussed the inverse hierarchy which exist whenever ε0 = 0. This
corresponds to having P polynomial in λ~1 rather than in λ. However, in the more
general context of this paper the inverse hierarchy can be related to the previously
discussed direct hierarchy by a simple transformation.

Dividing (2.la) by λN we obtain

Σ Λ i-Ar(β ίa
2H-tt ί)φ = 0. (2.17a)

i = 0

With λ-^λ'1, Ui-H4N-i9 £i~^sN^b (2.17a) is transformed into

Σ Aί(εi3
2 + Mί)V = 0, (2.17b)

i = 0

which is identical to (2.la). Thus the direct Harry Dym type hierarchies are
transformed by the above substitutions into inverse KdV type ones. The condition
ε0 = 0 translates (after the above transformation) into % = 0 and thus implies the
existence of the inverse hierarchy.

3. Factorisation of Spectral Dependent Operators

In this section we construct Miura maps which relate isospectral flows of (2.1) to
their modifications. To achieve this we generalise the factorisation approach
described in the introduction. However, it is not enough to just choose v to be
polynomial in λ in order to obtain u as a polynomial. We replace the factorisation
(1.9b) by a quadratic form. The N modifications mentioned in the introduction
arise from a sequence of N such quadratic forms. To achieve unity between the N
component KdV and Harry Dym cases we once again work with (JV+1)
components to begin with, but later specialise to each of these two cases.

Basic Formulae

We denote the modified variables by v = (vθ9 ...,VN)T.

Define

4 = α/c<5 + vk9 ak constants, k = 0,..., N,
(3.1)
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Let Λ be any constant, Λ-dependent, (N + l)x(N + l) matrix, and use this to
define a /l-dependent second order differential operator by the quadratic from
IΛ( — ί1"), the A-dependence being derived purely from that of Λ. Equating this to
our operator IL of (2.1) gives rise to a map between functions t?f and ut. Different
choices of Λ give rise to different maps.

The following quantities occur frequently below:

Define

and

(3.2)

Ar =
''1

o /
(3.3)

Making use of the formula lkϋa + I
the identification:

gives rise to the equations:

N-k

fc= Σ αfc + i%-ί

= — 2<xka.nd
2 — i^kn one can easily see that

(3.4)

(3.5a)

(3.5b)

J J V - f c
= o Σ

(3.6a)

(3.6b)

Remark. The formulae (3.5) are not a priori consistent. For instance, for r > 1, there
is no choice of αfc which would give ε0 = 0, ε^ = 1. Thus, Ito's equation is ruled out of
consideration here. Such inconsistencies are, however, exceptional.

When these formulae are consistent, Eqs. (3.6) define a differential mapping
from vt to Mf, sometimes invertible, sometimes not. We are particularly interested in
the latter, since these define genuine Miura maps (in the sense of the restrictive
definition given by Kupershmidt and Wilson [8], and in the introduction). The
importance of these maps (both invertible and Miura) is in their action upon
Hamiltonian operators. We must, therefore, reduce to one of our N-component
systems before proceeding.
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Generalised KdV Systems

Here we have εN = 0, UN = — 1. The formulae (3.5), (3.6) corresponding to ΛN+1 do
not admit this reduction, so we must restrict attention to Λ0,..., AN. We must have
αN = 0 and VN= + 1 (we choose VN= — 1). Thus, 1N= — 1, i^NN= — 2, i/"Nk = 2vk, so
that (3.5b), (3.6b) reduce to

N-k-ί
= Σ αfc+;α#-i?

ί=l

- Σ
2 i = ι

(3.5c)

(3.6c)

and (3.6c) defines an invertible map between υr9..., VN_ ^ and ur,..., UN _ j [subject
to the consistency of (3.5c)]. In particular when r = 0 the map (t?0,...,%_!)
->(w0, ..., UN _ i) is invertible.

Generalised Harry Dym Systems

Here we have % = 0, u0= — a2 (constant). The formulae corresponding to Λ0 do
not admit this reduction, so we must restrict attention to Λl9 ...,ΛN+1. We must
have aN = 0, v0=±a (we choose v0=— a). Thus I0 = a0d — a and (3.5b), (3.6a)
reduce to

N-k-l
γ-\ ι \7 1 C\ ^A\

(3.6d)

We will present our results in the context of the generalised KdV reduction.
Most of our formulae can, however, be used in both cases. We shall point out the
differences where they occur, and present a Harry Dym type example.

Subject only to the consistency of (3.5a, c) we have the following important
proposition.

Proposition 1. Under the change of variables u = Mr[v] defined by (3.6a,c), the
Hamiltonian operator Bre,4^[δ], given by (2.6b), is the image:

(3.7a)

of the constant, first order Hamiltonian operator Sr e A%[

0 -5

-d 0
0

0 8
(3.7b)

J 0

where the diagonal blocks are respectively rxr and (N — r)x(N—r).
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We will sometimes denote by v(r) the modified variables corresponding to the
mapu = Mr[v

(r)].

Proof. The Frechet derivative of the mapping Mr is given by

h 0

M' =
Ήr-1

0

0

Γ l r+l

mN

(3.8a)

where

(giving mN = 2 when αN = 0, VN= — 1). To obtain (3.7a) we use

+ mndml = -

(3.8b)

(3.8c)

The formulae (3.6a, c) then give the result.

Remark. The analogous proposition holds in the Harry Dym case. The only
change is that (3.6b,d) defines now the (r-l)th mapping u = Mr_1[v]. This
corresponds to the fact that we must now consider the sQtΛί9...9ΛN+ί (instead of
Λθ9 ...,ΛN) as defining the factorisation (3.4b).

Remark. Using (3.8c) one can easily check that the factorisation (3.4) has its
counterpart on the level of the third order operator J: J = m(—^d)Λm\ where
m = (m0,..., τ%). The factorisation of J seems to be, in fact, more fundamental for
our purposes than that of IL. It survives the super extension of the energy
dependent Schrόdinger operator discussed in [17].

We already have seen that since SN = 0, the map (3.6b) between υ r,..., %_ t and
w r,...,%_! takes the invertible form (3.6c). Similarly when ε0 = 0, the map (3.6a)
becomes invertible:

uk~ ~2v0vk — ukv0x + — £ ¥^ ? k _ ί ? fc = 0, ...,r— 1, (3.6e)

so that the whole map u = Mr[v] is invertible for each r = 0,..., N. In this case α0 = 0
and m0= — 2ι;0, so that M'r is easily inverted.

We now concentrate on the case ε0 φO, so that the map (3.6a, c) is a genuine
Miura map (for r > 0). For clarity, we choose the most interesting case [2] of ε0 = 1,

ε. = 0 for /£>!.

Miura Maps

Let α0 = l, α—0 for f^ l , so that ε0 = l, εt = 0 for i^l. In this case the formulae
(3.5a, c) with r>0 are always consistent. However, the map M0 defined by (3.6c) is
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still valid even though Eqs. (3.5c) are sometimes inconsistent for r = 0 [see remark
following (3.15)]. The map u = M0[v], corresponding to Λ09 is invertible, whilst
those corresponding to all other Ar(r>0) are genuine Miura maps. In fact, (3.6b)
defines an invertible map whilst (3.6a) is the genuine Miura part. Thus the upper
block of Λr is the important part when discussing genuine Miura maps. We
therefore consider the map MN corresponding to AN. In this case the Miura map
u = MN[v] is given purely by (3.6a). The Frechet derivative (3.8a) is then:

0

V - 1

(3.9a)

with m0= — d—2v0> m-t = —2v(, ίί l, and the constant coefficient operator

0 -eΓ

-d o
(3.9b)

is mapped onto B^ of (2.6b). It is easy to see that the pre-image of Br, ΐorr<N, is
non-local.

The Miura map u = MN[y(N}~] can be decomposed into N primitive ones. Define
a sequence of maps u(fc) = M^+1[u(k+1)] by:

fnrIOΓ (3.10a)

where tflf) js given by (3.2) but with vt replaced by uf\ We can write u = u(0)

= Mtf[u(JV)] = M#[v(]V)] as the composition of these maps:

The Frechet derivative M'N is thus the product of N Frechet derivatives:
Mί,=(Mi)'x...x(MJS)',

1.

0 X . 0

• ι
t _ , . . . . m n

Ί.

(3.10b)

with m f c _ 1 ? ...,m0 on the fcth row. It is a very simple calculation to see that the
product of these matrices is just (3.9a).

Remark. Each of these maps is non-invertible.
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Non-Degeneracy

It was remarked in the introduction that whenever a Miura map M is non-
degenerate (injective), then the Hamiltonian nature of the operator

B = M'B(M')tUM[t,]

follows from that of the operator B. To check the non-degeneracy of a Miura map
it is enough to check that its Frechet derivative is formally invertible (as a matrix).
In our case it is an easy matter to explicitly write down the inverses of (3.9a) and
(3.10b) in terms of mk and mfe~ *, thus proving the non-degeneracy of MN and Mk

N.
The same is true of all the other Miura maps discussed in this paper. It is thus
possible to deduce the existence of a sequence of Hamiltonian operators for each of
our modifications, as described below.

Starting with 8̂  = 8̂  of (3.9b) define B#e^4$k)[<3] inductively by:

B^ is just our original BN of (2.6b).
Direct calculation shows that, as indicated by the notation, each B^ is locally

defined in terms of the variables u(fe). Thus, each of the maps Mk

N is a genuine,
Hamiltonian Miura map.

Let M(r) = M^ o M# o . . . o Mr

N. Explicitly, this has the form

/(°) —
—
— _ V
— 0 L

, ,(0) _, .(r)u — u>

— ftC — U, (3.1 la)

The choice of A corresponding to the map M(r) is:

[Ί .... A1"1

λr~1' o

0

-

0

0 0 \λ'

ό ό

Ur λN

(3.1 Ic)

Formula (3.1 la) is identical to (3.6a). Since (3.1 Ib) is the identity map and (3.6c)
is invertible, M(r) and Mr differ only by the invertible map:

1 N-k-1
* .(r) _ 7 7,(r) I _ T^
uk —ΔVk ^0 L

(3.12)
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Thus, there exists an operator BJe^Cd] such that (M(r))/Bί((M(r))/)t|u(θ)=M(,)[u(r)]

= Br° = Br The operators B^ and Br [given by (3.7b)] differ only through the
invertible map (3.12). Explicitly:

Br =

0 -id

(3.13)

In fact, we have more.

Proposition 2. There exist local Hamίltonίan operators Wk such that
(M(r))'B£((M(r))')f = B£ = Bfc for h = r,...,N. These constitute (N-r+l) compatible
Hamiltonian structures for the rth modification. The sequence of modified Hamil-
tonians is defined by J^r = ̂ fπ ° M(r) and the rth modified hierarchy is written as:

u% = WN_kδJt?n

r

+k, fc = 0,...,ΛΓ-r,n = 0,l,.... (3.14)

We can represent these modifications and their Hamiltonian structures
schematically as follows:

B1

**r wr

Fig. 1

Remark. If we wish to study the rth modified hierarchy it is more convenient to
transform each of the Hamiltonian structures Wr,...,WN into the equivalent set
BJ,..., BJv, obtained by the action of the invertible map (3.12). In these co-ordinates,
B^ is just Br of (3.7b), so that the lowest Hamiltonian structure is constant and first
order.

Hamiltonian Property of the Operators En

The Miura maps and invertible transformations described above give us an easy
proof that those differential operators Br which are related to the constant
coefficient operators Br are Hamiltonian. Unfortunately, this does not apply to all
the operators Bn (with an arbitrary choice of ε) since Eqs. (3.5a, b) may not have any
solutions. It is easily seen, however, that when ε0εN Φ 0 the problem of inconsis-
tency does not arise and (3.5a,b) can be solved for α0, ...,αN, whatever choice of
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ε l5 ...^jy-!. Thus the (non-invertible) map

(3.15)
J N - f c - l

- £ ^k + i,N-i> fc = r, . . . ,ΛΓ-l,
2 i = ι

which differs from (3.6a,c) only by the terms involving αn=j/ε^Φθ, is a
Hamiltonian Miura map transforming the constant coefficient Hamiltonian
operator Br into Br This gives us a proof that all the operators Bπ with ε0εN Φ 0 are
indeed Hamiltonian, and this property survives the limit ε0->0 and/or εN-^0, even
though the map (3.15) itself becomes, in general, singular. Thus, whatever the
choice of ε, the operators BM are all Hamiltonian.

Remark. In [2] we noticed that in the particular case when just one βk, say εr, is
different from zero, Br can be transformed (by an invertible change of variables)
into a constant coefficient form. In the present set up such a transformation is
provided by (3.6a, c) or (3.1 5) with all the αk (including αr) equal to zero. That choice
of αk leads to ε = 0 rather than to ε = εrλ

r. However, Br does not depend on εr, so that
this transformation is still valid for the one operator Br, even though it cannot be
used with any of the others. This simple quadratic map is the inverse of the
complicated transformation constructed out of Hamiltonians in [2].

Modified Spectral Problem

Generalising the derivation of (1.9c) we can use the factorisation (3.4) to obtain the
spectral problem corresponding to each of our modifications (3.11). The first
modification uses A(ί} [given by (3.1 lc)] which leads to:

^. .+^-^^^i^^V. (3.16a)

Defining ψ2 by:

we find:

(d + uW)ψ2 = (-ιtp-...-λN-2ιβll + λN-l)ψl. (3.16c)

Equations (3.16b,c) constitute a 2x2 matrix spectral problem for the first
modification. The spectral problems for the remaining modifications are obtained
from this one in succession by a series of substitutions and gauge transformations.
This is illustrated by the example given below.

Example: Dispersive Water Waves. We illustrate the above construction on the
simplest nontrivial example, N = 2. The resulting DWW hierarchy is tri-
Hamiltonian, the Hamiltonian operators being

,M -2dUl 8\ B /,0 +Ϊuo0 + ϊaio 0\

B2 =
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The first nontrivial flow utl=E2δ^ (̂ i =2w0 + ̂ w2) is

(3.18)

The Miura maps u^M^w], w = M2[v] (we denote u(1) by w here) are given by:

UQ=-WOX-WQ, M1 = w 1, (3.19a)

w0 = ι;o, w1 = -vlx-2v0vl. (3.19b)

Their superposition u = M2[v] = M\ ° M2[v] is

u0=~vQx-vl, ul = -vlx~2vQυl. (3.19c)

To compare the above Miura maps with those introduced by Kupershmidt in [9]
we perform an invertible change of variables

« l - 2 W i χ = Fι[>o»ttι],

r = ui = F2\uQ,uΐ].

The map (3.20) transforms the Hamiltonian operators (3.17) into Bn = FBII(F/)t|qfr,
n = 0,1,2, given by

23

= . - -

The flow (3.18), when written in the new coordinates (3.20), reads

,

which is just the standard form of DWW equation.
Superposition of the Miura map (3.19a) with (3.20), giving:

is easily seen to be equivalent to Kupershmidt's first modification of DWW
hierarchy [9]. The second Miura map (3.19b), however, is not equivalent to either
of Kupershmidt's second modifications. The corresponding modified DWW
hierarchy is given by:

vίz = B^2, (3.24)

where ^2[v] = ̂ ° M2[v]. The first nontrivial flow is
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An invertible change of variables:

fco = t > o + 2 t > i x »

brings (3.25a) into a more symmetric form:

(3.25b)

^^

The spectral problem for the first modification (3.19a) is given by (3.16), which, in
this case, takes the form:

V i
-W 0 /\Y>2.

(3.26a)

Writing (3.26a) in the variables (t?0, t J [using (3.19b)] and gauge transforming with

T=( } we obtain the spectral problem for the second modification:
~vι

(3.26b)
-vl) -v0-λv\φ2J'

Example: 2-Component Harry Dym System [4]. This corresponds to the Harry
Dym type reduction of the N = 2, β = l, Schrodinger linear problem (2.1). The 3
Hamiltonian operators of the hierarchy are given by:

0

The factorisation (3.4) with

, B2 =

/I λ2'

λ λ2 0

U2 o o_

(3.27)

(3.28a)

gives us the Miura map u = M2[>]:

MI = -
(3.28b)

relating B2 to the constant coefficient operator B2. The map (3.28b) can be
decomposed as follows:

(3.28c)

v\ . (3.28d)

The transformation (3.28c) with α = 0 is equivalent to the Miura map presented in

[4].
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The factorisation (3.4) with

" 1 0 0 -

0 0 A (3.29a)

_0 λ λ2_

gives us an invertible transformation

U1=-2v1v29 u2=-v2, (3.29b)

transforming B0 into its constant coefficient form B0.

4. Conclusions

In this paper we have introduced two basic methods, which we have applied to the
linear spectral problem (2.la). The first of these was to use an unusual form of the
Lax approach so that in one construction we obtain the time evolution (2.1c), the
Hamiltonian operators (2.6b) and the Hamiltonians (2.11). The second was to use
the quadratic form (3.4) as a generalisation of the factorisation (1.9) as a means of
producing the Miura (or invertible) maps (3.6).

The method we give for constructing the time evolutions (2.1c) is applicable to
a much broader class of spectral problems than the usual Gelfand-Dikii approach.
For instance, the latter cannot easily be applied to energy dependent operators.
However, even in the most standard cases, such as the KdV hierarchy, our
approach gives a very simple and elegant construction of the associated
Hamiltonian operators. Applied to the usual third order Lax operator our method
immediately gives the two Hamiltonian structures for the Boussinesq hierarchy. It
is not, however, guaranteed that multi-component, multi-Hamiltonian extensions
will exist. In the Boussinesq case, for example, it seems that only a 4 component, tri-
Hamiltonian extension is possible [18]. On the other hand, Kupershmidfs non-
standard Lax operators [9], when written in purely differential form, can be
extended to energy dependent versions. His representation of the DWW equations
can be extended in this way [12], but the resulting system is gauge equivalent to a
subclass of the systems discussed in this paper.

The importance of the existence of our Miura and invertible maps is (at least)
two-fold. First, by relating each Hamiltonian structure to a constant coefficient,
first order operator, these maps give us a simple, direct proof that our operators are
indeed Hamiltonian. More importantly, however, they give us the remarkable
chain of modifications depicted in Fig. 1. This is a direct generalisation of the
known, simplest cases of the (single component) KdV and (two component) DWW
equations. Another important aspect is our method of construction. Whilst this
can be reduced to the standard factorisation method for the KdV (N = 1) case, it is
a new construction for the energy dependent linear problem. It should be
remarked that the origin of the Miura maps for the DWW equations was
previously unknown.

In [17] we generalise all the results of the present paper to the "super" case.
This places a variety of previously known, but disparate, examples into a single
framework. Contrary to Kupershmidt's expectation that modifications do not
survive super extensions [19], our construction does still work in this case.
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The Hamiltonian structures of this paper have recently been derived by an
r-matrix approach [20, 21]. An interesting open problem is the construction of our
Miura maps by Lie algebraic means.
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proof of injectivity of Miura maps. The SERC are gratefully acknowledged for their financial
support.
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