
Communications in
Commun. Math. Phys. 124, 23-55 (1989) Mathematical

Physics
© Springer-Verlag 1989

Homogeneous Kahler Manifolds and J-Algebras in N = 2
Supergravity and Superstrings

S. Cecotti
CERN, CH-1211 Geneva 23, Switzerland and International School for Advanced Studies, Trieste,
Italy

Abstract. Motivated by the problem of the moduli space of superconformal
theories, we classify all the (normal) homogeneous Kahler spaces which are
allowed in the coupling of vector multiplets to N = 2 SUGRA. Such homo-
geneous spaces are in one-to-one correspondence with the homogeneous
quaternionic spaces (Φ HHn) found by Alekseevskii. There are two infinite
families of homogeneous non-symmetric spaces, each labelled by two integers.
We construct explicitly the corresponding supergravity models. They are
described by a cubic function F, as in flat-potential models. They are Kahler-
Einstein if and only if they are symmetric. We describe in detail the geometry of
the relevant manifolds. They are Siegel (bounded) domains of the first type. We
discuss the physical relevance of this class of bounded domains for string theory
and the moduli geometry. Finally, we introduce the T-algebraic formalism of
Vinberg to describe in an efficient way the geometry of these manifolds. The
homogeneous spaces allowed in N = 2 SUGRA are associated to rank 3 T-
algebras in exactly the same way as the symmetric spaces are related to Jordan
algebras. We characterize the T-algebras allowed in N = 2 supergravity. They
are those for which the ungraded determinant is a polynomial in the matrix
entries. The Kahler potential is simply minus the logarithm of this "naive"
determinant.

1. Introduction

One promising approach [1] to the geometry of the moduli space for an abstract 2d
superconformal field theory is the study of the low-energy supergravity correspond-
ing to the superstring model defined by this theory. Probably, the most interesting
case is that of (2,2) superconformal systems, which according to a well-motivated
conjecture by Gepner [2] should correspond to a σ-model on a Calabi-Yau
manifold. Many results on the moduli spaces for (2,2) systems were obtained using
this method in refs. [3,4]. Indeed, it turns out that many problems in the moduli
theory were already worked out in the context of supergravity, and hence many
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issues can be spelled out just by looking in the right place in the SUGRA literature.
For instance, the moduli space of the (4,4) c = 6 superconformal theories is
completely determined by the (unique) geometry of the scalars' σ-models consistent
with JV = 4 AD supergravity [5]. The result [1] is consistent with Gepner's
conjecture [2] and the moduli space for the Kahler-Einstein metrics on the K3
surface, as computed in the mathematical literature [6].

However, although the method is in principle very powerful, its implementation
requires to work out the details of some exercises in supergravity which are not
already available in the published literature. As emphasized in Refs. [1,3,4] the
supergravity theory which is relevant for the moduli problem (of the (2,2) c = 9
system) is N = 2, so the open questions are problems in the coupling of N = 2
SUGRA to matter.

It is the purpose of the present paper to give full details on one such technical
problem, namely to classify and construct explicitly all the couplings of vector
multiplets to N = 2 SUGRA such that the corresponding scalar manifold is a
homogeneous Kahler manifold. The simpler case of a symmetric Kahler manifold was
solved some time ago by Cremmer and Van Proeyen [7].

This problem is so deeply related to the geometry of string theory, that in order
to solve it, we shall use ideas coming from the analysis of the string case [3] and we
shall see below how the string language gives a geometrical interpretation to the
matter couplings of N = 2 SUGRA.

The main idea from string theory is the c-map [3]. Its physical origin is the
following. The low-energy theories resulting from the compactification of type ΠA
and ΠB superstrings on the same (2,2) superconformal system, are related by the
interchange of the vector multiplets with the hypermultiplets [1,3]. The c-map is the
operation which transforms one such effective Lagrangian into the other one. Since
the hypermultiplets parametrize a quaternionic manifold [8] and the vector-
multiplet scalars a Kahler manifold (of a restricted type [9,3]), the c-map is an
operation which transforms a (restricted) Kahler manifold into a quaternionic
manifold (with reduced curvature [10] v = — 2), and vice versa. The details of this
map and its relationships with string theory are discussed in Ref. [3]. Since
quaternionic and hyperKahler1 manifolds are rather interesting geometrical
objects, the c-map has surprising mathematical properties. Some of these properties
were sketched in ref. [3]: there it was found that the c-map is closely related to the
theory of Jordan algebras [12,13]. We shall see that this connection extends to the
more general T-algebras [14].

More generally, it was found [3] that the c-map is connected to the classification
by D. V. Alekseevskii [15] of normal homogeneous quaternionic manifolds, i.e.
quaternionic manifolds having a solvable transitive group of isometries. It is
conjectured [15] that these are the only non-compact homogeneous quaternionic
manifolds.

The classification of the relevant homogeneous Kahler manifolds is constructed
as follows. Take one such manifold and construct the corresponding supergravity
model. Using the methods of ref. [3] we can construct its c-map, i.e. a SUGRA model

HyperKahler manifolds are relevant for the global case (ref. [8,11])
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coupled to n + 1 hypermultiplets taking value on some quaternionic space which is
also homogeneous. Then it is a Alekseevskii space. Therefore, all the homogeneous
Kahler spaces allowed in N = 2 SUGRA are inverse c-images of Alekseevskii spaces,
and conversely any Alekseevskii space—other than HHn—is the oimage of a
homogeneous Kahler space allowed in N = 2 SUGRA. Thus, the classification of
such homogeneous spaces is reconducted to the known classification of the normal
homogeneous quaternionic spaces [15].

As it is well known [9], the coupling of n vector-multiplets to N — 2 SUGRA is
specified by a holomorphic function of n + 1 complex variables F(X°, X *,..., Xn\
with F homogeneous of degree 2. In ref. [3] it was shown that in the case of a 4D type
IIA superstring the function F should have the general form (neglecting non-
perturbatίve corrections)

f(Λ ,X ) = ι —Q , (1.1)

where dABC are real constants. The topological meaning of these coefficients was
discussed in ref. [4] (see also Sect. 4.C.1 below). The formula in Eq. (1.1) follows from
the Peccei-Quinn symmetry of ref. [16]. Of course, Eq. (1.1) holds only for a specific
parametrization of the fields. This parametrization is convenient for two reasons: i)
these fields are simply related to the string vertices [3] and to the geometry [4] of the
"internal" Calabi-Yau space; ii) models of the form (1.1) were extensively studied in
the context of the so-called flat-potential models [17,12].

We shall show below that all the homogeneous Kahler spaces allowed in JV = 2
SUGRA—except CHn—are of the form in Eq. (1.1).

For all the allowed homogeneous Kahler manifolds we shall give the explicit
form of the function F.

There are two infinite families of homogeneous (but non-symmetric) Kahler
manifolds allowed in N = 2 SUGRA: K(p, q\ (p, q integers 0 ^ p g q), and H{p, q\
(p,q^l integers). All these spaces have rank 3. There are some exceptional elements
of these families which are symmetric spaces. These are the manifolds given by the
magical square [12,18]. The omap sends the spaces K(p,q) and H(p,q) into the
Alekseevskii quaternionic spaces W(p, q) and K(p, q) respectively.

The classification of the (normal) homogeneous quaternionic spaces [15] is
based on the corresponding classification for the Kahlerian case due to Pjateckii-
Sapiro [19] and Gindikin, Pjateckii-Sapiro and Vinberg [20,21]. The strict
connection with their work allows us to go more in depth in the study of the
geometrical properties of our spaces K(p, q) and H(p, q).

All our spaces are bounded domains in C" 2. From the classification theory for
such domains [20,21], we learn (Sect. 4) that all our homogeneous spaces are Siegel
domains of the first kind.

However, not all such Siegel domains can be coupled to N = 2 SUGRA. Then,
we have to characterize further the geometry of our spaces. Moreover, for a Siegel
domain there may be more than one metric such that the complex automorphisms

2 By a theorem of Borel (ref. [22]) they cannot be written as G/H with G simple (or unimodular) unless

they are the symmetric spaces
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act by isometries. We have to characterize geometrically the unique metric
compatible with N = 2 supersymmetry.

This is done using the T-algebras [14] (see Sect. 4.C.1). This theory allows us to
reformulate the above results in a nice way, similar to the one encountered in the
symmetric case [12,7]. In that case, the result was that a symmetric Kahler manifold
is allowed in N = 2 SUGRA if and only if it is either a hyperbolic space or it is
associated to a rank 3 Jordan algebra. This statement remains true if we replace
symmetric with homogeneous and Jordan algebras with T-algebras, always of rank 3.
However, only the rank 3 T-algebras whose isometric map is special or degenerate
can be coupled to N = 2 SUGRA.

On a bounded domain there is a preferred metric, the Bergmann one, which is
invariant under all complex automorphisms [23]. At first, one would expect this to
be the metric chosen by N = 2 SUGRA (within a positive factor). However, it is
not so. The Bergmann metric of a homogeneous domain is Einstein [23], whereas
SUSY requires the (homogeneous) Kahler metric not to be Einstein, unless the
space is symmetric. Anyhow, the SUGRA metric is related in a simple way to the
Bergmann one, see Sect. 4.C.2.

The present paper is organized as follows. In Sect. 2 we shall present some
preliminary material. In Subsect. 2.A we discuss duality invariance. In Subsect. 2.B
we give the basics of the Alekseevskii classification of normal homogeneous
quaternionic spaces. In Sect. 3 the actual construction of the couplings to N = 2
supergravity is performed. In Subset. 3.A we compute the function F for all the
homogeneous spaces. In Subsect. 3.B we show that all the models can be put in the
form of Eq. (1.1). In Subsect. 3.C we show that these spaces are Kahler-Einstein if
and only if they are symmetric. In Sect. 4 we study the geometry of the relevant
homogeneous spaces. Subsection 4. A is concerned with the physical implications of
the geometry from the string and the supergravity points of view. In Subsect. 4.B we
prove that all our spaces are Siegel domains of the first kind. In Subsect. 4.C, we
introduce the T-algebras and use them to give a simpler characterization of the
homogeneous spaces allowed in N = 2 SUGRA and their Kahler metrics.

2. Homogeneous Kahler Spaces in N = 2 SUGRA: Preliminaries

In this section we review some results we need in order to construct explicitly the
coupling of n vector multiplets to N = 2 supergravity such that the resulting σ-
models are homogeneous.

First of all we have to explain the idea underlying the construction of these
homogeneous couplings to N = 2 SUGRA. We have to find for each Alekseevskii
space (except the quaternionic hyperbolic ones) a holomorphic function F
describing the corresponding coupling to N = 2 supergravity. The function F is
found using the theorem of Sect. 2.A of ref. [3] (see also ref. [24]): if in a supergravity
theory we have a group of symmetries which acts transitively on the scalars'
manifold and acts on the vectors by duality transformations, then all the couplings
are uniquely determined by the group itself and the representation to which the field-
strengths belong. In our case all the isometries of the vector-multiplet scalar
manifold act by duality transformations. Therefore, in the case of a homogeneous
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Kahler manifold, the function F is fully determined by its algebra and by its
realization on the field-strengths. As we shall see, the classification of the
homogeneous quaternionic spaces also specifies this realization.

Given the crucial importance of duality transformations, we begin this section by
reviewing their geometry (in the N = 2 case). Then we introduce the relevant results
by Alekseevskii and we show how from them we can get the realization of the
isometry group on the field-strengths.

2.Λ. Duality in N = 2 Super gravity. As it is well known [9] the coupling of n vector
multiplets to N = 2 supergravity is specified by a holomorphic function
F(X°9X

1

9,..,X
n) homogeneous of degree 2. However, it is more convenient to

consider the function SiX1) = iF{XI)/2. In ref. [3] it was shown that S(X) can be
interpreted as the generating function for a canonical (holomorphic) transform-
ation. The momenta are P 7 = djS(X). In the complex phase space there are three
different symplectic structures. The transformation defined by S leaves invariant two
of them. The equation P 7 = djS(X) defines a complex submanifold ^[S] embedded
in the phase space.

The real physical fields are the "Cartesian" coordinates ZA = XA/X°
(A = l,...,ή). The corresponding physical Kahler potential is [9]

G=-ln[z / JV / / (z ,z)z J ] . (2.1)

For more details see the Appendix of ref. [3], as well as the standard reference on
the N = 2 tensor calculus, ref. [9].

A duality transformation is defined [3] to be a transformation of the phase space
which leaves invariant the symplectic structures and the submanifold #"[£]. These
maps are linear transformations belonging to the group Sp(2n + 2, U)9 so the duality
group must be a subgroup of the real symplectic group [24]. Let Σ

O
be a generator of the duality group, acting on the (complex) phase space as

δX1 = βtjX1 + DIJPj,

δPj^-B'jPj + CuX'. (2.3)

The corresponding transformation on the vector-field strengths F /

μ v

(/ = 0,...,«; Fo

μv is the graviphoton field strength) is

δG^^-B' Gj^ + C jF^, (2.4)

where

(2.5)

The requirement that Σ leaves invariant ^[S~\ gives [9,3]

CUXJ - BJ,Sj = SU(BJ

KXK + DJKSK). (2.6)
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It is elementary to check that this transformation is an isometry of the Kahler
metric in Eq. (2.2) (see also ref. [9]).

In principle, to determine the function S we have to solve Eq. (2.6), which is a
rather complicated equation. However, the interpretation of Σ as the generator of a
canonical transformation allows for a simplification of the analysis.

Lemma. IfS is homogeneous of degree 2, Eq. (2.6) is equivalent to first order scalar
equation

1 d S

 Du d S , d S

 Ri χj
 l

r χiχJ-o nη\

Proof. That Eq. (2.6)=>Eq. (2.7) follows by multiplying Eq. (2.6) by X1 and using
the homogeneity condition Sj = SUXJ. Instead, that Eq. (2.7)=>Eq. (2.6) is seen by
derivation of Eq. (2.8) with respect X1.

Equation (2.7) is much easier to analyze than Eq. (2.6). Equation (2.7) is easily
seen to be the analytic continuation to complex values of the stationary Hamilton-
Jacobi equation for the "Hamiltonian" HΣ

HΣ = iPjDIJPj + PfljX1 - \CuX
ιX3. (2.8)

In fact HΣ(p,q) is the generator of the canonical (symplectic) transformation in
Eq. (2.3),

δPI = [HΣ9 P,], δXι = IHΣ9 X'l (2.9)

Our models have a solvable algebra of duality transformations with generators
Σa{a = l,...,2n)

lΣa,Σb~]=fab

cΣ
c. (2.10)

Let Ha

Σ(p,q) be the corresponding Hamilton functions. The condition of
in variance for «^[S] under the corresponding duality transformation reads

Ha

Σ(d1S,XI) = 0. (2.11)

The Poisson bracket of two Hamilton functions reproduces the original duality
algebra

LHa

Σ,H
b

Σl = f a b

c H Σ . (2.12)

This equation is the integrability condition of Eq. (2.11); it is just the closure
condition for the Lie algebra of duality transformations [25].

2B. Basics of Normal Kahler and Quaternionic Algebras. In this subsection we shall
briefly review the results of Alekseevskii [15] which are relevant for our construc-
tion. In particular, we shall need the classification of quaternionic solvable (metric)
Lie algebras and the corresponding results for the Kahlerian algebras [19,20].

We begin by recalling some definitions [15]. A metric Lie algebra is simply a Lie
algebra endowed with a Euclidean metric < , >. To every metric Lie algebra G there
corresponds a homogeneous Riemannian space ^ = exp G, i.e. the corresponding
group space equipped with the metric < , > on Ύβ « G. If the metric algebra G is
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completely solvable, G is called a normal algebra and the corresponding Riemannian
space is a normal homogeneous space.

Let (V, < , >) be a metric Lie algebra with V the underlying algebra. For each
xeFwe have a skew-symmetric endomorphism of V called the Nomizu operator Lx

defined by

,ί> = <[x,y],z>-<*,|>,z]>-O,[x,z]>. (2.13)

In terms of these operators the curvature endomorphisms are (x9yeV)

Riem(x,y) = ίLX9Ly] -L [ x > y ], (2.14)

ήc(x9y)= -£<Riem(x, *,)?,*,>, (2.15)

where e{ is an orthonormal basis for V.
The holonomy algebra is defined as the linear Lie algebra Γ generated by the

curvature operators Riem (x, y) and their commutators with the Nomizu operators

A complex structure of V is a skew-symmetric endomorphism J, with J2 = — 1.
Its centralizer in the Lie algebra Λ2(V) is denoted by C(J). C(J) is isomorphic to the
Lie algebra of U(ή).

A quaternionic structure of V is a linear Lie algebra β generated by two
anticommuting complex structures. In a natural basis J1,J2,J3 for Q, we have

J2 = - 1 JαJ/ϊ = J y (α, /?, y cyclic permutation of 1,2,3). (2.16)

The centralizer and the normalizer of Q in Λ2(V) are denoted by C(Q) and N(Q);
we have iV(β) = Q + C(β). Obviously, β and C(β) are the Lie algebras of Sp(ΐ) and
Sp(ri), respectively.

A normal metric Lie algebra is called Kάhlerian if on V there is a complex
structure J whose centralizer C(J) contains the holonomy algebra Γ; it is called
quaternionic if there is a quaternionic structure Q such that N(Q) contains Γ, and the
endomorphisms from Q map the curvature Riem to zero (this second condition is
automatically satisfied in a dimension larger than four [10]).

There is a natural one-to-one correspondence between Kahlerian (respectively
quaternionic) normal Lie algebras and Kahler (respectively quaternionic) simply
connected normal homogeneous spaces [15,19-21]. So the classification of the
corresponding spaces is equivalent to the algebraic problem of the classification of
the relevant normal Lie algebras.

Exploiting the solvability, it is easy to see [15] that any (normal) quaternionic
algebra should contain a one-dimensional3 quaternionic subalgebra E—called the
canonical quaternionic subalgebra. This subalgebra is totally geodesic (i.e. LEE c E).
There are only two one-dimensional quaternionic algebras [15], namely Λί

1 and
Cί

1. The corresponding four dimensional quaternionic spaces are symmetric

A\: St/(2,1)/[S17(2)®1/(1)],

C\: Sp(ll)/[Sp(l)®Sp(l)l (2.17)

3 In the quaternionic sense (i.e. one quarter of the real dimension)
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For a given dimension, there is a unique quaternionic algebra whose canonical
subalgebra is isomorphic to Cί

1. The associated quaternionic spaces are the
hyperbolic spaces UHn. All the other normal quaternionic algebras have a canonical
subalgebra isomorphic to Ax

γ.
In the string context [3] this canonical subalgebra has the physical interpre-

tation of the universal sector, i.e. that sector of the massless theory whose vertices do
not contain the fields of the internal superconformal theory. This sector is the same
for all type II superstring compactified on any (2,2) superconformal theory.
Physically, the four generators of the A1

 x subalgebra are: the dilatation correspond-
ing to a rescaling of the dilaton field φ9 the Peccei-Quinn symmetry associated to the
"axion" Bμv and two Peccei-Quinn symmetries corresponding to the two R-R
scalars whose vertices are bilinear in the two space-time SUSY generators. It follows
from the analysis of ref. [3] that only the second class of quaternionic spaces is
relevant for our purposes.

In this last case one can show [15] that V=U + U', where U and V are
isomorphic, as vector spaces. One can choose the basis for Q such that the
isomorphism is simply J 2 . Then JXU= U and [15]

[E/,l/]c:l/, [l/,l7']cί/', [ l / M Γ I c f o } . (2.18)

It is easily checked that U is a totally geodesic subalgebra of V. Hence, U is a
Kahlerian algebra with respect to the (integrable) complex structure Jx. U is called
the principal Kahlerian subalgebra of the quaternionic algebra V. Let Fo be the
intersection of U with the canonical subalgebra E. In an orthonormal basis for
Fo,{eo,^} (with eί=J1e0% the Lie algebra Fo reads [eo,ei] = eί. Of course,
E = FO + F'O , where F'o is the image of Fo under the isomorphism J2. It turns out
that the principal subalgebra U is always a direct sum Fo + W, with W some normal
Kahler algebra. Consequently, the corresponding homogeneous Kahler manifold is
always a direct product

® = SUUa)^®ir' iT = expW. (2.19)

Comparing the above results with the analysis of ref. [3], we get the explicit
expression for the c-map of the homogeneous Kahler spaces iV

c: if = exp W-> ir = exp V, (2.20)

It is easy to check that this map has all the physical and mathematical properties
of the c-map, as defined in ref. [3].

Since the spaces of the form Y exhaust all the relevant homogeneous
quaternionic spaces, from the discussion in the introduction we conclude that all the
homogeneous Kahler manifolds allowed in N = 2 SUGRA arise in this way, namely as
the non-trivial factor space Ψ* of the principal Kahlerian geodesic submanifold °lί of a
homogeneous quaternionic manifold.

Therefore, the classification of the relevant Kahler spaces is reduced to the
algebraic problem of finding what Kahler algebras W lead to homogeneous
quaternionic spaces. This is the problem solved for us by Alekseevskii [15].

From Eq. (2.18) we see that there is a representation u -> Tu of the Kahler algebra
U in V induced by the adjoint representation of V, Tuu' = [u, w'] e U'. In order for the
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algebra V to be quaternionic this representation T should have a number of
properties (βl,.. .,β8 of Lemma 5.5 of ref. [15]) which fully characterize the
quaternionic algebra V. Such a representation is called a β-representation. Then the
homogeneous Kahler manifolds allowed in N = 2 supergravity are in one-to-one
correspondence with Q-representations of Kahlerian normal algebras of the form
Fo + W. For lack of space we shall not comment upon the properties defining a β-
representation. However, the condition QΊ is physically so crucial that we should
mention it. On V there is a complex structure J (related to J x) and hence a skew-
Hermitian form < J ...,...>. The representation T of W (but not of all U) is symplectic
with respect this form. If W has complex dimension n, U and Uf have (real)
dimension 2n + 2. Therefore, on U' the group ΊV acts as a (totally solvable) subgroup
oϊSp(2n -f 2, R). This is not a surprise, since ΊV is a duality group and hence it should
be a subgroup oϊSp(2n + 2, U). In fact, we have more: the representation Tis nothing
else than the realization of the duality algebra W on the vector fields, Eq. (2.4).

In other words, the matrices Σa of Subsect. 2. A are just the linear transform-
ations Tw written in a canonical basis for the symplectic structure of U'. The
couplings of the vector multiplets are determined once we know the representation
T. But Γis induced by the adjoint rep. of V, and so it is known from the classification
of the quaternionic normal algebras.

The physical picture emerging from the work of Alekseevskii is quite appealing.
The elements of the Kahlerian Lie algebra W are identified with the physical scalar
fields of the vector-multiplets. Then the isomorphism J2 is nothing else than the
supersymmetry transformation mapping the scalars into the vector fields of the
corresponding multiplet, F'o being related to the graviphoton field strengths. Thus,
the condition that the relevant isometries have a β-representation is, essentially, the
same as the request that these symmetries commute with local supersymmetry.

It remains to describe the classification of the possible transitive duality algebras
W and their representations. To do this we need some more definitions [15]. We
agree that all the Lie algebras below are written in an orthonormal basis.

A key algebra is a two-dimensional Kahler algebra F = {ft, g}9 g = Jft, with
[ft,#] = μg. The positive number μ is the root of the key algebra. An elementary
Kahler algebra is an algebra of the form F + X, where F is a key subalgebra with
root μ, X is the orthogonal complement to F and we have adΛ| X = μ/2, adJX = 0
and [x9y] = (Jx,y}g, for x,yeX. The basic result in the classification of the
Kahlerian algebras [19] is that every normal non-degenerate Kahlerian algebra
is the semidirect sum of elementary algebras, U = ]Γ Ui9 with C/, = Ft + Xt. The

explicit structure of this semidirect sum is described in Proposition 6.2 of ref. [15].
The number k of elementary algebras in U is called the rank of the algebra U.

The normal Kahlerian algebras having β-representations are classified accord-
ing to their rank and type. (The type is the largest value of (μf)~2.) One shows [15]
that the relevant algebras Whave rank k ̂  3, and the allowed values for the roots are
1, ί/y/ϊ. and ly/ϊ9 so that we can have type 1,2 and 3. All the algebras W with rank
strictly less than 3 lead to symmetric Kahler (and quaternionic) spaces. It is
elementary to see that the function F can be put in the stringy (cubic) form if
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There is a unique Kahler algebra of type 3 which admits a ^-representation

[15]. It has the form U = Fo + F, where F is a key algebra with root 1/̂ /3. The

associated quaternionic space is the symmetric coset G2(+2)/[SU(2) ® Sl/(2)]. The

symmetric Kahler space associated to a fcej; Kahler algebra is the coset

Sl/(1,1)/C/(1), with the metric normalized as

R^β=-2μ2gφ (2.21)

For this type 3 algebra, the representation T is the one induced under the
embedding F -• S17(1,1) by the representation 4 of Sl/(1,1). From this fact, we infer
that this is the model described by the function F = i(X1)3/X°. The associated
quaternionic manifold G2{+2)l[SU(2)(g)SU(2)~\ is what we got as the oimage of
SU(ί, 1)/C/(1) in ref. [3] by more elementary means.

There is also a unique Kahler algebra of type 2 which admits a β-representation
[15]. It has the form U = Fo + W with W = F + F the dzrecί sum of two Kahler
algebras with roots l/y/ϊ and 1. Hence the corresponding Kahler space is reducible
in the product of two cosets SU(l, l)/U(l) with curvature — 1 and - 2 respectively.
Since M = 3 it has the cubic form and it corresponds to the function F =
iX1(X2)2/X°. This is easily checked since T is induced by the representation (3,2)
of 517(1, 1)® Sl/(1, 1). Here we find the connection of ref. [3] between curvatures
(quantization of the Newton constant) and the quantum numbers of the field-
strengths under the St/(1,1) group. The associated quaternionic space (i.e. its c-map)
isSO(3,4)/[SO(3)®SO(4)].

There remains to discuss the algebras W of type 1. It can be shown [15] that in
this case W has rank 1 or 3. By our previous remarks, the first case leads to
symmetric Kahler manifolds and the second one has the stringy (cubic) form. The
type 1, rank 1 case corresponds to the complex hyperbolic spaces CHn =
Sl/(l,n)/[S(l/(l)® l/(n))] (the so-called minimal coupling [9]). This can be easily
checked from Proposition 9.1 of ref. [15]. The corresponding quaternionic space is
S[/(2,w)/[S(l/(2)®l7(n))] in agreement with the more elementary arguments of
ref. [3]. Again, in the case n = 1 we get the coset SU(l, 1)/U(ί) but this time with
curvature —2.

The last case, type 1 rank 3 Kahler algebras, is the really interesting one. W has
the form W = (F1+Xί) + (F2 + X2) + F3 (Ft are key algebras with root 1, and
Fi + Xi are elementary Kahler algebras). It is convenient to set X = X2 and
Xt = Y + Z, where [F 2 , 7] = 0 and [F 2 , Z] = Z. We decompose the vector spaces
X, Y into the eigenspaces (eigenvalues ± 1/2) of the adjoint action of h3 and for
the space Z of h2. The corresponding eigenspaces are denoted as I + and
X _ = J X + , e t c .

With these notations the general type 1 rank 3 normal Kahler algebra W, such
that Fo+W possesses a β-representation has the form [15] (we do not rewrite the
commutation relations which define the elementary Kahler algebras)

[Fι.,FJ ] = 0 iΦU (2.22a)

[ / ι 3 , 7 ± ] = ± | Y ± , (2.22b)

[ Λ 3 , * ± ] = ± i * ± , (2.22c)
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(7ι2,Z±]=±iZ±,

[03, Y+l = [02,Z+] = Lθ3,X+l = 0,

[^3,y_] = y+ [ 0 2 ! Z_] = Z + [ 0

[F t , X] = IF2, F] = [f 3, Z] = 0,

= 0,

(2.22d)

(2.22e)

(2.22f)

(2.22g)

(2.22h)

(2.22Ϊ)

(2.22J)

(2.22k)

(2.221)

(2.22m)

where ι^:X_(8)Z_->y_ is an isometric mapping, i.e. a map linear in its two
arguments such that

Given three vector spaces X _, Z _ and y_ and an isometric map ψ, we satisfy all
the conditions defining a β-representation Tw except the closure of the algebra,

[Jx,z_] = J[x,z_], lx+,Jy+]=-[Jx+,y+l
(x_e-X"_,xeX,z_eZ_,x+eX+

L •* w> w' J [w,w']*

This last condition gives us two classes of solutions [15],

(2.24)

i) X = 0, or
ii) X, Y,Z φ 0 and dim Γ_ = dimZ_. Such isometric maps are called special.

The theory of special isometric mappings is equivalent to those of the Clifford
modules [15,26], i.e. to that of the Dirac matrices.

Finally, we give the explicit form of the matrices representing the algebra W,
Eqs. (2.22), on V. These correspond to the duality generators of Eq. (2.3). We denote
by a ~ the element of V obtained by a given element of U under the isomorphism
J2.

The three h generators are represented by

~ 2<?0 * " ' ( 2 ' 2 5 a )

- > (2.25b)

- ' (2.25c)
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where po><?o>Pα a n d qa are the orthonormal elements of U'

Vo = i $ o + Si + S2 + ^aλ

4o = i(0o -9i-Qi- θs)>

P« = i( ~ ^o ~ K + hβ + hyl

q* = 2(-go + 9a-Qβ-§γ) <*,β>y permutations of 1,2,3.

The three g generators are given by

7^ = Pi ® <7o + Po ® <?i + <?3 ® P2 + <?2 ® P3 + Σ * +

τ ; 2 = p 2 ® <?o + Po® ̂ 2 + 43 ® Pi + ί i ® P3 + Σ f +

^ 3 = P3 ® <?o + Po® ̂ 3 Σ ^

(2.26a)

(2.26b)

(2.26c)

(2.26d)

(2.27a)

( 2 2 7 b )

(2.27c)

In order to describe the remaining generators belonging to the vector spaces X, Y
and Z we introduce, following Alekseevskii, a new product operation mapping two
of the spaces X, 7, Z into the third

(w, ϋ) -• u * ϋ = 2LMt;. (2.28a)

Using Eqs. (2.13,22) and the fact that φ is special one proves the two identities

(2.28b)

(2.28c)

Then the remaining generators read (always in an orthonormal basis for U)

Tx+ =po®x+ -x+(g)p1 +Jλx+®q0-qι®J1x +

+ Σ*T*y- ® i - + Σ*+*' z - ®^-' (2.29a)

z ® f (2.29b)

® *

- Σ * ^ * J > -
x — q3® J1y-

(2.29d)

(2 29e)

(2.29f)

This completes the algebraic structure of the normal quaternionic algebras, alias
β-representations of normal Kahler algebras.

The homogeneous spaces with X = 0 will be denoted by K(p, q) where the two
integers p and q are equal to
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p = dim Y_, q = dim Z _. (2.30)

Since K(p,q) = K(q,p) we can assume p^q. These spaces have complex
dimension equal to 3 + p + q. The special cases K(0, q) are symmetric manifolds,

K(09q) = {51/(1, l)/t/(l)} ® {5O(<? + %2)l\S0(q + 2)® 50(2)]}. (2.31)

The associated homogeneous quaternionic manifolds are the Alekseevskii
spaces W(p, q) of dimension 4(4 + p + #). Again /? = 0 gives symmetric spaces,
namely, SO(̂ f + 4,4)/[S0(β + 4) ® SO(4)].

The other class of solutions is in one-to-one correspondence with Clifford
modules. These are again characterized by two integers p,q^.O. The corresponding
spaces are denoted by H(p, q\ and have (complex) dimension 3 + p + 2qN(p\ where
N(q) is the dimension of the irreducible Clifford module in q dimensions,

ΛΓ(1)=1 ΛΓ(2) = 2

N(5) = JV(6) = JV(7) = JV(8) = 8,
for s ^ l , l < ί ^ 8 . (2.32)

Again some special case leads to symmetric spaces. These are exactly the magic
ones related to the Jordan algebras [12],

(2.33a)

iί(l,2)= 1/(3,3)/{ 1/(3)® 17(3)}, (2.33b)

#(l,4) = SO*(12)/l/(6), (2.33c)

ff(l, 8) = £7 (_2 6 )/{£6 ® SO(2)}. (2.33d)

Under the c-map the spaces H(ρ, q) give the Alekseevskii spaces V(p9 q). This, in
particular, gives us back the results of refs. [12,3] for the magic cases

(2.34a)

V(l9 2) = E6(+2)/[SU(6)®SU(2)l (2.34b)

F(l,4) = £7(_5)/[SO(12)® 51/(2)], (2.34c)

7(1,8) = £ 8 ( _ 2 4 ) /[£ 7 ®
 S ί /(2)] (2.34d)

3. Construction of the Coupling to TV = 2 Supergravity

In this section we shall compute the functions F (or, equivalently S) associated to the
previous homogeneous Kahler spaces, firstly in the canonical parametrization and
then in the stringy one. Since all algebras W with rank less than three lead to well-
known symmetric spaces [7], here we shall limit ourselves to the rank 3 case. The
functions F are completely determined by duality invariance.

3.A. Duality Invariance. To write more compact formulas we shall adopt the
following notation. The elements of the orthonormal basis of the three vector spaces
X_, 7_ and Z_ will be denoted by Xμ

1-,Xm

2- and * M

3 _ , (μ = l,...,dimX_,
m = 1,..., dim Y^ and M = 1,... 5 dimZ_) and the same notation will be used for
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the isomorphic spaces X + 9 Y+ and Z + . As a shorthand notation, we write M for
(l,μ), (2,m) or (3,M) and m for μ,m or M. We define the coefficients dm- by the
formula

X**X* = dm*Xl (3.1)

Using the properties of the rank 4 quaternionic algebras is it easy to show that: i)
the coefficients dm- are totally symmetric; ii) the only non-vanishing coefficients are

^(l,μ)(2,m)(3,M) = ^μmM β 2)

as well as those obtained from them by permutations of M, N and P. From the
properties of the Nomizu operators, it is easy to show that

As we have seen in Sect. 2.B, if X_ Φ 0, the isometric map φ should be special, i.e.
dim 7_ = dim Z _. Then, in this case we replace the index M by m, and we shall write
(y*)mn for Jldμmή. Then the condition that ψ is a special isometric map is

ΓμΓv + ΓvΓμ = 2δμ\ (3.4)

where

V(/Γ o
that is I"** are Dirac matrices in q = dimX_ dimensions and 7_,Z_ are (not
necessarily irreducible) "chiral" spinor spaces. Such Clifford modules are fully
specified by q and the "number of flavours" (i.e. the number of times the basic
irreducible representation is repeated) p.

For an algebra W of complex dimension n, we have 2n + 1 equations for the
function S, In from the duality in variance and one from the homogeneity condition.
These are all first order differential equations, at most quadratic in the derivative of S
(i.e. at worst HJ equations for harmonic oscillators). However, we have still to
choose a canonical basis in phase-space, i.e. we have to decide what elements of U'
we consider "coordinates" and "momenta" (what elements are associated to F and G
field-strength, respectively). The only constraint for this choice is that the symplectic
form J should be trivial in "configuration space." This choice corresponds to
choosing an explicit parametrization of the function S in terms of the super-
conformal fields X1 (since two allowed parametrizations are related by an
Sp(2n + 2,M) transformation, there is a one-to-one correspondence between
canonical basis and field parametrizations).

The most convenient choice is the one which makes linear the largest number of
differential equations. Choosing as "configuration-space" (F-fϊeld strengths) the
space spanned by the orthonormal vectors

we have n + 1 linear equations, i.e. those corresponding to the homogeneity
condition and to the in variance under the n transformations hhX

M

+. These n + 1
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linear equations have a simultaneous solution of the form So + const. S\ where So is
a particular solution and S' is the solution of the corresponding homogeneous
system, which is unique up to a constant factor. Therefore, the linear subsystem
already determines S up to a constant (only the phase of this constant is physically
relevant). Requiring invariance under anyone of the remaining n duality transform-
ations fixes the constant. Then the remaining n — 1 equations should hold
automatically as a consequence of the first n + 2, and in fact they do. This is a non-
trivial check of the correctness of our identifications and of the whole philosophy
underlying our classification of the homogeneous manifolds allowed in N = 2
SUGRA.

From Eqs. (2.29,2.33a, b, c) of Sect. 2.B we see that the linear n + 1 equations are
(we denote the various fields X1 with (l^({\,({1^q^Xμ

1,X
m

1 and X M

3 , for
consistency with the notations of ref. [15])

dS dS dS dS dS Λ „ , x+ + x ^ ° 9 (36a)

δS SS δS δS δS _

as as δs δs

3 dS 3 dS
homogeneity: Σ q,—+ % X* -— = 2S, (3.6d)

/ = o OCli Λ=I OΛχ

^ (TXΊXί (3.6e)

( 3 . 6 g )

The first four of the Eq. (3.6) can be rewritten as

2 + x " s

Solving Eqs. (3.6e, f, g) for XmX-χ(δS/δX-A) and inserting the result in Eqs. (3.7)
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we get the equations

2 ^ (XuX2,X3) (A = 1,2,3), (3.8)

where

^ ή X l . (3.9)

(3.10)

The general solution to Eqs. (3.8) is

JXuX2X3)

l

Using Eq. (3.7d), we get for the function h

h{qθ9Xl9X29X3) = —H{Xl9X29X3). (3.11)

This solution for S, Eqs. (3.10,11) can be substituted back in Eqs. (3.6e,f,g). All
these equations are solved simultaneously if and only if H = C = const.,

S = ( * 1 ; * 2 ' * 3 ) + d ft CZίoβA + ( ^ ) 2 3 1 / 2 (3-12)
<?0 ^0^4 = 1

The value of the constant C is fixed by requiring in variance with respect to the
remaining n generators ^ t ,X_, which imply the following six equations (compare
with Eqs. (2.31,2.33d, e,f) of Sect. 2.B).

9 i ' ^ ^ - = qo<li + 17)(Xi)\ (3.13a)
dq2 dq3 2

( 3 1 3 "

m""x'x^ <3 13e)

<3 13t)

Of course (since the integrability conditions of Sect. 2. A are fulfilled) we get the

same value for all the equations, namely C = ± 1/̂ /2- The sign ambiguity is

physically irrelevant, since it can be absorbed by a field redefinition.
It should be stressed that S is a solution to Eqs. (3.13) if and only if: i) X_ = 0, or

ii) the Dirac algebra, Eq. (3.4), holds. This is not surprising at all, since these are
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precisely the solutions to the integrability conditions of Sect. 2. A, as it follows from
the discussion after Eq. (9.11) of ref. [15].

Therefore, in the canonical parametrization, the function S for the homogeneous
spaces K(p, q) reads (m = 1,..., p; M = 1,..., q)

2yq0y>2 (3.14)

and for the spaces H(p,q)(μ =ί,...,q,dimX2_ = dimX3_ = pN(q)),

S = { X - X M + * Π \2qMA + {XA?yi\ (3.15)
% /2

This completes the proof that there exists a homogeneous holomorphic function
such that the corresponding Kahler metric, Eq. (2.2) describes

the homogeneous Kahler manifolds associated to the rank 4 Alekseevskii spaces.
The full N = 2 supergravity Lagrangian can be obtained by inserting this

function F(Xι) into the general N = 2 supergravity Lagrangian of ref. [9].
From the above expressions it is very easy to see that in the four magical cases,

Eqs. (2.37), we have actually an isometry algebra larger than W. In fact, in these cases
all the three vector spaces Xί_,X2- and X3_ are isomorphic (as vector spaces) to
one of the four division algebras A. The corresponding isometric mapping φ is
simply the product A (x) A -• A, which is an isometric map for the metric on A given
by the norm. In this case the function S is completely symmetric in the three spaces
X x _, X2 - and X 3 _. Therefore, the theory will be invariant not only with respect to
the 2n symmetries above, but also with respect to those whose generators are
obtained from the above ones by arbitrary permutations of the three spaces
Xί_,X2- and X3_. A similar permutation argument shows the enhanced
symmetry for the spaces K(0,q) which are symmetric (and reducible), Eq. (2.35).

3.B. FiX1) in the Stringy (= Cubic) Parametrization. In ref. [3] (see also ref. [4]) it
was shown that in type IIA superstrings we can always find a field parametrization
such that the function F(ZJ) takes the form in Eq. (1.2). Couplings of this form have
many interesting properties, for instance, in gauged N = 2 supergravity they lead to
identically vanishing scalar potential [17].

In the introduction we claimed that all the homogeneous Kahler manifolds
allowed in N = 2 SUGRA (other than hyperbolic spaces) have this property. Here
we want to show this and also give the explicit form of the coefficients dABC for each
homogeneous manifold.

From our previous discussion, we know that changing the parametrization of
the function F amounts to changing the canonical basis in phase-space. The
canonical transformation putting Eq. (3.15) into the cubic form is just the
replacement of the "Lagrange coordinates" q^q^Λ^ by the corresponding
"conjugate momenta" Pi,p2>P3> which -on ̂ [ 5 ] - equal

^ (3.16)

The new S can be found exploiting the canonical transformation q^Pi, (recall
that S is not invariant under canonical transformations, but it can be determined by
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requiring that the new "momenta" are the gradient of the new S with respect the new
coordinates). The result is

sJXuX2.x3)iL £ PΛXA)2\ ( 3 1 7 )

where in the case of the K(p,q) spaces, we understand Xι = 0. The function F is

F = ̂ 2Plp2p3 - t^ pA{XA)
2 ~ 2(XUX2,X3)}. (3.18)

It is manifest that Eq. (3.18) correctly reproduces the known results for the
factorizable symmetric models of Eqs. (2.35) as well as for the magical symmetric
models, Eqs. (2.37). We close this subsection by recalling some useful formulae
which hold for any model with a cubic F [17].

NAB = ̂ dABCy
c

9 Y = ϊdABCy
ΛyByc, (3.19a)

(Nz)A = ϊidABCy
Byc, (3.19b)

yA = i(zA-zΛ). (3.19c)

These formulae will simplify the computations of the next subsection.

3.C. Homogeneous Kάhler-Einstein Spaces. There is another problem in the
classification of the homogeneous Kahler spaces allowed in N = 2 supergravity that
we want to discuss, namely, we ask ourselves what spaces in the above list are also
Kahler-Einstein manifolds. This question may be relevant for string theory too. It
can be shown [20,21] that all the homogeneous Kahler manifolds allowed in N = 2
SUGRA are holomorphically equivalent to a bounded domain in C" (in fact, they
are equivalent to Siegel domains of type I). As is well known [23], all homogeneous
bounded domains admit at least one Kahler-Einstein metric, i.e. the Bergmann
metric. In all the exceptional spaces which are symmetric, our metric above is the
Bergmann one (within a positive factor). So, at first sight, one could hope that the
above homogeneous spaces are Kahler-Einstein. But it is not so.

It turns out that a normal homogeneous Kahler space allowed in N = 2 SUGRA
is Kahler-Einstein if and only if it is symmetric. Therefore only the spaces which were
already in the Cremmer-Van Proeyen list are both homogeneous and Kahler-
Einstein.

It should be stressed that strictly speaking this conclusion is only proved for
normal homogeneous Kahler spaces. However, as we mentioned in the introduction,
there is a conjecture by Alekseevskii stating that all homogeneous quaternionic
manifolds with negative definite Ricci curvature are normal. If this conjecture holds
true, then the Alekseevskii spaces exhaust all such homogeneous quaternionic
manifolds, and hence -by the c-map isomorphism- our list of the homogeneous
Kahler spaces allowed in N = 2 SUGRA is also complete and we can omit the word
normal in the above statement.

We prove this assertion just by computing the Ricci tensor. Obviously, the
Kahler metric in Eq. (2.2) is Einstein if and only if

OET{Gj = \h\2Y\ (3.20)

where h is some holomorphic function.
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The computation of the determinant of the metric can be simplified by exploiting
the fact that all models (with the exception of the minimal coupling case) have a cubic
function F. Let, as always, G = — In Y be the Kahler potential. Since all the gauged
supergravity models corresponding to cubic F have an identically vanishing scalar
potential,

V = e-G(Ga^GaGβ- 3) == 0, (3.21)

we should have

G^GaGβ = 3. (3.22)

On the other hand,

G^-Y-ιY^+Y~2YJβ. (3.23)

Equations (3.22,23) imply

D E T { - r-%-} = -2DET{Gα ?}. (3.24)

Then, a space described by a cubic F is Einstein if and only if Det {— YAB) is
proportional to some power of the function Y. Notice that in the cubic case both Y
and Det {— YAB] are polynomials in the variables yΛ = —21m(zA)9 and then the
holomorphic function h should be a constant.

Consider the spaces K(p,q). A simple computation (using Eq. (3.19c)) gives

DET {- YAB] = - 2[2 Im (p2)]*[2 Im(p3)]« Y (3.25)

Equation (3.25) implies that the spaces K(p,q) are not Kahler-Einstein.
Consider the special case p = 0 which corresponds to the symmetric manifolds of
Eq. (2.35). In this case the space is the direct product of two Kahler manifolds,
and also Y is factorized Y = lm(p3)Y'9 where Y' = {Im(p1)lm(p2) — (Iml 3 ) 2 }
and p 3 is the complex coordinate on the coset SU(1,1)/(7(1). Then Det[G] =
(Im p3)" 2 {7'} " ( 2 + q \ and the Kahler manifold is the product of two Einstein spaces
but with different "cosmological constants" — 2 and — (2 + q) = (n — 1) {compare
with ref. [7] and Appendix A of ref. [12] }. For a generic space K(p, q)9 with p,q^0,
this factorization does not hold and the metric is not Einstein.

For the spaces H(p, q) the direct computation of Det {- YAB} is more involved.
However, for our purposes the full computation is not needed. Let us assume
(absurd) that Det {- YAB] is indeed proportional to some power of Y. Since at
X. = 0 (i=l,2,3) Y reduces to lmp1 Imp2 Imp3, we should have that
Det{— YAB}\XΪ=O i s a symmetric function of Im/v An explicit computation gives

D E T { - y 4 β } | x = 0 = 2[-2Im( P 3)] d i m ^[4Im(p 2 )Im(p 3 )] d i m X 2 . (3.26)

Therefore, a H(p, q) space can be Einstein only if dim Xx = dim X2. Looking at
the dimensionality of the Clifford modules we see that there are only four solutions
to this condition, i.e. both spaces Xx and X2 should be isomorphic to one of the four
division algebras, U, C, H or O. The corresponding spaces are the symmetric magical
spaces of Eq. (2.37). These magical manifolds are known to be Kahler-Einstein. By
the above argument, no other H(p, q) spaces can be Einstein.

These results will be recovered in Sect. 4 using more sophisticated techniques (T-
algebras). There we shall explain the relation between the W-invariant Kahler
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metric of Eq. (2.2) and Bergmann's one, as well as other geometrical properties of the
spaces K(p, q) and H(p, q).

4. Geometry of the K(p, q) & H(p, q)
Spaces, Type I Siegel Domains and T-Algebras

In this section we study in detail the geometry of the homogeneous Kahler spaces
K(p9 q) and H(p, q). The main result of this section is that all the above manifolds
allowed in N = 2 SUGRA (except -of course- CHn) are (homogeneous) Siegel
domains of rank 3 [20,21]. More precisely, the spaces K(p, q) and H(p, q) are exactly
those rank 3 Siegel domains whose associated isometric mapping is special (or
degenerate).

This geometrical characterization is so important that we give three proofs of it.
The last two are completely rigorous mathematical proofs based on the characteriz-
ation of the (homogeneous) Siegel domains of the first type in terms of/'-algebras and
T-algebras, respectively.

The first argument is based on physical considerations. We present it in order to
explain the physical meaning of this geometrical property.

In the physical literature one usually considers homogeneous manifolds of the
form G/K, where G = H (g)U(l)n with H semisimple. The generic homogeneous
space, however, is not of this form. In particular, the homogeneous spaces we have
found in Sect. 3 are not of this form. Indeed, it is easy to show that all the
homogeneous Kahler manifolds allowed in N=2 SUGRA should be biholomorphi-
cally equivalent to bounded domains. A theorem by Borel [22] states that if a
bounded domain has a semisimple group of automorphisms, the domain is
symmetric. This is not the case for the spaces K(p, q) and H(p, q).

4.A. Stringy Considerations. To make a long story short, let us assume that the
Gepner conjecture [2] holds true. Then, roughly speaking, the moduli of the (2,2)
c = 9 superconformal theory should correspond to the Calabi data [28],

{X,J,[ω],[τ]} (4.1)

for a Calabi-Yau [29] 3-fold. Here K is a complex 3-fold with complex structure /
such that the canonical bundle is trivial, lω]eH1Λ(K) ([ω] real) is the Kahler class
and [τ]eH2(K) is the "torsion" class.

Obviously, for a generic class, [ω~\eH1Λ{K\ there is no representative which is
the Kahler form of a positive-definite Kahler metric. Let VeH 1Λ(K) be the subspace
of the classes [ω] which are the Kahler class of some regular Kahler-metric on K
(with respect the specified complex structure J). We call V the Kahler cone.
V has a number of properties:

0) V is open in IR" (n = h1Λ; hence forth H1Λ(K)nH2{K, R) is identified with Un).
1) V is a cone: if y e V then λye V for all λ > 0.
ii) V is convex: \ίyuy2eV then yx + y2 e V (in fact y1 + y2 is the Kahler class of the
sum of the two metrics).
iii) If yeV then jy3 > 0 (positivity of the volume).
iv) V does not contain any complete line (not necessarily passing through the
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origin). This is essentially the "archimedean" property of Sect. 18 of ref. [30]).
Indeed, assume (absurd) that yt = (ty1 + j/2)e Ffor all teU. Letting t -> + oo =>yλ e K
Then J j ^ 3 > 0. Therefore A(t) = §y3 is a cubic polynomial in t with a non-vanishing
coefficient of t3. But then A(t) should be negative for some real values of t. Therefore
using iii) we get the absurd.
v) (Riemann-Hodge quadratic relations). For a given y e Hi x, define the effective (or
primitive) cohomology classes waeH1Λ by the property

f y A y A wA = 0.
K

Then, if yeF the quadratic form

δ^^ί^ΛW^ΛWβ (4.2)
A:

is a non-degenerate negative definite symmetric matrix [31].
Consider the complex (1,1) class z = x + ry, where y is identified with the Kahler

class and x is the type (1,1) part of the torsion class [τ]. By the above considerations,
in order for the corresponding Calabi data to correspond to some regular Kahler-
Einstein metric, we should have

iV. (4.3)

In particular, V in Eq. (4.3) has the properties o),.. ., v).
The (in general, non-homogeneous) Siegel domains of the first type are defined to

be domains in C" of the form (4.3) where VeUn is a cone such that the properties o), i),
ii) and iv) above are fulfilled. A Siegel domain of type I is homogeneous if and only if
the cone V is homogeneous (with respect a group of affίne automorphisms).

Let us expand the (complex) class z in a (real) basis ωA of H1Λ(K)nH2(K, U),

= zAωA.

If we compactify the heterotic string on the Calabi-Yau space specified by the
above Calabi data, the zA are promoted to chiral multiplets of the effective low-
energy N =1 4D supergravity. These chiral multiplets should parametrize some
Kahler space (in fact, a Hodge manifold [32]). The complex manifold underlying
this Kahlerian σ-model should be the space of the allowed values for zΛ, that is
Un + iV.

Thus the Kahler (geodesic) submanifold of the heterotic low-energy effective
theory, which is parametrized by the moduli corresponding to the deformations of
the Calabi data [ω] and [τ], is a Siegel domain of the first kind.

The same is true for a type IIA superstring, since the moduli space (and metric) is
independent of the particular string one compactifies.

Therefore, a necessary condition for a N = 2 supergravity model to be a
candidate for being the low-energy limit of a type IIA string is that the
corresponding Kahler space is a Siegel domain of the first kind.

Then, saying that the models we constructed in Sect. 3 are (homogeneous) Siegel
domains (of the first type) is just the same as saying that they may be relevant to string
theory.

4.B. Complex Homogeneous Bounded Domains andj-Λlgebras. In this subsection we
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consider the geometry of the spaces K(p, q) and H(p, q) from the point of view of the
classification theory for the homogeneous bounded domains developed by Gin-
dikin, Pjateckii-Sapiro and Vinberg [20,21]. Again, the aim is to prove that these
spaces are biholomorphically equivalent to Siegel domains of type I (alias radiated
tube domains). The merit of this approach is that it makes manifest the connection
between duality invariance and the geometry of bounded domains.

First of all, it is quite obvious that the spaces K(p,q) and H(p,q) are
biholomorphically equivalent to some bounded domain of Cn. To check this, it is
sufficient to use the criterion of boundeness given in ref. [21]. Four our spaces,
the j-algebra is just the (normal) Kahler algebra W. This algebra, being totally
solvable, does not contain any compact semisimple j-subalgebra. Therefore the
spaces K(p, q) and H(p, q) are bounded domains.

(However, it is convenient to use non-bounded models for these bounded
domains. These non-bounded models are just the Siegel spaces in their usual form

The general theorem of refs. [20,21] states that the Kahler manifold generated
by exponentiating a j-algebra is either a Siegel domain of type 2 or of type 1 (which
is, in fact, a special instance of the type 2 case).

More precisely, their result can be stated as follows. W = exp W is
biholomorphic to a Siegel domain of the second kind if and only if in W there exists
an element H such that

i) AdH is semisimple;
ii) The spectrum of AdH consists of λ = 1,0,1/2.

iii) [ # , x] = λx => [if, Jx] = (1 - λ)x for all xe W.

Moreover, iV is a Siegel domain of the first kind if and only if the value 1/2 is not
present in the spectrum of AdH.

The element HeW can be constructed from the j-algebra W by the following
procedure. Consider the skew-symmetric form on VF< J. . . , . . .>. It is just the Kahler
form on TiΓ. Then it should be cohomologous to zero on W. Therefore, there is a
one-form on W, ω( ), such that

(4.4)

So, the non-degenerate inner product <...,...> has the form

(4.5)

Any one-form on W can be expressed as < w,... > for a unique u e W. Then there exists
a unique ueW such that

ω(x) = (u,x} VxeW. (4.6)

It can be shown [19,20,21] that the element u so defined has the properties i), ii)
and iii) above and so it can be identified with H. (By the way, this shows that all
homogeneous bounded domains are Siegel domains.)

In the case of the normal Kahler algebras we discussed in Sect. 2 (for rank 3 and
type 1), we have

H = hι + h2 + h3. (4.7)
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Using Eq. (2.26) and the relations defining an elementary Kahler algebra it is
easy to see that

[ H A ] = 0, (4.8a)

lH,ga-]=ga α=l,2,3, (4.8b)

[H,x2 + ] = x3 + , (4.8c)

[tf,*2_] = 0 ,4 = 1,2,3. (4.8d)

Given that Jht = gh Jxm

A+ — χmA-> w e s e e that H satisfies the conditions i), ii)
and iii). Moreover, from Eq. (4.8) it is manifest that 1/2 is not present in the
spectrum of AdH.

This completes the proof that the spaces K(p, q) and H(p, q) are homogeneous
Siegel domains of type 1.

The above identification for H, Eq. (4.7) can also be obtained from the form ω. In
each algebra W of Sect. 2, there is a canonical linear form ω with the property (see
Corollary 6.2 of ref. [15])

ω f o β ) = - l , (4.9a)

c φ ) = 0 if uΦgΛ α = l , 2 , 3 , (4.9b)

which, together with Eq. (2.22) implies Eq. (4.7).
Let us take a closer look at the structure of the Kahler algebra W. In agreement

with the general theorems of refs. [20,21], it should be of the form

W = JR + R (4.10)

with R a commutative ideal of W. In fact from Eqs. (2.26) we see that R is generated by
ft and X V .

The automorphisms of the Siegel space Un + iV are of the following two forms:

(A) x + iy-+{x + a) + iy (aeM"),

(B) x + iy -* Ax + iAy,

where A is an (affine) automorphism of V. The automorphisms of the type (A) are
exactly the "Peccei-Quinn" symmetries of ref. [3]. From the algebra W we see that
these Peccei-Quinn symmetries are just generated by the commutative ideal R. (Notice
that the existence of this ideal #—the PQ symmetry—is enough to deduce that the
spaces if homogeneous should be Siegel type I. This is the argument we used in
ref. [3]).

The automorphisms of the convex cone V can be described as follows in terms of
the j-algebra W. Let y be a point in R. We define an infinitesimal affine
transformation of R by

Chy = IK yl he JR. (4.11)

Using the axioms of a (normal) j-algebra it is easy to check that the
transformations Ch,heJR, form an affine Lie algebra L. Consider the orbit of the
point y under the corresponding Lie group. It is a convex cone (not containing lines)
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which is canonically identified with V [20,21]. L is obviously the Lie algebra of the
automorphisms of V.

The -algebra of a Siegel domain of the first type has a natural normal
decomposition (the semidirect sum decomposition of Sect. 2.B). We discuss it here
since we shall need it in Sect. 4.C to construct the corresponding Γ-algebras.

The general theorem [21] states that there exist elements r^R (i = 1,..., m) such
that the ideal R can be decomposed into a direct sum of spaces

R=ΣRij (4 1 2 )

such that the following formulae hold [21]:

Rii = (ri), (4.13a)

'iix']=Uδij + δik)x9 (4.13b)

•., Jx] == i ( 5 y _ δik)Jx, (4.13c)

(4.13d)

Comparing these equations with Eq. (2.22,4.8) we get in the case of our algebras
W, that Γ i = - & ( / = 1,2,3), and

R12 = X3 + , (4.11a)

R13 = X2 + , (4.14b)

R23 = X1 + . (4.14c)

4.C. T-Algebras and the Geometry of the Spaces K(p,q) & H(p,q). In the previous
subsection we proved that the homogeneous spaces we coupled to N = 2 SUGRA in
Sect. 3 are (homogeneous) Siegel domains of the first kind. However, not all such
Siegel domains can be coupled to N = 2 supergravity. Then, the natural problem is
to give a geometrical characterization of the Siegel domains that can be coupled
to N = 2 sugra.

In order to solve this problem we have to introduce the formalism of the T-
algebras [14], which is also very convenient for the practical computations and will
give us some extra bonus. In a certain sense, the T-algebras are a generalization of
the Jordan algebras. The homogeneous models of Sect. 3 are related to the T-
algebras in exactly the same way as the symmetric models are related to the Jordan
algebras [12]. In this sense, this section is close in spirit to the work of Gunaydin,
Sierra and Townsend [12] on the applications of the Jordan algebras to N = 2
SUGRA. Our construction below reduces to theirs in the particular case in which
the domain is symmetric.

The T-algebras give an efficient way to describe the Bergmann metric on a
homogeneous bounded domain. By "distorting" the T-algebra we can get the other
homogeneous Kahler metric on the Siegel domain by the same token we used to
construct the Bergmann one. In particular we get a simple and elegant interpretation
of the Kahler metric relevant for N = 2 supergravity, Eq. (2.2).

4.C.I. T-Algebras and N~Algebras. From the considerations of Sect. 4.A.2 it is easy
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to compute the cones V for the symmetric case (see also ref. [12]). For the magical
models, V is the cone of positive-definite Hermitian 3 x 3 matrices whose entries
belong to one of the four division algebras R, C, H or O. The "factorizable" models,
Eq. (2.31), instead correspond to the spherical cones4

y/ (4.15)

Here we want to show that this interpretation of the cone Fcan be extended also
to the homogeneous case. The (convex) cone V, defined by the homogeneous spaces
we have found above, is the space of the, in some sense positive, 3 x 3 Hermitian
matrices whose entries belong (quite roughly) to the Clifford modules of Sect. 2.A.
Such matrix algebras are examples of a more general concept introduced by E. B.
Vinberg [14]: that of Γ-algebras.

We begin by recalling some definitions. (The convention on the sum over
repeated indices is NOT used in this and the following section). A matrix algebra of
rank m is an algebra 21, bigraded by subspaces 9ί y (i,j = 1,..., m) such that

%/HjkcH*, (4.16a)

%j%k = 0 for jΦl. (4.16b)

An element αe$I can be represented as a matrix (αy), where α y is the projection of a
into 9l y. Then the algebra product is written as the usual product for matrices. An
involution * of 91 is a linear mapping 91 -> 91 such that

= b*a*, (4.17a)

9ί% c:9l,,. (4.17b)

In the matrix notation this is the "Hermitian conjugate." We denote by (£ the
subalgebra of 21 consisting of upper triangular matrices, and by X the subspace of
"Hermitian" matrices

* = X}. (4.18)

A matrix algebra 91 with an involution * is called a T-algebra if

1. all the subalgebras SΆU are isomorphic to U (the corresponding unit element is
denoted as et);
2. for any α l 7 e9I l 7 :^ α l7 = a^βj = au;
3. There is an operation (trace) Tr:5I-»[R such that
l a Tr([fl,6]) = 0;
3.b Tr( [>Ac]) = 0;
3.c Tr(αα*)>0 if α^O;
4. For any ί, u, we(£, [ί, u, w] = 0;
5. For any ί, we£, [ί, M, M*] = 0.

Here [α, b, c] is the associator, [a, b, c] = a(bc) — (ab)c. In the matrix notation, the

4 Notice that the symmetric Kahler spaces allowed in N = 2 SUGRA just correspond to the classical

cones, (i.e. the homogeneous convex cones known before the 1960's), see ref. [14]
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trace is defined as

Tva=fjnίaih (4.19)

where the nt are positive numbers. If

u j (4.20b)

we have

T r l = dim2l, (4.21)

and we call 21 a natural T-algebra. This trace will be called the graded trace and
denoted by TrG. If Eq. (4.20a) does not hold, we shall speak of a distorted T-algebra.
This process of distorting the T-algebra is analogous to defining a different metric on
a coset by rescaling the generators.

Let a = (αii)e2I. Then we define

g=h>«+Σ«u ( 4 2 2 b )
I i>j

ά is an upper triangular matrix, a is lower triangular, and a = a + a. In 21 one defines
a product •

a. (4.23)

Under the •-product the space X is closed.
Consider now the space 5" (21)

> 0 ( i = l , . . . , m ) } . (4.24)

(21) is obviously a connected Lie group. Its Lie algebra T(2I) is just the subalgebra
of 21. Let us consider the map ^(2Ϊ) -• 3E given by

ί->ίί*e£. (4.25)

The Hermitian matrices of the form if* are, in some sense, positive definite. Let

(4.26)

be the cone in X of such "positive definite" Hermitian matrices. Each element of F(2l)
can be written in a unique way in the form if* with ί6^(21). Therefore, F(2ί) is a one-
to-one image of the Lie group ^(21). This group acts on the cone F(2l) by

π(ω): MM* -> (COM)(M*CO*). (4.27)

In fact, π(ω) is just a left translation on the group 5^(21). Then 5^(21) acts transitively
on the cone F(2I), which can be shown to have all the properties of the cone V for a
Siegel domain of the first kind. Equation (4.27) implies the following action of T(2I)
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on X

Lx:y^x + y, (4.28)

which is easily identified with the action of the affϊne algebra Ch of Eq. (4.11).
This shows that the cone F(9ϊ) is equal to the cone V of a homogeneous Siegel

domain. Conversely any homogeneous Siegel cone is of the form K(9I) for a unique
(natural) Γ-algebra 91 [14].

We want to define the "determinant" of an element of X. In order to do this, we
associate to each Hermitian matrix Xe9I (rank m) a sequence of matrices X(k) of
rank k = 1,..., m

X(m) = X, (4.29a)

*Σ ^ (4.29b)

and put pfc(Z) = X(fc)

fcfc, /c = 1,..., m.
The matrix XeX can be written in the form tt* (i.e. it is "positive-definite") if and

only if [14]

ρk(X)>0 for fc=l,...,m. (4.30)

If Eq. (4.30) holds, the unique ίe^(SΪ) such that X = tί* is given by

m
The determinant of a matrix X e ϊ is then defined by the formula

i - 1

D E T ( I ) = Π [ f t ( I ) ] " ' S=I"S, (4.32)
ί = l

where nt are the same numbers as in the definition of the trace, Eq. (4.21). (In the case
x = tt * we have DET (x) = {DET (t)}2. DET (t) = exp Tr In (ί) is elementary since t is
triangular and the diagonal elements are just real numbers).

Let 91 be a T-algebra. Consider the corresponding (homogeneous) Siegel domain
of the first type

= W + zT(9ί). (4.33)

It is convenient to write a point in 0(91) as a matrix 3 in 91 (x) C such that

(4.34)

The natural Kahler metric on such a domain is of course the Bergmann one.
Exploiting the homogeneity of K(9I) and the explicit form of its automorphism
algebra, Eqs. (4.30), it is easy to see that the Kahler potential for the Bergmann
metric is (within a positive factor)

B = - In {DETG [2 Im 3]}, (4.35)
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where DETG is the "graded" determinant, i.e. in Eq. (4.32) the nt are given by
Eq. (4.20).

Our next problem is to classify what T-algebras 91 correspond to homogeneous
Kahler spaces which can be coupled to N = 2 SUSY. It turns out that the most
efficient way to construct a T-algebra is by starting from its nilpotent part, which is
an iV-algebra.

An associative algebra 91, graded by subspaces 9ltj (i<j9i,j=l9...9m), and
equipped with a Euclidean metric (...,...), is called an N-algebra (of rank m) if:

I) %j9ljkc:%k,

II) J l y 9l Λ = 0 f o r j # ϊ ,
III) (9ly,9tfc,) = 0 if iφk or jφl,

IV) For any α o e9t l7, bjke9ljk:

(βijbjk, dijbfr) = -(aip aij)(bjk, bjk\

V) If aike%k, bjke9ljk (i <j) and (αΛ, 9 1 ^ ) = 0

To construct a T-algebra out of a given JV-algebra, we write

91 = 91* + 9) + 91, (4.36)

where 91* is a vector space isomorphic to 91, the involution * being the isomorphism,
ί) is the space of the diagonal matrices, which is just a direct sum of copies of U. We
have to extend the product from the space of strictly upper triangular matrices 91 to
the full T-algebra 21. The product in 91* is given by the rule a*b* = (ba)* (a, be91).
The scalar product is extended in 91 in such a way that Eq. (4.36) is an orthogonal
decomposition. In f) we put (βi,β, ) = Wi in agreement with Eq. (4.19). The scalar
product is extended to 91* by (α*, b*) = (α, b). The product of an element of ί) with
any element of % is given by point 2 in the definition of a T-algebra. The product of
an element of 91* for an element of 91 (and vice versa) can be defined by

ab* = γpihlei + ̂ (C«fl, b)c«* + Σ(c% a)c\ (4.37a)

a*b = £ K Λ ) e. + £ {bc^ a)(f*
ij nj Λ

where c* (α = 1,...,dim91) is an orthonormal basis of 91. One shows that 91 so
constructed satisfies all the axioms of a T-algebra.

4.C.2. The T- Algebras of the Kahler Spaces K(p, q) & H(p, q). Having set the stage
in the previous sections, the construction of the T-algebras associated to our
supergravity models, K(p, q) & H(p, q) is quite simple.

Consider the commutative ideal R W (Sect. 4.B). We saw that the cone V is the
orbit of the affine group exp Ch (heJR). In this sense we can use the elements JR as
affine coordinates for V.

Thus, the coordinates zΛ are identified with the generators ha and XA_, which is
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just what we did in Sect. 3.B to write the function F in the cubic form. (Recall that the
cubic form is—by definition—the canonical affine parametrization of the Sίegel
domains of the first kind. See Sect. 4. A.).

A natural grading for JR is induced by the grading of R given by the normal
decomposition, Eq. (4.12) (see also Sect. 2.B).

As in Sect. 4.C.1, we construct the T-algebra out of its iV-algebra.
The T-algebras of the models K(p, q) and H(p, q) are cooked using the following

recipe:

a) The subspaces 9ltj are identified with the subspaces JRU of the normal
decomposition, Eqs. (4.12,4.14). Therefore, all the relevant T-algebras have rank 3,

W = J ΣRir (4-38)

b) We define the inner product (...,...) in 91 by the formula

(xip ytj) = ~ < xij9 yυ > xij9 yijβJRij. (4.39)

c) The product %jΘ9ljk^%k is defined as

x^fr*^ *' ί<j<\ (4.40)
uJΊk j^Q otherwise

where * is the product whose multiplication table is given by the coefficients dμmM.
We have still to check that these rules define an algebra 91 satisfying the axiom

I),...,V) of Sect. 4.C.I. The only one which deserves consideration is IV).
Equation (4.16) gives the following explicit identifications for the spaces 9l0-:

S»i2 = * 3 - , (4.41a)

M13 = X2-, (4.41b)

9t23 = * i - . (4.41c)

Making the same identifications for the elements of each vector space, we have

12) — (^23^23)- (4.42)

Then, since φ (see Eq. (2.25)) is an isometric map, axiom IV is fulfilled.
This proves that our spaces K(p, q) and H(p, q) are associated to T-algebras of

rank 3 (of course, this was already obvious from the results of Sect. 4.B).
By analogy with the notations of Sect. 3, we shall denote an element X of the

T-algebra as
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X l \ . (4.43)

j
(Each variable in this matrix should be identified with the imaginary part of the
complex field denoted in Sect. 3 by the same symbol.)

From the definition of pk(X\ Eq. (4.29), we get for rank 3 T-algebras

(4.44)

Uxi)\ (4.45)

3

- Σ
(4.46)

Notice that the functions pk(X) do not depend on the numbers n{. Then, the cone
of the "positive Hermitian matrices," V(%) = {XeX:pk(X) > 0}, does not depend on
the numbers nx > 0. Therefore, changing these numbers will modify only the metric,
not the bounded domain itself. This elementary observation is crucial for our
arguments below.

The Bergmann Kahler potential B is given by

e - B = DETG{i(3-3)}, (4.47)

where DET G denotes the graded determinant, defined by Eq. (4.32) with n{ as in
Eq. (4.20).

Here we want to show that a totally analogous formula is valid for the Kahler
potential G of N = 2 SUGRA.

Theorem

i) The Kahler potential G, Eq. (2.1) is given by Eq. (4.47), where the graded
determinant is replaced by the naive determinant

e-G EE 2Y[i(ϊ - 3)] = DETN{i(3 - 3)}, (4-48)

where the "naive" determinant DETN is defined in terms of the "naive" trace

X % , (4.49)

i.e. by Eq. (4.32) with nf = 1.
ii) A Siegel domain of the first kind can be coupled to N = 2 SUGRA if and only if the
"naive" determinant of the corresponding rank 3 Ύ-matrix X is a polynomial in its
components.
iii) The "domain of posίtivity" is {ImzeF(9l)}.

Indeed, from Eqs. (4.32,46, 49) we get

^{i(3-3)} = Pl[f "3! ]

Ί
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+ { i ( ) 2 ( ) 2 <

^ 3 ) ] + ^ { i ( ^ i ) 2 f e ) 2 - < ^ i ^ 2 ^ i « 2 > } , (4.50)
Δ Δp3

where 7[2Im3] is the function Y computed from the function F{X°,XA) in
Eq. (3.18). The spurious term in Eq. (4.51)—which is not a polynomial—vanishes if
and only if

< x 1 * χ 2 , χ 1 * χ 2 > = i ( χ 1 ) 2 ( χ 2 ) 2 . (4.51)

But this is exactly the integrability condition for the HJ equations of Sect. 3 (or
the closure condition for the β-representations of Sect. 2.B). We know its solutions

a) Xx =0=>the K(p,q) spaces;
b) dim X2 = dim X3 and φ a special isometric map.

=>the H(p,q) spaces.

So ii) is proved. Then i) follows from Eq. (2.1) and Eq. (4.50). iii) follows from the
characterization of the "domain of positivity" in Sect. 4.A.2 and the definition of
F(9ί) as the cone of the positive elements of X.

Notice that in the four magical cases all the n, are equal to dim A. Then, in these
four cases we get

TrG(...) = (l+dimA)TrJV(...), (4.52)

and therefore the SUGRA metric is proportional to the Bergmann one. In all the
other cases the SUGRA metric is not proportional to the Bergmann one, and
therefore cannot be Einstein (since it is homogeneous). See also Sect. 3.C.

Just as a further check, let us show that Eq. (4.48) implies that the Kahler metric
Gaβ is invariant under the full automorphism group of the cone. More generally, we
show that the "Kahler metric" KΛβ defined by the "Kahler potential" K

e~z(V = ΌEΎ{nun2,n3][Xl XeX (4.53)

(where n{ are arbitrary numbers) is homogeneous. By Eq. (4.32)

e-κ(X) = |>3(J!Q]»3-(»2 + ι.i)[p 2(j ί Γ)]i.2-»i[p i(jiQ]»i# (454)

The automorphisms of the cone F(9I), ω e ^ ^ I ) act on xe£ as follows:

π(ω):X-»ωXω*. (4.55)

Or, writting x = tt*, by t-+ωt, where ω, t are upper triangular. Then it is easy to
prove the identity

DET{ni, [X] - DET{Bi} [X] x {DET{ni) [ω] }2,

D E T { l h ) [ ω ] = Π ( ω t t Γ (4-56)

Therefore,

K(X) -* K(X) - 2 In DET{ni} [ω] = K(X) + const. (4.57)
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