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Abstract. We give a lower bound of the entropy dissipation rate of Kac,
Boltzmann and Fokker-Planck-Landau equations. We apply this estimate to
the problem of the speed of convergence to equilibrium in large time for the
Boltzmann equation.

1. Introduction

Rarefied gas dynamics is usually described by the Boltzmann equation

) , (1)

where f(t, x, v) is the density of particles which at time t and point x, move with
velocity v, and Q is a quadratic collision term described in [3,4 and 12].

A simpler monodimensional model has been introduced by Kac in [9]:

dtf + vdxf = Q(f9f) , (2)

where Q is defined in [9] or [11].
The asymptotics of the Boltzmann equation when the grazing collisions become

predominant formally leads to the Fokker-Planck-Landau equation

8J + vVxf = Q'(f,f) , (3)

where Q' is still a quadratic collision term. The formal derivation of this equation
and the form of Q' may be found in [4] or [10].

According to Boltzmann's //-theorem, the entropy dissipation rate

ί Q(fJ)(v)\ogf{v)dv
veJR3

is nonpositive. Moreover, it is equal to 0 if and only if / is a Maxwellian (cf. [12]).
The same property holds for the collision term Q', and for Q with the additional
prescription that the Maxwellian is of bulk velocity 0.
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Therefore, in order to get a better understanding of the phenomena appearing
when the entropy dissipation term tends to 0, it is useful to obtain a lower bound of it
in terms of some distance from / to the space of Maxwellians.

Such an estimate measures the speed of convergence to equilibrium when the
entropy dissipation tends to 0. This situation occurs for example when the time t
tends to infinity in Eq. (1), (2) and (3), or when the mean free path ε tends to zero in
the equation

f

Accordingly, in Sect. 2, we give a lower bound of the entropy dissipation term
for the Kac equation in terms of a distance to the Maxwellian states of the type

inf S \log f(v)-m(v)\dv , (4)
met

where Γ is the space of logarithms of Maxwellians with zero bulk velocity.
We extend this result in Sect. 3 to the case of the Boltzmann collision kernel Q,

and in Sect. 4 to the case of the Fokker-Planck-Landau collision kernel Q'.
We explain in Sect. 5 how these results give classical estimates when applied to

the linearised kernels of Q, Q and Q'.
In Sect. 6, we apply the previous estimates to investigate the long time behaviour

of the Boltzmann equation.

2. On the Kac Collision Kernel

The Kac equation,

models a one-dimensional gas in which all collisions conserving the energy are
equiprobable (cf. [9] or [11]). Therefore, its collision kernel Q is the following:

Q(fJ)(v)= J f {Πυ'mυD-fipmvJ} — ^ ,

where
v' = vcosθ-\-v1 si

υ[ = — vύnθ + Vi cos# .

The theorem below is a partial answer to a question of McKean (cf. [11],
p. 365; 13b]).

We shall denote by C/the set of the convex, continuous and even function from
IR to 1R such that for all x in 1R,

Moreover, if B is a function from Wi% to WL%, we introduce the set

Lp

B={feLp/Tor all v such that \v\^R,f(v)^BR} ,
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and Γ is the space of logarithms of Maxwellians with zero bulk velocity

Theorem 1. Let Q be the Kac collision kernel, and R be strictly positive. Then there
exists a strictly positive KR such that for all f in I}B and all φ in U,

- ί Q{f,f){υ)\ogf{v)dυ^\B2

RπR2φ(^-2 inf f \\ogf{v)-m{v)\dv\ .
4 \πK Γ /

Proof of Theorem 1. Boltzmann's //-theorem ensures that

- ί Q(ff)(v)\ogf(v)dv
veΈi

J*LAκX{f(vΊf(v[)-
• —— dvλ dv

2π
I 2π

4 2 ->

with
λ(x) = x(ex-l) .

Therefore

- j Q(ff)(v)logf(v)dv

1 /I 2 π

(5)

by Jensen's inequality.
Before going further in the proof, we need the following lemmas:

Lemma 1.
2π in

^ inf J
functions T v2 + v\^

Proof of Lemma 1. Let us introduce the following notations:

= rotation of angle ψ ,
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and compute

Jn 2 π Jf\

log/(ι;ί)-log/(ι;)-log/(t;)|y-= J \Q{R^V^)-Q{V^\ —

2 π Jn 2 π

J |log/(i;/) + log/(ι;ί)-log/(ι;)-log/( t;1)|y-= J

e=o Zπ

But

j giRe&vJ) —
Θ = O

 L π

is a function depending only on v2 + vj, which concludes the proof.

Lemma 2. For all strictly positive R, there exists a strictly positive KR such that

inf
functions T υ2

^KR inf j \\ogf(v)-m{v)\dυ .
mεΓ \v\^R

Proof of Lemma 2. Let M be the space of functions depending only on v2 + v\, and
L be the following operator:

The operator L is clearly linear and one-one (cf. [3] or [12] in the more complicated
case of the Boltzmann collision kernel).

Observe that for all t in I^Q

inf j
functions T υ2 + υ\^R2

^ inf j \t{v) + t(vx)-a(v2 + v\)-2b\dvιdv
a.beJR. v2 + v2

1^R2

S4R inf j \t(v)-m(v)\dv .
met \υ\^R

Therefore, the operator L is continuous.
In order to apply the open mapping theorem, we have to prove that the image

of L is closed. Assume that there exists a sequence tn in L1(\v\^R)/Γ and t in
Li(v2+v2

1^R2)/M such that /„(v) +/„(^) tends to tfavj in Lγ(v2 + v\^R2)jM.
Then, there exist a sequence &„ in Lι(\v\^R), a sequence Γn depending only on
V2 + v\ and # in Lι(v2 + v\^R2) such that /n is the natural projection of kn on

T, t is the natural projection of g on Lx(v2+v\^R2)/M, and

4 - ^ ) ^ ( ^ ^ 1 ) (6)

Next, we introduce the differential operator

d d
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which has the following property:

U~-υjλτ{v^υ\) = 0 . (7)
\ dv dvι)

According to (7),

\ (kn(v1) + K(v) + Tn(v+v1)) v1K(v)vk;(v1) (8)

converges in W~1Λ. Taking the double partial derivative of this expression with
respect to v, vx, we obtain that

converges in W~3Λ. Therefore, there exists a sequence of real numbers bn such that

converges in W3'1. Then, there exists a sequence of real numbers cn such that

kfo) + bnv + cn

converges in W~2Λ and, according to (8),

converges in W 2Λ.
But (8) ensures that

converges in W~2Λ, and therefore

K(v)-vk^Vi) (10)

converges in W~2Λ. Then, (9) together with (10) ensures that

converges in W~2Λ. According to (9), we obtain that

converges in W~1Λ, and therefore there exists a sequence of real numbers an such
that

converges weakly in L1.
Therefore, tn converges weakly in Lι(\v\^R)lT and the image of L is closed.

Applying the theorem of the open mapping to L, we obtain a strictly positive KR

such that:

inf j kW + K^i)" T(v2 + vl)\dv1dv^KR inf J \t(v) — m(v)\dv .
functions Γ v2 + v2^R2 met \v\^R
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Injecting t = logf in this estimate, we obtain Lemma 2.
The proof of Theorem 1 easily follows from Lemmas 1 and 2 together with

estimate (5).

3. On the Boltzmann Collision Kernel

For the derivation of Boltzmann collision kernel, we refer to [3,4 or 12]. We take

β(/,/)= ί ί {f(vf)f(v[)-f(v)f(v1)}B(υ,v1,ω)dωdυ1

V.GR3 ω e s 2

with
v/ = v + ω-((v1-v) ω) ,

v[ = v1 — ω - ((v1 —ϋ)'ώ) ,

and B is a nonnegative collision cross-section, depending on the collision process.
According to Boltzmann's //-theorem, the equilibrium is obtained for Max-

wellian densities if B is strictly positive a.e. In order to obtain an estimate of the
type (4), we need a stronger assumption on B. From now on, we shall assume that
for all strictly positive R, there exists a strictly positive CR such that

v1—v
\VΛ -V\

(12)

for all v, vί such that v2 + v\^R2. Note that this assumption is satisfied in the
classical cases of hard spheres and inverse power forces with or without angular cut-
off assumption (cf. [3, 4, 8 and 12]).

We keep in this section the notations of Sect. 2. Moreover, we introduce Γ, the
space of logarithms of Maxwellians:

we denote by \A\ the Lebesgue measure of the set A, and by SN the sphere of
dimension N.

The main result of this section is the following:

Theorem 2. Let Q be the Boltzmann collision kernel with B as in (12) and R be
strictly positive. Then there exists a strictly positive KR such that, for all f in UB and
all φ in U,

- ί Q(f,f)(v)logf(v)dυ^Bi\Ss\\S2\R*CRφ

^ΊTk^e inf ί \logf(v)-m(v)\dv) .
\S I \S \R meΓ \V\
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Proof of Theorem 2. By Boltzmann's //-theorem,

- ί Q(f,f)(v)logf(υ)dv

693

ί eR 3

= τ ί ί {f(P')f(v[)-f{v)f{Vι)}

• {log (f(v')f (v[)) - log (f(v)f(v,))} B(v, v,, ω)dωdvγ dv

ω
-v

dωdυγdυ

with

= x(ex-l) .

1

And therefore

- ί Q(f,f)(v)logf(v)dv^BlCR\S2\\S5\R6φ

1
ί ί

p2 + υ 2 ^ 2 ω e S

vΛ—v
ω -

\VΛ ~V\
dωdv^dv

by Jensen's inequality ί because j jv oeS2
ω

υλ -v
\VΛ -V

(13)

dωdvίdv = \S2\\S5\R6 .

In the sequel, we need the following lemmas:

Lemma 3.

f |log/(

^ inf J
functions T v

2 + v\^

vΛ — v
CO'

\VΛ —V\
dωdvγdv

Proof of Lemma 3. Let us introduce the notation: g(v, vί) = logf(v) + logf(vί). We
compute

j llog/^

= ί ί
v2 + v2<R2 ωeS2

υΛ—υ
ω -

-V
dωdvγdυ

ω - - dωdv1dυ .

Then, we introduce the following change of variables:

σ = S(ω)
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with

The Jacobian of S is

and

with

According to (11), we obtain:

J J
v\^R2 ωeS2

^ j j
v2 + v2^R2 σeS2

L. Desvillettes

— v
ω

-v

ω
— V

—V\
dωdvγdv

v2 + v2<R'< σeS2

But Uσ(v,v1) depends only on

ί ί
v2<R2 ωeS2

^ inf j
functions T v2 + vj^

^ inf I
functions T v2 + v2^

dvγdv

i, and therefore

—V

ω -
\vλ-v\

dωdvγdv

which concludes the proof of the lemma.

Lemma 4. For all strictly positive R, there exists a strictly positive KR such that

inf j
unctions T v2 + v2^R2fun

^KR inf j \\ogf(υ)-m(v)\dv .
meΓ \v\^R

Proof of Lemma 4. Let M be the space of functions depending only on
v2 + v\), and let L be the operator

The operator L is clearly linear and one-one (cf. [3 or 12]).
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Observe that for all t in I}(\υ\^R\

inf J \t(v)
functions T v

2 + v2gR2

<; inf
a, CE

inf j \\ogt(v)-m(v)\dv

695

Therefore, the operator L is continuous.
In order to apply the open mapping theorem, we have to prove that the image

of L is closed. Suppose that there exist a sequence tn in Z^d^rgT^/Γ and t in
l}(v2 + υl^R2)IM such that ^OO + 'nfai) t e n d s t 0 t(v>vi) i n Lι(v2+ v2^R2)jM.
Then, there exist a sequence kn in Z f̂li I^JR), a sequence Tn depending only on
v + υu v2 + v2 and g in L1 (v2 + v\i^R2) such that tn is the natural projection of kn

on L^li ^ ^ V Γ , ί is the natural projection of g on 1}(y2-\-υ[^R2)\M, and

(14)

From now on, we shall write

We introduce the following differential operator:

d d

\0Ί-*i)

δ d\ . J d d

d δ

We observe that

accordingly,

converges in Wι ι . Therefore,

f f

(15)

converges in W l i ί . Moreover, the same formula holds if we change the indices
1, 2, and 3 by circular permutation.
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Taking the double partial derivative of this expression with respect to xl9yχ, we
obtain that

converges in W~3Λ. Taking the double partial derivative of (14) with respect to xx,
y2, we obtain that

converges in W~3Λ. Therefore,

d2kn

3132

converges in W~3tl and there exists a sequence of real numbers an such that

converges in W~3Λ. Moreover, the same convergences holds with the same
sequence an when we change the indices 1, 2, and 3 by circular permutation.

Accordingly, there exist three sequences of real numbers b\, b2

9 b3 such that

dkn

-z^ + anXi + bl (16)

converges in W~2Λ. Differentiating (15) with respect to xl9 we obtain that

. d2kn . . . . d2kn .

converges in W~2Λ. Injecting y2=x2

 m formula (17), Eq. (16) ensures that

(18)
31 32

converges in W~2Λ. By the same argument, injecting yί=χί in formula (17),
Eq. (16) ensures that

d2kn .

converges in W~2Λ.
Formulas (18) and (19) ensure the existence of a sequence cn of numbers such

that

converges weakly in L1(bn being the vector of components bι

n). Finally, we obtain
that kn converges weakly in I}(\v\^R)/Γ, which ensures that the image of L is
closed. Thus we can apply the open mapping theorem to L in order to obtain a
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strictly positive KR such that

inf
functions T v2

^KR inf j \t(v)-m(v)\dv .

Injecting t = \ogf in this estimate, we obtain Lemma 4.
The proof of Theorem 2 easily follows from Lemmas 3 and 4 together with

estimate (13).

4. On the Fokker-Planck-Landau Collision Kernel

The derivation of the Fokker-Planck-Landau collision kernel may be found in [4 or
10]. We denote

weIR3 \\V~W\J I \V-M'

•{f(w)Kf(v)-f(v)Vwf(w)}dw ,

where C is a strictly positive constant depending on the physical properties of the
gas, and / is the identity tensor. We keep in this section the notations of Sects. 2
and 3. Moreover, we introduce Γ', the space of derivatives of logarithms of
Maxwellians:

Γ' = {a + bv/aeWL3

9belR} ,

and //jog, the set of functions in L2 such that their logarithm is in H1.
The main result of this section is the following:

Theorem 3. Let Q' be the Fokker-Planck-Landau collision kernel, R be strictly
positive, and φ be as in Sect. 2. Then there exist a strictly positive KR such that for all
fin L2

BnHlog,

- ί Q(ff)(v)logf(v)dv^C^KR inf j \Vv\ogf(v)-m(v)\2dv .
ι?eIR3 meΓ' \v\^R

Proof of Theorem 3. Boltzmann's //-theorem ensures that

- ί ^Q'(f,f)(v)logf(v)dv

= ~ ί ί fiv)f{w){Vυ\ogf{v)-VJogf(w)}
V-W\

W — wy-

(v — w)®(v — w)
ί ί {Vv\ogf{v)-VJogf{W)}\l

\V-W\'

-{Vv\ogf(v)-VJogf(w)}dwdv .
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But the eigenvalues of the symmetric tensor

(v — w) (x) (v — w)

v — w

are 1 with order n~\ and 0 with order 1. Moreover, the eigenvector corresponding
to the eigenvalue 0 is v — w. Therefore, for all x in 1R3,

\v-w\2

Accordingly, we obtain

- ί Q(f,f)(v)logf(v)dv
ίieIR3

= *ΎW i n f ί ί l^log/(t;)
4 J V f u n c t i o n s / I ( ^ , W ) | υ | 5 Ξ K | w | ^ J R

(20)
Before going further in the proof, we need the following lemma:

Lemma 5. For all strictly positive R, there exists a strictly positive KR such that

inf J j \Vvlogf(v)-
f u n c t i o n s λ ( ϋ , w) \v\^R | W | ^ J R

•ZKR inf f l ^ l
Γ'meΓ'

Proof of Lemma 5. Let M' be the space of functions of the form: λ(v, w)(v — w), and
let L' be the following operator:

\£R; IR3)/M ; .

The operator Z/ is clearly linear and one-one (cf. [10]).
Observe that for all r in L2(\v\^R; IR3),

inf J j \t(v)-t{w) + λ(v,w)(v-w)\2dwdv
f u n c t i o n s λ ( v , w ) \v\^R \w\^R

^ inf ί ί \t(v)-t(w) + a(v-w) + b-b
] R 3 \v\^R \w\^R

inf J \t(v)-m(v)\dv .
meΓ' \v\^R

Therefore, the operator L' is continuous.
In order to apply the open mapping theorem, we have to prove that the image of

V is closed. Suppose that there exists a sequence tn in L2(\υ\^R; IR3)/Γ/ and t in
L2(\v\^R,\w\^R\Wi2)IM' such that tn(v)-tn(w) tends to t(v,w) in L2(>|^jR,
\w\^R; I R 3 ) ^ ' . Then, there exists a sequence kn in L2(\v\^R, IR3), a sequence λn

of real-valued functions and g in L2{\v\^R, \w\^R; IR3) such that tn is the natural
projection of kn on L2(\v\^R;lR-3)/Γ\ t is the natural projection of g on
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L2(\v\SK \w\^R; R3)/M', and

v,w)(v-w)^g(v,w) (21)

in L2(\\^R M ^ 7 ? I R 3 )
Accordingly, if we set kn = (k^k2,k^), v = (vt, v2, v2), w = (wl9w2, w3),

(kl

n(v)-kl

n(w))(Vj - wj) - (kl(v)-ki(w))(Vi - wt) (22)

converges in L2(\v\^R, \w\^R; 1R3) for all i,jm {1,2, 3}. Taking the double partial
derivative of this expression with respect to vh wt, we obtain that

converges mH~2. Taking the double partial derivative of (22) with respect to vt,
where / and j are different, we obtain that

-§<»>+!<»•>
converges in H 2. Therefore,

converges in H~2 for all distinct i,j and there exists a sequence of real numbers an

such that

#«.

converges in H~2. Accordingly, there exist three sequences of real numbers bx

n, b
2,

bl such that
K + a^ + bl

converges in H1. Differentiating (22) with respect to vi9 we obtain that

°-£ (vKvj-WjWM-klKwn-iVi-w,) ~f (v) (25)

converges in H~ι. Injecting Vj = Wj in formula (25), Eq. (23) ensures that:

ψ (26)
01

converges in H"ι. In the same way, injecting υt = wt in formula (25), Eq. (24) ensures
that

converges in H~ι. Formulas (26) and (27) ensure that

converges weakly in L2. Finally, we obtain that kn converges weakly in
L2(\v\^R)/Γ\ which ensures that the image of L' is closed. Thus we can apply the
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open mapping theorem to L' in order to obtain a strictly positive KR such that

inf J j \t(v) — t(w) + λ(v, w)(v-w)\2dwdv
f u n c t i o n s λ ( v , w ) \ v \ ^ R \w\^R

^KR inf j \t{v)-m(v)\2dv .
meΓ' \v\^R

Injecting t= Vv\ogf in this estimate, we obtain Lemma 5.
The proof of Theorem 2 easily follows from Lemma 5 together with esti-

mate (20).

5. On the Linearised Kinetic Equations

The proofs of the theorems of Sects. 2, 3 and 4 are still valid when we deal with the
linearised collision terms of the Kac, Boltzmann or Fokker-Planck-Landau
equations. More precisely, we obtain the following theorems, which are classical in
the case of the Boltzmann and the Kac linearised equations:

We shall denote by M a given Maxwellian, and L2(M1/2(v)dv) the Hubert space
of functions / such that fM1/2 is in L2, together with the norm:

Theorem 4. Denote by Q the Kac collision kernel. There exists a strictly positive K
such that for all f in L2(Mί/2(v)dv):

- ί f(v)Q(M,Mf)(v)dv^K\\f-mf\\2

L2{M^{v)dv) ,
VEJR.

where mfίs the orthogonal projection of f on Γ in L2(M1/2(v)dv).

Theorem 5. Denote by Q the Boltzmann collision kernel with a cross-section B such
that

\vi-v\

where C is a strictly positive constant. There exists a strictly positive K such that for
allfinL2(M1/2(v)dv):

- ί J(v)Q(M,Mf)(v)dv^K\\f-mf\\h{M^v)dv) ,

where mf is the orthogonal projection offon Γ in L2(M1/2(v)dv).

Remark. The latter theorem is classical with additional assumptions on B, (cf. [3]).
The author does not know whether the result given here in all its generality is new.

Theorem 6. Denote by Q' the Fokker-Planck-Landau collision kernel. There exists a
strictly positive K such that for all f in H1,

- f f(v)Qf(M,Mf)(v)dv^K inf J ζ(v)\Vf(v)-Vm(v)\2dv ,
veWL3 m e Γ ' veJR3

where ζ is the function

ζ = -*M .
v
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6. On the Speed of Convergence to Equilibrium in Large Time

Some results are already known on this subject. For example L. Arkeryd proved in
[2] that the convergence to a Maxwellian in the case of the spatially homogeneous
Boltzmann equation holds with exponential decay. However, it seems that for the
full Boltzmann or Kac equations, the convergence is slower. This section is devoted

to the explanation of how, in some sense, the convergence is in O l—= I. More

precisely, we are able to prove the following theorem: V

Theorem 7. Let f be a Di Perna-Lions solution of the Boltzmann equation (cf. [7]) with
a cross section B as in (12) and such that f is in Lι

B. Then, for all strictly positive number
R, there exists a strictly positive KR such that

] J inf j \logf-m\dυdx-<^

Proof of Theorem 1. We proceed as in Theorem 9 of [5]. According to [7],

f J J -Q(f,f)(t, x,v)\og f(t,x,v)dvώcdt

is finite and therefore

/ j f -Q(f,f)(t,x,v)logf(t,x,v)dvdxjίj

for some constant C. According to Theorem 2, and using the fact that the function φ
introduced in this theorem may be taken to be equivalent to x2 when x tends to 0, we
obtain that for some strictly positive KR:

V r n r , dt , , KR

j J mi J \\ogj—m\ — axdv<-—= .
t v C H ) 3 meΓ \υ\<R t

Remark. The same kind of theorem would hold in the case of the Fokker-Planck-
Landau equation if we knew the global existence of a weak solution.
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