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Abstract. Topological quantum field theories are interpreted as a generalized
form of Morse theory. This interpretation is applied to formulate the simplest
topological quantum field theory: topological quantum mechanics. The only
non-trivial topological invariant corresponding to this theory is computed and
identified with the Euler characteristic. Using field theoretical methods this
topological invariant is calculated in different ways and in the process a proof of
the Gauss-Bonnet-Chern-Avez formula as well as some results of degenerate
Morse theory are obtained.

1. Introduction

Topological quantum field theories [1,2,3] may provide a very useful tool in
analyzing some mathematical problems and in describing a possible unbroken
phase of string theory. The essential feature of topological quantum field theories is
that they possess a symmetry which leads to the formulation of possibly non-trivial
topological invariants. Due to the presence of this symmetry, which will be called β-
symmetry, there are no physical excitations. Commuting bosonic degrees of
freedom cancel against anticommuting bosonic degrees of freedom, leaving only
zero modes which give rise to topological invariants. This β-symmetry, as well as the
content of the theory resembles the BRST quantization of some theory. Typically,
topological quantum field theories consist of commuting bosonic fields and
anticommuting bosonic ones making an appearance very similar to the one in the
BRST quantization of a classical bosonic theory. Furthermore, the operator
corresponding to the β-symmetry is anticommuting and squares to zero at least in
some subspace of field configurations. Ever since topological quantum field theories
were created it was believed that these theories might correspond to a BRST
quantization of an underline gauge invariant theory.

Canonical BRST-quantization methods have been used [4,5] to make contact
with topological Yang-Mills theory [1]. In these cases, starting with a trivial action
(either a gaussian, zero, a topological invariant, or 137), and BRST-gauge-fixing
deformations of the gauge potential modulo gauge transformations, a formulation
very close to the one in ref. [1] was obtained. However, although close, the resulting
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theory and topological Yang-Mills are not equivalent. There are two reasons for
this. First, the chosen "gauge fixing" leads to several Gribov copies (arguments
leading to this conclusion can be found in [1,6]) and so it is not really a "gauge
fixing." Actually, it is because there are these Gribov copies that topological field
theories are interesting and, in fact, that is the basis of the interpretation of these
theories in terms of generalized Morse theory presented in this paper. Second, the
observables of topological Yang-Mills, once the Yang-Mills gauge symmetry is fixed
[7] (if one ignores for the moment possible Gribov ambiguities [8]) are not trivial
and, in fact, are in correspondence with the Donaldson invariants [9] as shown in
[1]. However, the observables of the theories presented in [4,5] are trivial. For a
recent analysis of this question see [10]. The Q-symmetry in this theory does not
correspond to a BRST symmetry and it has a nature similar to supersymmetry in a
supersymmetric Yang-Mills theory (as one could have concluded from the fact that
topological Yang-Mills can be constructed from a truncated N = 2 supersymmetric
Yang-Mills theory [1]). In this sense, the quantization of topological Yang-Mills
proposed in [7] seems to be the right one.

Similar arguments lead to the same conclusion in the case of topological sigma
models [3]. The resemblance of topological quantum field theory to trivial theories
in a BRST-quantized form may, however, be used to formulate new topological
quantum field theories. This has been treated without much success for the moment
for the case of topological gravity in four [11] and in two [12,13] dimensions.

In this paper it is conjectured that topological quantum field theories can be
interpreted as a generalized form of Morse theory. This correspondence is shown in
full detail for the case of topological quantum mechanics which seems to be the
simplest of such theories. A similar construction can be carried out to formulate
topological Yang-Mills and topological sigma models. The connection with
generalized Morse theory allows us to find out the general pattern of a topological
quantum field theory and permits, in principle, its construction.

The only non-trivial topological invariant in topological quantum mechanics
corresponds to the Euler characteristic. Using methods of quantum field theory one
can show the invariance of the observables of the theory under continuous
deformations of the potential. This allows us to obtain a proof of the Gauss-Bonnet-
Chern-Avez formula. In addition, making a deformation of the potential to other
adequate choices, we obtain results corresponding to ordinary degenerate Morse
theory. This shows how powerful this type of theory can be from a mathematical
point of view.

The paper is organized as follows. In Sect. 2 the generalized form of Morse
theory is conjectured. In Sect. 3, it is applied to the case of topological quantum
mechanics and its topological invariants are computed. Finally, in Sect. 4, we state
our conclusions analyzing the general characteristics of topological quantum field
theories and listing some of the possible theories.

2. Morse Theory

In this section we will briefly review the elements of Morse theory [14] which will be
utilized in the paper and we will conjecture their generalization. In the next section
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we will discuss the validity of this generalization using methods of topological
quantum field theories.

Let us consider a compact C00 manifold V and a smooth function / on it. A point
pe V is a critical point of / if df vanishes at such a point. The Hessian at p, Hpf, is a
quadratic form on TpV, the tangent space to V at p. In local coordinates {x1}
centered at p, the matrix of (Hpf)^ relative to the base d/dxl at p is

(»Pfh = ̂ r (2.0

The point p is called a non-degenerate critical point of / if det Hpf Φ 0. The index of
p is the number of negative eigenvalues of Hpf and it will be denoted by λp(f). One of
the results of Morse theory is that if / is a function with a finite number of non-
degenerate critical points the Euler characteristic of the manifold, χ(V), can be
written in terms of the indices associated to the critical points of /, namely,

χ(F) = Σ(-l)^ ( / ), (2.2)
p

where the sum extends over all the critical points. This equation shows that such a
sum is a topological invariant. Morse theory proves stronger results than this,
however, it is (2.2) that is of interest to us. Our main goal in this section is to
conjecture an equation like (2.2) for a more general case. In more concrete terms we
will conjecture that an expression similar in spirit to the right-hand side of (2.2) is
topological invariant. In the subsequent section we will argue that the conjecture is
true using methods of topological quantum field theories.

Let us introduce more notation to be able to deal with the case of having
degenerate critical points [15] which in fact are the central part of our discussion.
Let Jίa c K b e a connected submanifold of V. We will call Jί^ a non-degenerate
critical submanifold for / if df — 0 along Jίa and HM f is non-degenerate on the
normal bundle v(J(a) of JίΛ. If we denote by det' ftjj the determinant of H^f
restricted to the normal bundle, from our definition, det' HM f Φ0.

In order to introduce our conjecture let us rewrite (2.2) as a sum of a ratio of
determinants:

det//,/

The possible generalizations of this sum for the case of having degenerate points
should involve integrals over critical submanifolds. These integrals in general would
not lead to topological invariants unless, possibly, if one introduces some dα-forms
with da being the dimension of the critical submanifold Jίa. For the case at hand, i.e.,
degenerated Morse theory with non-degenerate critical submanifolds, it is known
that there exist dα-forms j / α such that the quantity

is a topological invariant. In fact, if / is a constant on Jt^ srfa is zero if da is odd,
and it is the dJ2 exterior product of the curvature 2-form Ωab on Jία if da is even.
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Actually, we are interested in a further generalization of (2.2). So far, our
discussion is based on the analysis of the critical submanifolds originated from the
equation df = 0, with / being a smooth function on a manifold V. A more general
situation consists of the following. Let us consider two manifolds Σ and M, with
Σ compact, and a topological class of smooth mappings φ:Σ -»M. Let V be the
space of mappings contained on such a topological class. Notice that now V does
not need to be a manifold. Let us consider an operator F acting on V such that
it maps φeV into sections in the pullback of the tangent bundle of M, φ*(T(M)),
and such that V and Im F have the same dimensionality. The kernel of F defines
critical subspaces JίΛ c V. Let J' M F be the Jacobian of the operator F at the
critical subspace JtΛ. This Jacobian defines an homomorphism on sections of the
pullback bundle φ*(T(M)). JM F will play the role of the Hessian in the previous
discussion. Contrary to the case of the Hessian, JM F is not selfadjoint in general.
We will consider situations where the Jacobian is degenerate in the normal subspace
to MΛ. It is typically the case that the kernel and the cokernel of this Jacobian
restricted to the normal subspace are not trivial. Thus, we should not restrict
ourselves to non-degenerate critical subspaces. We will try to make sense of (2.4)
even in these situations.

We conjecture that given two manifolds Σ and M (being Σ compact), a
topological class of mappings V = {φ\φ:Σ->M}, and an operator F acting on V
which maps φeV into sections of φ*(T(M)) such that V and I m F have the same
dimensionality, there exist dα-forms srfa living in the critical dα-dimensional
subspace Jtα a V such that

^ i <25)

is a topological invariant, i.e., Ξ depends only on the topology of Σ and M. If the
kernel and cokernel of F in the normal bundle to Jtα are non-trivial this expression
contains ratios of zeros. This may seem rather undefined at this point. The formalism
of topological quantum field theory will provide a way to make (2.5) well defined.
Notice that in the case that Σ is a point, V is the space of mappings of that point
into M = V, and F = df (2.5) reduces to (2.4).

Using methods of topological quantum field theories one can show that Ξ is
topological invariant and, in the process, find the forms s/a. Of course (2.5) may
be a vacuous statement unless a good choice of F is made. The topological sigma
models and the topological Yang-Mills theory formulated by Witten correspond
to two cases where there is a good choice of F and where the forms j / α are
constructed. In this paper we will present in detail a simpler case to show that
(2.5) holds. The treatment of the topological sigma model is analogous to the one
of this simpler model. The case of topological Yang-Mills has special features and
deserves a separate publication. However, it corresponds also to a particular case
of (2.5).

3. Topological Quantum Mechanics

In this section we will evaluate the right-hand side of (2.5) for a concrete choice
of Σ, M and F. This will lead to the formulation of topological quantum mechanics.
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Applying methods of topological quantum field theory to this formulation we will
show that indeed Ξ is a topological invariant and we will construct the forms s/a

entering in (2.5). Topological quantum mechanics is a rather simple model and so
it does not contain a rich quantity of topological invariants. However, the discussion
of this model in the framework of Morse theory proposed in the previous section
illustrates the general characteristics of this type of formulations very simply.

3.1. The Model and its Field Theory Representation. Let us consider a smooth
Riemannian manifold M with Euclidean signature and a smooth vector field ξι

(or more precisely, a section on the tangent bundle T(M)) on it. The space V
introduced in the previous section consists of all the mappings φ:Sι ->M of a given
topological class. Taking uι as local coordinates in M, the map φ can be locally
described by functions u\τ\ where τ denotes a point on the circle S1. The operator
F is chosen to be

F\uj) = ύι + ?{uj), (3.1)

where the dot denotes a derivative with respect to τ. Notice that V and Im F have
the same dimensionality. The corresponding Jacobian at a critical subspace Jία

of (3.1) is {JM Ffj which, acting on an arbitrary section of the pullback bundle
φ*(T(M)), λ\ has the form:

(J^jλ^Dti + iDjξW, (3.2)

where Dk is the Riemannian covariant derivative, DkW
ι = dkW

ι + Γι

kjW
J, Γι

kj is
the standard affine connection on M, and D is the covariant derivative on sections
of φ*(T(M)). If λι is one of these sections, D is defined to act as

Όλ[ = λι + ύkΓijλj. (3.3)

Notice that (3.2) is correct at a critical subspace Jίa. In general, JJt F contains
non-covariant looking terms which just vanish at the critical subspace. Let us
restrict ourselves for the moment to the case of only one critical subspace and let
us call the Jacobian at this subspace ®j,

^i

J = δt

Jji + ύkΓiJ + Djξt. (3.4)

The conjectured topological invariant (2.5) can then be written as

( 3 5 )

1' ( }

where stf are certain forms to be constructed.
We would like to express (3.5) as an integral over the whole space V and not

just over the critical subspace M. To do this one could think of a delta function
restricting V to the critical subspace. This could be easily accomplished since such
a delta function would be accompanied by the absolute value of the determinant
of® restricted to the normal subspace of Jί and evaluated at Jί in the denominator.
This is in respect to the integration region. Another problem in extending (3.5) to
an integral over the full space V is that the d-form (d is the dimension of the critical
subspace) J / contains d indices which should be properly contracted. There is a
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satisfactory form of handling this problem which involves the expression of det' 3)
in the numerator in a field theoretical language. One would be tempted to write
such a determinant as a functional integration over anticommuting fields ρt and
χι (which are sections on the pullback of the tangent bundle

det' 3d ~ lDQiDt exp ( - ^ dτ ρ ^ χ Λ (3.6)

However, the right-hand side of (3.6) vanishes whenever the operator ί^ (or its
adjoint) has zero modes. One way to remove these zeros is soaking them up. This
procedure just requires the introduction of a product of χι and ρ£ in (3.6) in such
a way that, properly normalized, (3.6) becomes an equality. However, we may also
have zeros in the denominator of the integrand of (3.5) that we want to overcome
so we should not soak up all of them. Let us analyze the situation in detail.

Given a solution to the equation

ύ* + ξι = 0, (3.7)

we may ask when this solution can be deformed w* -»ul + δuι so that it remains
still a solution. From (3.7) one finds that to lowest order in δu\

Φjδu' = 0, (3.8)

where 2) is the operator defined in (3.4). The solutions of (3.8) would give us the
dimension of the critical subspace Jί. Actually, this is not true because there may
be obstructions to make the infinitesimal deformation finite. Typically (although
not in the case at hand), if the adjoint operator of 2, 3)*, has zero modes, not all
the solutions to (3.8) can be made finite. The solutions of (3.8) constitute the kernel
of the operator <2ι while the zero modes of its adjoint constitute the cokernel of
31. The dimension of the critical subspace, d, is the difference between the dimension
of the kernel and the cokernel, i.e., the index of the operator Q). If we denote by
p the dimension of ker Q) and by q the dimension of coker Q), we have d = p — q.
In the particular case of topological quantum mechanics the index of 3) is zero
and so p = q. However, we will carry out the analysis for arbitrary p and q so that
we can develop the general formalism.

Going back to (3.6) and using this reasoning we observe that the functional
integral contains p χ'-zero modes and q ρΓzero modes. This means that one must
introduce a p-product of χι and a ^-product of ρf to soak up these zero modes.
However, this is not what we want to make contact with (3.5). That ratio of
determinants contains ratios of zeros whenever the normal subspace to Jί is
degenerate. Such is the case if q φ 0. The quantity (3.5) contains q zeros in the
numerator and q zeros in the denominator. This means that we do not have to
soak up all the χ1 or ρt zero modes, but only d = p — q of them to make contact
with (3.5). This implies that (3.5) could be written as,

{ Λ (3.9)

where stfiu_Λd is a certain tensor. Notice that if a factor ρt or one more χι were
introduced in front of the exponential, one would break the balance of zero modes
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in the normal subspace and the expression either becomes infinity or zero. To
compute si in (3.5) from this expression one must expand χι and gt in zero modes
and non-zero modes,

d p

t = Σ x U μ + Σ XμXμ + non-zero modes,
μ = l μ = d+ί

Qi— Σ ?ίQμ + non-zero modes,
ί

(3.10)
Σ ?ίQμ + non-zero modes,

μ=ί

where xι

μ are the d zero modes which give rise to a finite deformation of a solution
and so form a basis of the tangent space of Jί. One of the contributions in (3.9)
consists of the integration over the non-zero modes, giving the non-vanishing part
of det' 3), and the integration over the χμ giving the product of zeros necessary to
balance the product of zeros of the denominator. There are other contributions
where, instead, some of the χι in front of the exponential become χμ. After adding
all of them up and integrating ρμ and χμ, one is left with the integration of χμ

which gives the form si in (3.5) from sίiu_Λd. Notice that since the xμ, μ = 1,..., d
make a basis in the tangent space of Jί this way to proceed creates a canonical
measure in Jί, i.e., if we denote by aμ, μ = 1,..., d the local coordinates in Jί, the

/ d \/d \

measure Y\ daμ γ[ dχμ is invariant under reparametrizations of Jί since aμ

and χμ transforms in opposite way as follows from (3.10). Expression (3.9), however,
is still not well defined due to the presence of q ratios of zeros. We will show below,
using field theoretical techniques how this expression can be made well defined.

The delta function entering (3.9) can be expressed as a functional integral just
introducing a multiplier field d x. As ρf and χ\ dt is a section in the pullback bundle
φ*(T(Jf)). We have,

exp I - ^ dφd^ + e) + Qi^jXJ)\ (3.11)

Notice that we have used the normalization of the delta function as it would
correspond to constant configurations. In this form the expression for Ξ resembles
the vacuum expectation value of an operator in quantum field theory. The argument
of the exponential should be identified as the action of such a theory. Once written
in this form we can use the machinery of quantum field theories to study the
properties of Ξ. The first question to ask is if the action

S = ̂ dτίβtf + e) + Qi&jχ3), (3.12)

possesses some symmetries. We will find out that in fact this action has a BRST-like
symmetry characteristic of topological quantum field theories. To look for this
symmetry it is very useful to utilize the fact that typically these theories have a
similar structure to the one of a trivial theory in which one starts with zero as a
classical action and one gauge fixes deformation invariance in the gauge ύ1 + ξι = 0.
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Of course, this is only a similarity which helps in finding the symmetries involved in
topological quantum field theories. Topological quantum field theories are non-
trivial while the other ones are. This trick, however, does not always work as is the
case of topological gravity [11].

Using the insight discussed in the paragraph above, we start with the BRST
version of the algebra of deformations of uL.

δu^ίεχ1, (5χι = 0, (3.13)

where ε is a constant anticommuting parameter. For the "gauge fixing" of the
deformations we should introduce an "antighost" field ρt and a "Nakanishi-
Lautrup" one, d{. The transformations of these fields are typically of the form,

δρi = εdi+'"9 <H = , (3.14)

where the content of the dots is determined as follows. On one hand, one would like
to have

h ] (3.15)
X 3 /

leading to (3.12). That requirement fixes uniquely the transformation of ρh

$Qi~ ε{di — iρjΓjkχ
k). (3.16)

On the other hand, one wants δ to be nilpotent so that (3.15) (and so (3.12)) is
invariant. Using (3.16) that requirement determines the transformation of di9

δdt = ε(idjΓj

ikχ
k + ̂ Rιk

JiQjϊ!χk\ (3.17)

where fly*, is the Riemann tensor Rij

k

ι = ̂ Γ j z - djΓk

a + Γk

mΓ™- Γk

jmΓ%. By
construction, (3.12) is invariant under (3.13), (3.16) and (3.17). The transformations
(3.13), (3.16) and (3.17) preserve ί/-invariance if the fields (u^χ^ρ^d1) have the
{7-number ("ghost" number) assignment (0,1,-1,0). The action (3.12) has
{7-number 0.

The fundamental property of the symmetry found for the action (3.12) is that the
action itself can be written as a symmetry transformation. Defining the operator Q
such that

{-iεQ,X} = δX, (3.18)

where X represents any field w^χ1,^- or dh one finds,

S={-iQ,r}, (3.19)
where

r = i\dτQi{ύi + ξi). (3.20)

Now that we have discovered this symmetry in the action (3.12), we are in the
position to analyze the properties of Ξ in (3.11) using methods of quantum field
theory. Our aim has been all along to show that there exist some forms si such that
Ξ is topological invariant. Let us investigate which ones are the properties that
siiu_>fd have to satisfy for this to be true.
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Given an operator Θ, we define its vacuum expectation value, <$> as,

(Θ) = $(DX)Θe~S(X). (3.21)

With this definition Ξ in (3.11) is just the vacuum expectation value of an operator.
To study when <$> is topological invariant let us perform a variation of the metric
in M and of the vector field ξ\ which we will denote by δ. From (3.19) this variation
takes the form,

δ(Θ) = $(DX)e-S(X}{{ - iQ,δΨ~}Θ + δθ\ (3.22)

and therefore, if we assume that Θ does not depend on the metric of Jί neither on the
vector field ξ\ we conclude that <0> is topological invariant if

(3.23)

A sufficient condition for (3.23) to hold is,

{β,#}=0. (3.24)

The reason for this is that if (3.24) holds then (3.23) can be written as

(3.25)

and, assuming that the measure in (3.21) is invariant under a Q-symmetry
transformation, the right-hand side of (3.25) vanishes.

According to (3.24) and (3.25), if an operator Θ is such that {β, Θ) = 0, then < Θ >
is topological invariant. Actually, one would like to know which ones among the
operators leading to (3.24) do not lead to a trivial vacuum expectation value. As we
have discussed in the previous paragraph, if an operator is Q-exact, i.e., there exist
another operator λ such that Θ = {Q,λ}, its vacuum expectation value vanishes.
Therefore, to find out the non-trivial operators leading to topological invariants we
are led to study the cohomology of Q. This analysis is identical to the one done in [3].
Applied to this case one finds that the cohomology classes are built out of the de
Rham cohomology of M. Given a de Rham cohomology class in M with
representative A = Άiu indu11 •• duln, one can build two operators. The first one,

> (3.26)
satisfies

{β,^0 )} = 0, (3.27)

and constitutes the first set of β-cohomology classes,

W^ = Θ^\ (3.28)

The second one is built out of the exterior derivative (in S1) of the first one,

(3.29)
where,

Θ{}] = inAiu induhχi2--'χin. (3.30)

The integral over S1 of this 1-form leads to the second set of Q-cohomology classes,

\Θ^\ (3.31)

s1
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In general, the quantities which may lead to non-trivial topological invariants from
a quantum field theory point of view are vacuum expectation values of the form,

(3.32)

where fcf = 0,1 depending on which set of operators W{^ belongs.
We are now in the position to make contact with (3.11). So far we have been very

vague about the operator ^iu..,iidχ
h'"Xid in (3.11). We have not specified if it

depends on points on S1 or if it involves integrations over some regions of S1.
However, this vagueness is in fact natural since our aim was to construct them.
Comparing (3.11) and (3.32) we observe that this construction is about to finish. Let
us define the χ-number of an operator as the number of times that χι appears in such
an operator. Notice that since χι is anticommuting this is well defined. For example,
W{A] and W^ in (3.31) have χ-numbers m and m — 1 respectively. If we denote by n\
the χ-number of W(^\ among all the vacuum expectation values of products (3.32),
only the ones which satisfy

d=Σn[ (3.33)
i

will lead to expressions of the form (3.11) and will be topological invariants. Notice
that if (3.33) does not hold (3.32) would vanish due to the presence of zero modes. To
be more precise, the operator in (3.11) which makes Ξ a non-trivial topological
invariant has the general form:

ςtf. . yiι . . .y ί d = ΓΊ W&i) (3 34^
^ ^ ΐ i , . . . , ΐdA b Y Ĵ  A.i ' ^J.J~J

i

where W%? are such that (3.33) holds.
So far we have analyzed the behavior of (3.11) and we have constructed the

operators which could lead to topological invariants. However, when qφO the
expression (3.11) is not well defined due to the fact that it contains a product of q
ratios of zeros. We will try to make it well defined by introducing a regulator and
requiring that the answer be independent of such a regulator. Perhaps there are
several ways to do this. Here we will present what we think corresponds to the
simplest choice. Let us add to the action (3.12) a term of the form (l/β)dιdjgij with
β > 0. In the limit β-+co this regulated formulation defines the previous one.
Actually we would like to do better than that. We would like all our arguments
leading to (3.34) to be valid in this regulated form of the functional integral (3.11). In
other words, we would like to have a regulator which is compatible with the Q-
symmetry. This certainly can be done and that will be the way we will proceed.

To have a term of the form (l/β)didjg
ij in the regulated form of the action and to

keep β-in variance we may exploit the fact that Q2 = 0 and add the following term to
the action S in (3.12):

Sβ = S + ΔS9 (3.35)
where,

r 1 Ί
(3.36)
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Using (3.13), (3.16) and (3.17) one finds,

AS = ~ f dτidid:^ + jRkι
ijχkχιQiQil (3.37)

β£i

and performing the change of variables

di = 2i-l^(u3 + &)gii9 (3.38)

the new action becomes,

Sβ = I dτ (jϊdjgiS + ̂ 9^ + ?)(& + ξj) + && rf + ~lVWέ?ίί?Λ (3.39)

Notice that due to the presence of the new terms the product of ratios of zeros in

(3.11) is not present as long as β > 0. If one rescales the fields χ\ ρ£ and dh χ
ι

Qi~*\/~βQi a n d di-^βdi, one finds that β factors out of the action Sβ9

j JXkXlQiQjl (3.40)

while the measure in the functional integral times ^iu...tidχ
h χid as in (3.11)

remains invariant. Using (3.13), (3.16), (3.17) and (3.38), the ^-transformations of the

fields after rescaling ε -» ε/yfβ become,

δu^iεχ', <5χ' = 0, δQi = εU -^(ύs+ ξj)gij- iQjΓ^X (3.41)

+ (Dkξ
 j)χk) + i(ύm + ξm)ΓJ

mkχ
k)\

Since the action (3.40) is Q-exact, the vacuum expectation value of any operator
invariant under a 2 - t r a n s f ° r m a t i ° n is independent of β. To prove this one just
follows the same reasoning that led to (3.25). Notice that this procedure could be
done starting with any other expression with (7-number -1 and introducing its
β-transformation. The one chosen here is rather simple because it allows us to
integrate out one of the fields (d1).

So far we have been discussing the case of having only one critical subspace. It is
straightforward to generalize the formalism to the case of having several critical
subspaces. Clearly, the field theoretical formulation is the same for such a case. In
fact, the field theoretical formulation forces us to add the contributions of different
critical subspaces. Otherwise topological invariance, as derived in the field theory
language, is not guaranteed.

In this section we have treated topological quantum mechanics in full generality
in order to develop the general formalism. However, since the index of Q) for this case
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is zero, the only non-trivial topological invariant corresponds to the operator 1. In
the next section we will carry out the computation of its vacuum expectation value.

3.2 Explicit Calculation of Topological Invariants. In this subsection we are going
to evaluate the vacuum expectation values (3.32) leading to topological invariants
for specific choices of the vector field ξ\ Using the fact that the result must be
independent of these choices we will be able to prove the Gauss-Bonnet-Chern-
Avez formula, and some results of degenerate Morse theory.

First, let us start with a potential W9 i.e., a smooth scalar function on M, W:
M -• #, and let us assume that ξι = dι W. The topological classes of mappings from S1

into M correspond to the homotopy group of M, π^M). Let us consider the class of
trivial mappings, i.e., mappings which can be continuously shrinked to a point. In
evaluating (3.32) we need to analyze first the equation

ι? + δ W = 0. (3.42)

In particular, we have to find out the critical subspaces corresponding to this
equation, and in those subspaces we have to study the eigenvectors of the Jacobian
of (3.42). This, in general, may be a rather complicated problem. However, from the
analysis of the previous subsection we know that the result of the evaluation of (3.32)
is invariant under continuous deformations of the potential. Thus, given a potential
W requiring a complicated analysis one can always deform it to a more convenient
one. Using this reasoning we can assume that the potential W has a finite number of
non-degenerate critical points. The reason for this is that any smooth scalar function
on M can be uniformly approximated by another one which has a finite number of
non-degenerate critical points.

Let us study the solutions to (3.42). If the critical points of W are labeled by uι

a9 a
set of obvious solutions to (3.42) are the constant mappings u\τ) = u\. Notice that
these mappings are contained in the topological class of mappings under
consideration. Let us prove that in fact those are the only solutions. Let us assume
that there exists a non-constant solution and let us denote it by v\τ). This solution
generates a loop in M with total length

§dτvΨgij^0, (3.43)

since the manifold M has Euclidean signature. However, since vι is a solution of
(3.42),

jdτvΨgij = - §dv% W = 0, (3.44)

after using Stokes theorem. Therefore, vι can be only a constant.
Let us evaluate (3.32) for the case of the operator 1, which is the only one leading

to non-trivial topological invariants. Looking at the form of the action in (3.12), after
integrating d{ one obtains a delta function that selects the solutions to (3.42). At such
solutions the Berezin integral of ρt and χj is straightforward and one obtains,

where in the last step we have used the standard result of Morse theory discussed in
(2.2) and (2.3).
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We may also compute Ξ using the regulated action (3.40). In fact, as we show
now, in doing this computation we obtain a proof of the Gauss- Bonnet-Chern-
Avez formula. The computation of the partition function corresponding to the
action (3.40) is complicated for an arbitrary W even in the limit β^cc. However, as
discussed in the previous subsection, the result is invariant under continuous
deformations of the potential W. In particular, one can make a continuous
deformation of W such that it vanishes everywhere in M. In this case the
computation oΐΞ can be easily done in the β -> oo limit Taking (3.40), the quantity
to be evaluated is

Dd

Ξ=lDuiDρiDχi^φe-sf, (3.46)

where

Sβ = β J dτ(didjgij + i g ^ t H + QiDχ1 + ^Rkι
ijlkllQiQj\ (3.47)

The ^-integration is gaussian and can be easily performed,

(3.48)

To carry out the rest of the functional integrations just notice that in the /? -• oo limit
there is a contribution from the constant configurations and another from the ratio
of determinants for non-constant modes which is known to be 1 due to the
Q-symmetry. Therefore, using the result (3.48), the functional integral (3.46) reduces
to the computation of

( ) ( ) / J i Λ « ' V z / β f e A (3.49)

where the only integration left is the one corresponding to constant Grassmann
variables. Using the standard Berezin integration one gets that only the term with n
times the variabJe ρi9 and n times the variable χι contributes. This implies that for
compact manifolds of odd dimension Ξ = 0, in agreement with the standard result
for the Euler characteristic. If n is even, n = 2m, one obtains,

(-1)"
\yjgaub

(4π)mm\2r

which together with the result obtained in (3.42) constitutes a proof of the Gauss-
Bonnet-Chern-Avez formula [16]. sh Λn is normalized such that ε 1 "" = 1. Notice
the cancellation of the ^-dependence in the calculation of (3.50), a crucial test for the
correctness of our arguments. The last step of this calculation resembles the
computation of the index of a classical elliptic complex using supersymmetric
quantum mechanics [17].

We have been using either the regulated or the non-regulated formulations to
carry out the computations, according to convenience. We may ask what happens,
for example, if one tries to compute Ξ for the case ξ* = 0 using (3.11). That functional
integral reduces in that case to a product of n (notice that q = ή) ratios of zeros which
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seems rather undefined. The regulated theory seems to give a definition to such a
product. Furthermore, such a definition is in agreement with expectations.

On the other hand, using (3.40) one may also compute Ξ very simply for the case
in which W has only a finite number of non-degenerate critical points uι

a. Let us
describe this computation. The functional integration of dι is carried out using (3.48)
as before. To perform the other integrations notice that in the limit β -• oo the main
contribution comes from bosonic configurations which are constant uι = u^. Let us
expand uf in normal coordinates around one of these constant configurations [18]. If
we denote by ωι the tangent vector at u\ which defines the geodesic from u\ to u\ we
find,

where,

S (β) = β^ dτ{kQii{u\)(β\ωk){^xω
ι) + Qi&tf + WfχιQiQj +•••), (3.52)

and the dots denote terms containing at least one ωι and two any other fields.
Notice that since the critical points are not degenerate there are no χι or ρf zero
modes. To proceed, let us rescale the fields ω\ χι and ρf with the vielbein and some
appropriate powers of β and other factors,

^ψea

ω\ χa = /βe?χi ρa = jβeai

Qi (3.53)

We are using a notation in which tangent space indices are denoted by latin letters at
the beginning of the alphabet. The functional integral (3.51) becomes in the new
variables,

Ξ = ^DωaDfDρa

 g_s(g)(α)v,g

a)> ( 3 > 5 4 )

α 7£

where,

/ 1 „ \
S ( α ) = \dτ( (@a

bω
b)(@acω

c) + ρa@abχ
b + — Rabcdχ

aχbρcρd+'' (3.55)

In the large β limit the leading contribution comes from the ratio of determinants left
after the integration of ωα, χa and ρa. All other terms contain powers of β in the
denominator and so they vanish in the limit /}-• oo. Taking into account (3.4) and
the fact that at uι = u\ the first derivative of the potential vanishes, from (3.54) we
obtain,

Ξ = \\t\fiZ/\ =χm (156)

in agreement with (3.46).
Now that we have developed some machinery we are in the position to derive

some results of degenerate Morse theory. Let us deform the potential W to a new one
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which has critical submanifolds Jίn such that H „ W is non-degenerate on the
normal bundle v{Ji0). Using (3.40) we are going to derive the expression for the
Euler characteristic in this case. This corresponds to a mixed situation between the
two already discussed. The reason for this is that on Jία the corresponding vector
field dιW vanishes. Let us choose coordinates such that the metric of M is box-
diagonal i.e., if there are C critical submanifolds each of dimension da, the metric
does not mix the coordinates of a critical submanifold with the coordinates of the
others. The determinant of the metric then becomes a C + 1 product:

/ c \
g = g1\ Π ga , where ga is the determinant of the metric restricted to the critical

\α=l /

submanifold Jia and g± the determinant of the metric restricted to the directions
which are not tangent to any of the critical submanifolds. Let us pick one of these
critical submanifolds Jia and let us suppose that its local coordinates are u\, i = rα,
rα + 1,..., ra + da. Now let us expand uι around one of these u\ in normal coordinates
ωi\ui = u^ + ω1 — ̂ Γi

jk(ui)ωjωk + •••. Using this expansion the expression for Ξ
becomes,

*-Y Uu* (Dω'DχiDβ' fa-W»'.U) (3 57)

where S(α) is given in (3.52). Now, depending on whether ωι lies in the direction
tangent to the critical submanifold Jί^ or not we are in one or the other situation
above. If ωι is such that ί = rα,..., rα + da the contribution to Ξ is dominated by the
constant configurations of ω\ χι and ρf. If such is the case only the term involving
Rkl

ίj in (3.52) survives in the leading contribution. The integration of the non-zero
modes over these da directions gives at leading order 1 because of the Q-symmetry.
Once this is done one has still to integrate ωι over the remaining directions. In this
case one must proceed as in (3.53), i.e., one must rescale fields etc., to pick the leading
contribution in β. One finds,

_ ,- E{ma) det'δ^W

^{4π)m«m0L\2m«\detfdidjW\
(3.58)

where mα = dJ2 and E(ma) is such that it is 1 if mα is an integer and zero otherwise,
and the prime denotes that the determinant is computed in the normal bundle v(ey#α).
The ratio det' S^W/ldef dtdjW\ has the same value all along a critical submanifold
JίΛ. In fact, it is related to the index of a non-degenerate critical submanifold.
Given a non-degenerate critical submanifold Jίa, its index, λa, is defined as the
dimension of the subspace of the normal bundle v(Jίa) in which H^ W has negative
eigenvalue. In terms of this index,

Using this expression together with (3.46) and (3.50) we finally obtain,

Σ(-l)λ°x(Jΐ«% (3.60)
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which is one of the standard results of degenerate Morse theory [15]. Notice that if
we were in the situation in which VFhas non-degenerate critical submanifolds as well
as non-degenerate critical points, (3.60) would hold defining χ{Jίa) as 1 when Jίa is a
point.

In this paper we have concentrated on obtaining results of Morse theory using
topological quantum mechanics. Similarly, one could study the case of vector fields
instead of potentials. In this case one may also obtain standard results. For example,
if one takes a vector field which contains isolated zeros, repeating the steps that led
to (3.46) one obtains a proof of the Poincare-Hopf theorem [19].

4. Conclusions

In this paper we have given an interpretation of topological quantum field theories
in terms of a generalized form of Morse theory. This connection may be very helpful
in deriving results using either techniques of Morse theory or the much less well
defined techniques of quantum field theory. As a first example of this interplay we
have considered the case of topological quantum mechanics. Although simple, this
model has been shown to reveal some of the virtues of topological quantum field
theories. We have been able to obtain a new proof of the Gauss-Bonnet-Chern-
Avez formula and some results of standard degenerate Morse theory. There are two
lessons that we learn from this type of analysis. First, topological quantum field
theories formulate invariants in a much larger range of situations than other
theories. Notice for example that Morse theory is able to prove the result (2.2) for a
special case of functions W. However, from the point of view of topological field
theories that result is valid for a wider range of potentials. A problem of a different
kind is to determine which FKis more suitable to carry out the functional integral. As
we have seen, and this leads us to the second lesson, even in the case when the
potential W is deformed to zero we still get the right result. But more important, in
computing the topological invariant in two different ways we are able in this case to
prove a classical result: the Gauss-Bonnet-Chern-Avez formula. There may be
other situations in which this kind of analysis may lead to new theorems relating
topological invariants. The case of topological quantum mechanics considered in
this paper is rather simple and one does not expect big surprises. In more
complicated situations topological quantum field theories may lead to either new
invariants or to a better defined formulation of known ones, along with new
theorems relating them.

The main ingredients of a topological field theory once the manifolds Σ and M
have been chosen, are the topological class of mappings V and the operator F. This
operator is such that V and Im V have the same dimensionality. For the case of
topological sigma models [3], Σ is a Riemann surface and M is an almost Hermitian
manifold. The operator F transforms a mapping φe V, defined by local coordinates
uι into dau

ι + £a

βJljδβu
j, where Jιj is the almost complex structure of M and εj is the

complex structure of Σ. This mapping is n to n if n is the dimension of M because the
operator F has the properties of a projector. This case is much richer in
topological invariants than topological quantum mechanics since the index of the
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operator obtained from F(φ) after a variation of φ is in general different from
zero.

Topological Yang-Mills with gauge group G correspond to a situation in which
Σ is a compact 4-dimensional Riemannian manifold and M is a vector bundle over
the four-dimensional manifold with structure group G. The space of mappings V is
made out of gauge connections modulo gauge transformations on that bundle. The
operator F is such that to each gauge connection it associates the self-dual part of its
field strength. The operator F is 3 x N to 3 x N, where N is the dimension of the Lie
group G. On one hand, the dimensionality of the space of gauge connections modulo
gauge transformations is (4 — 1) x N, on the other hand the independent compo-
nents of the self-dual part of the field strength are ^(^4 x 3) x N.

A similar analysis shows that topological gravity [11] might exist in four
dimensions. In this case Σ is again a four-dimensional compact Riemannian
manifold and V is made out of metrics modulo reparametrizations and Weyl
transformations. The operator F is such that it transforms a metric into the self-dual
part of the corresponding Weyl tensor. The dimensionality of Fis 10-4-1 = 5, while
the number of independent components of the self-dual part of the Weyl tensor is
110 = 5. However, for the moment, no successful topological quantum field theory
for topological gravity has been obtained [11]. It seems that it is not possible to
obtain an action with a g-symmetry (where Q squares to zero modulo reparametriz-
ations and Weyl transformations) which is also reparametrization and Weyl
invariant.

In two dimensions there are situations where the counting of dimensionalities
indicates that there may be interesting topological quantum field theories. For the
case of gravity this analysis indicates why the attempts in [12,13] have been
unsuccessful. In two dimensions, the space of metrics modulo reparametrizations
and Weyl transformations has zero dimensionality, 3-2-1 = 0. However, Yang-Mills
in two dimensions seems to be very promising. In this case the space V is made
out of gauge connections of a given vector bundle with structure group G modulo
gauge transformations, which has dimensionality 2-1 = 1. The operator F is the
one that transforms a gauge connection into its field strength, which has only one
independent component. The construction of the topological quantum field theory
for this case is entirely analogous to topological Yang-Mills in four dimensions.
One does not expect to obtain new topological invariants but it would be a very
interesting exercise to work out this simple case in detail and to identify the
resulting topological invariants. It may provide some insight about how to perform
explicit calculations in topological quantum field theory. Furthermore, the exten-
sion of this case to consider non-compact gauge groups, in a similar spirit to the
one in the formulation of 2 + 1 dimensional gravity in [20], may lead one to obtain
topological invariants related to the Mumford classes (which was one of the
motivations in [12]) within the framework of topological quantum field theories.
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