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Higher Spin Fields and the Gelfand—Dickey Algebra
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Abstract. We show that in 2-dimensional field theory, higher spin algebras are
contained in the algebra of formal pseudodifferential operators introduced
by Gelfand and Dickey to describe integrable nonlinear differential equations
in Lax form. The spin 2 and 3 algebras are discussed in detail and the
generalization to all higher spins is outlined. This provides a conformal field
theory approach to the representation theory of Gelfand—Dickey algebras.

1. Introduction

Recently Zamolodchikov investigated additional symmetries in 2-dimensional
conformal field theory generated by higher spin local currents [1]. It is known
that in two dimensions the independent components of the stress energy tensor
T(z), T(z), generate the (infinite) algebra of conformal transformations. The
operator product expansion for the fields T(z) has the form

c 2T(w) 0T(w)
C—w* z—w? z—w

T&T) = ()

where --- denote all nonsingular terms. Introducing Fourier components L,(neZ),
we obtain the Virasoro algebra

C
[Lm Lm] = (n - m)Ln+m + 2—3' (n3 - n)6n+m,0' (2)

Primary conformal fields ¢ 4(z) with conformal weight A are characterized by the
operator product expansion

T(2)p A(w) = (—z:‘—w)z @ 4w) + aqu j'(::)

o 3)
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The complete set of local fields, occurring in a conformal theory consists of
conformal families [¢ 4] obtained by applying the operators L, (with n < 0) to the
primary fields ¢ ,[2]. In quantum field theory, the set of all conformal families
forms a closed operator algebra. The spin of a primary field ¢ is defined to be

s=A4—A4, )

where A and A are the conformal weights appearing in the operator product
expansions T(z)p(w,w) and T(2)@(w, W), respectively. Bosonic fields correspond
to integer values of s, while fermionic ones correspond to half-integer values.
Interestingly, enough, primary fields W, with weights A =5, A =0 might arise in
a given conformal field theory. Such fields signal the presence of additional
symmetries in the theory, since for any arbitrary (but analytic) function f(z), the
currents

Iy (2)=f(2) W(2) )

are conserved, i.e., 0;J ;(z) =0. The simplest example (s = 1) was considered in
[3], where the additional infinite dimensional symmetry algebras were identified
with Kac—Moody current algebras that arise in the conformal field theory of
nonlinear g-models with Wess—Zumino—Witten topological terms. However, one
may consider higher spin algebras and try to construct new classes of conformal
field theories associated with them.

Zamolodchikov investigated the spin 3 algebra by exploiting the operator
product expansion for the fields W,_(z) [1]. As it turns out, the operator algebra
generated by the fields T'(z) and W3 (2) is not a Lie algebra because its determining
relations are quadratic. In terms of Fourier modes, the spin 3 algebra is described
by the following commutation relations:

[Ln’ Wm] = (2” - m) Wm+m (63)

+= 5 (17— By amos (6b)

[Lm Lm] = (n - m)Ln+m 2.3!

(W, Wal = 35, n(n® = 1)(n* —4)0, 1,0 + b*(n—m)A, 1.,

+(m—m[Em+m+2n+m+3)—Ltn+2)m+2)]L,,,. (60

In Eq. (6), the following identifications have been made:

+ oo
z :LkLn—k:+%anm (73)
k=—o©
16
2 _ 7b
b 22+ 5¢ (70)
Xy =+ DA =1y X341 =2+ (1 =1). (7c)

The highest weight representations of the operator algebra (6) were studied in [4],
and as a result an infinite series of new conformal models that possess a global
7, symmetry were constructed in two dimensions. Furthermore, it was found that
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these new (minimal) models with central charge

12

have a hidden relation with the SL(3,R) Kac-Moody algebra, thus making it
possible to prove the positivity theorem that guarantees their unitarity. The hope
of obtaining a systematic description of all types of criticality in two dimensions
by considering all higher spin algebras with integer (or half-integer) values of s
was also expressed in [4].

It is the purpose of this paper to provide a framework in which to study higher
spin operator algebras in connection with the theory of integrable nonlinear
differential equations and the hidden affine Kac—Moody symmetries they contain.
In particular, we show that the spin 3 algebra (6) is contained in the Gelfand—Dickey
algebra of formal pseudodifferential operators introduced to describe 1+ 1
nonlinear differential equations, such as KdV and KP, in Hamiltonian (Lax) form.
We shall also comment on the generalization of this approach to include all higher
spin operator algebras. Incidentally, we mention that the Gelfand—Dickey algebra
of formal pseudodifferential operators has been used in [5] to construct sheaves
of Lie algebras on algebraic curves which provide globalized generalizations of
the Virasoro algebra (in the sense that a central charge is associated to each point
of a Riemann surface and each closed oriented curved on it). This constuction has
stimulated many attempts to develop the operator formalism for conformal field
theories defined on higher genus Riemann surfaces (see for instance [6]), as well
as clarify further the role that the difftfomorphism group of the circle plays in
Polyakov’s approach to string theory. The crucial ingredient is that the Virasoro
algebra can be embedded in the Gelfand—Dickey algebra in a natural way (see
also [7]). We shall return to this point later on.

Here is an outline of what follows. In Sect. 2 we review the basic theory of
formal pseudodifferential operators and define the Gelfand—Dickey algebras of the
type GD(SL(n)). In Sects. 3 and 4 we study in detail the Virasoro and spin 3 operator
algebras, respectively, using the Gelfand—Dickey bracket of the second kind. Finally
(Sect. 5), we discuss the generalization to all higher spin fields and indicate possible
applications of this approach to 2-dim conformal field theory and statistical
mechanics.

2. The Algebra of Formal Pseudodifferential Operators

Let us now present some basic facts from the theory of formal pseudodifferential
operators (see for instance [8]). First, consider the ring of all differential operators

L=u,(2z)0"+u,_,(2)0" " + -+ + uy(2)0 + up(2). 9)
(Here 0 denotes the derivative with respect to z.) The multiplication law is provided

by the Leibniz rule

(@:(2)0)°(by(2)0") =), ( ;() a(2)0*by(z)0" ", (10)
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which, from the point of view of one-dimensional quantum mechanics, is equivalent
to the normal ordering prescription.! Even more important is the ring of formal
pseudodifferential operators that consists of the formal series

L=u,(2)0" + - + u;(2)d + to(2) + _zl Uy (2)0%. (11)
k=—o

For notational purposes, it would be convenient to use the identifications
-1
Ly=L; L.= ) wu(z)d resl=u_,(z), (12)
k=—o
where “res” stands for residue. The multiplication law for formal pseudodifferential
operators is also provided by the Leibniz rule; for completeness, we mention that
for all k> 0 the following identity is true:

htl-1

At this point notice that primary conformal fields have a natural interpretation
in the ring of formal pseudodifferential operators. In particular, by introducing
the bracket [L;,L,]:=101,°L,—L,°L,, we observe that

[£1(2)0, £2(2)0] = (1(2)e2(2) — &1 (2)e,(2))0 (14)

0*az)= Y, (~ 1)

and
[&(2)0, p(2)0* mod &* ~ 1] = (e(2) ¢’ (z) — ke (2)p(z))0* mod o* ~ 1. (15)

Equation (14) implies that the Lie algebra of vector fields on the circle is contained
in the algebra of formal pseudodifferential operators, while (15) suggests that the
operator ¢(z)0* mod 8~ ! represents a primary field with conformal weight A = — k
(cf. Eq. (31)).

The commutator [L,,L,] of two formal pseudodifferential operators L, and
L, with degrees n; and n,, respectively, has degree n; + n, — 1. Therefore, all formal
pseudodifferential operators of negative degree only form an algebra with respect
to [,] also known as the Volterra algebra. For convenience, we drop the
multiplication symbol ¢. From now on, we let

X =) 07'x{(2) (16)

i=1
represent a generic element (symbol) of the Volterra algebra—usually, only a finite
number of x;s will be taken to be nonzero. Then we may define a pairing between

the space of differential operators L and elements of the Volterra algebra by the
formula [8]:

(L, X y:={dzres(LX). (17)

This enables us to think of the space of differential operators L as being the

! One may think of any such operator L as the normal ordered operator corresponding to the (classical)
function u,(z)z" + u,_ (z)z" ' + - + u;(2)Z + uo(z) on the plane with canonical coordinates z and
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(smooth) dual of the Volterra algebra. Since the residue of the commutator of any
two (formal) pseudodifferential operators is always a total derivative, we have that

(L,[X1,X,1) = [dzres([L, X114 X>), (18)

which defines the coadjoint representation of the Volterra algebra. For a given
L=u,(2)0"+ --- +u,(z)0 + uy(z), the righthand side of Eq. (17) involves only a
finite number of terms, res (LX) = ug(2)x(2) + -+ + u,(2)x, + ;(z), which makes the
pairing < , > meaningful. We remark that the residue duality adopted here is very
natural from the point of view of 2-dim conformal field theory, as it generalizes
the notion of “in-out” duality considered in [12]. Indeed, the differential operator
u,(z)0" is the dual of 07" 'x,,,(z)mod d~"~2, which is in agreement with the
duality exhibited between A4 and 1 — A differentials (here A = — n).

Let us now consider the space of all differential operators of (fixed) degree
n>0 with u,(z) = 1. ie,

L=0"+u,_,(2)0" '+ - +u,(2)0 + ug(2). (19)

For any functional f[u,,...,u,_], let X be the formal sum

n . . 5
Xf = Z a_lxi(z), Wlth Xi = 5 f . (20)
i=1 Ui—y
We can use the coadjoint representation of the Volterra algebra in order to define
the Poisson bracket

{f,g}g)::.‘-TCS([L,Xf]_,_Xg) (21)

for any two functional f, g of u,,...,u,_ ;. Note that in Eq. (20) we have not
included the i=n+1 term allowed by the residue duality (17). This is justified
because, in any case, [L, X ], is a differential operator of degree at most n — 1;
and so in computing the residue of [L, X ], X, only terms with 1 <i<n will
contribute.

The Poisson bracket (21) associated with the space of differential operators
(19) is the Gelfand—Dickey bracket of the first kind introduced to describe integrable
nonlinear differential equations in Lax form (see for instance [8]). However, it is
known that integrable systems in 1 + 1 dimensions are bi-Hamiltonian in the sense
that they can be equivalently described using two different kind of Poisson
brackets. The Gelfand—Dickey bracket of the second kind is defined [7, 8] as

{f,9}P=[res(Vy (L)X ,), (22a)

Vy,(L)= L(X,L), —(LX,), L. (22b)

We note that the Gelfand—Dickey bracket of the second kind is more general than
the first one, since an arbitrary shift of the form L — L + 4 (where 4 is a constant)
yields

where

Vi, (L) = Vy, (L) = ALL, X ;] +, (23)

ie, [L, X], behaves like a “coboundary” of Vy(L). For this reason, in what follows,
we choose to work with the Gelfand—Dickey bracket of the second kind. At this
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point, we note that V,(L) may be viewed as the coadjoint action operator of the
algebra of formal series (16) with respect to a new commutator [, |. The latter is
determined by the equation

(L [X 1, X5 ] = [ res(Vy, (L)X ), (24)

thus generalizing (18). The algebra constructed this way from the space of differential
operators (19), with [, ] as its bracket, is called the Gelfand-Dickey algebra
GD(GL(n)), where GL(n) denotes the general linear algebra in n dimensions.? It
will be shown later on that this provides a natural generalization of the Virasoro
algebra, while the associated operator Vy(L) generalizes the coadjoint action
operator of the Virasoro algebra (in the sense that Ad¥ (L —0") = Vy,(L)).

Next, we restrict ourselves to G = SL(n) that arises as a special case of the
GD(GL(n)) algebra. The GD(SL(n)) algebra is constructed from the space of all
differential operators (19) with u,_, =0, i.e.,

L=a"+un_2(2)an_2+ +u0(z)’ (25)

and as we shall see, it is most suitable for describing higher spin operator algebras.
In analogy with the GD(GL(n)) algebra, we define the bracket of the second kind
by Eq. (22). But since u,_; =0, the i = n term in the formal sum (20) is meaningless
unless it is taken to be zero. In such case, straightforward calculation shows that
the operator Vy (L) involves a term of degree n—1 and so the choice u,_; =0
does not seem to be invariant. This problem is resolved if one considers

4 5f

Xf:[;l a 5ui_1

+07"x, (26)

with x, determined by the requirement res [L, X ;] = 0—as it turns out, res [L, X /]
is the coefficient of the term with degree n — 1 in V (L). Therefore, the GD(SL(n))
algebra is well defined provided that x, is chosen appropriately. In what follows
we show that the Virasoro, as well as higher spin operator algebras, are described
in terms of GD(SL(n)) for all n=2,3,....

3. L =07+ u and Spin 2
Following the general construction described above, we consider

L of
X,=0 15-}-8 X, (27)
with x, determined by the requirement res [L, X ;] = 0. Explicit calculation shows

that res [0 + u, X ;] = 2x, — (6f/6u)” and so the GD(SL(2)) algebra is well-defined

provided that
, 1 5f "

2 Gelfand-Dickey algebras labeled by more general simple Lie algebras G, GD(G), have been introduced
in [9] in connection with generalized hierarchies of nonlinear differential equations in 1 4 1 dimensions
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Furthermore, we find that in this case

of\"” of of
V()= (5> 2 <5> () 9)

Therefore, the Gelfand—Dickey bracket of the second kind takes the form

() o), =fa Lo, A (30a)
where
Oy = 103+ u(2)0, + 0,u(3). (30b)

The Poisson bracket (30) has already been used in the Hamiltonian formulation
of the KdV equation, as well as in 2-dim conformal field theory (see [10] and
references therein). This is the bracket between any two functionals f,g defined
on the dual of the Virasoro algebra. Moreover, the operator 0, describes the
conformal variation of the quadratic differentials u(Z) and hence the coadjoint
action of the Virasoro algebra. The commutation relations between the (coordinate)
functionals u are easily found to be

{u(2),u(z)}3, = (u(z) + u(2))d,6(z — 2') + 302 5(z — 2). (31)

This result is not surprising at all because the space of differential operators
L=20%+u is known to be isomorphic with the (smooth) dual of the Virasoro
algebra (31). Recall that under arbitrary reparametrizations of the circle z — o(2),
the operators 02 + u transform as

0% +u—a 730 + ‘wya' "3, (32a)
where
1 O_/n 3 0_// 2
o) — 2 il B . 32b
uz)=o u(a(z>)+2<o, 2<0,)> (320)

Also, it is known that the space of quadratic differentials is isomorphic with the
(smooth) dual of the algebra of vector fields on the circle, and so the desired
correspondence is established with the aid of densities of weight — 3 [10].

The value of the central charge of the Virasoro algebra (31) is ¢ =6 (cf. Eq.
(2)). This is because we chose to work with the differential operator L =92 + u.
Having chosen A0% + u instead (with constant A = ¢/6), the Gelfand—Dickey bracket
of the second kind would have been described by (30) with O, = ¢/120% + ud + ou.
This way, we conclude that the GD(SL(2)) algebra provides a realization of the
Virasoro algebra. We also remark that for 0* + u the Gelfand-Dickey bracket of
the first kind is

} ) Sg(ulz))
D AR, = 252 20 S, (3)

This gives only coboundary contributions (~ ,6(z —z')) to the commutation
relations of the Virasoro algebra, as expected from Eq. (23) that relates the
Gelfand—Dickey brackets of the first and second kind in the general case.
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4. L =0+ u,0 + u, and Spin 3

For any functional f{ug,u,], let us consider the formal sum (cf. Eq. (26))
VOf |2 df
5u0 du,
In this case we find that res [0° + u; 0 + ug, X ;] = 3x5 + (6. /du)” — 3(6f /ou,)" +

(u (6 /duy)) and so, according to the general theory, the GD(SL(3)) algebra is well
defined provided that x; satisfies the equation

. A ofY of \" of
3"“(%) ‘(a) ‘( 5%) G3)

Furthermore, we find by a straightforward (but lengthy) calculation that Vy (L) is
given by

X, =0~ +073x,. (34)

Vy (0 +u; 0 + ) = i1, 0 + i, (36a)
where

) G o) () ()
( ;u{) 2<u ;i) + 3x% 6b)

(L) ALY ) () ()
R O R R RG]

(36¢)
and x, satisfies the requirement (35). The equation above describes the coadjoint
action of the GD(SL(3)) algebra in the sense that Ad¥ (L — 0%)=Vy j(63 +u, 0+
o) = i, 0 + iy, Comparison with Eq. (26) suggests that (36) generalizes the
coadjoint action of the Virasoro algebra in a very interesting way.

To be more precise, let us examine first the transformation properties of the
operators 0° 4 u,(z)d + ug(z) under arbitrary reparametrizations of the circle
z—a(z). Explicit computation yields

0% + u,(2)0 + ug(z) > 0" ~2(0* + uy(2)0 + “uy(z))o’ ~ Y (37a)

where
“uy(z) = 6"?u;(0(2)) + 28,(2), (37b)
“uo(2) = 0"ug(0(2)) + a'c"u,(0(2)) + S,(2). (37¢)

Here, S,(z)=(d"/0")—(3/2)(¢"/c’)* denotes the Schwartzian derivative of the
diffeomorphism ¢. Note that u,(z) transforms (up to the Schwartzian term) as a
quadratic differential, while (37c) suggests the presence of a spin 3 field in the
formalism. In particular, using (37b), (37c), we have that
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1
“uo(z) — 37Uy (2) = 0" ( Uo(0(2)) — 5 1ty (6(2))>, (38)

and so the combination uy(z) — 3u}(z) transforms as a conformal field of weight
3. In establishing these results, we found it most useful to think of the operators
L=0%+u,0+u, as acting on densities of weight — 1 rather than on scalar
functions. In fact, as we shall demonstrate later on, there is a natural generalization
of the transformations (32) and (37) to any differential operator L=0"+
U,-,0" %+ - +u, viewed as acting on densities of weight — (n — 1)/2.

At the moment, we would like to investigate the GD(SL(3)) algebra in more
detail, since Eq. (37b) indicates that the Virasoro algebra is contained as a
subalgebra in GD(SL(3)). For this, we make use of the Gelfand-Dickey bracket
of the second kind that is associated with the space of differential operators
0% + u,0 + u,. Recalling Eq. (36) for the coadjoint action, we obtain the following
expression for the bracket:

{f(W(2), u6(2), 9 (2 oM} 51

sg [( of " ( of f TRy
G [(5%(5)) "2<5u1(2>> (”5%(“’)) 1(~)< (v)
of LY o
(Z)< o(”)> <“‘(Z)W> <°() ”
og |2 of >"'"_ of \" < .
F oue@ | 3\ b <5u1(2~) (@5
~)> <5”O(Z~)>

N of
+%u1(z><m> —ul(f)<5u1@> —2uo(f>( e

f ’ f " -
3141(5)(“1(5) 0(~)> < o(2) O(~)> ( olZ )5u1(~)> ] (39)
Note that the bracket between the (coordinate) functionals u, is equal to
@@, o4y = (D) +14(2))0.0(z = 2) +2028(z = 2),  (40)

which shows that the Virasoro algebra is, indeed, contained in GD(SL(3)). However,
thanks to all the terms that appear in Eq. (39), this is not the whole story. Further
calculation shows that for w(z):= uy(z) — 1u(z) the following is true:

{2 W) B, 1y = W)+ 20(2))0,0( — 2, (41
i.e., w(z) transforms as a local field of conformal weight 3. Moreover, we find that
the Gelfand—Dickey bracket for the fields w is given by

W WE)R sy = — 5030(z — 2) — 3(ud(2) + u3(2))8,8(z — 2))
— S5y (2) + uy(2))020(z — 2)
+ 1} (2) + u}(2))0.0(z — 2). (42)

Consequently, u,(z) and w(z) form an algebra with quadratic determining relations
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(40)—(42). Here, the central charge of the Virasoro algebra (40) is ¢ =24. Note,
however, that all other values of ¢ are easily obtained by considering L = 19° +
u0 +uy with 1=c/24.

For completeness, we mention that in this case the Gelfand—Dickey bracket
of the first kind is equal to

dg af og of
{f, g}a3+u16+u0 3jd <5u0 (8) 7 ou,(2) " ouy(2) ° O 6“0(2)> )

Shifting u,(z) (and hence w(z)) by a constant is equivalent to modifying the
Gelfand-Dickey bracket of the second kind by the expression (43). It can be readily
checked that such modifications do not alter the commutation relations (40)—(42)
at all. On the other hand, we may shift u,(z) by a constant (which is equivalent
to redefining the vacuum expectation value of the stress-energy tensor of the
theory). For u,(z) > u,(z) — 1, the commutation relations (40)—(42) become

{uy(2),u(z')} = (uy(2) + uy(2"))3,0(z — 2') + 203 8(z — ') — 20,0(z — 2'), (44a)
{uy(2), w(z) } = (w(2) + 2w(2))0.6(z — 2'), (44b)
Wz w(z)} = —§(028(z — 2') — 5030(z — 2') + 40.0(z — 2'))

— $(ui(2) +ui(2))0.0(z — ') + 3(uy(2) + uy(2))0.0(z — 2)
— 13(u1(2) + uy(2))030(2 — 2') + (W (2) + 1{(2))0.0(z — 2).  (440)
(Here, for convenience, we have dropped the labels of the Gelfand—Dickey bracket.)
Although the algebra (44) is not a Lie algebra, it has a very natural interpretation
in the context of 2-dim conformal field theory. Comparison with the commutation
relations (6) shows that the spin 3 operator algebra is a particular representation
of (44). To illustrate this result in more detail, we point out that the quadratic
terms appearing on the right-hand side of Eq. (44c) need to be regularized upon

quantization. An appropriate regularization (which is also consistent with the
algebra commutation relations) is acquired by assigning

(A(2) + A(2))0.0(z — 2) +15(02 — 507 + 40.)3(z — 2') — [3(u4(2) + u(2))0,
— 4y (2) + 1, ()07 + 55 (ui(2) + u}(2))0.16(z — 2)
to the classical quantity (u?(z) + u3(2'))2,0(z — Z'). In the expression above, A(z)

is essentially the normal ordered operator that represents u?(z) with Fourier modes
given by Eq. (7). This way, the right-hand side of Eq. (44c) assumes the form

— (07 — 502 +40,)0(z — 2') — H(A(2) + A(2))0.0(z — 2)

— 70L5(u1(2) + ()37 — 3(ui(2) + u(2))3, — 8(uy(2) + uy(2))0.16(z — 2,
and so Zamolodchikov’s spin 3 operator algebra is a well defined representation
of (44) with W(z)«—»(i/ﬁ)w(z), T(z)>u,(z), and ¢ = 24. In general, if we consider

=(c/24)0® + u,0 + u,, the operator algebra (6) will result for all values of the
central charge c.
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5. Higher Spin Fields and Conclusions

Next, we discuss briefly the relation between higher spin n operator algebras and
the Gelfand—Dickey algebras GD(SL(n)) constructed from the space of differential
operators L= 0"+ u,_,(z)0" 2+ --- + uy(z). It is relatively easy to show that in
this case the Gelfand—-Dickey bracket of the second kind for the (coordinate)
functionals u, _, is equal to

{ty—2(2)s ()} = (- 5(2) + - 2(2))0.0(2 — 2) + lc—; 030(z—2) (49

with ¢, =n(n— 1)(n+ 1), which in turn implies that the Virasoro algebra is a
subalgebra of GD(SL(n)) (see also ref. [5, 7]). Alternatively, this result is established
using the transformation properties of the operators 0" + u,_,(2)0" 2 + - + uo(2)
under arbitrary reparametrizations z — a(z). Explicit calculation shows that

0"+ uy_5(2)0" "%+ o+ ug(z) > o’ TPV + ou, _,(2)0" 2
+ 4 Tug(z))e’ T2 (46a)
with
nin—1)n+1)

2 So(2), (46b)

“Uy - 2(2) = 0"%u, 5 (0(2) +
which generalizes the transformations (32) and (37) for all values of n. For clarity
we note that under arbitrary reparametrization z — a(z), the form of the operators
L=0"+u,_,0" %+ ---+u, may not be preserved due to the occurrence of the
term — (n(n — 1)/2)(¢” /o™ 1)0" ! of degree n — 1. This will definitely be the case
if we assume that the operators L act on scalar functions. However, if we think
of them as acting on densities of weight — (n — 1)/2 (as illustrated by (46a)), all
terms of degree n — 1 cancel, which makes the choice u, _; = 0 consistent. We point
out that this is equivalent to the requirement res[X,L]=0 imposed for
well-definiteness of the GD(SL(n)) algebras earlier on.

Further study of the transformation (46a) shows that up to Schwartzian terms,
Uy—2(2), u,_5(2),...,uo(z) (or appropriate combinations of them) behave as
conformal fields of weight 2,3, ..., n, respectively. For instance, for n = 4 we find that

“u,(z) = 0"%u,(a(z)) + 26'0"u,(c(z)) + 5S.(2), (47a)
“Uo(2) = 0"*uy(0(2)) + 300" u,(a(z))
3 "2
+§<%’E+ SU(Z)>G’2uz(0( ) +3(Sy(z) + 38X2)). (47b)

In analogy with the n = 2,3 cases that we have already investigated, the Gelfand—
Dickey bracket for these fields would provide us with an algebra equivalent to
the spin n operator algebra of 2-dim conformal field theory. This way, we identify
the space of differential operators L =" +u,_,0" "2 + --- 4+ u, with the (smooth)
dual of the spin n operator algebra. Using the coadjoint action operator (22b), we
may extend the methods of ref. [10] to all higher spin operator algebras and study
the geometry of the resulting coadjoint orbits. Such orbits might be found useful
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for investigating the geometric role of higher spin fields. We intend to study this
problem in more detail elsewhere.

Moreover, highest weight representations of all spin n operator algebras are
expected to be of paramount importance in quantum conformal field theory, as
well as in statistical mechanics in 2 dimensions. According to the general philosophy
of 2-dim critical phenomena, the investigation of critical singularities reduces to
the problem of finding appropriate conformally invariant quantum field theory
solutions (see [2,4] and references therein). Such conformal (minimal) models
correspond to degenerate Verma module representations of the underlying sym-
metry algebra for discrete values of the central charge c¢. For the spin 2 algebra,
the corresponding discrete values of ¢ are given by 1 — (6/p(p + 1)) withp = 3,4,5,...
[11], while for the spin 3 operator algebra by Eq. (8). In generalizing these results
to higher spin operator algebras, we realize that unitary representations of the
GD(SL(n)) algebras play an important role. Taking into account the embedding
of the Virasoro algebra in GD(SL(n)) described by Egs. (45) and/or (46), we find (as a
result of some preliminary computations) that the following set of discrete values

_ nn+1)
c_(n_1)<l"p(p+1)

is associated with (minimal) models of spin n operator algebras. Details of the
underlying calculations will be presented in [12]. However, it is worth mentioning
here that the representations of affine Kac—Moody algebras are closely related
with the theory of integrable nonlinear diferential equations and hence with the
Gelfand-Dickey algebras (see, for instance, [13] and references therein). In
particular, the GD(SL(n)) algebra may be viewed as a reduction of the SL(n)
Kac—Moody algebra. This seems to provide the basic ingredient for understanding
hidden relations between (minimal) conformal models of spin n operator algebras
and highest weight representations of the SL(n) Kac-Moody algebras in favor of
showing the positivity theorem that guarantees the unitarity of these models. Along
these lines, it would be most interesting to generalize the Goddard—Kent—Olive
construction [11] to all values of n in a well prescribed way.

Finally, we note that it is possible to extend our results to superconformal (and
more generally to higher half-integer spin) operator algebras by using the
supersymmetric generalization of the Gelfand—Dickey algebra of formal pseudodif-
ferential operators introduced in [ 14] to study the super KP hierarchy of nonlinear
differential equations. This will be the subject of future publications [12]. For
completeness we mention that certain results somewhat related to ours have also
been discussed by others [15].

>; p=n+1,n+2,... (48)
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