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Abstract. We study the spectrum of the Hamiltonian H on \2(E) given by
(Hψ)(ri) = ψ(n + l) + ψ(n — 1)+ V(ri)ψ(ri) with the hierarchical (ultrametric) po-
tential V(2m(2l+\)) = λ(\-Rm)/(\-R\ corresponding to 1-, 2-, and 3-dimen-
sional Coulomb potentials for 0<.R<1, R = \ and jR>l, respectively, in a
suitably chosen valuation metric. We prove that the spectrum is a Cantor set
and gaps open at the eigenvalues en(\) < en(2) <...< en(2n — 1) of the Dirichlet
problem Hψ = Eψ, tp(0) = ιp(2w) = 0, n^l. In the gap opening at en(k) the
integrated density of states takes on the value k/2n. The spectrum is purely
singular continuous for R^l when the potential is unbounded, and the
Lyapunov exponent y vanishes in the spectrum. The spectrum is purely
continuous for R < 1 in σ(#)n[ — 2,2] and y = 0 here, but one cannot exclude
the presence of eigenvalues near the border of the spectrum. We also propose
an explicit formula for the Green's function.
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1. Introduction

In the last years much attention has been devoted to the study of diffusion on
random and hierarchical structures [1-6]. The peculiar behaviour for the diffusive
problems has raised an interest in analyzing the spectral properties of Schrόdinger
operators with hierarchical, self-similar potentials. Various models have been
proposed and studied both rigorously [6] and numerically [7]. General evidence
of new interesting features for these spectra has been obtained, related to their
Cantor-set like structure and scaling properties [6-11]. In particular, it seemed
plausible to conjecture that a wide class of such hierarchical models could be
characterized by a singular continuous spectrum.

Hierarchical potentials are a kind of almost periodic functions. Based on the
considerable knowledge accumulated about almost periodic Schrόdinger
operators (see [12,13] for two recent reviews), one indeed expects Cantor spectra
for hierarchical Hamiltonians. Also, there is a general experience about singular
continuous spectra [14, 15], and another self-similar Schrόdinger operator, the
Fibonacci Hamiltonian has, in fact, a singular continuous Cantor spectrum
[16, 17].

In the present work our aim is to verify the expectations about Cantor
spectrum and singular continuity for a hierarchical model. We discuss the spectral
properties of the one-dimensional discrete Schrόdinger operator

(Hψ)(n) = ψ(n +1) + ιp(n -1) + V(n)ψ(n) (1.0)

with the hierarchical potential

V(n) = λf(oτd(n)). (1.1)

Here λ is a real number, / is a real-valued function and ord(n), the order of n, is the
largest non-negative integer m such that 2m is a divisor of n. For a reason which
becomes clear later on we choose a particular form for / (cf. [10, 11]),

/(m)="lV (1.2)
fc = 0

where R is a positive constant. We consider both R < 1 and R ̂  1: in the latter case
V(n) is unbounded. The potential is even because ord( — n) = ord(n). For R < 1, H is
defined on bi-infinite sequences {ψ(n)}™= .̂  but for R^ 1, it can be restricted to
the half-line n^ 1 with boundary condition φ(0) = 0. Indeed, ord(0) = oo, so that
Eqs. (1.1) and (1.2) imply

7ZΊ?' K < 1>
p>1 (1-3)

00 , K^l .

7(0) = oo means that the domain of H is in the subspace ψ(G) = 0. For R ̂  1 we will
understand, therefore, that H is defined on the sequences [ψ(n)}™= ^ with boundary
condition φ(0) = 0. Due to V( — ri)=V(n\ the selection of the negative half-line
would yield the same result. Throughout the whole paper we reserve the notation
H for the operator defined above. We will admit a rank one perturbation of H
yielding H' which differs from H in the value of F(0). Now σess(H') = σ(H\ provided
that σ(H) contains no isolated points, which we eventually prove.



Spectrum of Hierarchical Hamiltonian 645

We show that for all R > 0 the spectrum σ(H) is a Cantor set: a closed nowhere
dense set without isolated points. According to any numerical evidence this
Cantor set has a positive Lebesgue measure if R<1. Recently Bellissard [13]
announced that the spectrum is purely singular continuous and of zero Lebesgue
measure for R > 2.

For R^l we prove that σ(H) and, in fact, σess(H') is purely continuous.
Recently Simon and Spencer [26] proved that discrete Schrόdinger operators (1.0)
with unbounded potentials in both directions cannot have any absolutely
continuous spectrum. Using this result we obtain that σ(H) is purely singular
continuous for R^ 1. The spectral measure of H' on σ^(H'} — σ(H) is also purely
singular continuous, thus the singular continuity of σ(H) has nothing to do with
the decoupling at the site 0. If 0<R< 1, then V is limit periodic and one would
expect a purely absolutely continuous spectrum. However, σ(H) contains a special
set S with the following properties. Hψ = Eψ with EeS may have a unique (up to
factor) polynomially bounded solution, probably in /2(Z). H'ψ = E\p with EeS has
no polynomially bounded solution and σess(Hf) is purely continuous. The set S is
distant from a large part of σ(H\ e.g. Sn[ — 2,2]=0, and H cannot have
eigenvalues outside S.

We obtain a partial (maybe complete) gap labelling. An extension from
continuous almost periodic functions yields {/c/2"|n^0, fc = l, ...,2"} as the
frequency module of V. For continuous almost periodic potentials the integrated
density of states (IDS) takes on values from the frequency module of the potential;
however, this may be true if the potential is discontinuous [25]. Now
our potential is singular in a certain sense (see Sect. 2), we nevertheless
know: H has a set of spectral gaps {Ink\n^Q, 1 :g/c^2n} with relative positions
identical to those of the gaps of the classical triadic Cantor set. The IDS takes on
the value (2k — ί ) / 2 n + i in /nk, the same as the Cantor function in the corresponding
gap of the classical Cantor set. Ink is bordered from below (λ > 0) or from above
(λ < 0) by En(k\ the fcth zero of τπ(£), the trace of the transfer matrix over the interval
[1,2"]. For Λ<1, in the interval [-2,2] all the gaps belong to the set {Ink}.

We prove that the Lyapunov exponent exists and is zero in the spectrum for
.R Ξ> 1, and the same holds true outside the set S for R < 1. A more detailed study is
done for the states belonging to the gap edges En(k). For these energies there is a
unique (up to factor) periodic solution ψ° (ψ°(0) = 0). The other solutions increase
linearly if R < 2, as x Iog2x if R = 2 and as xlog2* iϊR>2. In fact, we find this last
behaviour for a periodic subset of sites x but we believe this characterizes the
envelope of the nonperiodic solutions.

All these results follow from a remarkable property of renormalization of the
equation Hψ = Eψ, due to the form (1.1) of the potential. This, together with the
choice (1.2) leads to an autonomous nonlinear recurrence equation for the traces
τn, similar to the one existing for the Fibonacci Hamiltonian [16-19] and exploited
already in [10, 11]. The spectral variable E enters the recurrence via the initial
condition and determines the asymptotic behaviour of τn as n goes to infinity. We
show that for any EeΊR. either {τn} is bounded or τn-» + oo and τJτ^^-^R (if
jR<l) or τn-»-l-oo and TH/T^-* max {!,#}. In the first two cases E is in the
spectrum, in the third case it is in the resolvent set. The second case specifies the
set S.
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In order to motivate the reader to continue his lecture - or to spare him to do so
- we sketch here the proof that for any R>0 the spectrum is a Cantor set:

(i) There are no isolated points in the spectrum. For R < 1 this comes from the
limit-periodicity of V(ri) while for R ̂  1 the spectrum is purely continuous.

(ii) The eigenvalues of the Dirichlet problems Hψ = Eφ, ψ(0) = ψ(2n) = 0 for
n^. 1 are dense in σ(H) and they are at the border of spectral gaps of H. Therefore
the gaps are dense everywhere.

Thus σ(H) is a closed nowhere dense nonempty set without isolated points: it is
a Cantor set. The absence of eigenvalues for .R ̂  1 and also for R < 1 in a large part
of the spectrum follows from a detailed analysis of the renormalization map.

The rest of the paper is organized as follows. In the next section we discuss the
potential (1.1). We show that it is limit periodic for R< 1. It can be written as a
^-dimensional Coulomb potential in the valuation metric of 2-adic numbers with d
varying with R. The elements of the hull of the potential are labelled by the 2-adic
integers. Section 3 presents the renormalized Schrόdinger equation and the
recurrence equation for the traces τn. The asymptotic behaviour, as n goes to
infinity, of the sequence τn is analyzed in Sect. 4. Sections 5 and 6 contain the main
results of the paper: the determination of the spectrum via the asymptotics of {τπ}
and the results on the spectral measures in Sect. 5, the Cantor property, IDS and
gap labelling in Sect. 6. Sections 7 and 8 deal with the asymptotic behaviour of the
wave functions: they contain respectively the results on the Lyapunov exponent
and on the gap-edge states. In Sect. 9 we give an explicit formula for the Green's
function.

2. The Potential: Ultrametric Properties and Limit Periodicity

A bi-infϊnite sequence V={V(n)}™ao is called limit periodic if there exist periodic
sequences VN = {VN(n)}™:=_00 tending uniformly to V:

n

Consider now the potential (1.1). Since

ord(/ 2« + fc) = ord(fc) if fc = l,2, ...,2"-l,

we have

for any leZ and n^l integer. Choose VN to be periodic with period 2N and

VN(n)=V(n), n = l,2,...,2". (2.2)

Then VN differs from V only at the sites n = l 2N,leZ. Therefore

\\V-VN\\00=sup\V(l-2N)-V(2N)\
ίeZ

= |A|sup|/(ord(/-2N))-/(N)|



Spectrum of Hierarchical Hamiltonian 647

where we used Eqs. (2.1) and (2.2), ord(0) = oo and V(n)= V(-n\ With the choice
(1 .2) for/andforR<l,

\\V-VN\\x = \λ\RN/(ί-R)-+Q as JV^co, (2.3)

so that V is limit periodic.
However, V is a rather peculiar sequence. It is singular in the sense that the

values form a discrete set with a unique accumulation point: λ/(ί — R) if R< 1 and
oo if R^ 1. On the other hand, V(n) can be viewed as a continuous function: To
this end, the topology has to be changed. This will lead us to the hull of the
potential. In what follows, we use definitions and basic results from the theory of
p-adic numbers. For a general reference see [20].

Given some real numbers s>l, one can introduce a map

by the definition

\n\s = S-°rά(n\ (2.4)

where 2ord(M) is the highest power of 2 dividing n.\ \s is called a valuation, \ |2is the
standard valuation. The valuation has properties similar to the absolute value:

1. |n|s^0 with equality iff π = 0,

2. |— n|s = |n|s,

3. |n + m|s^max{|ft|s, |m|s},

4. \nm\s = \n\s\m\s.

Property 3 implies \n -f m\s ̂  |n|s H- |m|s. Valuations with Property 3 are called non-
archimedian or ultrametric. | |s induces a metric by d(n,m) = \n — m\s. The metric
space (Z, | |s) is precompact. By completing Z with respect to | \s with any s > 1 one
obtains the ring of 2-adic integers, J2, satisfying Properties 1 .-4. There is a one-one
correspondence between elements ω of I2 and symbol sequences
S(ω)= ...ω2colω0, where ωke{0,1}. S(ω) with a finite number of 1 is the diadic
representation of the nonnegative integer ω = £ ωk2

fe. A sequence with a finite
number of 0 represents a negative number: S" 1(...lll)=—1 and

n — 1 oo

JS~ 1(...ll lωM_ 1 . . .ω 0)= £ ωfc2
fc — 2". One may use the formal series £ ωk2

f easa

notation for ω. The order of ωe/ 2 is obtained by extension from Z as ord(ω)
= min{fc|ωk = l}. Arithmetics on I2 is extended from Z. If S'(ω) + S(ω'), S(ω)S(ω')
are defined according to the addition and multiplication of integers in diadic
representation then S(ω + ω') = S(ω) + S(ω')9 S(ωω') = S(ω)S(ωf).

Let us return to the potential. It naturally extends to x e I2 via

1 l(i-Rord(x)W-R), if Λ Φ 1 ,
1 V(x)— 1 ord(Λ;)-l
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Therefore, by the extension to /2 of Eq. (2.4),

(1-|*lι/*)/(l-K), if R<ί,

-Iog2|x|2, if R = ί , (2.5a)

(l-l/|xU)/(l-R), if R>1, xφO.

Thus, one may recognize in V a 1-, 2-, and 3-dimensional Coulomb potential for
R<ί, R = l, and #>!, respectively. Alternately we can write

/(1-2V)' if vφ0' (25b), if v=o, (Z ™>
where v = \og2R. Notice the continuity of V in the valuation metric: if \x— y\s

< min {|x|s, \y\s}, then F(x) — V(y) = 0. From Eq. (2.5a) and by using Property 4 one
easily verifies

This symmetry of dilation is at the origin of the renormalizability of the
Schrδdinger equation. Let now fix .R < 1. Then V is limit periodic and the set of its
translates V(k\ where

V(k\n)=V(n + k),

is precompact in /^ . The closure of { V(k)] with respect to the l^ norm is the hull of V
(see [12]).

Proposition 1. The hull of V is given as

cl({

where cl stands for closure and

Notice that for any n, V(ω\n) can be calculated by a finite algorithm, thanks to
Property 3.

Proof. Fix any ω e I2 and choose a sequence of integers kt converging to ω in
/2:|ω — ̂ |s->0 as /->oo. By the triangle inequality, for any

Thus, with s=l/R we find

as

so that F(ω) is in the hull.
Suppose now that W is in the hull, then there is a sequence of integers k{ such

that

W(h)= l imF
i->oo
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where the limit exists and is uniform in n. The sequence {fcj has at least one
accumulation point ω in 72,

 s° that

W(n)=V(n + ω), all neZ

or equivalently
W= F(ω) .

More is true: the above equality holds with a unique ω e I2. Indeed, assume there
exist ω,ω'e/2 such that

'\s9 all neTL.

Then by Property 3,

\ω — ω'\s = \n + ω — (n + ω')|s ̂  \n -f ω\s , all n e TL .

We can choose a sequence of integers HJ such that n^—ω in /2, i.e. l^.

1 2 with the operation + forms a compact topological group. It carries a unique
+ invariant probability measure μ, called the Haar measure. (72,μ, +) is a
dynamical system with the "dynamics" ωi— >ω-f l .

Lemma 1. 77ze Haar measure on the topological group of 2-adίc integers is

dμ(ω)= X dP(ωk) (2.6)
fc = 0

with P(0) = P(1) = \. (/2>μ> +) is an ergodic dynamical system.

Proof. Equation (2.6) defines a probability measure on I2. Consider the cylinder
sets

ΩΛ(ωJI) = {x6/ 2 |x J I = ωJI}, ωwe{0,l}

and for ωe/2,

5(ω,n)-Ω0(ω0)n ... nί^K^). (2.7)

Clearly

,n))="πP(ω i) = l/2-. (2.8)

For AcI2 let A + l = {ω + l \co<=A}. Then

Since the cylinders (2.7) form a basis of open sets for the topology on /2, the
invariance of μ is proved. It is easy to see that the sets defined in (2.7) are the balls of
radius s~n in the metric | |s:

\x-ω\s^s-"}. (2.9)

Balls in I2 have several remarkable properties (cf. [20, Chap. 7]):
(i) If x e B(ω, n) then B(x, n) = B(ω, n).

(ii) B(ω, n) is open and closed, its boundary is empty.
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(iii) B(ω,n) is disconnected:

B(ω, n) = B(ω, n + l)u#(ω + 2", n + 1) .

(iv) The set of all balls is

and

J2= y β(fc,n), any n^O.
fc = 0

(v) For any ωe!2,

contains a unique point for any fce{0, ...,2Π — 1}.
All these properties follow immediately from Eq. (2.7). Let

n-l

m= £ ωfc2
k.

ΓTΛ, k = 0
Then

ω + iε B((m + 0(mod 2"), n} ,

and for the characteristic function χβ(fcjM) one obtains

lim ^ Σ XB(k,> + 0 = 1/2" = f χB(k,a}(x)dμ(x) (2.10)

independently of ω. Ergodicity derives from (2.10) by standard approximation
arguments. Π

Since
V(ω\n)=V(ω + n),

where (ω + n}πeZ is a trajectory in an ergodic system, F(ω) is by definition an
ergodic potential. We observe that V is unbounded for R ̂  1 but is μ-integrable for
R < 2, i.e. the mean value of the potential exists for R < 2. This will be used in
Sect. 8.

3. Renormalization Group Transformation. The Trace Equation

Any one-dimensional linear homogeneous second-order difference equation

l) (3.1)

is exactly renormalizable in the following sense. One can express ψ(2n + 2) in terms
of ψ(2n) and ψ(2n — 2) according to the scheme

Fig. 1
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so that the form of the related equation remains unchanged. Performing this
"decimation" m times one arrives at the equation

) = xm(n)ψ(n2m) - βm(n - l)ιp((n - 1)2") , (3.2)

where the coefficients are determined via the recursion relation

-oιm(2n + ί)βm(2n-l)/otm(2n-ί),

βm + ι(n) = *m(2n + 3)βm(2n + l)βm(2n)/xm(2n + 1) . (3.3)

Equations (3.3) simplify considerably if the starting point [Eq. (3.1)] is the
Schrόdinger equation

) = (£- V(n))ψ(n)-ψ(n- 1) (3.4)

with the ultrametric potential (1.1). Indeed, choosing

induction shows that for any m, βm(n) = \ and αm(n) depends only on ord(n). With
the notation

αm(n) = αw>ord(π) (3.5)

and using ord(2n) = ord(n)-hl, Eqs. (3.3) lead to

αm+ι(n) = αm)0αm(2n)-2 (3.6a)

or

α m+l,i = αm,0αm,i+l— 2. (3.6b)

The initial condition for (3.6) is

α0(n) = E-7(n). (3.7)

Equation (3.6) was written down first by Livi et al. [1 1]. These authors reduced the
problem of the solution of Eq. (3.6) to the study of a recursion relation for the
sequence (αm 0} only. Here we give a different derivation of this relation. As a first
step we show that

<*w,o = τm, (3.8)

where

τm = trMm = tr(A2m...Aί) (3.9)

and

-
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is the transfer matrix at site n.
For the potential (1.1), Eq. (3.2) reads as

ψ((n + 1)2W) = *m(n)ιp(n2m) - ιp((n - 1)2") . (3.11)

Setting here n = 1 we get

(3.12)

Another expression can be obtained by solving the Schrodinger equation with
the use of transfer matrices. Introduce the vector

^ = ̂ ...^0. (3.14)

Observe that Eq. (2.1) for the potential implies

I. (3.15)

If one applies the characteristic equation of M w,

M*-τwMm + l = 0

to the vector Ψ0 and accounts for (3.14-15), one obtains

Ί F2m + 1-F(2
(3.16)

\ U I /
or

(3.17)

and

(3.18)

αm> o = τm follows from the comparison of (3.12) with Eq. (3.18). It happens that with
the choice (1.2) for /, τm satisfies an autonomous difference equation (cf. [10]).

m-l

Proposition 2. Let f(m)= X Rk. Then

. (3.19)

Proof. Take the trace of Eq. (3.15) and use

then

Γ/0

L(θ

(3.20)
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On the other hand, from (3.15)

(MJ2 1=(Mi_J2 1=τM_1(Mm_02ι = ̂ T(τi-ι-2-τJ, (3.21)

where in the last equality we applied (3.20) with m— 1 replacing m. Equation (3.20)
together with (3.21) gives (3.19). Π

Remarks. 1. If we suppose only Eq. (1.1), we obtain a formula similar to (3.19) but R
replaced by (f(m+1)—/(m))/(/(m)—/(m — 1)) which generally depends on m. This
makes Eq. (3.19) non-autonomous and introduces unnecessary complications in
the further discussion. Therefore we fix Af(m)/Af(m — 1) = const = R and solve this
equation for /. The general solution is /(m) = α -f bRm which gives (1.2) with a = — b
= 1/(1-Λ).

2. Another useful form is obtained by breaking the iteration (3.19) into two steps.
Introducing

, (3.22)

Eqs. (3.20) and (3.21) read as

τ =τ2 2 λ T λ =Rλ ι (323)

This two-dimensional recurrence was studied in [11].

3. The initial conditions for (3.19) are

τ0 = tτA1=E, τ1=trA2A1=E(E-λ)-2 = τ%-2-λτ0. (3.24)

Comparison with (3.23) shows that λ0 = λ and thus

λm = λR w τ M _ 1 . . .τ 0 . (3.25)

4. Let t/?° and ψ1 be the solutions of Hψ = Eψ with initial conditions

t/Λθ) = 0, ™°(1) = 1,
(3.26)

Then

(3.27)
ιp°(2m) ιpl(2m)

so that (MJ21 = φ°(2m). From (3.22) and (3.25) we get

λm = λRmψ°(2m) (3.28)

and

ψ°(2m) = τ m _ 1 . . .τ 0 . (3.29)

The last equation can be obtained directly from Eq. (3.18).
Let us return to Eq. (3.6). It can be solved easily under the assumption (1.2).

From

αm,o = τm, αm,ι=τw-/lm, and αm?2 = τm-/
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we make the guess

(3.30)

and verify it by replacing (3.30) into Eq. (3.6b). As a consequence,

αm(n) = τm-^F(n). (3.31)
00

This formula is valid also for n = 0 provided that 7(0) = λ £ Rk. Later on, we will
m = 0

need a general formula for αm(0), showing its dependence on F(0). Such a formula is
easily obtained from Eq. (3.6 a). Set n = 0, iterate the equation until descending at
α0(0) = £- F(0) and use Eqs. (3.8) and (3.29). This gives

αm(0) = Ψ

Q(2m) \E - V(ϋ) - £ 2/t/;0(2fc)l . (3.32)
L fc=ι J

We have a particular interest in αm(0). The potential is even, V(n)= V( — n\ so that
any solution of the Schrόdinger equation can be written in the form αφ° + bψe.
Here ψ° is the odd solution introduced in Eq. (3.26) and ψe is the even solution
chosen such that ψe(0)=\. Writing Eq. (3.11) for ψe and setting n = 0 we find

ψe(2">) = ±vm(Q). (3.33)

Notice that for -R^l, Hψ = Eψ has no even solution because F(0) = oo. A
comparison of Eq. (3.31) with Eqs. (3.11) and (3.4) shows that τm and λm play the
role of the renormalized energy and potential amplitude, respectively. Intuitively
one expects that both should be bounded in the continuous spectrum. Our results
confirm this for τm with the exception of the set S for jR < 1 . On the other hand, Eq.
(3.25) will imply that λm vanishes for large m in (some) gap-edge states.

4. Asymptotic Behaviour of the Sequence of Traces

In this section we classify the sequences {τn} which solve Eq. (3.19) according to
their asymptotic behaviour. The classification is similar to the one valid for the
Fibonacci Hamiltonian [17] with some additional difficulties due essentially to the
fact that bounded sequences are not uniformly bounded or at least we cannot
prove it.

Our main concern is to describe the unbounded sequences. As to the bounded
sequences, we will make use only of the following simple result.

Lemma 2. Let τn = 0. Then τn+i= —2 and τn+k = 2 for k>\.

Proof. This comes immediately from Eq. (3.19). Π

We say that a sequence {an} tends monotonically to A if it is monotone for n
sufficiently large, and an-+A.

Definition 1. A solution {τn} of Eq. (3.19) is l^-type if there exists some N^ 1 such
that

— τN>2. (4.1)
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Lemma 3. // {τn} is U^-type then τn tends monotonically to -f oo.

Proof. Suppose that (4.1) holds true. Then Eq. (3.19) shows that

for any n^N. Π

Lemma 4. {τn} is U^-type in the following cases:
(i) τN< —2 for some AΓ^l.

(ii) |TN_!|^2 and τN>2 for some JV^l .

Proof. In both cases Eq. (3.19) implies

τN+l>τ2

N-2>2. D

The above list is not exhaustive but we do not need more to prove

Proposition 3. Let {τn} be unbounded. Then τn tends monotonically to -hoo.

Proof. Lemma 3 proves it for L^-type sequences. Suppose now that {τπ} is
unbounded but not 17 1. Then

for all n ̂  1, as one sees from the definition of U\ and from Lemma 4. One can
improve the lower bound for τn: Let us notice that Eq. (3.19) can be written in the
form

J? / 9 _ L τ \

(4.2)

Since the last term in the parenthesis is positive, the inequality

L R . ,

holds equally true for all n ̂  1 . Now {τn} is unbounded, whence there is some N ̂
such that τN>2 + 2/R. Then

2R

therefore the estimation can be repeated for τN+k, all fe^l, which gives the
result. Π

Definition 2. {τn} is (72-type if there exists some N ̂  1 such that

τ j V>.Rτ^_1 and τN>ί/R. (4.4)

Lemma 5. // {τn} is U2-type then τn tends monotonically to +00. Π
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Proof. Suppose (4.4) holds true and define bn by τn = bn/R. Write Eq. (3.19) in the
form

- + -?-*- (4.5)

Equations (4.4) and (4.5) imply that

Since (4.4) holds for N + 1 replacing N9 the estimation can be repeated. We find

for all n>N. This shows monotonicity and divergence. Π

We denote by 17 1? C72 the families of sequences of U x- or t/2-type, respectively.
From the proof of Lemmas 3, 5 it is clear that

U1CU2 for £<1, U2CU1 for R^l . (4.6)

It will be shown that for R ̂  1 all the unbounded sequences are U i -type. For R < 1 ,
1/2 probably does not include all the unbounded sequences, whence the

Definition 3. For R< 1, {τn} is S-type if it is unbounded but not U2-type.
Notice that for S-type sequences (4.3) holds true.
We are going to discuss the fixed points of Eq. (3.19) "at the infinity." We

suppose that {τn} is unbounded and introduce the variables

(4.7)

Now τn Φ 0 for any n (otherwise {τn} would be bounded, see Lemma 2), therefore xn

and εn are well-defined. Moreover, εn tends monotonically to zero from above. Let

g(x) = ί+R-R/x, (4.8)

then Eq. (4.5) reads as

One might think that the iteration (4.9) is well-approximated by the "unperturbed"
iteration

*«°+ι=g(*n°). (4.10)

This will prove to be incorrect but the study of (4.10) is nevertheless useful.

Lemma 6. The iteration (4.10) has ίwα fixed points, R and 1 : min{l, β} is repulsive
and maxjl,^} is attractive (Fig. 2).

Proof. The solutions of g(x) = xareR and 1 . Since d2g/dx2 < 1 for x > 0, dg/dx > 1
for x = mml,R and <1 for x =

It is easy to see that the stable fixed point max{l, R} remains unchanged and
stable under the perturbation εw vanishing at n-> oo. The unstable fixed point may,
however, become attractive from below (case #< 1) or disappear (case R^ 1):
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Fig. 2. The function g(x) and the fixed points for R < 1

Proposition 4. For {τn} unbounded the iteration (4.9) is convergent and xn tends either
to R or to 1. For R^ίthe only limit point is R and {τj is U^-type. For R<l,xn-^l
corresponds to {τn} e U2 and xn-^R corresponds to an S-type {τn}. In the latter case

xJR.
Proof. Let us consider Eq. (4.9) for n ̂  AT, where N is chosen so that τn > 0 increases
and εn decreases monotonically for n^N. We distinguish between two cases:

(i) xw^min {!,#}. Then due to the facts that max{l, R} is an attractive fixed
point of Eq. (4.10), and εn|0, xn tends to max{l,#}.

(ii) xN<min{l,R}. Then xn increases monotonically provided that
xπ< max {!,#}. Indeed:

Let us observe at first that xn > 0 for all n ̂  N and g'(x) > 0 for x > 0. Suppose
that xn+1<xn, then g(xw + 1)<g(xn) and

so that xn decreases monotonically. Therefore xn-*X<min{l,Λ}. X = Q can be
excluded, for xn-+Q would imply g(xn)-+ — oo and xn<0 for large n. Owing to the
continuity of g(x) for x > 0, X is a solution of x = g(x), therefore X = 1 or R which
contradicts X<min{l,R}.

Now there are two possibilities. First, xn may jump above minjl, R} and then
tend to max{l,K} according to (i). Second, it may increase monotonically and
remain bounded by min{l,jR}, and then to converge to X = g(X) = mm{l,R}.

By (i) and (ii) it is proved that limxπ exists and is either 1 or R. Let now R < 1.
Then xn->l implies xn>R for large n. This and τw-> + oo result in (4.4) and
{τn} e 1/2. On the other hand, {τj is S-type if xn-+R since the convergence is from
below [cf. (ii)].

Let R> 1. If xn-^R, then xn> 1 for large n. This and τπ-κx) give (4.1) which
makes {τn} ί/^type. Below we show that for R = l9xn cannot converge to 1 from
below, and for R>\9 xn cannot converge to 1 at all. This proves that each
unbounded {τn} is 17rtype for R ̂  1 and, in particular, is (72-tyρe for # = 1. In fact,
from Eqs. (3.23) and (3.25),

9 T 9 ;j?w

(4.11)
τ0x1x2...xn
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This immediately shows that for R > 1, τn-> oo and xπ-> 1 are incompatible, and so
are τΛ->oo and x Λ f l for R = l. Π

By the above proposition we finished the classification of the solutions of Eq.
(3.19) for the purposes of the present paper. For #<1, there are three classes:
bounded, S-, and U2-type. For R^l there are only two classes: bounded and
I7rtype.

5. Locating the Spectrum5. Locating the Spectrum

We want to show that bounded and S-type sequences correspond to energies in the
spectrum of the operator H while (7-type (U^ or C72) sequences belong to energies
outside the spectrum. The method is similar to that applied in [17].

Let W={W(n)}™00 be any (bounded or unbounded) real sequence,

A = H0 + W,
(5.0)

(H0φ)(n) = ψ(n + 1) + ψ(n - 1) , (Wψ)(n) = W(n)ιp(n) ,

and let σ(A) denote the spectrum of A and σpp(A) the set of eigenvalues of A.

Lemma 7. Suppose that for any nonzero solution of Aψ = Eψ,

Σ \ψ(n)\2 = π. (5.1)

ThenEeσ(A)\σpf(A).

Proof. Let

f l »δk(n)= 1ΛfcV ; [0,

Suppose that E is outside the spectrum, then both

(A-E)φ = δ0 and (A-E)φ = δ1 (5.2)

have a square-summable solution which we denote by φQ and φί9 respectively.
Equation (5.2) is equivalent to

φk(n + 1) + φk(n -ί) + (W(n)~ E)φk(n) = jj ' " * * '
(.1 9 " - ̂

for fc = 0, 1. φkel2(%) and Eq. (5.1) imply

0fe(π)^0, n^ — oo.

Since for n<0 both <^>0 and φ1 satisfy the homogeneous equation, the Wronskian

is constant for n < 0. However, calculating W\_φ^, </>0] at n = — 1 we get 1 while at
n-> — oo we get 0. Therefore E e σ(A) and due to (5.1) it is not an eigenvalue. Π
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In the previous section we considered {τn} independently of its original
definition τπ = trMB. Henceforward we retake this definition, which means that
{τn} is understood to be the solution of Eq. (3.19) with the initial conditions (3.24).
Thus, τn is a 2"th degree polynomial of E. Let us introduce the following notations:

B = {EEΊR\{τn} is bounded},

S = {E6R|{τn}isS-type}, (5.3)

t/ = {£e]R|{τn}is I7-type}.

According to Proposition 4,

R if ,
[BvU if Λ ^ l , ( '

and neither of these sets depend on F(0).

Proposition 5. BCσ(H)\σpp(H). The set B is nonempty and is dense in σ(H).

Proof. Assume that {τj is bounded.
(i) R<ί. Let us take the norm of Eq. (3.16). V(2m+1)-V(2m) = λRm, so that

.n i l 4-lτ/ i i - 2 m + 1 11 ' \^n

with some suitably chosen ol. Therefore

+ I , 2 m 0 >

for any mΞΐO, φ(n)ΆO as n-χχ> and Lemma 7 applies: E ε σ(H)\σ PP(H).
(ii) R^ί. Let φ(0)φO. From Eq. (3.18),

ψ(2m+1)-τmψ(2m)=-ψ(0), (5.5)

all m ̂  0. Let now φ(0) = 0, then ψ(l ) φ 0. Take at first R = 1 , then Eq. (3.17) reads for
all m^O as

(5.6)

Take J?>l.If
λRmψ(2m+1)^-ψ(ί) (5.7)

then ψ(n)-^0 asn->co, as it is seen immediately from Eq. (3.1 7). Suppose therefore

as
Then

R-\
-fo(l) as m-κx). (5.8)
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All the Eqs. (5.5)-(5.8) imply that ψ(ri)^*Q as w-»oo. Therefore Lemma 7 applies,
Eeσ(H)\σpp(H).

Now from the argument above and from Lemma 2 it follows that the zeros of
the polynomials τn(E) are in the spectrum. By Eq. (3.29), these are also the zeros of
the polynomials ψ°(2n)(E). For R < 1, when the spectrum is bounded, a theorem on
orthogonal polynomials [21, Theorem 6.1.1] assures that these zeros are dense in
the spectrum. We anticipate and prove in the next section that this holds also for

#^1. D

Proposition 6. Let R<\. Then S C σ(H) = σess(H') and the even solution of Hip = Eψ
for EeS decays exponentially at least on the subset {2m}*=0. For EeS, H'ψ = Eψ
has no polynomially bounded solution.

We interpose

m

Lemma 8. For EeS, the limit of E— £ 2/φ°(2fe) exists and is independent of E:
k=ί

£ - Σ - κ = (5'9)

Proof. ψ°(2k) is independent of 7(0) for any /c, see Eqs. (3.9) and (3.29). Fix
) = λ/(l -R). Then Eq. (3.31) is valid for n = 0,

Let {τw} be an S-type sequence. From Proposition 4 and Eq. (3.23),

2 λm+ι

or

Comparing this with Eq. (5.10), we see that

^^ = 1 _^«Am^O. (5.11)
Tm 1 K

On the other hand,

(5.12)
ψ°(2m) τm_,...τ0

 m

with a suitable finite c, since xm]R. Equations (5.11) and (5.12) together with Eq.
(3.32) give

-
l — K w->oo k = i ψ
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Proof of Proposition 6. For E e S we may write

(5.13)2/φ°(2*)l
+l J

see Eqs. (3.32), (3.33) and the preceding lemma.
τm/τ2 _ ί tends monotonically to R from below, thus for any K < R there exists

N such that
τw>Kτ^_ 1 if m>N.

Iterating this inequality we find

τM>^(KτWo)2m-mo (5.14)

for any w0 Ξ> Λf and any m > m0. Since τm tends to + oo (Proposition 3), m0 can be
chosen so that Kτm o>l. From (5.12) and (5.14)

φ°(2-)>τm>-ί(XτWo)
2w-wo, (5.15)

that is, ψ°(n) grows exponentially.
Fix now F(0) = λ/(l -£). Then (5.13) and (3.29) yield

i.e. ψe decays exponentially on the sites 2m. In particular,

φe(2m)/φ°(2m)-»0, m_»00 (5.16)

There are two possibilities. If ψe is square summable then E is an eigenvalue of the
operator H. Iϊψe is not square summable then by (5.15) and (5.16) the condition
(5.1) holds true for any solution of Hψ = Eψ. In this case Lemma 7 applies,
E E σ(H)\σpp(H). In both cases, E e σess(H). Indeed, the potential is ergodic and limit
periodic so that σ(H0 + 7(ω)) = σ(H) for all ωe/ 2 and by Pastur's theorem [22]
(τ(H) = (7ess(if).

If 7(0) Φ A/(l - R) then S C σess(H') remains valid, however (5.16) will be replaced

tpe(2w)/ιp°(2w)->- -—- -7(0) φO
2L1-R J

as m-κx). Any solution of H'ψ = Eψ can be written as

therefore any solution grows exponentially at least at one side. Π

Notice that we did not prove that S is nonempty. S = 0 may eventually happen
to be true.

We define periodic approximations to H by

Hn = H0 + V n , (5.17)

where Vn is the periodic potential determined by Eq. (2.2). As it is well-known,

(5.18)



662 H. Kunz, R. Livi, and A. Sύtδ

since Mn is the transfer matrix associated with the periodic Schrόdinger equation
Hnιp = Eψ.

Proposition 7.

Sn U <W = 0. (5.19)

Proof. If {τn} is an S-type sequence then it satisfies (4.3), so that

) = 0 for

0) = 0 is equally true, for |τ0|^2 and {τπ} unbounded implies that {τn} is
U j -type (cf. Lemma 4). Π

00

Numerical calculations (Fig. 3 a) seem to suggest that for R < 1 the set (J σ(Hn)
n = 0

covers the whole spectrum σ(H) with the exception of the upper (λ > 0) or the lower
(λ<0) boundary, to which S would then be reduced. In any case, S is separated
from the lower (Λ>0) or from the upper (λ<0) part of the spectrum: F0 = 0,
therefore

while inf σ(H) > - 2 if λ > 0, and sup σ(H) < 2 if λ < 0.
For a self-adjoint operator A let

R\σμ). (5.20)

Lemma 9. For R < 1

Q(H)= Uf Π Q(Hn)\nt = lim ( f| Q(Hn)\nt> (5.21)

where Λ m t means the interior of Λ .

Proof. For #<1, {Hπ} and H form a family of uniformly bounded self-adjoint
operators and, owing to Eq. (2.3), Hn converges to H in norm. Thus Hn-+H also in
the norm resolvent sense and

is a way of writing what Theorem VIΠ.23a of Reed-Simon [23] states. The
inclusion in the opposite sense follows from Lemma 3 of [17] or from Theorem
VIΠ.24a of [23], since convergence in norm implies strong convergence. Π

Remark. Apart from the general theorem [22], there is a direct and easy proof that
for R < 1, σ(H) does not contain isolated points. Suppose that E0 e σ(H) is isolated.
Let ψ be the corresponding normalised eigenvector, Hιp = E0ιp, \\ip\\ = 1. Then by
the functional calculus ,

where

gz(/) = (<5ί,(z-H)-^ί), (5.22)
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and the integration is done on a contour Γ which separates £0 from the rest of the
spectrum. Using that Hn tends to H in the norm resolvent sense, one sees that gz(l)
and its integral over Γ is limit periodic which contradicts ιpel2.

If F(0) differs from λ/(ί — R) then isolated points may enter the spectrum. From
Eq. (5.21) we still have

\J σ(Hn)\ = lim elf U <WV (5 23)

where cl means closure. Notice that the right member of Eqs. (5.21) and (5.23) does
not depend on F(0).

The decomposition (5.4) and Propositions 5 and 6 show that for all R > 0,

Q(H)CU. (5.24)

Theorem 1. Let R<1. Then ρ(H)=U, i.e.

σ(H) = BuS = {Ee^\ {τn} is bounded or {τj is unbounded and τjτ^ ^-^ R} ,

(5.25)
the spectrum contains no isolated point and there is no eigenvalue in the domain

[-2,2]u 0 <W. (5.26)
n = l

// F(0) φ λ/(l — R) then σess(Hf) supports a purely continuous spectral measure class.

Proof. For £<1, Eqs. (5.3) and (4.6) yield

ί/ = {£eR|{τπ}isί/2-type}.

Define the open set

According to Definition 2, 0NCU2, and from Lemma 5 follows that 0N grows
monotonically and tends to U which is therefore open. Let E e C7, then EeON for N
sufficiently large. Since 0N C Q(Hn) for all n ̂  AT,

int

where we could take the interior part, 0N being open. The limit of this equation as
Λf-»oo yields

E7Cρ(fl),

where we used Lemma 9. This and Eq. (5.24) give ρ(H) = U which is equivalent to
Eq. (5.25). The eigenvalues, if any, belong to S. Their absence in the domain (5.26) is
a consequence of Proposition 7. If F(0)φλ/(l— R) then H'ιp = Eψ has no
/2-solution for EeBvS, as we have shown in Propositions 5 and 6. Therefore any
spectral measure restricted to

is purely continuous.
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In order to prove an analogous theorem for R ̂  1, we need the counterpart of
Lemma 9. Let Hr

n denote the restriction of Hn, defined in Eq. (5.17), to
with boundary condition φ(0) = 0.

Lemma 10. (i) σ(Hr

n) = σ(Hn).
(ii) For R^l, Hr

n tends to H in the strong resolvent sense.
(iii) For any R^l,

u(n
JV \ni!

n ρ(#n)YntCρ(/ί). (5.27)

Proof, (i) Let us observe that Vn is even: Vn( — k)= Vn(k). Indeed, from Eqs. (2.1) and
(2.2) Vn( -k)=V(-k) = V(k) = Vn(k) if k Φ / - 2", Vn( - 1 2") = 7(2") = Vn(l - 2").

Therefore σess(Hr

n) = σ(Hn), the latter being purely continuous. Suppose that
Hr

nφ = Eφ has a solution φ e /2(N). Then Hnψ = Eψ admits an odd solution such
that ψ(k) = φ(k) for fc>0, and hence tpe/2(Z). This however contradicts the
continuity of the spectrum of Hn. Thus, the spectrum of Hr

n is also continuous and
the two spectra coincide.

(ii) Let ze(C, ImzΦO and ψe/2(N). Then

where ψ' = (z— H)~1ψ. Now

k=l

|F(m 2>'(m 2',n\|2

^ Σk = 2n+ί

which goes to zero as n goes to infinity, because ιpf e D(H\ the domain of H.
(iii) Using (ii) and Theorem VIΠ.24a of [23] one obtains

UfΠ
N \n^N

But ρ(Hr

n) = ρ(Hn) as we learned from (i), whence (5.27) follows. Π

Theorem 2. Let jR^l. Then ρ(H)=U, i.e.

σ(H) = B = {E e R | {τn} is bounded} , (5.28)

and the spectrum is purely singular continuous.

Proof. lϊR^l then R = £u 17. Since ρ(#) C I/ [see Eq. (5.24)], it remains to prove
that UCρ(H).
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For R ̂  1 we obtain from Eq. (4.6) and Definition 1 that

ί/ = {£eR|{τM}is I7rtype} = (J QN= lim QN,
N-+OO

where

βN = {£eR|τ j V>max{τJ_1-2,2}}.

The sets QN are open which shows that U is open. Let E e 17, then EeQN for TV
sufficiently large. Since QN C Q(Hn) for all n ̂  N, we find

Equation (5.27) then implies QN C ρ(H) for all N, from which U C ρ(H) is obtained as
N goes to infinity. B is a closed set and, according to Proposition 5, it supports a
purely continuous spectral measure. A recent theorem by Simon and Spencer [26]
asserts that H0 + W has no absolutely continuous spectrum if both { W(ή)}^ x and
[W( — n)}™= i are unbounded. This theorem applies to our case, thus the spectrum
is purely singular continuous. Π

We may summarize what is common in Theorems 1 and 2 as follows.

Corollary of Theorems 1, 2. For any R>0,

σ(H) = R\l7, (5-29)

and there is no isolated point in the spectrum.

6. Cantor Spectrum, IDS and Gap Labelling

The entire discussion of this section is based on the fact that we know explicitly a
dense set in the spectrum: the zeros of the polynomials τn(E). We stress that such a
knowledge is quite unusual in direct (not inverse) spectral problems exhibiting
Cantor spectra.

Let us consider the Dirichlet problem on the internal [1,2n — 1] assigned to H.
More precisely, let H% be given by the semi-infinite matrix

(H^y={θ,y' otherwise.'

The solution of H»=Eip in the interval [l,2n —1] corresponds to the solution of
H\p = E\p with boundary conditions ψ>(0) = ψ(2n) = 0. Due to the translational
symmetry (2.1) of the potential and to the "decoupling" at the sites / - 2", H% is the
infinite direct sum of the copies of a finite rank operator with 2Π — 1 eigenvalues of
multiplicity 1. The spectrum of H% consists of these 2" —1 points, each being a
simple zero of the polynomial ψ°(2n)(E): the condition ψ(0) = 0 singles out ιp° given
by Eq. (3.26).

Let Hr denote the restriction of H to {ψ(n)} ™= x with boundary condition
φ(0) = 0. By our convention, Hr = H for R^l.
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Lemma 11. For all R>0, the spectrum of Hr is purely continuous and

Proof. Any eigenvalue of Hr would belong to U or S, and ψ° of Eq. (3.26) would be
the corresponding eigenvector. However,

diverges if E e U or E e S. Therefore σ(Hr) is continuous. The potential V is even,
hence σess(H) = σess(Hr). The result follows from the absence of isolated points in
both σ(H) and σ(Hr). Π

Lemma 12.

(i) σ(HΪ)= V {EeR|τ fe(EHO}. (6.1)
fc = 0

(ii) For any R > 0, H% tends to Hr in the strong resolvent sense.
(iiϊ) For any R > 0,

Off] Q(HΪ)}ίnίcρ(H). (6.2)

Proof. Equation (6.1) is an immediate consequence of φ°(2II) = τ I I _ 1 . . . τ0 [see Eq.
(3.29)]. The proof of (ii) is analogous to that of (ii) of Lemma 10. One uses

(w D , or y = / 2»,
(H -

and the estimate

||(H'-ff>Ίl = Σ
1=1

-»0 as rc->oo,

where ψ' = (z — Hr)~1ψ, ImzφO and φe/2(N). Equation (6.2) follows from (ii) via
Theorem VIIL24a of [23] and from Lemma 11. Π

Proposition 9. For any R>0 and any N ̂  0, the zeros of the polynomials {τn(E)}n ^ N

are dense in the spectrum of H.

Proof. According to Eq. (6.1) the claim is

cl(0 σ(HΪ)\=σ(H). (6.3)
\n*N )

Now σ(H%) C σ(H) for all n, see Proposition 5. The spectrum is closed, thus C holds
in Eq. (6.3), and 3 follows by complementing Eq. (6.2). Π

Let En(k\ /c = l,2, ...,2" be the zeros of τn(E) in increasing order. Such an

ordering is possible, because of

Lemma 13. The zeros of τn are real and simple,

£„(!)< EΠ(2)<...<EM(2«).

Moreover, En(k) = Em(ϊ) if and only if n = m and k = L
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Proof. The first part follows by analogy from the Floquet theory of second order
differential equations [24]. In the present case the complete proof is obtained by
counting the - real and simple - eigenvalues of the Dirichlet problem: Denote the
zeros of φ°(2m) by

eJ,\)<em(2)<...<em(2™-\).

Then
m-l

^l= U W0}f=i (6-4)
n = 0

can be seen from Eq. (3.29). Equating the cardinalities we find the result. Π

Let us compute the derivative of τn + 1(E) at a zero of τn(E). Equation (3.23)
yields

< + ι= (2τ; - λf

n)τn - λnτ'n = - λnτ'n Φ 0 . (6.5)

Indeed, the preceding lemma and Eq. (3.25) imply that neither τ'n nor λn vanishes if
τn = 0. This leads to

Proposition 10. Each zero En(k) is at the edge of a spectral gap of H and of Hn+m for
allm^l.

Proof. Fix E = En(k). Then τn = 0, τn + 1 = - 2 (cf. Lemma 2) and τ'n+ 1 φ 0 [Eq. (6.5)].
Suppose e.g. τ'n+ί <0, then there exists ε>0 such that

τπ+1(E)<-2 if E e (£,(*), EΛ(

For all these energies {τm} is l^-type (see Lemma 4), so that

m = l

On the other hand, En(k)e (°) σ(Hn + m)r\σ(H) which shows that En(k) is a lower
m = l

gap-edge for all these operators. For τ'n + 1>0 we find that it is an upper gap-
edge. Π

Theorem 3. For all R > 0 the spectrum of H is a Cantor set.

Proof. Combining Propositions 9 and 10 one obtains that the gaps oϊH are dense
in the spectrum: For any Eeσ(ίf),

inf |E-E'| = 0.
£'e 17

Therefore, the gaps are dense everywhere. Π

We keep exploiting Proposition 10 to describe the gap structure in detail.

Proposition 11. The zeros of ψ°(2n) separate the zeros of τn,

En(k) < en(k) < En(k +1), k = 1,.., 2" -1. (6.6)

The two sets of zeros together form the set {en+^(k) \ k = 1,..., 2"+ 1 -1} of the
zeros of ιp°(2n + 1). This leads to the following
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Corollary. For rc^l,

En(k) = en+m(2m-\2k-l)), all m ^ l . (6.7)

Proof. By noticing that in Eq. (6.6) we order, in fact, the zeros of ψ°(2n+ l), we find

and

Replacing in the latter equation n by n+ 1 and k by 2k — 1 we obtain

as claimed. Π

Proof of Proposition 11. We use the fact that Pk(E): = ιp°(k + !)(£) form a set of
orthogonal polynomials relative to some measure (the spectral measure for Hr

generated by dj. By Theorem 3.3.3 of [21], in the open intervals (-00, £„(!)),
(en(\\ en(2)\ . . ., (en(2n - 1), + oo) there is at least one zero of ψ°(2n + 1). Since the zeros
of this latter are en(l),...9en(2n-ί) and £„(!), ...,En(2n\ one obtains

en(l), en(2n-l)<En(2»),

en(k)<En(k+l)<en(k+l), fe = l, ...,2"-2,

which is equivalent with Eq. (6.6). Π

Proposition 12. ^4// ί/ze zeros En(k) are lower gap-edges if λ > 0 and upper gap-edges
if λ<0 for H and for Hn+m, m^l (see Fig. 3).

Proof. According to the proof of Proposition 10, the above claim is verified if

τn = 0 implies sgnτ^ + 1 = — sgnλ. (6.8)

Now for n = 0, τ\ = — λτ'0 =—λ, and (6.8) holds true. For n > 0, τn is a polynomial of
even degree, hence

sgn<(Eπ(0) = (-!)', /=!,.. .,2". (6.9)

-2

-2

X *• -X- -*•

Fig. 3a and b. The spectra of the periodic operators Hn for « = 0,...,4. a A = l, ^ = 0.5; bλ
R = 1.5. The zeros of τn are marked by crosses
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On the other hand, φ°(2B) is an odd (2n — 1) degree polynomial with principal
coefficient 1 for n > 0. It follows from Proposition 1 1 that

sgnφ°(2-)(£ll(0) = (-l)1, /=!,. . .,2". (6.10)

Replacing λn in Eq. (6.5) by its expression (3.28) gives

< + 1=-ARV(2")< if τw = 0.

This together with Eqs. (6.9) and (6.10) proves (6.8). Π

In this way, we found an everywhere dense set of spectral gaps

for n ̂  0 and k = 1, . . ., 2n. Equations (6.6) and (6.7) show that the relative position of
these gaps is the same as that of the gaps in the classical triadic Cantor set C: The
Vhlevel gaps" {Ink}%= x correspond to the T gaps of length 1/3" + 1 of C. The gaps at
a given level alternate with all those at lower levels.

There is an even deeper similarity with the triadic Cantor set. Let Jnk denote the
kth gap of the length l/3"+1 of C:

etc. The prototype of singular continuous measures is a measure dα supported by
C, where α is the Cantor function:

2k— 1
Φ)=-2ΪPFΓ ίf xεjnk (6.12)

and α extends continuously to [0,1] (cf. [23]). Below we show that a similar
equation is valid for the integrated density of states (IDS), where Ink replaces Jnk of
Eq. (6.12). This does not suggest however that the density of states would be
singular continuous !

Let us recall the definition of the IDS. Let P^^^A) denote the spectral
projection of the self-adjoint operator A to (— oo,£]. Then the IDS

= lim - £ (δ^P^^A^d (6.13)

provided that the limit exists. In the present case, the restriction of the summation
to /^ 1 has no effect on the result. For R < 1, due to the convergence in norm of Hn

to tf, ΛΊH] exists and

On the other hand, one proves easily that for any R,

uniformly in E. [Use the alternance between the zeros of τn— 2cosθ and those of
tp°(2").] Therefore

= lim ./r[ffft(E) (6.14)
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agrees with the IDS if R < 1. We show that Jf(E) exists also for R ̂  1 and we will
consider it as a definition of the IDS.

Theorem 4. For any R > 0 the IDS exists, it is continuous and

2/c-l
V Eelnk. (6.15)

Proof. Consider the definition (6.13) for A = H%. Since

P^£) = (5«,P(-oo.jrt(Hf)*i)

is 2M-periodic in /, the limit over L exists and

By Proposition 11,

max{k\en+ί(k)^E}-2max{k\en(k)^E}=0 or 1.

As a consequence,

Now 1 is a uniform upper bound, therefore the limit (6.14) exists for all EeR.
Again, by Proposition 1 1

J^H, all m^O,

thus

^(en(k))=~, H ^ l , k=l,...,2"-l. (6.16)

Jf(E) is monotonically increasing, it is between 0 and 1 and its range contains the
set (6.16) which is dense in [0,1]. Therefore *V(E) is continuous. Finally, from Eqs.
(6.16) and (6.7),

2k— 1
^(En(k)) = ̂ (en+ι(2k-l))= —π . (6.17)

The gap InkCU is disjoint from the set of zeros (em(ΐ)}, so that ^{H^~\(E) is
constant in Ink for all N. By the convergence, Jf(E) is also constant in Ink and, due
to the continuity, it equals (6.17), the value at the gap edge. Π

Now we turn to the problem of the completeness of the gap labelling. A discrete
periodic Schrόdinger operator with period Lmay have at most L— 1 spectral gaps.
Therefore the periodic approximant Hn may have at most 2n — 1 gaps.
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Proposition 13. Hn has 2" — 1 spectral gaps. The set of its gaps is

where

if
if

Proof. Each Em(k) is at the border of a spectral gap I$k for Hm+h all /^ 1: this was
shown in Proposition 10. By simple counting, this statement is equivalent with the
claim that Hn has no missing gap. Π

The above proposition establishes a genealogy of a gap Ink oϊH: I(

n\\ I(

nl\ ... are
the consecutive precursors of Ink. In fact,

in the sense that

nk i->00 nk

(6.18)
ank=lima§ if λ<0.

ί-»00

The reader can easily convince himself that the monotonicity property of Uί -type
sequences really implies the convergence (6.18).

Since the family of the gaps of all Hn has no other limit points in the above
sense, one is tempted to conclude that all the spectral gaps of H have been found
and are included in {Ink}. This, however, may be wrong. One can imagine, for
instance, a gap (α, b) for H of the form

The best we can say is

Theorem 5. Let R<1 and (a,b) be a spectral gap of H. Define £ = [-2,2]
00

u (J σ(Hm). // α6X (case λ>Q)orbeΣ (case λ<0) then (α, b) = Ink for some n, k.
m = l

Proof. We give it for λ > 0. Clearly a e σ(H). Suppose that α e σ(HN) for some N ̂  0.
Then

αε Π σ(HN+m),
m = 0

otherwise we would get a e U from Lemma 4. Any σ(Hn) is composed of 2" closed
intervals. Let BN+m denote the interval of σ(HN+m) containing a. The upper border
uN+m of BN+m cannot fall in (α, b): Indeed, it is in σ(H\ because uN+m is a lower gap-
edge for HN+m and thus, by Proposition 13, uN+m = En(k) for suitable n,/c. If

BN+m 3 (α, b) for all m ̂  0, then (α, b) C Π σ(HN+J C σ(fl) [cf. Eq. (5.23)] which is a
m = l

contradiction. In this way, there exist m,n,k: a = uN+m = En(k) implying
(α, &) = /,*. D
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Let us remark the parallelism between Theorem 5 and Proposition 7. In both
cases the knowledge that (J σ(Hn) covers σ(H) would mean a great simplification:
S = 0 and the completeness of the gap labelling for R< 1.

7. Lyapunov Exponent

For x ̂  1 integer let

T(x) = AxAx-l...Al9 (7.1)

where Ak are the transfer matrices defined in Eq. (3.10). Take e.g. the matrix norm

. (7.2)
i = 1 , 2

Note that det T(x)= 1, hence || Γ(x)|| ̂  1 and

α(xHln||Γ(x)||^0. (7.3)

The Lyapunov exponent is defined as lim α(x)/x provided that the limit exists.
jc-»oo

Since

||T(x)||= sup \\ΨX\\, ||yj = M* + l)l + lv>(x)l
| | « F o l l = ι

[cf. Eq. (3.14)], the Lyapunov exponent yields the maximal rate of increase of wave
vectors as x->oo. In our case, x-> — oo gives the same result. Let

Proposition 14. γ = lim ym exists and
m->oo

lim sup α(x)/x = y . (7.4)
χ-» oo

Proof. Taking the norm of Eq. (3.15) and dividing by 2m+1 we obtain

ym+^ym+Amβm+i (7.5)
with

We define a sequence xm by setting

7m = x m + m

fc =

Replacing this into (7.5) we obtain

•^rn+1 =xm '

For any #>0, ^ Δk/2k+i is convergent. By Eq. (7.3) yw^0, therefore
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and limxm exists. Thus,

2k+^0 (7.6)
fc = 0

exists as well. Let now x ̂  0 integer. In diadic representation,

x= £ xk2
k, x f ce{0,l}.

Due to the symmetry (2.1) of the potential,

(7.7)
k = 0 / \k>n

for any n^O. With a repeated application of this factorization we get, by setting

T(x)=T(x02°)T(x12
1).... (7.8)

After taking the norm, passing to the logarithm and dividing by x we find

X X k^O X k^
(7.9)

Let ε > 0 be arbitrary, then there exists an integer n such that yk ̂  y + ε if k> n. We
can continue the estimate (7.9) as

°^ί- Σ xka(2")+- Σ xk2
kyk^ + ε+ί- Σ a(2k}.

X X k = Q X k>n X k = 0

Take now the limits x-^oo and then ε->0 to find

limsup - rgy.
x-^oo X

However, 7 = limα(2")/2", so that (7.4) is verified. Π

Theorem 6. The Lyapunov exponent exists and is zero: in σ(H) if -R^l, and in
σ(H)\Sif R<ί.

Proof. σ(H) for R^ 1 and σ(H)\S for R< 1 agree with B, see Theorems 1 and 2.
According to the former proposition, we have to show that y(E) = 0 if EE B, i.e.
{τm(E)} is bounded.

We can express M2

m from the characteristic equation of Mm and insert it into
Eq. (3.15):

Ί _ λRm\
(τmMm-l). (7.10)

Let τ^ |τm|, all m. In Eq. (7.10) let us take the norm then the logarithm and finally
divide by 2m+1. We get

I n τ l Jt ] 1
2
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Letting m go to infinity, the inequality becomes

which shows that y = 0. Π

Let us recall that for R ̂  1 the spectrum is purely singular continuous, so that
the theorem implies singular spectral measures and zero Lyapunov exponent.

8. Asymptotic Behaviour of the Gap-Edge States

Apart from the global information given by the Lyapunov exponent, more details
can be obtained about the asymptotic behaviour of the solutions oϊHψ = Eψ with
E being a zero of a τm. As we have seen in Sect. 6, such an energy is a lower (if λ > 0)
or upper (if λ < 0) gap boundary. From the Floquet theory it is known that among
the gap-edge states of any one dimensional periodic Schrodinger equation there is
a unique [up to factor] periodic or antiperiodic solution, and the others increase
linearly. We may compare this with

Proposition 15. Let τm(E) = 0 and ψ be a solution of Hψ = Eψ.
(i) // φ(0) = 0 then φ(/c + 2m+1) = -ψ(k) for all keZ.

(ii) // tp(0) φ 0 then ψ(2l 2m) = ( - 1 ) zφ(0) and

ϊ-»oo
Hog2/, Λ = 2, (8.1)

o2

Proof. According to the assumption,

and 0 = τm = αm,0 = αm(2/+l), all

ιp(2l 2m)= -ψ((2l-2)2m)= ... =(-l)V(0), (8.2)

see Eqs. (3.5), (3.8), and (3.1 1). Set at first ψ(Q) = 0, then ιp(l -2m+l) = 0, all I e Z, and ψ
does not depend on the value of the potential at the sites / 2m+ 1. Thus, ip solves the
2m+ x -periodic Schrodinger equation

Hm+,ιp = Eψ. (8.3)

By Lemma 2, τm + 1 = — 2, so that (8.3) has an, up to factor, unique antiperiodic
solution [24]. From Eqs. (2.1) and (2.2)

VH(l 2n-k)=Vn(l' 2» + k) (8.4)

for 1,1'eZ and fc = 1 , . . ., 2" — 1. Writing Eq. (8.4) for n = m + 1 one sees easily that ψ
is in fact antiperiodic.

Let now φ(0) φ 0. Then Eq. (8.2) shows that ψ is bounded oscillating at the sites
2/ 2m. On the other hand, from Eqs. (3.11) and (8.2),

2") = αm(2/)φ(2/ - 2m)-ιp((2l- 1)2™)
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and after repeated application one obtains

k=l

Replacing am(2k) by its expression (331) and using τm = 0 this equation becomes

φ((2/H-l)2m)-ιp(2m)-tp(θμm(-l)z Σ /(ord(2fc)). (8.5)
fe=l

The density of integers of order m among the even numbers is l/2m [cf. Eq. (2.8)],
therefore

I [log22I] I

Σ /(ord(2fc))= Σ /(w) Σ W*>.»
k=l m=l k=l

[log22J]

« / Σ /N/2m. (8.6)
z"*°° m=l

m-1

Setting/(m)= Σ ^fc

? Eq. (8.1) follows after simple calculation. Π

That something happens at 11 = 1, can be noticed only by looking at the
corrections to the asymptotic formula (8.1). These can still be obtained from Eq.
(8.6) and are respectively of the order of I//, Iog2ί and Zlog2* for R< 1, R = 1 and

9. An Explicit Formula for the Green's Function

We know that the diagonal part of the Green's function

is limit periodic when R < 1, see the remark subsequent to Lemma 9. This implies
that it should be possible to write

GJ(x,x) = Σ Gΐ\x,x), (9.1)
n = 0

where G(?\x, x) is a function of period 2" of the variable x.
We are now going to derive such a formula which will give an "explicit"

solution for the Green's function. At this stage, however, we will make no claim of
rigor, and our expression will be a formal one.

Let us define the function F(x, θ) by

2π Λ/3

Gz(x,x + r)= J — f(χ,0y». (9.2)
0 2M

It should satisfy the linear equation

-z)F(x,θ) = l. (9.3)

Note that if the potential is almost periodic then so is F, with the same frequency
module. Our potential has the form

oo

7(x)= Σ vn(x), (9.4)
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where vn(x) is of period 2",

λ
V0(X) =

1-R'
(9.5)

We look for a solution of (9.3) of the form

F(x,θ)= Σ /»(x,0) (9.6)

with fn(x) of period 2". Using the explicit form (9.5) of the potential one can see that

V(x)F(x)=V(x)F(0)+ Σ [/B(x)-/»(0)] Σ u/*) (9.7)

Φn(*) = Σ [#»(#) - ]̂ " '(^ V) {(z - 2 cos θ)fn(0) - vn(y)F(0)} . (9.9)
y = 0

Here HΛ(Θ) is the Hamiltonian defined by

n=0

Equation (9.3) then gives after some computation

P(x-l)+Wn(x)φ(x) (9.10)

in [0,2Π —1] with periodic boundary condition, and

n

Wn(x)= Σ v{x). (9.11)
j=o J

Defining

Kn(x)= Σ (Hn(θ)-zΓ\x,y) (9.12)

and

**(*)= V (H^-zJ-Hx^Kίy), (9.13)

we see that for n^l,

Inserting this expression and (9.8) into the definition (9.6) we get the following
expression for F(0),

oo T C\\

'o-z. (9.15)
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This "solves," in principle, the problem we posed. We now express F(0) in a more
explicit form. For this, let us note that φn(x) is the solution of the inhomogeneous
equation,

= (z-2 cos 0)/ΛO) - υJίx)F(0) (9.16)

with φw(0) = 0. Since

when n^2, we can make a renormalization transformation of this equation by
eliminating odd sites. For n ̂  2, we get

e- i2 θφn(2x + 2) + e2ίβφn(2x - 2) + [Wn_ ,(χ) - z^φn(2x)

= (z2-4cos2θ)/n(0)-ι;;_1(x)F(0). (9.17)

Here z' = z2 — 2 — λz and W£_ ^ and v'n _ t are the same as W£ _ t and t;n _ t except that
λ has been replaced by λ' = zRλ. The variables z and i undergo the same
transformation as τm and λm earlier, see Eq. (3.23).

The condition φn(0) = 0 gives now

fjft,θ;λ,z) 1 1,̂ (0. 20; A'. zQ

' ' ' l ;

Let us define

gn(θ; λ9 z) = ' ' (z — 2cosθ). (9.19)

Then from Eq. (9.14),

and Eq. (9.18) transforms into the recursion formula

gn(θ; λ, z) = g«-1(20; A', z'). (9.21)

Using

U)=~> (9-22)

after n steps of iteration we obtain

:. (9.23)
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Since {z(m\ λ(m}} satisfy the recurrence equations (3.23), we may keep the earlier
notations,

7 _ τ 7(m) _r (m) _z — τ0 , z — τm , A — Λm .

With this identification we arrive at

For the Green's function this gives

2π dθ Γ /I 1 QO ii-l Ί-l

,r)= J — 2COS0-Z+— - + -— Σ λn Π (τm + 2cos2^)-1 xe"*,
0 ^π L 1— K 1— K n=ι m = o

(9.24)

a formula in terms of the renormalized energies, τπ and coupling constants, λn. To
give a rigorous meaning to this expression one should analyze the RG
transformation on the complex plane, a task which seems not to be easy.
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