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Abstract. We consider compactifications of eleven-dimensional supergravity
to five and three spacetime dimensions, on internal spaces K6 and K2 x K6,
where Kn denotes an ^-dimensional Kahler manifold. The compactifications
to five dimensions yield no surviving spacetime supersymmetries. However, we
find compactifications to three dimensions on S2 x K6 and T2 x K6 where K6

is Ricci-ίlat and Kahler (a Calabi-Yau space) wifh N = 4 supersymmetry. We
also discuss the massless spectrum.

The eleven-dimensional supergravity theory attracted much attention a few years
ago as a possible candidate for a unified theory of all the fundamental interactions,
including gravity. These original hopes seemed not to be realized in practice, and
with the growing surge of interest in superstring theory, work on eleven-dimensional
supergravity was largely abandoned. Recently, however, eleven-dimensional super-
gravity has been making a modest comeback, as a result of developments in
supersymmetric theories of higher-dimensional extended objects (p-branes) [1]. In
particular, the eleven-dimensional supermembrane seems to have the best chance
of being consistent at the quantum level, although at this stage the evidence is
only circumstantial. Tt has, however, survived consistency checks which appear to
fail for all the other super p-brane theories. As one might expect, the eleven-
dimensional supermembrane is intimately related to eleven-dimensional super-
gravity, in much the same way as the ten-dimensional superstring is related to
ten-dimensional supergravity. In particular, it can be embedded in an eleven-
dimensional supergravity background, and the three-dimensional supermembrane
action exhibits a local fermionic "SiegeΓ-symmetry if the background satisfies the
classical equations of motion of eleven-dimensional supergravity.

In the light of the renewed interest in d=ll supergravity as a possible
low-energy limit of the supermembrane theory, it seems appropriate to re-examine
the theory. In particular, just as superstrings emphasize the importance of
two-dimensional supersymmetric theories, so supermembranes emphasize the
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importance of three-dimensional supersymmetric theories. The bulk of this paper
will be concerned with some new compactifications of the eleven-dimensional
theory that give rise to supergravities in three dimensions. Interestingly, they
involve a combination of coset spaces and Calabi-Yau spaces for the internal
manifold, with the complex structure of the internal manifold playing a crucial
role. We shall also consider a class of compactifications to five dimensions which
were first described in [2]. These, however, appear to be of limited interest since,
as we shall show, the resulting theories are not supersymmetric. Both classes of
compactification illustrate a point that was not appreciated in the earlier work
on d = 11 supergravity, namely that spontaneous compactification can occur to
many more spacetime dimensions than just four or seven. Our solutions make
considerable use of the properties of Kahler manifolds, and some relevant
definitions and results are contained in an appendix.

Our discussion of the new solutions begins by considering the equations of
motion of d = 11 supergravity for a background in which the fermions are set to
zero. The bosonic equations then become

F2\ 0)
y pMPQR _ _Λ_pMi ' MsPQRj7 Ϊ7 Π\

where FMNPQ = 4d[MANPQ] is the field strength of the three-index photon AMNP.
There are various well-known solutions to these equations, describing ground-state
configurations of the form (AdS)4 x KΊ or (AdS)7 x K4, where (AdS)M denotes
n-dimensional anti-de Sitter spacetime and Kp denotes a p-dimensional compact
internal space. Discussion of the known solutions may be found in [3,4,5].

The first class of solutions that we shall consider corresponds to ground states
of the form (AdS)5 x K6, i.e. the product of five-dimensional anti-de Sitter spacetime
and a compact internal 6-manifold. We take K6 to be Kahler, so it admits a
covariantly-constant complex structure tensor Jm

n, satisfying Jm

nJn

p = — δm

p and
V m J/ = 0. (A 2n-dimensional Kahler space is a space whose holonomy group is
U(n) or a subgroup thereof.) Lowering the upper index of Jm

n yields an antisym-
metric tensor, the Kahler form Jmn, which is of course also covariantly constant.
We now make the ansatz that in the ground state the metric gMN takes the direct
product form, with gμv being the metric on (AdS)5 and gmn the metric on K6. For
the antisymmetric tensor FMNPQ we take all its components to be zero except when
all four indices lie in the internal space, in which case

where c is a constant. Since Jmn is covariantly constant, the left-hand side of (2)
is zero, while the fact that m, n range only over the six directions on K6 implies
that the right-hand side of (2) is zero too. Substituting (3) into the Einstein equation
(1), we find that the Ricci tensors Rμv and Rmn on (AdS)5) and K 6 respectively must
satisfy

Rμv = -2c2gμv, (4)

Rmn = 2c2gmn. (5)
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Thus we have a solution where the eleven-dimensional spacetime is the product
of five-dimensional anti-de Sitter spacetime and an Einstein-Kahler 6-manifold
K6 with positive Ricci tensor. Examples of such manifolds are CP3, CP2 x S2,
S2 xS2 x S2 and SU(3)/[U(1) x 1/(1)]. (The first three can be understood by
observing that S2 is CP1 and that all CPn are Kahler, while also direct products
of Kahler spaces are Kahler. The last case is obtained from CP2 x CP2 by imposing

3

the holomorphic constraint ]Γ zιωι = 0, where zι and wι are the holomorphic

coordinates of the two CP2 spaces.) On the other hand, G2/SU(3) = S6, S3 x S3

and S2 x S4 are not Kahler. For the first two of these, this follows from the fact
that their second Betti numbers are zero (recall that for a product manifold
Mί x M 2, the Kunneth formula for the Betti numbers bp(M1 x M 2) of Mx x M 2

is Γff br(M1)bp^r(M2)).
r = 0

Since the fermion field ΨM is zero in the ground state, the criterion for unbroken
supersymmetry is that it should remain zero after a supersymmetry transformation,
i.e. δ ΨM = 0, where

WM = DM*XI = VMεil+τh(ΓMNPQRFNP^-SfNPQFM

N^)ειl, (6)

and ΓM denotes the Dirac matrices of eleven dimensions. We make a decomposition
of the /^-matrices appropriate to the 11 = 5 + 6 split, by taking Γμ = yμ® ΓΊ and
Γm = 1 ® Γm, where yμ and Γm are the Dirac matrices on (Ads)5 and K6 respectively,
and ΓΊ = (ί/6\)εmnp9rsΓmnpqrs. Thus from the internal components of (6), the criterion
of surviving supersymmetry requires that

where the eleven-dimensional supersymmetry parameter is now written as ε®^,
and Fmnpq is given by (3). We need not consider the spacetime part of (6), since we
shall show that (7) admits only the trivial solution η = 0.

It is now a straightforward, although tedious, matter to calculate the integra-
bility condition [βm,Dn~\η = 0 that follows from (7). We find that

_ 1 Ώ ΓPΊ I"1 ϊ p ϊ q Γ
4 J v mnpg J Q x mn s m °n x pq

ic2 Me2

Q r « J mp ' J m 1 pn) Q ^ mn* Ί' \Q)

For the case when K6 is CP 3, with Einstein metric satisfying (5), the Riemann
tensor takes the form [6,7]

c2

Rmnpq = -J {QmpQnq ~ QmqQnp + JmpJnq ~ JmqJnp + 2^mn^pq)' (9)

One may check the relative signs and coefficients in this expression by verifying
that the cyclic identity is satisfied, and that Jmn commutes with Rmnpq as it must
since [Vm, V J J M = 0. Substituting (9) into (8) yields a set of 15 matrices Mmn
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labelled by m and n for which we need to find a zero eigenvector η, satisfying
Mmnη — 0, if there is to be any residual supersymmetry in this case. At this point
it is convenient to take the indices in (8) and (9) to be tangent-space indices, and
work in a basis where the non-zero components of Jmn are given by J12 — ̂ 34 =
J 5 6 = 1. Taking c2 = 72 for convenience, we note that in particular M 1 2 = 14JΓ

12 +
18Γ 3 4 + 18Γ 5 6 - 32/Γ7, and M 1 3 + M24 = - 10(Γ1 3 + Γ 2 4 ) , together with similar
expressions obtained by permuting the index pairs 12, 34 and 56. Imposing
Mmnη = 0, one readily shows from this that Γ12η = Γ34_η = Γ56η = iΓΊη, and hence
from M12η = 0 that the only solution is given by η = 0. Thus there are no surviving
supersymmetries if K 6 is taken to be CP3. As this is the most symmetrical of the
6-dimensional Einstein-Kahler spaces, it is presumably the one that would have
been most likely to have admitted Killing spinors. Although we have not checked
the other choices for K6, we consider it unlikely that any of them would yield a
supersymmetric ground state either.

We now turn to the case of compactifications of the form (AdS)3 x K8, where
(AdS)3 is three-dimensional anti-de Sitter space and K 8 is some internal 8-manifold.
Again, our ansatz will involve taking X 8 to be Kahler. It is tempting to try solutions
analogous to those we have just been discussing, in which FMNPQ is again taken
to have the form (3), where now the indices m9n,... range over the 8 dimensions
of K8. Unfortunately this does not work; the "MaxwelΓ'-type equation (2) is no
longer satisfied. This is because although the left-hand side is still zero by virtue
of the covariant constancy of Jmn, the right-hand side is now non-zero because
the 8 antisymmetrized indices can now take 8 rather than 6 values. (The Kahler
form is non-degenerate, since J2 = — 1, so the right-hand side, being proportional
to det J, is always non-zero if the free indices PQR lie in the (AdS)3 spacetime
directions.) We therefore look instead for solutions of a different kind, where K8

is itself the product of a two-dimensional and a six-dimensional Kahler manifold,
K8 = K2 x K 6 . We may now make an ansatz for FMNPQ in which the only non-zero
components are given by

1 aβcd — ct'aβJ cd>

where εaβ is the Levi-Civita tensor on K 2 (which is the same thing as the Kahler
form on K2) and Jcd is the Kahler form on K6. Our notation is that the index M
is split into μ on the three-dimensional spacetime (AdS)3, α on K2 and a on K6.

The over-antisymmetrization of α, β indices on the right-hand side of (2)
now ensures that the Maxwell equation is satisfied, so it only remains to substitute
(10) into the Einstein equation (1). We find that the Ricci tensors Rμv,Raβ and Rab

on (AdS)3, K2 and K6 must satisfy

Rμv=-2c2gμv, (11)

R*p = 4c2gaβ, (12)

Rab = 0. (13)

(AdS)3 may thus be taken to be three-dimensional anti-de Sitter spacetime, while
K2 and K6 are Einstein-Kahler spaces having respectively positive and zero Ricci
tensor. All 2-manifolds are Kahler, since the most general holonomy group in 2
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dimensions is SO(2) ~ J7(l), but only the 2-sphere admits on Einstein metric with
positive Ricci curvature. This follows from the fact that the Euler number for
2-dimensional compact manifolds (Riemann surfaces) is given by l/(2π)J<i2x
^fgR = 2 — 2g, where g is the genus, and is positive only for the sphere. Thus the
internal manifold K8 must be the product S2 x Y, where Y is a six-dimensional
Ricci-ίlat Kahler manifold, i.e. a Calabi-Yau space.

The next step is to determine whether there are any surviving supersymmetries
for this ground state. We begin by making an appropriate 11 = 3 + 2 + 6 split of
the eleven-dimensional Dirac matrices ΓM:

f α = l ® τ β ® l , (14)

f Λ = l ® τ 3 ® Γ β ,

where yμ,τα and Γa are the Dirac matrices for (AdS)3, S2 and Y respectively;
τ 3 = ( — ί/2)εα/?τα/] and ΓΊ = (i/6l)εmnpqrsΓmnpqrs. As for the previous compactifications
that we discussed, the criterion for unbroken supersymmetry of the ground state
is that there exist solutions of DMEXI = 0, where DM is given by (7). We now
decompose the super-symmetry parameter as a sum of terms of the form

ε 1 i=ε®ς®f7, (15)

where ε is an anticommuting supersymmetry parameter on (AdS)3, and ζ and η
are commuting spinors on S2 and Y respectively.

At this stage, it is useful to recall some properties of six-dimensional Calabi-Yau
spaces. Being Ricci-ίlat, and Kahler, the holonomy group is SU(3). This means
that there are two covariantly-constant spinors, one left-handed and the other
right-handed. This may be seen by noting that left- and right-handed spinors in
six dimensions transform respectively as the 4 and 4 of SU(4) (which is isomorphic
to Spin(6), the double cover of the SO(6) tangent space group). There is only one
embedding of SU(3) in 5(7(4), and the 4 and 4 decompose as 3 + 1 and 3 + 1
respectively. It is the two singlets in these decompositions that correspond to the
two covariantly-constant spinors on 7. Denoting the left- and right-handed
covariantly-constant spinors by η _ and η + respectively, we may choose conventions
such that they satisfy

JaTbη± = ±iΓaη±. (16)

These equations follow from the fact that Ja

bΓbη± are covariantly-constant
vector-spinors, and by looking at the decomposition of vector-spinors under
SU{4)->5(7(3), i.e. 6®4->8 + 6 + 3 + 3 + 3 + l a n d 6 ® 4 - > 8 + 6 + 3 + 3 + 3 + l,
we see that they must simply be constant multiples of Γaη±, since there is only one
singlet in each decomposition. The constants can only be + i, because Ja

b Jb

c = ~ δa

c,
and hence with a suitable choice of conventions we obtain (16). A direct consequence
of (16) is that

^ ^ ± = ± 6 / ^ = 6 / ^ ^ . (17)

With these preliminaries, we can now proceed to substitute (10) and (15) into
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(6), in order to determine whether there are any surviving supersymmetries
for these solutions. First we consider the case where the index M in (6) lies in the
Calabi-Yau directions, i.e. M = a. From the decomposition (14) of the Dirac
matrices, it follows that

5a = Va+ l{2(ΓaΓhcJ
hc - 6JabΓ

b). (18)

Thus using (16) and (17), we see that the /"-matrix terms in (18) cancel if we act
with Daonη±, and so since by definition η + are covariantly constant, they therefore
satisfy Daη± =0.

Next we consider the case where the index M in (6) lies in the S2 directions,
i.e. M = α. From (10) and (14) it follows that

/τβ, (19)

so taking η in (15) to be η±, and using (17), the requirement Dxειι = 0 reduces to

D«ζ = Vxζ + icε/τβζ = 0. (20)

The integrability condition for this equation is [5α,D i 3]ζ = ^Raβyδτ
yδζ —

2ίc2εaβτ3ζ = 0, which is indeed satisfied identically if the metric on the two-sphere
is taken to have its standard maximally-symmetric form, for which Raβγδ =
4c2(gaygβd — gaδgβy). (The normalization here is fixed by Eq. (12).) Thus (20) does
indeed have solutions, namely the usual Killing spinors on S2.

Finally, we consider the case where the index M in (6) lies in the anti-de Sitter
directions, i.e. M = μ. Now we find

5μ = vμ + ~yμrΊjabr
a\

and so again taking η = η±'m (15), and using (17), it follows that the requirement
Dμείl = 0 reduces to

The integrability condition lDμ,Dv]ε = Q for this equation is ^Rμvβσy
pσε +

(c2/2)yμvε = 0, which is satisfied identically if we take the metric on (AdS)3 to be
the anti-de Sitter metric satisfying (11), so that Rμvpσ = - c2(gμpgvσ - gμσgvp). Thus
there are solutions of (22) in which ε is a Killing spίnor on the three-dimensional
anti-de Sitter spacetime.

We have thus shown that there are indeed solutions of DMείl=0 in our
(AdS)3 x S2 x Y solutions, and so these correspond to supersymmetric ground
states of the theory. To count the number of supersymmetries, N, we note that
there are two Killing spinors on S2 satisfying (20) for each choice of sign, while
on Y there are the two covariantly-constant spinors η_ and η + , which are left-
and right-handed respectively. Bearing in mind that ΨM and ε11 are Majorana
spinors in eleven dimensions, while ζ and η± are complex, we must take appropriate
real combinations in (15). Taking into account that the signs in (16) and (20) are
correlated, the result is that the effective three-dimensional theory on (AdS)3 has
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N = 4 supersymmetry. Since the Killing spinors ζ on S2 transform as doublets
under the SU(2) isometry group of S2, the supersymmetry parameters in three
dimensions transform as 2 + 2 under SU(2). The way in which the supersymmetry
arises in these solutions, involving as it does the interplay between the Killing
spinors on (AdS)3 and S2 and the covariantly-constant spinors on the Calabi-Yau
space Y, is very different from that seen, for example, in Freund-Rubin solutions
of the theory [4]. In particular, it is interesting to note that unlike the Freund-
Rubin case, the relative sign between the two terms involving FMNPQ in (6) is crucial
for the existence of supersymmetry.

In three dimensions the anti-de Sitter group is SO(2,2), which is isomorphic
to SΌ(2,1) x SΌ(2,1). It therefore follows that the N supersymmetries in three-
dimensional anti-de Sitter theories really take the form of (p, q) supersymmetries,
p + q — N, where p and q label the representations under the two SO(2,1) factors.
The integers p and q corresponds to the numbers of positive and negative
eigenvalues in the gravitino mass matrix, or equivalently, the numbers of positive
and negative coefficients of the yμ term in the three-dimensional gravitino
transformation rule δφμ = Vμε — c/2yμε (see (22)) [8]. Thus in our case, since all
four Killing spinors satisfy the same equation (22), it follows that our three-
dimensional theory has (4,0) supersymmetry. (The choice (4,0) rather than (0,4)
is purely conventional.)

To determine the full spectrum of massless and massive states for these
compactifications would be quite an involved calculation, analogous to those that
have been carried out for Freund-Rubin compactifications, except that here the
more complicated structure of the solutions makes things more difficult. We shall
not carry out such an analysis here. Even to determine the massless spectrum is
non-trivial because unlike, for example, the seven-sphere Freund-Rubin compacti-
fication, the effective three-dimensional supergravity theories that we obtain here
contain reducible massless representations of the super-de Sitter group. What is
immediately clear is that included in the massless spectrum are the graviton, four
gravitinos and the three gauge bosons of the SU(2) Yang-Mills group correspond-
ing to the isometry group of the 2-sphere. In addition, there will be massless states
associated with zero modes on the Calabi-Yau space 7, together, possibly, with
further massless states coming from spherical harmonics on <S2.

In order to disentangle the various sources of massless states for these
compactifications, we adopt the following strategy. First of all, we note that massless
states associated with zero modes on Y can be divided into two categories. On
the one hand there are those that will arise for any choice of Calabi-Yau space,
while on the other hand there are those that depend upon the particular choice
for Y that one happens to make. Those zero modes in the former category comprise
the two covariantly-constant spinors η±; the Kahler 2-form Jab; the complex 3-form
of type (0,3) that corresponds to the totally antisymmetric holomorphic tensor
εABo where Λ,B,,.. are 3-valued complex indices, and its (3,0) complex conjugate
ε^Bcl t r i e vector-spinors Γaη±; and the constant scalar mode. In the second
category are the additional zero modes on Y associated with additional harmonic
forms of type (1,1), (1,2) and (2,1) that are not covariantly constant. The numbers
of such modes depend upon the specific choice of Calabi-Yau manifold. The modes
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in the former category are characterized by the fact that they are all covarίantly
constant, while those in the latter category are not. As discussed in [4], this means
that one can always consistently truncate the full non-linear theory to just those
states associated with the covariantly-constant modes. This is because the set of
covariantly-constant harmonics is closed under multiplication, i.e. on one can
never generate non-covariantly constant harmonics by multiplying covariantly-
constant ones together. Thus even at the non-linear level, we may if we wish
separate the discussion of the zero modes into the two disjoint categories.

The other device that we adopt in order to simplify the discussion is to note
that whenever one has a lower dimensional supergravity theory obtained by
compactification on a sphere, the number of states of each spin in the massless
multiplet is always the same as one would obtain by making a humble torus
compactification instead. Thus, for example, by compactifying from d = 11 to d = 4
on TΊ rather than SΊ (with the Freund-Rubin "mass" parameter set to zero), one
obtains the same numbers (1,8,28,56,70) of states of spins (2,3/2,1,1/2,0), the
difference being that the theory resulting from the torus compactification is
ungauged rather than gauged. Of course the origins of the various massless states
may differ between the two cases, but not the total numbers of states. Thus, for
example, the 28 gauge bosons in the SΊ compactification all come from the 5Ό(8)
Killing vectors on the seven-sphere, whilst in the TΊ compactification 7 come from
the [£/(l)]7 Killing vectors on the torus and the remainder come from the 21
harmonic 2-forms on T 7.

Thus for our compactifications we may temporarily set the constant parameter
c in (10) to zero, and take the internal space to be T2 x Y rather than S2 x Y, in
order to count the states in the massless sector of the three-dimensional theory.
As discussed above, we shall truncate out the zero modes associated with
non-covariantly constant harmonics on Y. Thus the counting of massless states
coming from T2 x Y is as follows: From the metric gMN we obtain the graviton
gμv, two abelian vector fields associated with the two [/(I) Killing vectors on T2,
and four scalar fields coming from the three constant symmetric tensors on the
flat T 2 metric and the metric of the Calabi-Yau space Y. From AMNP we obtain
b2 vector fields corresponding to the case where two of the indices are internal,
and b3 scalar fields corresponding to all three indices being internal. Here b2 and
b3 denote the "effective" second and third Betti numbers of T2 x Y, by which we
mean the numbers of harmonic two and three forms associated with the
covariantly-constant modes on Y which are the only ones we are retaining in our
truncation. From the Kunneth formula for the Betti numbers of product manifolds,
we see that b2 = 2 and b3 = 4. For the fermions, when M lies in spacetime ΨM

yields the four gravitions discussed earlier, and when M lies in the internal space
we have a total of 12 covariantly-constant vector-spinors on T2 x Y, arising as
four complex vector-spinors on T2 (namely the two Killing vectors times the 2
complex covariantly-constant spinors) times the two covariantly-constant spinors
η+ on Y plus the two covariantly-constant spinors on T2 times the two vectors-
spinors Γaη± on Y. This gives 12 spin 1/2 massless fields. These results are
summarized in Table 1.

Bearing in mind that we are in three dimensions, so that a graviton has no
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Table 1

Spin

2

3/2
1

1/2

0

Numbers of massless

T2 xK6

1
4

4

12

8

modes

S2xKb

1

4

9
12

3

degrees of freedom and a massless vector has only one degree of freedom, we see
from Table 1 that the number of on-shell bosonic and fermionie degrees of freedom
do indeed match, i.e. 12 + 12. In fact a massless vector in three dimensions is really
equivalent to a scalar field, since its field strength can be written as the dual of
the gradient of a scalar. One might expect that in the S2 x Y compactifications
that we are really interested in, the numbers of vectors and scalars differ from
Table 1, although the total number of vectors plus scalars will be the same. The
12 scalars are just what one needs for a scalar coset manifold SO(N,ri)/[SO(N) x
SO(n)'] with N = 4 and n = 3[9]. Upon gauging one expects therefore 6 + 3 = 9
vectors and 3 scalars. As a check on our previous results for T2 x K6, we consider
the massless spectrum of bosons for the S2 x K6 compactification. The metric gMN

gives one graviton, three vectors from the Killing vectors on S2 and one scalar
from the dilation mode of K6. From ΛMNP we get six vectors, namely three from
JabΦ and three from εaβΦ, where Φ denotes the three conformal scalars on S2. In
addition, there are two scalars from the εABC and ε ^ on K6. This massless
spectrum is also given in Table 1, and agrees with that on T2 x K6, bearing in
mind the equivalence of vectors and scalars discussed above. The full massless
spectrum will thus comprise the states listed in the table, together with additional
matter multiplets associated with the non-covariantly constant modes on the
Calabi-Yau space.

This concludes our discussion of compactifications of d = 11 supergravity on
Kahler manifolds. One could, of course, look directly at supergravity theories in
three dimensions, and work out further details of the massless sectors for the
theories that we have obtained. We shall not pursue this further here. For now,
we consider that one of the most interesting aspects of this paper is the say in
which various mathematical tools, including especially the use of Killing spinors,
play a role in the physics of Kaluza-Klein theories.

Appendix

In this appendix, we collect together some basic facts about almost complex,
complex and Kahler manifolds. We include a simple discussion, based on the use
of Killing spinors, of the non-integrable almost complex structure on S6. There
are several equivalent ways in which one can describe a Kahler manifold, and
depending upon the situation of interest one may find that one description is more
convenient than another. Since a Kahler manifold is in particular a complex
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manifold, one has the option of using n complex coordinates zα rather than 2n
real coordinates xm to parametrize points in the manifold. If we divide the real
coordinates into two sets of n, xm = (χ1

a

i χ2

a\ we may relate the real and complex
coordinate bases by choosing relations of the form zα = x^ + ix2oc. In terms of the
complex basis, one may write the metric in the form ds2 = 2g^dzasz\ where

gΛβ = dadβK(z9z), (Al)

and K(z,z) is the so-called Kahler potential. The Kahler form J may then be
written as J = lig^ dza A dzK

In practice, it is more convenient for our purposes to describe the Kahler
manifold purely in terms of the real coordinate basis. Thus we need the following
definitions. To begin, we define an almost manifold as a manifold of real dimension
In that admits an almost complex structure tensor Jm

n that satisfies

Jm

nJn

p=-δJ. (A2)

(Note that (A2) necessarily requires that the real dimension be even. This follows
by taking the determinant of (A2); (det Jm

n)2 = ( - l)d. Thus since the left-hand side
is positive, the dimension d must be even.) Next, we define an almost Hermitian
manifold as an almost complex manifold which admits a metric gmn such that

Λ W 0 M = 0mπ- (A3)

Combined with (A2), this amounts to the statement that the tensor Jmm obtained
by lowering the second index on Jm

p with gpn, is antisymmetric,

j mn ~ ~ J nm (A4)

This antisymmetric tensor may be viewed as a 2-form J,

J = ymndxmAdx\ (A5)

We define a complex manifold as being an almost complex manifold for which the
almost complex structure tensor is integrable, i.e. the Nijenhuis tensor, defined by

i\ m n —UmJn Vn

Jm "̂  J m J r ϋ q J n J n J r υ qJ m •> \ Ά Ό )

vanishes. (It is not a priori obvious that (A6) is a tensor, but one can, for example,
check that the partial derivatives may be replaced by covariant derivatives, by
virtue of the connection terms cancelling.) Similarly, we define an Hermitan manifold
as a complex manifold which admits a metric satisfying (A3).

A Kahler manifold may now be defined as an Hermitian manifold that admits
a metric such that the Kahler form (A5) is closed,

dJ = 0. (A7)

One can now show that the above definitions lead to the stronger result that in
fact J is covariantly constant. To see this, we first observe that (A7) implies that

VmΛ2p-V,Jm, + VpJm, = 0. (A8)
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Using Nmn

p — 0, we re-write the first two terms as

Using (A2), we may write this as

( J <1 J r _ / 9 J f\Γ7 j i U J _ J q j r/y / — VI ) 4-V f — Π ί A 1 Oϊ
\J m J n Jn Jm ) v qJrp ^ v p J mn ~~ Jm Jn \y qJ rp y rJ qp) ' v / m n ~ u K™1 u /

From (A7), we get

and hence
Jmq(VpJnVqr + ^ pJ mn = ® (A 1 2)

Finally, from (A2), we obtain

WpJmn = 0. (A13)

A nice example of an almost complex manifold where the almost complex
structure is not integrable is provided by the six-sphere. With its standard
£0(7)-invariant metric, the Riemann tensor takes the form

Rmnpq = ^HβmpGnq ~ GmqQnp\ (A14)

where a ~x is the radius of the sphere. One can show that the Killing spinor equation

^ 0 (A15)
\ L J

has 8 solutions η+ and 8 solutions η~. The proof consists of taking the commutator
of Killing derivatives (A 15), and substituting (A 14) into the result, thereby showing
that the integrability condition is identically satisfied. The Dirac matrices Γm of
six dimensions may be chosen to be imaginary and antisymmetric, satisfying
{Γm9Γn} = 2gmn. The chirality operator Γ 7 = i/6!εmi" W 6ΓM l . . .W 6 is then also
imaginary and antisymmetric, and ΓΊ

2 — 1. We may take the Killing spinors η ± to
be (real) Majorana spinors. In this basis for the Dirac matrices, the Majorana
conjugate of a spinor η is simply ητ. Without loss of generality, we may assume
that each Killing spinor is normalized to unit length, ητη = 1.

In terms of one of these Killing spinors η, say one of the η +, we construct the
following real antisymmetric tensor

Jmn = iητΓΊΓmnη = iητΓΊΓmΓnη. (A 16)

One can show that any of the matrices 1, ΓΊΓmn and Γmnp gives a non-zero
expression when sandwiched between ητ and η, while ΓΊ, Γm, ΓΊΓm and Γmn give
expressions that vanish. Using ΓmΓnpqΓ

 m = 0, a simple Fierz rearrangement shows
that (A 16) implies

JmpJPn =iθmn+ U^m^sn + G^rs)^ (A 17)

which, after tracing to obtain JmnJ
mn = 6, implies that J satisfies (A2). Thus J is

an almost complex structure on S6.
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From (A 15), the covariant derivative of Jnp is given by

VmJnP = aUmnp; Umnp = ητΓΊΓmnpη. (A 18)

Thus substituting into (A6), with the partial derivatives replaced by covariant
derivatives, we see that the Nijenhuis tensor is given by

Nijk=-4aTijk, (A 19)

where Tijk = U\jJkι. Since Uijk is non-vanishing, it follows that the Nijenhuis tensor
is non-zero, and so the almost complex structure tensor (A 16) is non-integrable.
Of course this does not yet constitute a proof that S6 is not a complex manifold,
since it does not rule out the possibility that there might be another almost complex
structure that is integrable; however in fact it has been proved that this is not the
case.
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