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Large Field Renormalization. I. The Basic Step
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Abstract. We construct the renormalization operation of the expressions
connected with the large field regions. This operation, denoted by IR, removes
the main obstacle to prove the ultraviolet stability of four-dimensional gauge
field theories. The proof will be completed in the second part of this paper.

O. Introduction

Let us repeat briefly why it is necessary to renormalize the large field expressions,
and what is a general structure of the operation U. Consider a large plaquette
variable in the first step. The restrictions on these variables are the same as in [16]
(this refers to References in the paper [I]), so we have | U(dp) — 11 ̂  #oPo(#o) f° r a

plaquette peTl9 where po{go) = A0{\ogg0

2)Po with a positive integer p 0 . The term
in the Wilson action, corresponding to the plaquette p, gives the estimate

-i-[l - Retr t/(δp)]"U exp(-po( f lfo)) = ̂ ί o ( t e ^' a ) M " 1 . (0.1)
0 J

exp

For d < 4 we have g0 = gε1/m~d\ and the bound above can be estimated by an
arbitrarily large power of ε. This is enough to control expressions arising in the
large field regions surrounding the plaquette p for all steps of the procedure, i.e.,
until we reach the unit lattice. For d = 4 the bare coupling constant behaves
asymptotically as (a + blogε" 1 )" 1 / 2 , for ε-»0, with some positive constants a,b,
hence the bound does not give any positive power of ε. It is still small for ε small,
and it controls a large number of steps, but this number is a small fraction of the
total number of steps. Thus, for some large field regions there is a difficulty in
continuing the procedure of [16], the small factor arising from large fields in this
region does not control further steps. In such situations we have to change the
procedure in order to improve the small factor, i.e., we have to be able to renormalize
the expression corresponding to the large field region. There are several possible
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ways of doing it, the one chosen in this paper is closest to the method of G.
Gallavotti etal. in [19,20], and can be described in the simplest way as follows: a
large field expression is replaced by the corresponding small field expression in
such a way, that integrals of the densities are unchanged. Let us elaborate this
description. A density p after some number of steps is represented in the form

where the sum is over large field regions Z, and V is a gauge field variable. A
region Z is decomposed into disjoint subregions Z', Z", Z = Z' u Z'', in the following
way: Z" is a union of components of the region Z, for which the small factors
connected with large field control some number of next steps, Z' is a union of
remaining components, i.e. components for which the corresponding expressions
require a renormalization. For such a decomposition we take the density p(Z", V\
and we define the operation U as follows:

We will prove that the densities are positive, and the inegration domains in the
integrals above are nonempty, hence the denominators are positive, and the
operation 1R is well defined. It satisfies the basic normalization property

$dV(Rp)(V) = $dVp(V). (0.4)

Consider now the expression on the right-hand side of the definition. It can be
written as a double sum over domains Z', Z", Z' c Z"\ and the summation over
Z1 can be applied to the quotients. The quotients are still small, because some
small factors in the regions Z' are left for the densities in the numerator. We localize
them, trying to decouple components of Z', i.e., we write a polymer expansion,
and then we exponentiate it. Thus, we obtain the representation

where the last sum is over X such, that Xc\Z"c Φ0. Using this representation,
we rewrite the definition of the operation U:

(Up)(V) = Σ
Z"

Now the advantages of applying such an operation are clear, the densities on the
right-hand side still have enough small factors to control the given number of
steps, and the expression in the exponential can be treated in the same way, as
the small field effective actions are treated in [I], in particular it can be renormalized
in the same way. This renormalization is the necessary renormalization of the
expressions connected with the large field regions, and it makes the whole
renormalization group procedure convergent, i.e., we can apply all the transforma-
tions needed to reach the unit lattice, and we control all the steps of the procedure.

The above description stresses only some general ideas underlying the method
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used in this paper. The actual procedure is more complicated, and it also differs
from the one presented above in some technical aspects, for example in (0.3), (0.5)
we take the denominators equal not the integrals of the whole densities ρ(Z'\ V),
but to the integrals of some parts of these densities. More precisely, we take the
parts localized in neighborhoods of the domains Z', so they do not depend on the
large field regions Z", and they are determined by small field effective actions only.
These general ideas are very simple and natural. They have many possible
variations, and they can be realized in many different ways. Let us mention, that
similar ideas were expressed in private conversations by other people, in particular
by G. Gallavotti and G. Benfatto, J. Imbrie and D. Brydges, J. Feldman and J.
Magnen.

1. The Basic Step of the Operation U

In this section we describe in detail the fundamental part of the [R-operation. For
simplicity of notation we consider the kth density, instead of fc -f 1st. Each term in
the expansion (2.18) [III] has a large field region Λc

k. It is a union of connected
components. We consider components of almost the minimal possible size. Each
renormalization step adds at least ten layers of MKfc-cubes, hence the size must
be greater than 20 MRk. Passing to the next step it is usually rescaled by I T 1 , but
in some steps the number Rk decreases by the factor L"1, and adding ten new
layers of M/^-cubes we get a region with a size greater than 40 MRk. It is easy
to see that the minimal size is approximately equal to 42(L/(L— \))MRk. We
consider components of sizes smaller than, or equal to 100 MRk. More precisely,
we consider the class of components such that each satisfies the following two
properties:

(i) it is contained in a cube of the size 100 MRk,
(ii) in the preceding N renormalization steps no new large field regions were

created inside this component, and the previous regions contained in it
satisfy the condition (i) on the corresponding scales.

According to our ru)e of construction of the large field regions, for such a component
all the regions connected with the last N steps are rectangular parallelepipeds. It
will simplify some geometric considerations in the future. Conditions on N will
be formulated in constructions of this section. Let us denote the union of the above
class of components by Z. For simplicity we denote intersections of the regions Zj
with Z by Z } also, hence Zk is identified with Z. We write the intersections explicitly
only if it may lead to a misunderstanding. Thus we write the factorization property
(2.19) [III],

Ίk(Zk) = Ίk(ZknZc)Jk(Z) = Jk(ZknZc) Π W,), (1.1)
ι = 1

where Z = (J Xt is the decomposition into disjoint components. In this section
i = 1

we do not make any changes in the operation Jk(Zk n Zc), therefore we will usually
omit it in the formulas.



178 T. Balaban

We consider Tk(Z)exp Ak, and we use the above described simplified notation.
Using the conditions (i), (ii), and the factorization property (2.22) [III], we write

h

j = k-l

where h = k — N, and we have written explicitly the first and the last characteristic
functions in the product of the last N one-step operations. These operations are
given by the formula (2.21) [III], in which the functions (, χ have the simplest form,
namely by the condition (ii) no large field characteristic functions are included in
them. We write these functions now, because we have to compare them with other
characteristic functions. Thus ζ(Ωc

j+1 nZj±ί)χ(Ωj+ x n Z 7 + x) is equal to the product
of the following seven groups of functions:

χUsuv\Ujn{Vj,dp)-\\<ε0->η)2ϊ\ (1.3)

for •c(β;V;+1)nZ,

γί\ sup \U]+ιa.(Vi+1,dp)- 1| <εj+1(Lk-J-ιη)2ϊ) (1.4)

x({\Vj(y,x)-l\<£j}) (1-5)

for y€(β 7 ~Λ\β/ + 1 ) ϋ + 1 ) nZ ) xeB(y), xφy,

iexpΓ-- 2-[l-Retr^O;,x)]l (1.6)
z L 9j J

for ye(ΩjΊ\\Ωj+iy
J~> unZ,xeB(y),x φy,

sup \Vj(b)(Vm)yι-'ί\<2δX] (1.7)

sup ^lexpigjAjψW^^^ibWgib))-1 - 1| < 2<5Λ J (1.8)

for •' c (Ωj+1\ΛJ.t

χ(\ sup \Aj(b)\<grιδΛJ (1.9)

for Π'cWΓ+i\^;+i)πZ.
The cubes Π in (1.3) are the LM2i^7-cubes of the partition of the lattice TL-J,

or the L ^ - ^ L M ^ - c u b e s of the lattice Tη9 and the cubes Q' in (1.4), (1.7)-(1.9)
are the LM2Rj+ι-cubes of the partition of the lattice TL-U+D.

As a first step of the [R-operation we try to do a part of the integrations in the
operations TU)(Zj) in (1.2), namely the integrations with respect to the variables
localized in a neighborhood of the boundary <9Z; . There are two reasons for doing
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this. The first is that the functions (1.5)—(1.9) are not gauge invariant with respect
to gauge transformations of the variables Vj9 and we would like to choose a
convenient gauge fixing for the integration with respect to Vj restricted to Γj in
(1.2). The second, more important reason, is that we would like to get a new, much
smaller large field region Z, in order to be able to fit the constructions of this
section to the inductive assumptions on the effective action. To specify the
integrations we define a new sequence of the large field regions. Let us recall that
the domains Ωfn are unions of L~{k~j)MRf cubes of the lattice Tη. Take the
smallest positive integer iV0 such, that L~No+ίMRk_No + 1 = M. It is easy to see
that either there is exactly one such integer, or there are two. We assume that
N > No, in fact it will become clear later that N is much greater than No. Define

k-No+1 ~ K^k-No) — \ίdk-N0+ 1

and complete these two sets to a sequence Z"k, Z"k _ ί,..., Z"k _ No + 2 , Z'k _ No +1 in such
a way that the complements of these sets form an admissible sequence of domains
based on partitions into M-cubes in the corresponding scales. Thus Z'k\ Z'k\Z"k_γ

are unions of M-cubes of the lattice Tη, and Z'k'\ Zk_ 1 are separated by one layer
of M-cubes. Similarly, Z£_ l 5 Zk_1\Zk_2

 a r e unions of L'1 M-cubes of this lattice,
and Z'k_ 1, Z^_ 2 are separated by one layer of L~1 M-cubes, and so on. Next, define

Zf; = (Ωr5)cnZ for ; = k - No, k-N0 - l , . . . ,/c- N + 1 = h + 1,

Z"j=ZJ for ; = M - 1 , . . . , 1 . ( ' }

This is the new sequence of the large field regions. We define new domains Ω by

c) for j = k, k- 1,.. ., 1,

Ω'j = Ωj for ; = /z,/z-l,...,l. ( ' }

The sequence {Ω'j} is an admissible sequence, and the corresponding generating
set is denoted by Uk. Thus

k — v fe / ? 0 — ΛΔ γ . yl. 1 J J

By the definition all components of the domains Z) are also rectangular
parallelepipeds for j = h, h + 1,..., fc.

We would like to do the integrations in Jij)(Zj+ x) with respect to the variables
localized in Z ; + x \Z'-+ 1J = h,...ik—l.Itis most convenient to do the integrations
successively in this order, starting with j — h, because then we have almost the
same situation as in the one-step renormalization transformations, and we can use
the results of the third section. In fact, the situation is simpler than there, and we
have to make only few comments.

Each integration gives a new background field, connected with some deter-
mining sets. We describe now this sequence of determining sets. We start with Bfc,
which we write as

ΛZ\ (1.14)
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Here, and in the subsequent formulas, the symbols Γj mean the intersections of
these sets with the region Z. The first integration is with respect to the variables
localized in ZΛ + 1\ZJ,'+ 1 . The relevant part of the integration is with respect to the
variables Vh on (Ωc

h+ι\Zl+ι)nZ, restricted by the conditions Vh=Vh+1.ln effect,
the set Γh is resplaced by the two sets {Γhr\Z'iΐ+ιf

ι\ ΓhnZ^+1. The first set is
combined with Γh+1, and the union can be written as (Ωc

h + 2\Z'Jι+1)
ih + 1\ Hence

the next determining set is defined by

u(B k n/2£nZ), (1.15)

In the second integration we integrate with respect to the variables Vh + 1 on
{Ωc

h + 2\Zl + 2)nZ. In effect, the set {Ωc

h + 2\Zl+ί)
{h+1) is replaced by the two sets

(Ωc

h + 2\Z'U2)
{h + 2\ ( Z ; ;

+ 2 \ Z Ϊ + 1 ) ( h + 1 ) = Π + i . The first set is combined with Γh + 2,
and the union can be written as (Ωc

h + 3\Z^+2)
(h + 2\ This determines the set Uk

2).
In general, the set Uk

j~h) is defined by

^ ^

(1.16)

for j = h -f 1,... ,fc — 1. For j = k we replace the sequence in the curly bracket above
by (Ωk\Zk)

ik\ Γk^1,...,Γ'lι + 1, ΓhCλZl+ι. The first set in this sequence is equal to
Ωc

knΓk, and we combine it with the set Γk in Bkn(ΩkuZc). The union is equal
to Γk, hence

Take any of the determining sets defined above. The gauge field Vj is defined on
the whole / h component of the set, therefore the collection of the restrictions of
these fields defines a gauge field on the determining set, analogously to the field
V defined on Uk. We denote these fields by V also, in fact they are defined by the
same equality in (2.10) [III]. The determining set B£° and the gauge field V define
the function

UP = U{

k

n\V) = U(Ek

n\ V). (1.18)

These configurations are background fields in the successive integrations.
We need also a sequence of determining sets, and the corresponding sequence

of functions, localized in the region Z. The determining sets B[λl)(Z) are defined as
above, by the equalities (1.14)—(1.17), but the set B f cn(ί2 f euZc) is replaced by
Ek(Z)nΩk. Thus, according to the definition (2.14) [III], they may be defined as

Ui

k

n)(Z) = Ei

k

n)uEk(Z). (1.19)

The corresponding functions are defined by the gauge fields V restricted to Ωk,
and by MBk{Z)(Qs

k Vk) restricted to Zc\Ωk, thus

n i V V[Znai)). (1.20)

These functions play an important role in subsequent definitions of characteristic
functions, and in other constructions. For the last functions in the sequences



Large Field Renormalization 181

(1.18)—(1.20) we introduce the following notations

We do the first integration with respect to the variables Ah, Vh restricted to
Zh+ i\Z'i+1 We follow the procedure of Sect. 3 [III], so we introduce at first new
characteristic functions in such a way that the function restricting the fluctuation
field does not depend on the background field. We start with the decomposition
of unity 1 = χ[0) + (1 - χ[0)), where

(1.22)

More precisely, we introduce this decomposition in each component of Z separately.
In components with the function 1 — χ{

k

0) we have introduced new large fields,
therefore they do not satisfy the condition (ii), and we exclude them from the region
Z. They are not changed by the subsequent operations, and we treat them in the
same way as the remaining large field regions. We denote the union of components
with functions χj<0) by Z again. The restrictions in the function (1.22) imply that
the characteristic functions (1.3) for j = h and \Z]^-{Ω^+1)

c\Zh are equal to 1.
Thus the function χh{Ωh\Ω^+t) in (1.2) is replaced by γ}k

O)χh{ZhnΩh). We introduce
the next decomposition of unity 1 = χk

1] + (1 — χ[1}) in components of Z, where

{Lk-h~ιη)2 ϊox peΩU2\Zl+X\. (1.23)

We redefine Z again removing these components, for which the functions 1 — γ}k

ι)

were introduced. For components of Z the restrictions in (1.23) imply that all the
functions (1.4) for; = h are equal to 1. To remove χ{

k\ and the other characteristic
functions in (1.5)-(1.8), we have to introduce restrictions on the fluctuation field.
This, and the other operations connected with the integration, will be discussed
in a general case.

We assume, that after n integrations the only characteristic functions which
remain, and which are connected with these integrations, are χk

n)χh(Zh n Ωh). The
definition of χ{

k

n) is rather complicated, and it has a different form for j = h + n ^ k0 =
k — N0, and for j>k0. In the first case the integration regions are disjoint, and
the functions are defined by generalizations of (1.22) and (1.23). In the second case
some integration regions overlap, more exactly the regions with indices greater
than fc0, and for these we change the regularity conditions by a factor, which is a
power of some number, the power being proportional to a number of overlapping
regions. We write the definition in the second case,

— 1| < ( 1 — β(l -~2~{j~h + 1)))εh(Lk~hη)2 for p e Z J + 1 n i 2 A ,
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-- 1\ <(1 ~ β(l -2-^k^^))εk0(Lk-^η)2 for peZ'k'0+ι\Z'^

- i l < 0 - i f f ( i - 2 ~ 0 " ~ ^

i8(l -2-ϋ- fc0-1)))JLgε fc0 + 2(Iί-k°-2/7)2 for

_1(Lfc-^17/)2 for

2 for

for

\U£&dp)-l\<c(l -β±)εj(Lk-jη)2 for peΩj-ι\Ωj+ί Π, (1.24)

where c=\ for j < k, and c = 3 for j = fc. We choose the number β satisfying
0 < β ̂  1/2, but not too small, e.g., we can take β = 1/2. The number Lo satisfies
2^L O <1/2L, e.g., we can take LO = (1/2)(L-1). The definition (1.24) is so
complicated because of the needs of this inductive construction, but basic properties
of χk

n) are simple. They will be described for n = N, i.e., for j = k.

We assume further that the effective action Ak

n\ obtained after the n integrations,
depends on the background field U(

k\ and has the form (2.23) [III], with some
new boundary terms only, i.e., some new terms in B>k. Now we will analyze the
next, n + 1st integration. We integrate with respect to the variables Aj9 Vj localized
in Zj+ί\Z'j+1. It is a part of the operation T ( j )(Zj+ 1), and we have to consider
the following integral

UApC*Δ(^ CAj)^

'jϊo^^ ^δiVjVr^ζiΩ^^oxpA^^ ' ' (1.25)

where n=j — h, and the quadratic form in the exponential is written explicitly in
(2.21) [III], in this integral we introduce the decomposition of unity 1 = χk

n + 1) +
(1 — χk

n + 1)) for each component of Z, and we exclude from Z the components with
the large field functions 1— χ(

k

+1). The function χ(

k

+1) does not depend on
integration variables, and we have to consider the integral (1.25) multiplied by
χk

n+1). In this integral the gauge fixing terms (1.6) were introduced on the domain
ΩJ+1\Ωj+1, and they constitute apart of the function ζ(Ωc

j+1). All the expressions
and the functions in (1.25) are invariant with respect to gauge transformations v
defined on the set ((ΩJ+^XZj+JnT^, and equal to 1 on the intersection of
this set with Tu+1\ Using the Faddeev- Popov procedure we introduce the gauge
fixing terms (1.5), (1.6) on this set, thus we get the gauge fixing terms on the whole
integration region (Ωc

j+ι\Z"j+ι)nTU). Next, we introduce restrictions on an
approximate fluctuation field. Define the configuration

«), (1.26)

and the characteristic function

) ) " 1 - 1| <2δ'j for be{Ωc

j+x\Z'j+ι)W}\ (1.27)
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where δ] = gy4iPi(#/), P i ( ^ ) = (\og gj2)p\ and p1 < po; other conditions on p1 will
be formulated later. Introduce the decomposition of unity 1 = χ'j + (1 — χ}), for each
component of Z, under the integral (1.25), and exclude from Z the components
with the large field functions 1 —χ'j. In the remaining region, which we denote
again by Z, we obtain the integral (1.25) multiplied by χk

n+ί\ and with the function
χ'j inside. Finally, let us recall that the functions χ ($, given by (1.9), are present
in χ(Zj+ιnΩJ + 1) for Π' <^Zj+1\ZJ+l. We complete them to the whole domain
Zj+1nΩj+1, introducing the decomposition of unity

1 = Π Zί? + ( l - Π X®) (1-28)
D'crβ +Λβ/ίi1 \ Q'<=ΩJ+1\Ωj+l /

for each component of Z, and excluding from Z the components with the large
field functions. Let us notice that all the characteristic functions introduced above
depend on the field variables localized in the corresponding components of the
large field region Zk. This is an important part of the inductive assumption for
the effective density, more precisely for the operation Tk(Zk). It is also clear how
this operation has been changed by the above decompositions, but we will not
attempt to give a systematic description of all possible cases; there are too many
of them, and we need only general properties of the operation.

Now we will prove that the restrictions introduced by the new characteristic
functions imply that the functions (1.3), (1.4), (1.5), (1.7), (1.8), χ{

k

n) are equal to 1.
More precisely, we have

Xk /Λ^j+ι nίt2j+i)\ 11

π π
yε((Ωjl ι)c\Z"J+ 1 ) ϋ + υ λeB(v) ,λ#v

Π
c Z j 4 1 n

Π Π -expΓ-^Cl-Retr^ίx^)]"]) (1.29)

for j + 1 < k, and for j + 1 = k the right-hand side above is multiplied by

Let us start with a function (1.3). The cube Π is contained in
Ωj\ΩJ+1, hence D ^ C ^ J - I W J + I . On this domain the configuration U^
satisfies the last inequality in (1.24) (with c = 1), and the constraints MJ(Όk

n)) = Vj.
The same constraints are satisfied by UuΏ on Π~ 3 Reasoning as in the part of
Sect. 3 [III] between the formulas (3.6), (3.8), we get

The field in the argument of the function H π is equal to 0 on almost the whole
cube LP 4 , except a boundary layer of the width 2M1 in the lattice Tξ, ξ = L~j.
On this boundary the field can be bounded by 22d2r.j9 by the argument leading
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to the estimate (1.65) in [14]. The exponential decay property of H j α implies that
on the cube Π~ this function and its covariant derivatives can be bounded by
B3Qxp(-δ2M2Rj)22d2εj< (β/lθ)εj. Estimating dUjn as in (3.8) [III] we obtain

^ 2 < ε y ( L / c ~ ^ ) 2 f o r pczΏ~' ( 1 3 1 )

Thus the functions (1.3) in the product on the left-hand side of (1.29) are equal to
1. The same holds for the functions (1.4), because the argument above applies to
an arbitrary j , hence for j + 1, except when j + 1 = k. In this case we leave the
functions (1.4) as χk(Ωk

4) on the right-hand side of (1.29). For the functions (1.5)
we use the inequality (3.9) [III], only with k replaced by j , and the configuration
V{^> replaced by Vψ. From the restrictions (1.27) we get the bound O(\)δ'j<&p
hence the functions (1.5) are equal to 1 also.

Now we consider the functions (1.7), (1.8). We start with the second, more difficult
case. At first, notice that the restrictions introduced by the functions χ{$ in
(1.29) imply the bound

j ^ ^ ^ ^ j j + Λ j $ (1.32)

The configuration Vψ z is defined on Z]^\\Z] by

y%Λ ^ = Mj(U(U(Zj+ x\Zj)u Bk, M(QS*V)\ (1.33)

where the determining set was defined in (2.14) [III]. In fact in the above case it
is simply given by Ej+1(Zj+1)\Ω uEj(Zcj)[Ωc , and the configuration QS*V is
equal to Qf+ {Vj+ x on Ωj+ ίnZj+

J

1, and to QfPj on Ωc

j+1nZCj. Now we represent
the configuration U( ) in the standard way, as in (1.30)

= U{E{Zj+ A Z ^ u Uk9 lM'(QsΎ)(M'(U(

k

n

(1.34)

This implies

Vψj+ύZj = (Mj{exp ίξH)Mj{U{n + 1)))u^ = exp M{j)Vψ, (1.35)

where

expMϋ\b) = uϊι(b-)expiQj(ξH,b)Rj(uj(b+)). (1.36)

From the equalities and bounds (106)-(108), (159)—(163) in [12] we obtain

sup | H|. (1.37)
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Consider now the field in the argument of the function H. On the domain
Ωj+1nZj+ι, except a boundary layer of the width 2LM1 at the boundary cZj+1,
this field is equal to 0. On the boundary layer it can be bounded by 22d2εj+ί.
Similarly, on the domain Ω^nZp except a boundary layer of the width 2M1 at
the boundary δZc

Jf the field is equal to (i/ί)\og [Vj(Vψ)~ι~], hence it can be bounded
by 4δp as it follows from the restrictions in (1.27). On the boundary layer it can
be bounded by 22d28j. From this, and the exponential decay property, it follows that

\H\<B3{4δ/

j + Qxp{-δMRj+i)22d2εj+1+txp{-δ6LMRj+1)22d2εj)

^ B3{4δ'j + e x p ( - δMRj+1)44d2(l + βo)εj)

on Π'~2, for Π ' c Ω j + A ^ j + i The quotient on the right-hand side of the last
equality is a negative power of log g~f2, hence the coefficient at δj can be arbitrarily
small, also after multiplying it by O(1)L from (1.37), if γ is sufficiently small. We
assume that it is so small that the expression on the left-hand side of (1.37) can be
bounded by l/2δj. From this we obtain

I VψJ+1\Zj(b) ~ V$(b)\ < H + I V%(!>) - Vψ(b)\. (1.39)

The configuration V{$ is equal to Mj(UJ+ίn>). For UJ+UΠ> we have the representa-
tion (1.30), with j , n, Π, and ξ replaced by j+ 1, n+ 1, Π', and L~1ξ. This
representation implies

V$ = (Mj(exp iL~1ξHJ+ιn')Mj(U^+1)))u^'a' = exp iM$ Vψ, (1.40)

where

exp/H<^) = v l , D ^ 0.41)

For the configuration (1.41) we have again the bound (1.37), with H replaced by
H y + 1 D ' on the right-hand side, and without the factor L. The function H / + 1 D ' is
bounded on Π'^ 2 by B3 exp( — δLM2Rj+1)22d2εj+1, hence

l + j8o)—<5j^H ( L 4 2 )

on Π'~2 The inequalities (1.32), (1.39), and (1.42) imply that the functions (1.8) in
the product in (1.29) are equal to 1. For the functions (1.7) the argument is simpler.
We have

^ j $ - vψ(b)\

<2δ) + 1

2δj<2δj on Π ^ 2 , (1-43)

for Π' c:Ωj'+^Ωj+ x . Here we have used the restrictions from (1.27), and the
estimate (1.42). The above inequality implies that the functions (1.7) are equal to
1 also.

It remains to be proven that the function γ}"] in (1.29) is equal to 1. Consider
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the configuration Ufy. Representing the field VjθnΩc

j+1\Z'j+ί as [V}(Vψ)
we have

(1.44)

The field in the argument of the function H^} is bounded by 4δ'j9 and is localized
in the domain Ωc

J + 1\Ztj+1, therefore the following estimate holds:

sup Lιη\ Hj^l, sup(L ι^) 2 | VJίn+nH^ ^ B3Qxp( — δd(y,ΩCj+1\Z'j+1))4δfj. (1.45)
Bι(y) ' Bι(y) k

Here d( , •) is the scaled distance, y is a point of the ith component of the determining
set B>[n). Using the representation (1.44), and the above estimate, we obtain

for peB\y\ where ye(Z- + x\Z'l){i) = Γ'[ for

i = j — 1, j — 2,..., and j ;e(β5 + 1 \Z; ' ) ω for i = j . (1.46)

Let us remark that the scaled distance in the above estimates is defined in terms
of M^cubes on corresponding scales. Thus, by the definition of the domains Z",
we obtain

exp(-δd(y,Ωc

j+1\Z]+1))^exp(-δ~(j-i)J for yeΓ'l, i<j. (1.47)

We choose M large enough, so that δiM/M^ ^ 2. Then the product of 1 4- (7 — i)1/2

and the exponential factor in (1.47) can be estimated by exp( — (j — i)). The
remaining numerical factors in front of the exponential can be estimated by
9B3(A1/A0)(pι(y)/p0(γ))(l -f βQ), and can be made arbitrarily small by choosing 7,
or AJAQ sufficiently small. Notice, that the conditions on M, 7, Ao, and Aγ

introduced above do not depend on any scale, i.e., on z, j , fc, and so on. This applies
also to other conditions introduced before. The numerical factor 8J33L~ί(5j<
W^yA^^y) can be also chosen arbitrarily small for y sufficiently small. Let us
choose a bound for these two factors in the form ocβ, where an absolute constant
a will be chosen later. Then the estimate (1.46) and the above bounds imply

+ oιβ2-u~i)εi(Lk~iη)2 for peB\y\ (1.48)

where y is as in (1.46). Now consider the conditions in the definition (1.24) of χ^K
The condition on the domain Z" + χ\Z", for ί = h, h + 1,... j — 1, can be written in
the form
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The corresponding condition for the configuration U^χ 1 } is of the same form, only
j is replaced by j + 1. Introducing this bound into (1.48) we obtain

•(1 + oίβ2-(j-ί)) + ocβ2'u~i)εi{Lk~ιη)2

j-i))Llmax{o^k°-1]εi{Lk-iη)\ (1.50)

and the last inequality implies (1.49) if 8 α ^ l . On the domain Ωt\Ωι+1, for
Z = fco + l , . . . j , and on the domain Ωc

ko + 1\Z'j for l = k0, the condition on the
configuration U^z is

1| <(1 -β^L^'-'-'hjilϊ-Jη)2. (1.51)

The condition on the configuration U^Jυ n a s the same form, only j is replaced
by j + 1. Introducing this bound into the inequality (1.48), which holds on those
domains with i = j , we obtain

+ φj(Lk->'η)2 < ((1 + βo)(l +

(1-52)

The above inequality implies (1.51), under the usual restrictions on βo,β,Lo (i.e.,
β 0 g 1/2, j8 ̂  1/2, Lo < (1/2)L), and α ̂  1/4. Thus taking α = 1/8 in (1.48) we satisfy
all the conditions. We have proved that the function χ[n) in (1.29) is equal to 1.
This completes the proof of the equality (1.29).

Now let us come back to the integral (1.25) with all the newly introduced
functions. Using the equality (1.29) we get the integral of the same form multi-
plied by χ{k+1\ in which the only characteristic functions are the functions (1.9),
(1.27) restricting the fluctuation field on the domains Ωj+ίnZj+1,Ω

c

j+1nZrjC

+1

correspondingly. There are also the gauge fixing terms (4.6) on the last domain.
For this integral we perform all the operations discussed in Sect. 3 [HI]. We
introduce the fluctuation field V] on (Ωc

j+1\Z'j)u\

V'j = Vj(Vu)y\ V{j) = Mj{U£+1)), B) = τlog Vj. (1.53)

This field is small, because

Vj -11 ^ I Vjiyψy1 -11 +1 vψiv^y1 -11 < wβ (1.54)

by (1.27), and by the fact that the second expression on the right-hand side is
much smaller than δ). This we will show later. Thus B] is small, \B]\< 6δ'p and
we expand all the expressions in the integral with respect to B'p we linearize the
expressions in the ̂ -functions, we remove the ̂ -functions using the operator C,
and finally we perform the scaling transformation B] = g^By All the formulas are
the same as in Sect. 3, or in Sect. 2[I], only we have to replace the function
te^C))"2 i n the Wilson term of the action by gj2, the term with the difference
(g{"X'))~2 — gj2 is put into the interaction. We obtain an equality with an expres-
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sion analogous to the expression on the right-hand side of (3.15) [III]. The
differences are obvious, mainly that the integration variable is denoted by Bp and
that there is the additional integration with respect to the variables Aj9 the first
integration in (1.25). In the obtained integral we introduce the decomposition of
unity 1 = χ'U) + (1 — χ'(j)) in each component of Z, where

χ'U) = χ({\Bj(b)\<δ)ϊorbe(Ωc

j+ί\Z'}+ι)W}). (1.55)

We exclude from Z the components with the large field function 1 — χ/{J\ In these
components we have to localize the dependence on the field V in the characteristic
functions (1.27). Once more we write the representation

:log[M"(l/in + 1 ))(M (βΓKk))-

(3.56)

The field in the argument of the function H j ^ 1 } has a support in the boundary
layer of the width 2MX at the boundary of Z, and is bounded by 44d2B3εk. Thus
the function considered on the domain Ωc

jΛ Λ Z J + 1 satisfies the bound

l^tz υ l S{Lj" 1ηΓ*B3Qxp{-δ\0M{RJ+1 + ••• + i V i ) ~ δMRk)44d2B3εk

<44d2B2(l+β0)exp(-Rj)εj. (1.57)

For the averages Vu\ V^} we have, as in (1.40)

VU) = exp iMψVψ, (1.58)

where Hψ is given by the formula corresponding to (1.41). It is an analytic function
of the configuration U(

k

n+1) restricted to Z, and on (Ωc

j+ί\Z'j)U) it is bounded
by 0(1) exp (— Rj)Sj. This bound is very small, smaller than any positive power of
g-Γ Now we make the change of variables (1.22) [III], with H ^ instead of H^AX?
for the bonds belonging to (ί2J + 1 \ZJ + 1 ) ί /)*. or rather to the components of this
set with the large field function 1 —χ'ϋ). This change of variables transforms the
function χ}(l — χ'ϋ)) into

<2δ>j for be{Ω)+ι\Z]+1)^}){\-χ'^\ (1.59)

which has the required property, in fact it does not depend at all on the background
fields. The change of variables gives also the usual new terms in the action.

Let us consider the components of Z with the small field function χ'u\ or rather
we assume that Z is a union of such components. The integral corresponding to
(1.25) has the form of the fluctuation field integral in (3.25) [III], more precisely
it has the form

γΓ "exp [ 4 " > ( t / r l ) , Aj = 0) + E\j\Ω)+, \Z'j+,)]

3J.+ ι ) e x p [ - k / l J ,C*zl^+ iC/l J.>]

-HBj, C*Δ{i)CB}) +
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ΐW g)

( L 6 0 )

The notation used here is the same as in Sect. 3 [III], in particular the constant
Eψ(Ωc

j+1\Zf

 +1) is equal to the constant in the first exponential in (3.15) [III],
only for k replaced by j , and the sets B(Γk+1)*,Γk+1 replaced by (Ωc

j+1\Z'j+1)
ij)\

(Ωc

j+1\Z' +1)
u+1) correspondingly. The fundamental difference in comparison

with the integral in Sect. 3 [III] is, that now the integration in (1.60) is localized
in the large field region Z, therefore the integral contributes to the boundary terms
only. Thus in the previous n integrations new boundary terms were created, and
their sum is denoted by Ek

n\ We may specify the structure of this term a bit more
writing it as the sum

B*°= Σ Ck\ (1.61)
i = 1

where Cj^ is the one-step contribution, i.e., the contribution from the zth integration.
Now it is clear that the integral in (1.60) determines a main contribution to C(

k

n+1\
another comes from the renormalization of the Wilson action, thus

c r ••=

Bk

n + v = nk

n) + C£+1\ (1.62)

The integral in (1.60) is of the same type as the integral studied in Sect. 3 [III],
therefore we can apply the results of this section and write the term C[" + 1 ) as a
sum of localized terms with the corresponding exponential decay and analyticity
properties. There is one peculiar feature of this expansion, namely its localization
domains are not from DJ + 1 only, but they are of a more general type, and can
be described by the following properties: XnΩc

J + 2eBj+1, X n(Ωm\Ωm + ί)eΏ)m,
m~j + 2,...,k (where Ωk + 1 = 0 ) , and Xn(Zj+1\Z'j+1) Φ 0. For a given X there
is a minimal index m such, that X aΩc

m + 1. We take the smallest domain from
Om containing X, and we resum over all X determining the same domain. As a
result we obtain the representation

Cί I + 1 ) = χ c f + 1)(Λ r,t/?+1)), (1.63)
x

where the summation is over the localization domains X satisfying the following
properties: XcΩc

m + ι for some m^j+1, X cλΩmΦ 0 , XeDm, and
Xn(Zj+ί\Zfj+ί) φ 0 . The terms in the sum satisfy an exponential decay bound,
which will be formulated later. These results are standard, but there are some new
aspects of the basic properties, like analyticity properties and bounds, which we have
to discuss carefully.
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Let us start with the analyticity properties. The aim of this whole preliminary
step is to gain a larger domain of analyticity for the effective action, in order to
perform the basic step in the ̂ -operation. This is achieved by two ways for
the two parts of the action Ak

n). The regularity properties of the configuration
U{

k\ and correspondingly of the complex field U which replaces it, are improved
in comparison with Uk; therefore the old action Ak has effectively a larger analyticity
domain with respect to the new field. For the new term Bjf} of the action we have
to enlarge the analyticity domain by proper inductive assumptions, in agreement
with the restrictions introduced by the characteristic function χ{

k\ In order to
describe the assumptions we have to define new spaces of complex gauge field
configurations. They are modelled on the definition (1.24) of the characteristic
functions χ{

k\ and or the definition of the spaces Uc

k(X, α0, α t).

The space U(

k

n)c(X, α0, α t), for one of the domains X in the representation
(1.63), is the set of configurations (U, JJ) defined on X, such that U = U'U, U has
values in the group G, U' = εxpiηA\ A' and J have values in the complex algebra
gc. For any cube Π from the family of cubes described below there exists a gauge
transformation u defined on Π π X, and such that Uu — exp iηA, A has values in
the algebra g. The configurations U, UPtX(M'(V)) = L7(Bp(X)u{Γ^}/ < / ?, M'(LI)),
J, JptX(M'(V)), U, A\ and A satisfy the following conditions:

(i) \dUPιX(M'(U))-ί

1317-11, \A'\, \ΨVΆ

q = m+ 1

on (Ωr^\Ωlι+ί)nX for m— 1 , . . . J — 1 , and on (Ω'j\Ωko + 1)r\X for m=j,

for

Lmη\Al{Lmη)2\ΨA\<Llm'άχίAm-ko}BCMaOίm (1.65)

, Π\(^Ω'n + ιΦ0 if m = 1,... J — 1, and for O^Ω'-,

if m = ; , Π is of the size CMLmη.

( i i ) | d U - l | , |317P^(M ( U ) ) - 1 | , | J | , | J P ^ ( M ' ( U ) ) | , | 5 ί 7 - l | , \A

k

< [ί-β 2
\

R V Ί-(1~J) / 2(j-m)

aQ^η2{lJηy2,(iuj{Uηy\aUj{Uηy2^ (1.66)

o n ( ί 2 m \ ί 2 m + 1 ) n X for m = k0 + l,...J — 1, j .

Ljη\A\,(Ljη)2\VηA\<L2U~m)BCMa0J (1.67)

for Π c: Ωm, ncΛΩc

m + ιΦ0,Π is of the size CMLJη, m = k0 + 1, . . . , j - 1, .
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(iϋ) ι a u - 1 | , , \du-ι\, \A'\,

Σ
i=h+l

191

on (Ωm\Ωm+ι)nX for m =j + l,...,fe — 1, and on
c = 1 for m < k, and c = 3 for m = fc,

(1.68)

for m = k, where

for Π < = β m ,
is of the size CMLPη.

> \A I, (Lm/?)2 IVMI < BCMaOm (1.69)

1 / 0 if m - j + l, . . . ,fc- 1, and for • cz Ωk if m = k, Π

The constant C above is a positive integer. It is usually small, because of geometric
constraints on the cubes, for example we can assume that C g 2. The constant 5
is a fixed absolute constant, for example we can take the constant B = B3 from
Theorem 1 [16].

The above definition is so complicated because of the needs of the inductive
procedure. It has been written for the case where j > k0. For j g k0 it is simpler,
there are no powers of Lo in the point (i), and the point (ii) is empty. Let us discuss
briefly basic properties of these spaces. They are invariant with respect to G-valued
gauge transformations. For n = j — h = 0 the above space coincides with the space
Uc

k(X, α0, α1). They form a descending sequence for increasing n, if β and Lo

satisfy certain conditions, for example if β g 1/4 and L\ g (1/3)L. Notice that we
get the stronger restriction on Lo because of the bounds for A'. We can improve
the restriction to the previous one changing the bounds, but it does not matter.
In fact we need not only the statement that the sequence is descending, but a
stronger statement connected with the expressions we have to consider in the
n + 1st step. For example, we have to prove that if U is an element of the space
tfj^^αoαjj, then Q\^> iηU{

k

n\g fB} - hD{g fB ^))l} is an element of the space
U{

k

n)c{X, α0, α j , and the corresponding statement for J. The proof is almost
identical to the proof of a similar statement for the configurations U^\ given in
(44)-(52), and we will not repeat it. Finally let us remark that if in a component
of Z we finish the integrations for some n, because some new large field has been
introduced, then we leave the new terms Uk

n) as a part of all boundary terms,
and it is easy to generalize the definition of the spaces in such a case for the
next steps.

Now we can formulate bounds for terms in the representations (1.63). They
are easily obtained estimating the integral (1.60), after the renormalization and the
localization. All the expressions in the exponential in this integral can be uniformly
bounded in the usual way, except possibly expressions connected with B["}.
Assuming uniform bounds for C[ι), if^ri, we still have a problem with a bound
for the whole term, because the basic localization regions Zh + i\Z'lι + i contain the
common domain Ωc

ko+1\Ωk' for h + i>k0, hence the bounds from the corres-
ponding terms cumulate. There are at most No such terms, and to estimate their
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sum we use the fact that they are multiplied by gr More precisely, the bounds of
the terms involve δ'j9 but 5)^(1 + βo)

2(k-j)βoδ'k^(l + βo)
2Nβ

o°δ'ki so Noδ'j^
0 +fc)2Nj+/f°(5/

k<4No(5/

k, and we assume that Nl makes only a logarithmic
contribution to δk, e.g., No = O(\oggk

2). In fact we will see that it is smaller.
With such an assumption we get uniform bounds for the sum of the terms also.
Let us formulate the bounds for Ck

n\ It has the representation (1.63), with n
instead of n + 1, and each term Ck

n)(X, U[n)) can be extended to an analytic
function defined on the space ΰk

n)c(X, α0, ax) and satisfying the bound

\CP(X,(V9A))\uCoexp(-(l +3β)κdm(X)) (1.70)

for XeΏ)m in the representation (1.63).
There is one additional remark we have to make in connection with the

definitions of the new background fields and the new spaces. In these definitions
there are powers of LQ, the highest power appearing is k - k0 = No. This number
is defined by the equality L~No+1Rk-No + 1 = 1, from which we get LNo~~ί =
Rk_No+ι ^(L+ 1)(NO + l)βoRk. The number Lo satisfies the restriction Ll^
(1/3)L, hence L2

o

No ^ ( l / 3 f °L{L+ l)(N0 + l)βoRk < L(L+ 1)JVO % . Thus the
powers of Lo make only unessential logarithmic contributions to the constants
cx.0ip0Llfp8j in the definitions.

Let us write now the expressions we obtain after the N integrations, omiting
the T-operations for the large field regions not satisfying the conditions (i), (ii).
These expressions have he form

χk(Ω;4) Π T^(Zfj+1)χh(ΩhnZh)Ύh(ZMoxpΛ'ί, (1.71)
j = k - l

where the superscript (N) in symbols of the characteristic function and the action
has been replaced by the double prime, and the operations T"{}) are defined by

J"^(Z'j+ι) = μVjlz:J(VJVr+\y (1.72)

The new action depends on the background field Uk = U(

k

N\ and it has the form
Λk = Λk + Wk\ where Wk is the sum of the new boundary terms described above.

The new large field region Z'k is given by (1.10), i.e., Zk = (Ωko

5

+ι)
cnZ, hence

it is a union of M-cubes, by the definition of the index /c0, and it is a rectangular
parallelepiped. Define

Λ=(Ωko

4

+ιγnZ. (1.73)

This domain, obtained by adding one layer of M-cubes to Z'k\ is also a union of
M-cubes, and by the condition (i) it is a rectangular parallelepiped contained in
a cube of the size 100M. The domain Λ plays a fundamental role in the definition
of the [R-operation, it is the domain on which we integrate out all field variables.
Now we want to restrict further the variables Vk outside Λ. Take the function
Uk,z(Vk) given by

Uk,z = Uk,z(vk) = U(Bk(Z), M'(QkVk)) 0 7 4 )

This function is also important for subsequent constructions. It is defined in each
component of Z separately. In the components introduce the decompositions of
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unity 1 = χ Λ > Λ + (1 - χkj, where

j) (1.75)

The restriction introduced by this function is on the field Vk\ZrΛλc only. It means
that this field has an extension on the whole domain Z, such that the extended
field satisfies the regularity condition in (1.75). Let us elaborate a bit this point,
because we want to understand also a meaning of the restriction established by
the function 1 — χk Λ. Take a configuration Vk defined on Zc\Λc and satisfying the
regularity condition | Vk(dp') — 11 < ε for p' a Z n Λc, ε > 0 is sufficiently small. There
are many ways of extending it to the domain A. The way we describe here depends
only on V restricted to d + A — {yeAc: there exists a nearest neighbor point y'eA,
or <y,y'}eA}. Introduce a generalized axial gauge on the surface d+A. The
configuration Vk[δ+Λ is transformed into a small configuration V'k, \V'k{b')— 1| <
O(l)M2ε for b ' c d M . We extend it putting V'k{b')=\ for b'eA. The extended
configuration satisfies the regularity condition | V'k(dp') — 11 < O(l)M2ε for p' c A u
d + A. Now we apply the inverse gauge transformation on d + Λ, and we get a
configuration Vk defined on the whole domain, equal to the given one on Z n / l c ,
and satisfying the regularity condition \dVk — 1| < O(\)M2ε. The corresponding
configuration UkZ satisfies the condition \dUk>z — 11 < O(l)B3M

2εη2. We have a
couple of conclusions from the above reasoning. At first, recall that the functions
χk(Ωk% χk restrict the field variables Vk on Ωk, e.g., \dVk-l\<2L%Noεk<
2L(L + l)N0

1Rkεk. The above reasoning implies that Vk has an extension to A,
satisfying the regularity condition \δVk — 1| < O(l)M2L2Rkεk on Z, hence the
function UkfZ is defined for all those fields, and the condition in (1.75) has a
meaning. Now, take a field Vk in the domain determined by the function l—χktΛ,
and denote ε = supp'czZnΛc\Vk(dp') — 11. Of course ε < L2Rkεk. By the above reason-
ing the field Vk[ZnΛc has an extension, for which \dUktZ— 1| < O(\)B3M

2εη2. On
the other hand, for any extension we have \dUkίZ— ί\^2εkη

2, hence 2εk <
O(i)B3M

2ε, and | Vk{pp') - 11 > (0{l)B3M
2)~ίεk for somep 'aZnΛ*. This condition

is enough to get the exponential small factor, estimating in the usual way the Wilson
action. Thus 1 — χk^ Λis a large field function, and we exclude from Z the components
with this function. The union of the remaining components is denoted by Z again,
and the corresponding expressions are given by the formula (1.71) multiplied by χk Λ.

All the above transformations preserve the kth density ρk, they change only the
representation of this density. It is represented in the same general form (2.18)
[III], but with different operations Ύki and different effective actions. Now we
define the next operation, which changes the density. The equality sign is replaced
by the equivalence sign, the equivalence means that both sides have equal integrals
over the space of fields Vk. To define the operation we formulate briefly the result
of the previous operations. We have represented the density ρk as a sum of terms
of the general form (2.18) [III]. Each term determines uniquely a large field region,
and in particular the components of this region, satisfying the conditions (i), (ii).
Such a term is represented as a Tk-operation for the remaining components, acting
on the corresponding expression of the form (1.71) multiplied by the function χk Λ.
The next operation is an integration of this term with respect to the field variables
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Vk over the domain A. We obtain a new expression, which we consider as a
function of all field variables Vk, but independent of Vk[ Λ. This operation changes
essentially the sum of these terms, and we can write only that the density is
equivalent to the sum of the new, integrated terms. We remark also that regions
of integration are usually different for terms in the sum. Let us write the effect of
this operation for each term. Omitting the T^-operation for the remaining
components, as in (1.71), and using the form (1.72) of the operations T "{J\ we
obtain the expressions

X * ( β Γ V Λ f d n Γ z Λ ( β f c n Z ^ (1.76)

The variables V" are determined by, and defined on the set B'k, i.e., V" = V-3 on
Γj,j = 0, l,...,/c — 1, k. The two integrals above are over the disjoint regions of
integrations, hence we can consider them independently. In fact the first integral,
over the region Zh, is left unchanged in the following discussion.

The above integral should be analyzed now in the same way as small field
integrals are analyzed, i.e., we should find a minimum of the Wilson action A(U'k

r)
on the domain of integration, we should expand the whole action around the
minimum, introduced a fluctuation field together with a gauge fixing, restrict the
fluctuation field and analyze the fluctuation field integral. Instead, we will do these
steps on the domain An Zh only, except the first one, the solution of the variational
problem, which we will consider on the whole domain of integration. Let us start
with this problem. The integration in (1.76) does not involve any (5-functions, they
are all integrated out, therefore we look for a minimum of the function A(U'k') for
V"\ A restricted by regularity conditions only. This problem can be divided into
two steps, at first we look for a minimum of A(Uk) with the averages Mh(Uk)
fixed, and then we look for a minimum removing the restrictions on the averages
on the domain A. A solution of the last problem should give a solution of the
original problem. These remarks serve only as a justification of the following
construction. Consider the function

Vk{Λ-*A(UkmZ(Vk)). (1.77)

It is defined on configurations Vk satisfying mild regularity conditions, e.g.,
\dVk — 1| <ax on Z. The function is invariant with respect to the group of all
gauge transformations defined on A, hence it is natural to consider it on orbits
of this group. We look for a minimal orbit. We will prove later the following
theorem.

Proposition 1. For a configuration Vk\ZnΛc, satisfying the regularity condition
\dVk— l\<ε on the domain Z n A\for ε > 0 sufficiently small, there exists exactly
one critical orbit of the function {1.77). An element of the orbit is a minimum of the
function, and is denoted by VΛ= VΛ(Vk[ZnΛc). It satisfies the regularity condition

\VΛ(dp')~l\<B5M
5ε for pΈΛ. (1.78)

The orbit-valued function VΛ(Vk[ZnΛc) has an analytic extension for Gc-valued
configurations Vk = V'kVk = QxpiB'Vk satisfying the same regularity condition as Vk,
with BΈgc and small, e.g., \B'\ < ε.
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The constant B5 is determined by the geometry of the problem, more precisely
by the condition (i). The power M 5 is not the optimal one, in fact we can take
just M, but we will not prove it.

Extend the function VΛ on the whole domain Z putting VΛ = Vk on Zr\A\
and define

U0=UktZ(V^ (1.79)

This is a fundamental background field for the constructions of this and the next
sections. In particular we expand the action Ak in (1.76) around this configuration
on ΛnZc

h; therefore it is important to understand its regularity properties. To
simplify the description we take into account the characteristic function χk Λ. The
restrictions introduced by this function, and the method of construction of the
function VΛ, imply the estimate

I U0(dp) - 11 < 2εkη
2 + O(1)B3B5M

5 e x p ( - δ dist (p, Λ))εkη
2 (1.80)

for peΩk. We will discuss it together with the proof of Proposition 1, because then
it will be immediate, but it follows also quite generally from the definition (1.79)
and the bound (1.78). From the estimate (1.80) we can see easily that the configura-
tion Uo belongs to the integration domain determined by the characteristic function
χk in (1.76), and to the analyticity domains of terms in the effective action Ak.
In fact, it is the reason why we have done the preliminary integrations, and why
we have introduced the function χ'k\ and the spaces U(

k

)c(X,α0,αj. We do not
show the above statement now, because we will need a stronger statement in the
future.

Now we define the fluctuation field V on the set B^n/ lnf^ '^ . Let us
recall that Ω^+1 = ί2^+1 = Z'h~

3, hence Ωl+\= Ω'ζl1=(Z'h~)c, and denote
Ao = A nΩl+\. We put

V" = V'VQ on Λo, V0 = MB»{U0). (1.81)

More precisely the equality is on the set Bo = UknA0. Let us recall that according
to our convention, bonds intersecting dA belong to Bo, and bonds intersecting
dΩl+l do not belong to Bo.

The measure and the underintegral expressions in the second integral in (1.76)
are gauge invariant; more precisely they are invariant with respect to the gauge
transformations defined on Bo. We remove this invariance by fixing a gauge for
the variables V. We fix a gauge which is a modification and a generalization of
the axial gauge in cubes used in the previous papers. At this point we make an
essential use of the fact that the domains A ^>Z'k ^ <- =3ZJί+1 ^(Ω^lf are
rectangular parallelepipeds. This allows us to give a simple description of the gauge
fixing. Consider two successive rectangular parallelepipeds in the sequence, for
example

hence [a'μ, b'μ~\ a [aμ, bμ~]. We have to fix a gauge in Pί\P2, more precisely in the
intersection with the corresponding lattice. We may assume, rescaling properly,
that it is the unit lattice. The gauge is fixed by a tree graph built of bonds contained
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i n Pι\P2- W e fix t h e i n i t i a l p o i n t y = ( y l 9 . . . , y d ) = (a1 + l / 2 , . . . , a d + l / 2 ) , a n d a
number ae(a\, b\). For a given point x of the lattice in Pi\P2

 w e choose a contour
connecting x to y.Iί x1^a, then we take the usual contour

ry,x = [y,(yl9...,yd-l9xd)]u • u[(y 1 ? x 2 , . . . ,x d ) ,x] .

If xx > α, then we take the contour

ry,x = ly> O Ί , - ,yd-i> *<*)] u u [(y1? y2, _y3, χ 4 5 . . ., χd), (3/l9 y2, χ3> χ4> > **)]

^ [(3>i, J>2> χ3> »*<*)> (^i -1/2, y2> χ 3 - , χd)]

u [(&! - 1/2, j>2, x3,..., xd), (b1 - 1/2, x2, x3,..., xd)]

u[(b1- l/2,x2,x3,...,xd),x].

This slightly awkward definition describes a simplest family of contours connecting

points of Pi\P2 with the point y. The union of all the contours is a tree graph T

on P1\P2, hence T = (J 7"^. This definition has the important property that
xe/γvP2

if we enlarge P2> i e ? w e replace it by a rectangular parallelepiped P'2, P 2 c P'2 c P ^
and we remove the contours corresponding to points of P 2 \ P 2 , then the remaining
contours build the corresponding graph T" on P^P^ We fix the gauge putting
the bond variables equal to 1 for bonds belonging to the tree graph. We use all
gauge degrees of freedom connected with points of P i \ P 2 , except one, so we add
an external bond to the graph. If is one of the bonds intersecting the boundary
dPu but they are bonds of the larger scale (they are L-bonds for the unit scale in
Px\ except when P1 = A, so it is simpler to describe the corresponding bond for
P 2 . We assume that P 2 is not the last domain in the sequence, i.e., P 2 φ{Ω"hX

Σ

x)\
because no gauge is fixed in this domain, and no external bonds intersecting dP 2

are added to the graph. For the remaining domains P 2 we choose the bond

[(a\ - 1/2, α2 + 1/2,..., a'd + 1/2), (a\ + 1/2, a'2 + 1/2,..., a'd + 1/2)],

and add it to the graph. For Pι=Λ we add also the additional bond
[(ji — 1 J yi > - »yd\ y\- The union of the above described tree graphs and bonds is
denoted by To. It is a tree graph in Bo, fixing completely a gauge in this set.
Using the Faddeev-Popov procedure we introduce the gauge fixing (5-function
δTo(V) in the integral (1.76).

The regularity conditions for V", Vo, and the gauge fixing for V introduce
restrictions on this field. We can prove that it satisfies | V — 11 < O(\)M2NR*εk

on Bo. We introduce stronger restrictions on the fluctuation field by the decomposi-
tion of unity 1 = χ' + (1 — χ'\ where

χ' = χ({\B'(b)\<δ'k for beB0}), (1.82)

and V = exp iB'. The decomposition of unity is introduced in each component of
Z, and we exclude from Z the components with the large field function 1 — χ'. In
the remaining components, denoted by Z, the functions χkΛ, χ' should allow us
to remove the function χ£, except that they do not give restrictions on the variables
V" = Vh on ZJ,~ \Zh. We shall introduce such additional restrictions, but at first we
Γix a gauge for the configuration Uo. We would like to represent it locally, on a
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subdomain of A, as expi^A0, with Ao sufficiently small. Such a representation
can be obtained in two steps. The configuration Mk(U0) = VA satisfies the regularity
condition (1.78). We fix for it the axial gauge in A{k\ hence the field VΛ is small
inside A{k\ More precisely, it satisfies the bound

\VΛ(b)-l\<O(l)B5M
6εk for b c Λ(k\ (1.83)

Consider the configuration Uo inside the domain A. We take it in the axial gauge
in /c-blocks, hence \Mj(U0)- Qζ-jVΛ\ < Ud2O(l)B3B5M

5εk inside A, by the
estimate (1.80), and (1.65) [14]. This and (1.83) imply

\Mj(U0) - 11 < 0{l)B3B5M
6εk inside A. (1.84)

The field Uo can be represented inside A as follows:

U0 = U(Bk(A\M'(U0)). (1.85)

The field in the argument of the function on the right-hand side of the above
equation is small, hence we can expand the function around the configuration
identically equal to 1. We transform the function to the Landau gauge constructed
around this configuration, and we get

Uo = (expwyHfc/τlogM (l/0) ) ) ° . (1.86)

Thus UUQ is in the required gauge, and we have

Uu

0° = U{

0

ΛL} = exp iη A o inside A,

where
\A0\,\ΨA0\,\dri*drl/\0\<O(l)BlB5M

6εk on Z"k. (1.87)

The function Ao = H*. Λ((l/i)\ogM'(U0)) is also an analytic function of
(l/i)log M'(U0), on a much larger domain than the one determined by the bounds
(1.84). The superscript (AL) in (1.87) indicates the mixture of the axial and the
Landau gauges. Changing the gauge of Uo in the integral (1.76) requires the
corresponding compensating gauge transformations of the variables Vh, the gauge
transformation restricted to d+(Zr

h~)ih\ and of the variables V, the gauge trans-
formation in the adjoint representation. The expressions in the integral (1.76) are
invariant with respect to these transformations. We can also choose from the
beginning the configuration Uo in the AL-gauge. Finally, we introduce the last
decompositions of unity on components of (jQ{[+1)

cnί2fι:

1 = Σ U/[I S U P I υ hd( l > Vάdp)-\\<έεΛ(L*Λ)

• Π x\ \ SUP I ι\D((i, vh). dp) - 11 ^h{Lk-»n

(1-

The summation above is over subsets P of a component of the domain (Ω^-^
which are unions of LM2J^Λ-cubes (for the L^-scale). The symbol (1, Vh) means
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the configuration (lf^ V ^hϊ(Ω'^+\f)' ^ e ^ a v e n e w l a r β e fields in components
with nonempty sets P, so we exclude these components from Z. In the remaining
components, which form a new domain Z, we have the function Xh,i/2((^h+ if n Ωh).
Notice, that if a cube • is contained in /2J,'+i, and is not touching the boundary
of this domain, then Uhπ(l, Vh) = Uhπ(\) = 1, and the condition defining the
corresponding characteristic function is always satisfied, i.e., the function is
identically equal to 1. Therefore the above characteristic function is defined by
the product over cubes Π intersecting the domain (ΩH\)\ and contained in Ωh.

Now we prove that, with the new functions introduced in the integral, we can
drop the function χJJ, i.e., we have the equality

(1.89)

We have assumed that β S 1/4- The equality χh(ΩhnZh) = 1 is immediate, so we
have to prove that χ£ = 1. We have already done several reasonings of this type,
so now we will sketch only main points. Take a cube • cz(Ωf^1)

cnΩh, and
represent the functions U'^z o n D~ m the usual way:

^ ^ ( L 9 0 )

The function Hhn and it derivatives can be bounded on Π~ by
B3 exp (— δ2LM2Rh)l ld2εh < 1 ld2B3 exp (— Rh)εh < ocεh, where a is a small, absolute
constant, which will be fixed later. Estimating as in (1.46) we get

I U'ίtZ{dp) - 11 < I υhn{V\ dp) - 11(1 + L~haεh)

+ (x + 8a2εh)εh(Lk-hη)2 for p c Π ~ . (1.91)

The field V" is equal to Vh on (Ω'^l)cn Π^4, and on Ω'^\n Π^ 4 it is equal to

V" = V'Mh{U{

0

ΛL)) = exp iB' exp iQh{ηί\0\ (1.92)

Expanding Uhn(V") with respect to the above field, we get

H ^ Vhή . (1.93)

The function H/7Π above, and its derivatives, can be bounded on Π^ by

B3δ'k + L~{k-hW)BlB5M
bεk ^ B3(l +

^o Poiθh)

+ LΓNNll2O(\)BlB5M% < ocεh. (1.94)

The last inequality holds under two restrictions on N. At first, we assume that
N ^ O ( l ) ( l o g ^ 2 ) v ^ O ( l ) ( l + ^ 0 ) ( l o g ^ " 2 ) v with a positive integer v satisfying
(l/2)v ^po — p1 — l. The second is that N has to be sufficiently large, so that the
constant in the second term above can be bounded by (l/2)α. These two conditions
can be satisfied by N to the positive power of logg^2. From the representation
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(1.93) and the above bounds we get

I Uhn(V\ dp)-l\<\ Uhn((l Vh\ dp) - 11(1 + L-haεh) + (α + 8α22εh)εh(L f c-V

< i ( l + L"h0Lεh)ch(Lk-hη)2 + (α + 8α2εΛ)εΛ(L*- hη)2. (1.95)

The estimates (1.91), (1.95) yield

~ 11 < hhifi~hn)2 < 0 - j»(l - 2" <*"fc+ ^ ( L * - ^ ) 2 (1.96)

for p c [ ] ~ , hence on the whole domain (β^ /+ 1) cnί2 h . We have chosen α = 1/12
in (1.91), (1.94), (1.95).

Consider now the function U'k\z on the domain Ω^+ίnΩc

k. We localize it in
the domain ZnΩ^+l, introducing the usual boundary conditions at the boundary
dΩl+l through the determining set Uh(Ωl+\). We write the identity corresponding

4 lto (1.90), with Bh(\J~4) replaced by E^zuB^Ω'ί+l), a n d w i t n t h e argument

M'(U'ί,z) = VM\υιz){M\υ^)yιw\υ^AL)).

The above field is equal to V" outside the layer of thickness 2MX (in L^^-scale) at
the boundary dΩl+l. Denote this layer by ^ . We expand the function with respect
to (l/01°g[ " ] Γ r by the usual formula. This field can be bounded by

22d2msLx{l,L-2NNll2O(l)B3B5M
5{l + βo)}εh + 2δ'k

ί 22dhh + 2(1 + / y j V ^ ^ Γ ^ < 23dh»-

The H-function in the expansion can be bounded on the domain Z'-+ι\Z'- for
h<j<k, Zh+ί\(ΩhZιϊ for j = h, and Ωc

k\Z'k' for j = k, by

£ 23d2B,(l + βo)
2(l + (j - h)β°) exp ( - (j - h)) exp ( - Rh)cj < αfij .

This yields the bound (1.91) with h replaced by j , and the configuration Όhu(V")
replaced by

U{WizyjUh(ΩΓ+\),{^iB'M (U(

0

AL))\ Σ,,M\U^)\ Σ)). (1.97)

We expand the above function with respect to the variables B'. The corresponding
H-function can be bounded on the same domains as above by

B3δk ί B3(l + /?o)(l + (k -j)112)3 k 3( /o)( ( j ) ) ^ ^ ^ .

The plaquette variables for the configuration (1.97) are bounded again as in (1.91),
with h replaced by j\ and with Uhn(V") replaced by (1.97) for B' = 0. This
configuration is equal to Uu

0°, where ύ0 is a gauge transformation constant in blocks
of the determining set of (1.97), the constant equal to the value of u0 at centers of the
blocks. The plaquette variables of Uu

0° satisfy the estimate (1.80). Combining the
above estimates, and using the inequality

ε*>72 ύ (1 + βo){k -j)1/2L-2(k-j)εj{Lk'jη)2 g L-(k~j)εj(Lk'jη)2
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for j < fc, we obtain

- 11 < (2εkη
2 + O(1)B3B5M

5 exp ( - δ dist (p, A))εkη
2)

•(1 + L- 'αβy)2 + (2 -f IΓ'αe^α + δ α ^ ε / L ^ ) 2

^ (2ίΓ(/< "Λ + 4α + O(l)B3B5M
5

•exp(- (5 dist (p, /I))LΓik~j))εj(Lk~jη)2, (1.98)

on t h e / h domain described above. Now we have to analyze this bound on all the
domains in the definition (1.24). Consider Ωm\Ωm + 1 for ko<m<k. We have
j = fc, and the exponential can be bounded by

hence the last term in the bound (1.98) can be made arbitrarily small for M large
enough. Making it smaller than α, and taking α ̂  1/8, we estimate the right-hand
side of (1.98) by (21/8)ε^2 ^ 3(1 - β(l/2))εkη

2 for ro = fc-l, and (21/8)ε^2 ^
(1 -β(\/2))Ll{k~m~1)εkη

2 for the remaining m. Next, on the domain ί 2 £ o f l n
Ω'lι11 the right-hand side of (1.98) can be bounded by (4α +
0(l)5 3 5 5 M 5 L 0 " 2 ( / c " j ) )ε J (^c""^)2, with an increased 0(1). On the domain Z'j+^Z'j
for k0 < j < /c, and on i^^0+1 \Z^ for y = /c, we have

(4α + O(l)B3B5M
bL0

2{k-j))εj(Lk~jη)2 £ (1 - β)L$J~k°- ^e/L*"^) 2

if 0 ( l )5 3 5 5 M 5 L 0 " 2 ( Λ ί o ~ 1 ) ^l/4 . From the definition of the number IV0 (recall
that it is defined by the equation L~ i V o + 1 ^_ Λ Γ o + 1 = 1) we get

where α 0 = (logLo)/(logL). The number on the right-hand side is ^ 1/4 for Rj~ao

9

or y sufficiently small. Finally, on the domain Z"j+ x \Z' for h<jS k0, and on

Z'^1ΓΛΩIX1 for j = /z, we have

(4α + 0(l)B3B5M
5Lo2{k'j))εj(Lk~jη)2 ^ (I - β)εj{U~jη)2,

because k—j^N0 and we use the above bound again. Thus we have proved that
the configuration U'k\z satisfies all the conditions in the definition (1.24), hence
χk = 1, and the equality (1.89) is proved.

Let us now summarize the result of all the transformations we have done on
the density pk. We have obtained a density, which may not be equal to pk, but is
equivalent to it, in the sense that they have equal integrals. This density is written
as a sum over large field regions. The components of the regions are divided into
two classes: the components satisfying the conditions (i), (ii), for which the corres-
ponding integral operations are given by the integrals in (1.76), and the remaining
components, for which the integral operations have many forms, varying from the
old T-operations to the integrals as in (1.76), but with some large field characteristic
functions, through the intermediate operations described above. These operations
are denoted by Ύk. Thus we have obtained the equivalence
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•SdV'lBoδTo(V')χ'εxpA'l. (1.99)

The operation Jk above includes a summation over all possible forms of this
operation in various components of Zk\Z. Now we rearrange the sum above. We
denote Zk\Z by Zfc, we write Z explicitly as a union of components, Z = Xλ u u
X^, and we separate the summation over the admissible Zk, n, Xu...,Xn9 from
the remaining summations, which are factorized in those domains. In such a
representation it is natural to replace the summation over {Ωp Λj} by summations
over the corresponding sequences {Ωc

p Zj} localized in the components. Denote
the sequence localized in Xi by [Ωc

UpZUj], and Bo, To, A localized in Xt by
Bί5 TbAt. The integrations in (1.99) are also factorized in those components. This
way we write the expression in (1.99) in a form similar to a polymer expansion,
suggesting explicitly localization operations and an exponentiation. Finally, we
are ready to define an operation, which is not a complete [R-operation yet, but is
a basic part of it:

- ~ A(ζi9 Uk.Xι(V'kVΛι))
9k

ίdV'lMV'MΛύexpΓ --i- A(ζh UktXι(VΎΛ))]
L 9k J

'$dVht{Ω::hliΐχhΛI2((Ωl^

(1.100)

where Gf is a graph in A{ fixing the axial gauge, ζί GCJ(Xi), ζi changes from 0 to
1 in a neighborhood of dX~ 2, and χ(Λi) is given by

<Moεk for beΛΛl (1.101)-ΛogV'φ)

Because of the gauge fixing terms the expressions in (1.100) are not Euclidean
invariant, and we have introduced the averaging over families of graphs, such that
the averaged expressions are invariant. With our prescription of building the
graphs, dependent on the chosen coordinate system, these averages can be replaced
by averages over Euclidean rotations leaving the lattice invariant, or even simpler,
by averages over d\ permutations of coordinates, and 2d reflections in subsets of
coordinates. Then Nt = ί/(2dd\). We can also choose other ways of fixing a gauge,
generalizing the Landau gauge, which are Euclidean invariant, but they are
analytically much more complicated.

The above operation has the fundamental normalization property

In fact, the R'-operaίion changes essentially the initial density pk only in a neighbor-
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hood of the large field region; the changes are decaying exponentially fast with
the distance to the region. It is now clear what the next operations are. At first,
we have to extract from the expression in the curly bracket { } the density exp Ak,
where Ak is the effective action determined by the assumption that Zk is the only
large field region. The remaining expression should be localized around the
components Xl9..., Xm represented as a polymer expansion, and finally exponen-
tiated. All these operations will be described in the next paper.
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