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Abstract. The paper deals with non-commutative differential gecometry. The
general theory of differential calculus on quantum groups is developed.
Bicovariant bimodules as objects analogous to tensor bundles over Lie groups
are studied. Tensor algebra and external algebra constructions are described. It
is shown that any bicovariant first order differential calculus admits a natural
lifting to the external algebra, so the external derivative of higher order
differential forms is well defined and obeys the usual properties. The proper
form of the Cartan Maurer formula is found. The vector space dual to the space
of left-invariant differential forms is endowed with a bilinear operation playing
the role of the Lie bracket (commutator). Generalized antisymmetry relation
and Jacobi identity are proved.

0. Introduction

It is difficult to overestimate the importance of the methods of differential
geometry in the theory of Lie groups. Such fundamental notions as tangent Lie
algebra and infinitesimal representation are provided by these methods. In-
finitesimal representations in turn play an important role in applications of Lie
groups in physics: Infinitesimal generators are related to the most important
observables such as energy-momentum, angular momentum, and internal quan-
tum numbers.

On the other hand, for differential geometry the Lie group theory is much
more than just one of the fields of application. It is sufficient to dip into any
contemporary handbook of differential geometry to see that Lie groups lay
behind such basic notions as principal and associated fibre bundles. In fact, the
development of differential geometry in the past 30 years can be considered as a
far reaching implementation of the Erlangen program of F. Klein.

We believe that a similar interplay between differential geometry and group
theory will be very fruitful also in the theory of non-commutative spaces. In this
case instead of Lic groups one has to consider morc general objects: non-
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commutative spaces provided with a group structure, i.c. quantum groups [3]
(pseudogroups in the sense of [ 7] and [107]). Moreover, following the general idcas
of Connes [2] one should use the notion of differential form (rather than that of
vector field) as the basic one.

The main aim of this paper is the presentation of differential calculus of
differential forms on a quantum group. We show that all important notions and
formulae of classical Lie group theory admit a generalization to the quantum
group case. To be more specific we restrict ourselves to compact matrix
psecudogroups as introduced in [ 10], although we believe that the compactness is
not crucial to the problems considered here.

We use the axiomatic method to introduce the first order differential calculus.
The axioms contain the basic properties of external derivative (Leibnitz rule) as
well as additional requirements related to the underlying group structure (left- and
right-covariance). The axiomatics is not categorical: for a given quantum group
there exist many non-equivalent differential calculi. This fact is in unpleasant
contrast with the more satisfactory situation in classical differential geometry
where the notions of first order differential form and external derivative are
introduced in a constructive (functorial) way. At the moment after many
unsuccessful attempts we accord with the opinion that for the non-commutative
geometry no such functorial definition is possible. We have, however, to stress that
once the first order differential calculus is fixed, all further notions are introduced
in a fully functorial way.

We briefly describe the content of the paper. Section 1 contains the main
definitions and results concerning first order differential calculus. We indicate that
reasonable calculi are in one to one correspondence with right ideals % in the
algebra of “smooth functions” on considered quantum group satisfying certain
conditions. The problem of the right choice of # will be considered in a
forthcoming paper. Here we notice only that if the ideal Z is too small then the
corresponding differential calculus is over multidimensional, i.e. very complicated
from the computational point of view. If # is too large then the resulting
differential calculus may become trivial. In this case the infinitesimal generators
may not contain enough information to restore the original representation.

Section 2 is of a more general character. The notion of bicovariant bimodule
investigated in this section corresponds on the classical level to that of vector fibre
bundle over the group manifold endowed with the left and right action of the
group. It is well known that any such bundle is topologically trivial: There exists a
family of left-invariant sections such that for any point of the group the values of
the sections at this point form a basis in the fibre over this point. We shall prove the
corresponding result in the general case (see Propositions 2.1 and 2.3). Moreover,
considering the right shifts of left-invariant sections we arrive at the notion of
adjoint representation. The results of this section provide the proper tools for the
proofs of the theorems of Sect. 1 as well as for further studies related to tensor and
external algebras.

The main role in Sect. 3 is played by the twisted flip automorphism
g F@ '-r ®F associated with any bicovariant bimodule I'. We prove that o

satlsfles the brald equation. Due to this equation we shall be able to introduce the
antisymmetrization operation acting on tensor powers of I', and consequently to
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carry out the external algebra construction. In Sect.4 we prove that any
bicovariant first order differential calculus admits a natural lifting to higher order
differential forms.

Section 5 is devoted to the vector space T dual to the space of left-invariant
differential forms. It plays the role of tangent Lie algebra. Using the automorphism
o considered in Sect. 3 we shall introduce the “commutator” of any two elements of
T. 1t satisfies the twisted antisymmetry relation and twisted Jacobi identity. Cartan
Maurer formulae are also derived. The results of Sect. S may be used to introduce
the notion of enveloping algebra. We would like to stress that in our theory the
relations defining the enveloping algebra remain quadratic [cf. (5.25)] like in the
classical case. On the other hand, the approach to quantum group thcory
presented in [3] and [4] uses the quantized enveloping algebra introduced by
relations involving entire analytic functions. It would be interesting to relate these
different points of view. Some results in this direction are obtained by Rosso [6]
and Koornwinder [5].

This paper contains only a few examples illustrating the general theory. All the
examples concern the twisted SU(2) group, and even in this particular case the
detailed computations are not explicitly presented. This gap will be filled by the
forthcoming papers where the differential calculus on the twisted SU(N) group
will be investigated. It turns out that the general theory presented in this paper
can be used to produce non-standard differential calculi on classical Lie groups.

To end this Introduction we would like to formulate a duality principle that in
many cases enables us to omit boring proofs.

For any ge M (C) we denote by g’ the transpose of g. If G € M (C) is a group of
matrices, then G'={g': ge G} is also a group of matrices. A similar fact holds for
compact matrix pseudogroups. Let G =(4,u) be a compact matrix pseudogroup
and u' be the transpose of w:(u'),=uy (k,[1=1,2,...,N). Then G'=(4,u") is a
compact matrix pscudogroup [one can check that the comultiplication ¢" and
coinverse «' associated with G' are given by the formulac @' =g o ® and ' =",
where @ and « are the comultiplication and coinverse associated with G and o 4 is
the flip automorphism of A® A: 0 ,(a®b)=b&a for any a, b e A]. This fact leads to
the following LR-duality principle (LR stands for Left-Right).

If DEF is a definition of a notion of the theory of compact matrix
pseudogroups, then replacing in DEF all notions related to a pseudogroup G by
the corresponding notions related to G' we obtain a definition of a new notion
related to G. We say that this new notion is the LR-dual of the old one. For
example g, - @ and k ~ ' are LR-duals of @ and «, respectively. Similarly, if THM is
a theorem of the theory of compact matrix pseudogroups, then replacing in THM
all notions by their LR-duals we obtain a new theorem of the theory. For example
in Sect. 1, Proposition 1.3 is the LR-dual of Proposition 1.2.

Throughout the paper we deal with many pairs of LR-dual definitions and
statements. We believe that the reader will easily correctly identify these pairs.

1. First Order Differential Calculus

The first order differential forms on a smooth manifold M are sections of the
cotangent bundle T*(M). The set of all sections I'(M)= C>*(T*(M)) is a bimodule
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over C*(M). The external derivative
d: C*(M)—T'(M)

obeys the basic property: d(ab)=(da)b+ adb for any a, be C*(M). Moreover (at
least for compact manifolds), any differential form geI'(M) is of the form
0=7Y a.db,, where a;, b,e C*(M)(k=1,2, ..., K). Expressing this situation in more
abstract terms we arrive at the following

Definition 1.1. Let o/ be an algebra with unity, I' be a bimodule over &/ and
d: o >T (1.1)

be a linear map. We say that (I',d) is a first order differential calculus over .o if
1. For any a,be .o/,
d(ab)=(da)b+ adb. (1.2)

2. Any element g€ I is of the form

Q:
k

adby ,

1

1=

where a,, b, e.o/; k=1,2,...,K; K is a natural number.

Two first order differential calculi (I',d) and (I",d') over o/ are said to be
identical if there exists a bimodule isomorphism i: ['—[" such that i(da)=d'a for
any a€ o/. In what follows we shall identify identical calculi.

Let o7 be an algebra, m: .o/ ® .o/ —.«/ be the multiplication map [i.e. linear
mapping such that m(a®b)=ab for any a,be o/] and

A?r={qe AR mq=0}. (1.3)
Clearly 7% is a linear subset of .7 ®.o7. Setting (for any ce.o/)

K K
C(kzl ak®bk> = kZ] Cak®bk N (14)

K K
(kZ ak®bk>cz Y a®bc, (1.5)

=1 k=1

we introduce on ./ an .&/-bimodule structure. For any he./ we put
Db=I®b—b®I. One can easily check that D:.c/ —.</* is a linear mapping and
that (<72, D)is a first order differential calculus over .«7. From the practical point of
view this calculus is not very interesting. Its theoretical importance is revealed by
the following simple.

Proposition 1.1. Let " be a sub-bimodule of.</*, I'=./?/ A", n be the canonical
epimorphism o7*—1I and d=moD. Then (I',d) is a first order differential calculus
over of. Any first order differential calculus over o/ can be obtained in this way.

Proof. Only the last remark needs a proof. Let (I, d) be a first order differential
calculus over .. For any Y a,®b, € /> we have
k

Y eadb,=cYy adby,
k k

21; ayd(byc) = (; akdbk) c+ <% akbk> de= <% akdbk) c.
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These relations show that the mapping 7n:.2Z?—T induced by the formula
n(%ak(@bk) = %akdbk (1.6)

is a bimodule homomorphism. We shall show that = is surjective. Indeed, if o€ T,
then 9= a,db, (where a;, b,e.«Z; ) denotes the sum over k=1,2, ..., K). Clearly,
Y 4, @b, — (Y ab)®I € o7* and n(Y. a, @b, — (Y ab)®I)=0 —(Y ayb)dl = ¢ [the
relation dI =0 follows immediately from (1.2)]. Let

N = {; 4, @b, € .o/%: ;akdbk:o} (1.7)

be the kernel of . Then I' may be identified with .«/%/.4" and for any b € .«Z we have
[cf. (1.6)]

1(Db)=n(I®b—b®I)=1db—bdl=db. Q.E.D.

The main subject of this paper is the investigation of differential calculus on
compact matrix pseudogroups (quantum groups). Let G=(4, u) be such a group.
We shall use the notation introduced in [10]. In particular, @ is the comultiplica-
tion and « is the coinverse associated with G and .7 is the *-algebra generated by
matrix elements of u. Moreover, e will denote the #-character defined .« such that
e(uy) =0y (k,1=1,2,...,N). We shall treat .o as the set of all C* functions defined
on G. This means that .&/ defines the smooth structure on G. By definition
differential calculus on G is a differential calculus over 7. The group structure
existing on G implies some natural conditions that should be satisfied by any
reasonable differential calculus on G. The covariance conditions introduced below
are the most important.

If I is an .o7-bimodule, then .«/®I" (and I'®.</) carries a natural (o7 ®.%7)-
bimodule structure. For example (a®b)(c®¢)=ac®bg for any a,b,ce.o/ and
oel.

Definition 1.2. Let (I, d) be a first order differential calculus on G. We say that (I, d)
is left-covariant if

(X adb,=0) = (¥ P(a,)(id@d)P(b,)=0) (1.8)
for any a,, by e o/ (k=1,2,....K).
The content of this definition is revealed by the following

Proposition 1.2. Let (I',d) be a left-covariant first order differential calculus on G.
Then there exists a linear mapping

AT (1.9)

such that
1. For any aes/ and g€l

P (ag)=P(a)Pr(0), (1.10)
P {oa)=P{0)P(a). (1.11)
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2. The diagram or
I ——— AR

@r d®id (1.12)

is commutative.
3. For any g€l

(e®id)P{e)=c. (1.13)
4. The diagram
o —L 5 r
“’l l"’r (1.14)

oA QoA “wel AR

is commutative.
The linear mapping (1.9) is determined uniquely by (1.10) and Condition 4.

Proof. Using (1.10) and Condition 4 one can easily check that
DY, adby) =) P(a,)(id®d)D(by) (1.15)

for any a,, b, €.9/. This proves the uniqueness of (1.9). On the other hand, the
implication (1.8) shows that @, as introduced by (1.15), is a well defined linear
mapping from I' into o/ ®I'. Equation (1.10) and the commutativity of (1.14)
follows immediately from (1.15).

Let a,be.o/. Using (1.15) we have

(P®id)P(adb)=(P®id)[P(a)(id®d)P(b)]
=(PR®id)P(a)(id®idRd)(P®id)P(b).
On the other hand, using (1.15) twice we get
([d®P )P {adb)=(i[d@P)[P(a)(id®@d)P(b)]
=(Id®P)P(a)(id®id@d)(id @ P)P(b),

and (A.1) of the Appendix shows that the diagram (1.12) is commutative.
Let a,be o/. Remembering that e is multiplicative and using (A.5) we obtain

(e®id)®(adb) =(e®id)[P(a)(id®@d)P(b)]
=[(e®id)@(a)]d[(e®id)P(b)] = adb

and (1.13) follows.
Let a,b,ce.o/. Then (adb)c = ad(bc)— abdc, and using (1.15) we have

@ ((adb)c)= ®(a)(id @ d)P(bc) — P(ab)(idQ d)P(c)
= P(a)[([d@d)P(bc) — P(b)(1d®d)P(c) ]
=®(a)[([d@d)D(b)]P(c) = P(adb)P(c),

and (1.11) follows. Q.E.D.
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Definition 1.3. Let (I, d) be a first order differential calculus on G. We say that (I', d)
is right-covariant if
(X adb, =0) = (3 P(a,)([d®id)P(b;)=0) (1.16)

foranya,, b e o/ (k=1,2,...,K).(I',d)is said to be bicovariant if it is left- and right-
covariant.
Using the same techniques as in the proof of Proposition 1.2 one can prove

Proposition 1.3. Let (I', d) be a right-covariant first order differential calculus on G.
Then there exists a linear mapping

O M-I R (1.17)
such that

1. For any ae o/ and €T,
D(ap)=P(a);P(0),
r®(ag) = P(a)r(e) (1.18)
r®(ea)=r@(0)P(a).

2. The diagram o
r — Ired

r@l de@(h

is commutative.
3. For any g€l

(id®e),P(o)=c¢.

4. The diagram .
o —— T

| e
is commutative.

The linear mapping (1.17) is determined uniquely by (1.18) and Condition 4.

Clearly,
e LY aydby) = Y Pla)(d@id)b(b,) (1.19)

for any a,, b e /.
We also have

Proposition 1.4. Let (I', d) be a bicovariant first order differential calculus on G and
@, and P be linear mappings introduced by Proposition 1.2 and Proposition 1.3,
respectively. Then the diagram

or
I —— JQr
,-ml lid@r@ (1.20)

is commutative.
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Proof. Let a,be.</. Using (1.15) and (1.19) we have
(1d® P)P{adb)=(i[d® rP)[ P(a)(id @d)@(b)]
=[([d®®)P(a)](([d®I®id)[(i[d@D)(b)].
On the other hand, using (1.19) and (1.15) we obtain
(2 ®id) P(adb) = (@ @id)[P(a)(d @id)D(b)]
=[(?®id)P(a)](1d®dRid)[(P®id)P(h)],
and (A.1) shows that the diagram (1.20) is commutative. Q.E.D.

The covariance conditions imply some restrictions on the sub-bimodule A~
considered in Proposition 1.1. To formulate these restrictions we shall use the
linear mappings r and s acting on .o/ ® .«7 introduced in [ 10] and the adjoint action
of G on itself denoted by ad (cf. [9]). Let us recall that, by definition, for any
a,be.d:

Ha®b)=(a® P(b), (1.21)
s(a®b)=(I®a)P(b). (1.22)

Mappings r and s are bijections, for example the inverse of r is given by (a, b e.o7),

F Ha®b)=(a®I)(k®@id)®(D). (1.23)

More useful formulae describing properties of these mappings can be found in the
Appendix.

Theorem 1.5. Let Z be a right ideal of </ contained in kere and N =1~ (o @ R).
Then A is a sub-bimodule of .o/*. Moreover, let I'=.2/*/ A", 7t be the canonical
epimorphism .o/*— 1T and d=m o D. Then the first order differential calculus (I',d) is
left-covariant. Any left-covariant first order differential calculus on G can be
obtained in this way.

The proof will be given in Sect. 2.

Examples. 1. If G is a Lie group then setting # = (kere)* we obtain the usual
differential calculus on G.

2. The differential calculus on the twisted SU(2) group presented in [8] is left-
covariant. In this case the right ideal Z is generated by six elements: o* + o
— (141, y2, y*y, y*%, (a—1)y, and (o —I)y* (cf. Proposition 2.4 in [8]). In the
following this calculus will be called 3D-calculus on S,U(2) [one can check that
dim(kere/#)=13].

3. Let G=S,U(2) and Z. (#_, respectively) be the right ideal in .o/ generated
by the following nine elements:

’))27 V(“* - OC), lu‘zoc*z - (1 =+ /J’Z)(OCOC* - V*,‘/) + 0(25 ”/*(05* - OC), “/*2 s (1 24)
ay, a(ot*—oc), aV*> (125)
a(po 4o — (1 + u)I), (1.26)
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where a= pioa+o* —[(1+ u*)/ull (a= po+o* +[(1 4+ p*)/u]l, respectively). One
can check that 2, Ckere and dim(kere/# ,)=4. The corresponding differential
calculi on S,U(2) will be called 4D , -calculi.

Theorem 1.6. Let # be a right ideal of </ contained in kere and N =5~ (RR o).
Then A" is a sub-bimodule of .o/*. Moreover, let I =./?/.A", n be the canonical
epimorphism o/>—T", and d=m o D. Then the first order differential calculus (I', d) is
right-covariant. Any right-covariant first order differential calculus on G can be
obtained in this way.

The proof will be given in Sect. 2.
To formulate the next theorem we need the concept of ad-invariance.
Let

ad: .o > A RS (1.27)

be the adjoint action of G onto itself introduced in [9]. We recall that for any
ae

ad(a)=s(r '(I®a)). (1.28)
Combining (1.22) and (1.23) one can easily check that
ad(a)= %bk® K(ap)ey (1.29)

where a,, by, and ¢, (k=1,2, ..., K) are elements of ./ such that

(d®P)P(0) = 3 4, @b, Bc.

Using (1.29) and standard properties of comultiplication and coinverse [cf.
(A1), (A.2)] one can check that the diagram

ad

oA — AR
adl lad@id (1.30)
is commutative,

We say that a linear subset T'C.«7 is ad-invariant if ad (T) C T®.«/. We shall use

Lemma 1.7. Let T be a linear ad-invariant subset of .o/ and R be a right ideal of o/
generated by T. Then X is ad-invariant.

Proof. Let a,be of. We claim that
ad(ab)= %(I®K(b§<)) ad(a)®(by), (1.31)
where by, by, (k=1,2,...,K) are elements of .7 such that
&(b)= ;b;@b,’{ .

Indeed, using (1.23) and remembering that x is antimultiplicative we see that

r~ M {I®ab)= Y (kb)) M I®a)(I®b}).

k
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Inserting this expression into (1.28) and using (A.13) and (A.14), we obtain (1.31).
The assertion of the lemma follows easily from (1.31). Q.E.D.

Theorem 1.8. Let # be a right ideal of </ contained in kere and (I, d) be the left-
covariant first order differential calculus described in Theorem 1.5. Then (I',d) is
bicovariant if and only if R is ad-invariant.

The proof will be given in Sect. 2.

The standard differential calculus on Lie groups is bicovariant. The 3D-
calculus on S,U(2) described in [8] is not bicovariant. This fact does not
incapacitate this calculus; due to the computational simplicity it remains a useful
tool in many problems related to twisted SU(2). One has to stress, however, that
the general theory presented in this paper is not applicable to 3D-calculus, so some
of the results obtained in [8] (e.g. the existence of the higher order calculus)
remain mysterious.

Let T, (T; and T, respectively) be the linear subsets of .7 spanned by (1.24)
[(1.25) and (1.26), respectively]. One can check that T, (s=0, 1, 2) are ad-invariant.
In fact, the adjoint action of G on T; is equivalent to the representation of spin s
(note that dim T, =2s + 1). Therefore, according to Lemma 1.7 the ideals # , are ad-
invariant and 4D . -calculi are bicovariant. These calculi as well as the correspond-
ing calculi on twisted SU(N) will be investigated in a separate paper.

To end this section we present some definitions and results related to
*-structure.

Definition 1.4. Let (I, d) be a first order differential calculus on G. We say that (I, d)
is a =-calculus if
(X axdb,=0) = (YL d(bf)ag =0) (1.32)

for any a,, b e o/ (k=1,2,...,K).
We have

Proposition 1.9. Let (I',d) be a first order differential #-calculus on G. Then there
exists unique antilinear involution

I'sg—-g*el (1.33)
such that

(ag)* =o*a*, (1.34)

(ea)* =a*g*, (1.35)

(da)* =d(a*) (1.36)

for any g€ and a€ <. In other words, I' is a *-bimodule and d intertwines the
x-operations on .o/ and I'. Moreover, using the induced *-structure on </ ®1I and
I'®./ (cf. (2.57) and (2.59)) we have

1. If (I',d) is left-covariant, then using the notation introduced in Proposition 1.2,
for any ge " we have

P{0*)=(Pr{e)*. (1.37)

In other words, (I', @r) is a left-covariant *-bimodule.
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2. If (I',d) is right-covariant, then using the notation introduced in Proposition
1.3, for any oI, we have

r®(0*)=(rP(Q)*. (1.38)
In other words, (I', ;@) is a right-covariant *-bimodule.
Proof. Using (1.34) and (1.36) one can easily check that
(X adby)* =Y. d(by)ai (1.39)

for any a, b, € /. This proves the uniqueness of (1.33). On the other hand, the
implication (1.32) shows that * as introduced by (1.39) is a well defined antilinear
mapping from I' into I'. Equations (1.34) and (1.36) follow immediately from (1.39),
and (1.35) can be checked by direct computation: if 9 =bdc (where b, ¢ € o7), then

(0a)* =(b(dc)a)* = (bd(ca)— bcda)*
=d((ca)*)b* — d(a*)(bc)*
=d(a*c*)b* —d(a*)c*b* =a* o™,

and (1.35) follows. Using (1.35) and Definition (1.39) one easily checks that * is an
involution. Similarly, one can verify relations (1.37) and (1.38). Q.E.D.

We also have

Theorem 1.10. Let # be a right ideal of o/ contained in kere and (I', d) be the left-
covariant first order differential calculus described in Theorem 1.5. Then (I',d) is a
w-calculus if and only if k(x)* €A for any xe .

The proof will be given in Sect. 2.
Using this criterion one can easily check that all examples of differential calculi
considered in this section are *-calculi.

2. Covariant Bimodules

Let T be a vector bundle over a Lie group G. In many cases the left and the right
actions of G on itself admit a natural lifting to T. This is the case when T is a bundle
obtained from the tangent bundle by one of the operations considered in the tensor
algebra. Then we have the natural actions (left and right) of G on the set of all
smooth sections of T. In the pseudogroup case G =(A, u) this situation is described
by the following definitions:

Definition 2.1. Let I be a bimodule over .7 and @ I'—.o/ ®I be a linear map. We
say that (I', @;) is a left-covariant bimodule if
1. For any ae.«/ and g€,

D (ag)=P(a)Pr(0), (2.1
@ r(0a)=Pr(0)®(a). (2.2)
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2. The diagram

r 2, ger
a»,l 1w®aa (2.3)
g/(‘/@FM A QAT

is commutative.
3. For any g€,

(e®id)®(o)=0. (2.4)

Definition 2.2. Let I be a bimodule over o7 and (@ : [ -1 ®.</ be a linear map. We
say that (I, ;@) is a right-covariant bimodule if
1. For any ae.oZ and g€,

r®lag) = P(a)rP(e), (2.5)
r®(ea)= rP(o)P(a). (2.6)

2. The diagram
r . res

I-wl i id@® (2.7)
I'®.of P I''®.od®.of

is commutative.
3. For any gel,

(ild®e)rP(o)=c. (2.8)

Definition 2.3. Let I' be a bimodule over .« and @,:I'>/®T and ;@: [>T ®.o/
be linear maps. We say that (I', &, @) is a bicovariant bimodule if

1. ([, ;) is a left-covariant bimodule.

2. (I', ;@) is a right-covariant bimodule.

3. The diagram o
I —— QI

ro 1 l 4® o (2.9)
[ —— AR QA
Or®id
is commutative.

Let (I, &) be a left-covariant bimodule over .«/. An element w e I' is said to be
left-invariant if

Dw)=1Qw. (2.10)

We denote by ;I the set of all left-invariant elements of I'. Clearly, ;,, [ is a linear
subspace of I'. We have

Theorem 2.1. Let (I', @) be a left-covariant bimodule over =7 and (w;);.; be a basis in

the vector space of all left-invariant elements of I'. Then

iel
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1. Any element €T is of the form
0= ) aw;, (2.11)
iel
where the a;e o7 (i€l) are uniquely determined.
2. Any element g€l is of the form
0= Y wb;, (2.12)
iel

where b,e.of (ie€l) are uniquely determined.
3. There exist linear functionals f;e.o/' (i, jel) such that

wb=% (fi*bw;, (2.13)
jel
am;= Y of(f;orx ) *a) (2.14)
jel

forany a,be .o and i€ l. These functionals are determined uniquely by (2.13). They
satisfy the following relation:

fifab)= 3. fula)fi(b) (2.15)
for any i, jel and a,be of. Moreover,

Remark. We do not assume that dim;,, /" <oc. In general, I is an infinite set.
However, in any case when we perform a summation over I, only a finite number of
terms do not vanish. In the worst cases, when we sum functionals, sums are
pointwise finite.

First we shall prove

Lemma 2.2. Let (I', ®;) be a left-covariant bimodule over o/ and ;,,I' CI" be the
subspace of all left-invariant elements of I'. Then there exists a unique projection

P:.I'->,.I' (2.17)
such that
P(bg)=e(b)P(g) (2.18)
for any be .o/ and ge'. Moreover, for any g€l we have
Q=§%Hm, (2.19)
where a, (0, respectively) are elements of of (T, respectively) such that
%@=§m®m. (2.20)
Proof. For any gel” we set
Plo)= % rlayoy (2.21)

k

where g, €./ and g, e I' (k=1,2,...,K) are chosen in such a way that (2.20) holds.
Clearly, Pis alinear mapping acting on I'. We shall prove that P(p)is left-invariant
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for any peI. Let
D(a)= ) ay @by,
: (2.22)
(DF(Qk) = Z Ckm®ka 5

where ay, by, Com € 75 Ok € . Commutativity of the diagram (2.3) shows that

kZI 4 @by @0, = kZ R @ Qi - (2.23)

Moreover, using (A.22) we see that
Z(D () (b @) =1®K(ay).

Now using (2.1) and the above formulae we compute:
P(P(e)) Z P(k(a))P (o) = Zm D)) (€ 1n @ Qim)
= kZl k() by ®0) =1® % K(a)es
=1®P(o).

This shows that P(p) is left-invariant. If g is left-invariant then decomposition (2.20)
takes the form @,{¢)=1®¢ and definition (2.21) shows that (2.17) is a projection.
Now we shall prove (2.18). Let be .o/ and

()= 3. b,®b,
where b/, b e.o/. Then
®(bo)= ) b,a, @b,

n.k

d
. Pbo)= Y w(babiey

nk

Remembering that x is antimultiplicative and using (A.3) we obtain
P(bg)= Zk r(ak(b,)by o, = c’(b)% K(ay)o, = e(b)P(g).

Formula (2.19) can also be checked by direct computation. Taking into
account (2.22) we see that
P(Qk) = Z K(C'km)ka s

m

and using (2.23), (A.4), and (2.4) we obtain
ZakP oW = Z AeI<(Chom) Qpem = Z aie(brr)oy
= %e a)o=(e®id)Pr(0)=0.

onto

If P:I'— ,,,I" is another projection such that P'(bg)=e(h)P'(¢), then
applying P’ to the both sides of (2.19) we obtain [cf. (2.4)]

Ple)= %e(ak)P(Qk) =P @ e(ak)Qk> = P((e®id)P(0)) = P(0).

This shows the uniqueness of (2.17).
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Proof of Theorem 2.1. Ad1. The existence of the decomposition (2.11) follows from
(2.19). To prove the uniqueness assume that g € I' is given by (2.11). Then [cf. (2.1)
and (2.10)],

Pr{e)= Z Dla)(I®w,),

and using (2.18), the relation P(w;)=w, and (A.6) we obtain
(d®P)P (o)=Y (id@)Pa)@w;= ¥ 4,00,

iel iel

Remembering that w, (i€ ) are linearly independent we see that the coefficients
a;e.s/ are uniquely determined. This proves the uniqueness of the
decomposition (2.11).

Ad3. Forany be.«/ and jel, w;b admits a decomposition of the form (2.11).
Let F(b) denote the coefficient preceding w; in this decomposition:

wh= Y F b, (2.24)

iel

Clearly, the F; (i, je I) are linear mappings acting on .. For any a,be .o/ and any
jel, we have

2 Fji(ab)wi:wjab: x th a)wyb= Z Fla )E (b ,

iel hel h.iel

and using the uniqueness of the decomposmon (2.11) we obtain

Z th Fhl ) (225)

foralli,jel and a,be /.
Let f; (i, je I) be the linear functional, defined on .7, introduced by the formula
fji(a) = e(F/i(a))

for any ae o7.

Applying e to the both sides of (2.25) we get (2.15). Inserting in (2.24) b= I we see
that F;(I)=06,l and (2.16) follows.

To prove (2.13) we apply @ to both sides of (2.24). Using (2.2), (2.10), and (2.1)
we get

(IQ@w,)P Z D(F (b)) ®w,).

On the other hand, by virtue of (2.24) we have
I®w)db)= ¥ (dSF )Bb)I@w,).

iel
Comparing the two formulae we see that
O(F (b)) =(1d® F ;)(D)

for any be.o/ and i, jel. Applying (id®e) to both sides of this equation we
obtain [cf. (A.6)],

Fji(b)=(d® f;)P(b)=f;i* b.

Inserting this result into (2.24) we obtain (2.13).
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Let i,hel. In order to prove (2.14) we have to show that
Z Jiix (frgo™ ) =0dye. (2.26)
Let ae.o/. Then
,-; Jiix Unjow™ Dlicla)) = Z (i ®(fujo 1™ NP((a))
= ’; Lfi®(fijo k™ D]a(k®@x)P(a)
= ,%, (/1j® ;) (1d®@r)P(a). (2.27)

Formula (2.15) means that ) f,;® f;;=/fm. On the other hand [cf. (A.4) and
jel

J
(A.7)], we have m(id ® )®(a) = e(ic(a))I. Therefore [cf. (2.16)], the expression (2.27)
equals to J,e(k(a)) and (2.26) follows. In the same way one can check that

‘21 (f,h ox ) *fu =0ye. (2.28)

JE
Inserting in (2.13) b=(f,,cx ')*a, summing over j and using (2.26) we
obtain (2.14).
Ad2. The existence of the decomposition (2.12) follows immediately from
Statement 1 and formula (2.14). To prove the uniqueness assume that for some b,
(iel, only a finite number of b, are different from 0) we have

Y w,b;=0

iel

We have to show that all b;=0 (i€ I). Using (2.13) and the uniqueness of (2.11) we
obtain

) fu #bh;=0

iel
for all jeI. Computing the convolution product with fj, -« ', summing over j
and using (2.28) we obtain b,=0 for all hel. Q.E.D.

Theorem 2.1 gives the complete description of left-covariant bimodules. Using
(2.13) and (2.1) we have

<Z aiwi>b= Y alfixb;, (2.29)
oy, a,.w,> 5 0a)(ID0). (2.30)

If (f;j)ijer is a family of functionals defined on .o satisfying relations (2.15) and
(2.16), then considering the free left module I' over .o/ generated by w; (i) and
using the above formulae to introduce the right multiplication by elements of .o/
and the left action of G we obtain a left covariant bimodule.

Let (I, ;@) be a right-covariant bimodule over .¢Z. An element # € " is said to be
right-invariant if

rPn)=n®1I. (2.31)
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We denote by [, the set of all right-invariant elements of I'. Clearly, I, is a linear
subspace of I'. The following theorem gives the complete description of right
covariant bimodules.

Theorem 2.3. Let (I', ;@) be a right-covariant bimodule over o/ and (y,);, be a basis
in the vector space of all right-invariant elements of I'. Then
1. Any element 9T is of the form

0= anm. 232)

iel

where a;e of (iel) are uniquely determined.
2. Any element oI is of the form

0= Z ”ibia
iel

where b;e.of (iel) are uniquely determined.
3. There exist linear functionals f;;e.o/' (i, jel) such that

nb= 3 (bxfn;, (2.33)

jel

ani= 3 nfax(fior ) (2.34)

forany a,be o/ andiel. These functionals are determined uniquely by (2.33). They
satisfy the following relation:

fi j(a b)= kz{ Juda) fi j(b)
for any i, jel and a,be of. Moreover,

fij(l)zéij'

Proof. Apply the duality principle (see Sect. 0) to Theorem 2.1 or repeat the proof
of Theorem 2.1 with the necessary modifications. In the latter case one proves at
first Statement 2, then 3, and at the end Statement 1. Q.E.D.

For bicovariant bimodules besides Theorems 2.1 and 2.3 we have additionally

Theorem 2.4. Let (I', &, ;@) be a bicovariant bimodule over of and (w,);.; be a basis
in the vector space of all left-invariant elements of I'. Then
1. For any i€l,

rP(w;)= ,;1 »;,®R;, (2.35)

where Rj e .o (i, jel) satisfy the following relations
D(R;)= hZE:I R;,®R,;, (2.36)
e(R;)=0j. (2.37)

2. There exists a basis (n,);c; (indexed by the same set 1) in the vector space of all
right-invariant elements of T' such that

;= er]jRﬁ (2.38)
je
foralliel.
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3. With this choice of basis in T,
Theorems 2.1 and 2.3 coincide.
4. For any j,hel and any ae o/,

L Rifaxfu)= 3 (fi* a)Ry. (2.39)

the functionals f;; (i, jel) introduced in

inv>

Proof. Ad1. Using the commutativity of (2.9) we see that
(Pr®id);P(;) =(1d® [ P)P () = (1d @ rPYI @ ;) =1 R rP(;) .

It shows that [®(w,) € ,,,] ®.7 and formula (2.35) follows. Applying (id® @) to the
both sides of (2.35) and using (2.7) we obtain

Z wj®¢(Rji): Y rP(w)QR,= ) wj®th®Rhi>

jel hel Jjhel
and formula (2.36) follows. To prove (2.37) it is sufficient to apply (id®e) to the
both sides of (2.35) and use (2.8).

Ad2. Inserting in (A.3) and (A.4) a=R;; (i, je I) and using (2.36) and (2.37) we

obtain

2 KRR, = oyl (2.40)
3 Ryr(R, ) =0, (2.41)

For any jel, let
ny= ) wiK(Ry). (2.42)

iel

Then formula (2.38) follows immediately from (2.40). Using (2.6),(2.35),(2.36), (A.2),
and (2.41) we compute

r‘p(ﬂj): Z F¢(wi)¢(K(Rij))= ; (u)h®Rhi)K(Rkj)®K(Rik)
= Z @K Rk1)®ha Z oK Rk,)®(>hk1 n,®1I.

i,h.k

It means that »; (je ) are right-invariant.
Let neI be right-invariant. According to Theorem 2.1.2 and (2.38),

n= Zlnjbj, (2.43)
Je€

where b;e.«7 (jel). If =0 then [cf. (2.42) and Theorem 2.1.2] Z K(R;)b;=0(iel)

and using (2.41) we get b; =0 for all jeI. This shows that the decomposmon (2.43)
is unique. Applying @ to the both sides of (2.43) and using (2.31) and (2.6) we get

neI= ZI (;@D)(D,).

Comparing this formula with (2.43) we get @(b)) = b,-®1 and [cf.(A.5)] b;=e(b,)I for
all jel. This way we proved that any nel;,, is a unique linecar combination

mnv

of n; (jel). Therefore, (1,);., is a basis in I;,, and Statement 2 is proven.

mv
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Ad3. In this part of the proof the functionals introduced in Theorem 2.3.3 will
be denoted by fﬂ So Eq. (2.34) takes the form

any= 3 nfa*(fyer ).
Using (2.42) and (2.14) we obtain
S onl(fuor ) xRy = 3 oye(Ry)(ax (Je k).
Therefore (cf. Theorem 2.1.2),
X U ) xaleRi)= X c(Rydax (fe ). (2.44)

1e

We know that e(f *a)=e(a* f)=f(a) for any aes/ and fe./' [cf (A9)].
Therefore, applying e to both sides of (2.44), remembering that e is multiplicative
and using (A.7) and (2.37) we get [k~ (@)= [,k '(a)) for all ae 7. It shows

that fj,= i
Ad4. Applying k™! to the both sides of (2.44) we get
ZI Rk~ 1((.fih ok~ Nxa)= ZI K Nax (fii oK 1))Rhi . (2.45)

We compute
K (fyorx™ Dxa)=0d® fi)(x~ '@ )P(a)
=(f5®id)®(k " (@) =r"(a)* fi .
k™ Yax(fion ) =(f;®id) (k' ®@x~")D(a)
=({d® f;)®(k ™ (@) =f;* k" (a).
Inserting these data into (2.45) and replacing a by k(a) we obtain (2.39). Q.E.D.

Applying @, to both sides of (2.42) and using (2.2), (2.10), (A.2), and (2.36) we
obtain

‘pr(%): Z K(Rij)®77i' (2.46)

iel

Theorem 2.4 gives the complete description of bicovariant bimodules. By
virtue of (2.5) and (2.35),

P (Z aiwi> =) P(a)(;®R). (2.47)
i i,j
One can prove the following

Theorem 2.5. Let (f;));;c; be a family of functionals defined on <7 satisfying relations
(2.15) and (2.16) and (R;));;< be a family of elements of .o/ satisfying (2.36),(2.37), and
(2.39). We consider the free left module I' over o/ generated by w; (i€l) and use
formulae (2.29), (2.30), and (2.47) to introduce right multiplication by elements of .o/
and left and right actions of G on I'. Then (I, @, ;@) is a bicovariant bimodule.

Let .27% be the bimodule introduced in Sect. 1. In order to prove Theorems 1.5,
1.6, and 1.8 we have to introduce left and right actions of G on /2.
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Let ge /@« and (PRP)(q) =) 0,®b,®c,®d,, where ay, by, ¢, d, €./
(k=1,2,...,K). We set k
D(q)= ;akc@bk@dk, (2.48)

Pplq)= ;ak®ck®bkdk . (2.49)

We claim that @,(g)e Z®.«7* and Dy(g)e.o/>®.o/ for any ge.o7*. Indeed, the
multiplicativity of @ immediately implies that (id®@m)®,(g)=P(mq)=0 and
(m®1d)Pr(q) = P(mg)=0. Therefore,

D, A A QA
Byl cl 2@l

are linear maps. Using (A.1), (A.5), and (A.6) one can check that (.72, @,, @) is a
bicovariant bimodule.
Let r and s be bijections introduced by (1.21) and (1.22). Using (A.15) and (A.16)
one can casily show that
H.o2?)=.o/ ®(kere) (2.50)

and s(.o7?%) = (kere)®./.
Proposition 2.6. The diagrams

27 2 e
, l l er (2.51)
o ®(kere) Py A ®./ Q(kere)

and
R

o/? aa—) AR A
; l l sid (2.52)
(kere)® .o/ yps (kere)®.o7 @.o/

are commutative.

Proof. We claim that
r=(1d®e®id)®, , (2.53)

s=(e®id®id)®y . (2.54)

Indeed, if a,ce .o/ and
QD([J) = %‘.ak®bk s

Pe)=2.a®d,,

where a,, b, ¢, die o/ (k=1,2,....K;[=1,2,...,L), then
@, (a®c)= kzlakcl®bk®dl,

Dpa®c)= kzlak®c,®bkd,,
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and using (A.6) and (A.5) we have
([d®e®id)P,(a®c)= Z ae(b)e,®d, = Zac,@dl =ra®c),

(e®1d®id)Pr(a®c) = Zc,@e(ak b d,= ch®ad =s5(a®c).

The commutativity of (2.51) follows easily from (2.53) and Condition 2 of
Definition 2.1 [(«/?, ®,) is a left-covariant bimodule]. Similarly, the commutativ-
ity of (2.52) follows from (2.54) and Condition 2 of Definition 2.2 [(.«Z?, @) is a
right-covariant bimodule]. Q.E.D.

Using (A.23) and commutativity of (2.51) and (2.52) one easily obtains

Proposition 2.7. An element of </ is left- (right-, respectively ) invariant if and
only if itisof the formr™{(I®x) (s~ '(y®1I), respectively ) where x e kere (y € kere,
respectively ).

By virtue of Condition 3 of Definition 2.3 the right shifts applied to left-
invariant elements produce left-invariant elements. Therefore (cf. Proposition 2.7),
for any x ekere there exists g e(kere)® .o/ such that

Dpr” (I@x)=(r"'@id)(I®q).

Applying (e®id®id) to the both sides of this equation and using (2.54), (1.28),
and (A.19) we get

adx=gq.
This way we proved that
Dpr~ (1©x)=(r "' @id)(I®adx) (2.55)

for any xekere.

Now we can prove theorems of Sect. 1. Let (I',d) be a first order differential
calculus on G and ./~ be a sub-bimodule of .«#? introduced by (1.7). Let us notice
that implication (1.8) [(1.16), respectively] means that & (A)C.A QA
[Pr(ANVC N ®.o, respectively].

Proof of Theorem 1.5. Let # be a right ideal of o7 such that # Ckere. According
to (A.11) and (A12) r "(«/®%) is a sub-bimodule of .«Z2. Assume that
N =r YA @A). Then using (2.51) we see that &, (A)=(1d®r NP(A)QR)
Cld®r WA RARR)=.o/ ®.4". This shows that the implication (1.8) holds.

Conversely, if (1.8) holds then (A7, ®,) is a left-covariant bimodule and (cf.
Theorem 2.1.1 and Proposition 2.7) there exists a family (x,);.; of elements of kere
such that 4" coincides with the set of all elements of the form

g= Y ar '(I®x,),
iel

where a, € 7. Using (1.4) and (A.17) one can easily check that the right-hand side of
the above relation equals ™! (Z a,@xi). Denoting by Z the linear span of x; we
obtain A =r" (A Q). i
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We have to show that Z is a right ideal in .. Let xeZ and ae.«/. Then
r lI®x)e A and (A is a bimodule) [r '(I®x)](I®a)e /. Therefore [cf.
(A12)], I®x)P(a)e o/ ®ZA and (e®id)[(I®x)P(a)]=xae#. Q.E.D.

Proof of Theorem 1.6. Let Z be a right ideal of .o/ such that #Z Ckere. According to
(A13) and (A.14) s Y#®./) is a sub-bimodule of .&/?. Assume that
N =s Y A®./). Then using (2.52) we see that Pp(N)=(s"'Qid)(Z R D(.7))
Cs'®id) (2R A ®)=N ®.o/. This shows that the implication (1.16) holds.

Conversely, if (1.16) holds then (", @) is a right-covariant bimodule and (cf.
Theorem 2.3.1 and Proposition 2.7) there exists a family (y,);.; of elements of kere
such that 4" coincides with the set of all elements of the form

4= 3 as”'(@1).

where g; € o/. Using (1.4) and (A.18) one can easily check that the right-hand side of
the above relation equals s+ (Z y,@ai). Denoting by % the linear span of y; we

obtain A =s YRR ).

We have to show that # is a right ideal in .o/. Let ye # and be.«Z. Then
sTHy®De A and (A is a bimodule) [s ' (y®I)]J(I®b)e.A". Therefore [cf.
(A14)], y®DP(b)e ZR .o/ and (Id®e)[(yR)P(b)]=ybeA. Q.E.D.

Proof of Theorem 1.8. Let # be a right ideal of .o/ such that # Ckere and
N =r"HARR). (2.56)

Then (cf. proof of Theorem 1.5) (A", @,) is a left-covariant bimodule. Assume that
A is ad-invariant. Then formula (2.55) shows (cf. Proposition 2.7) that the set ;.4
of all left-invariant elements of 4" is invariant under right shifts:
D iy ) CinvV ®oZ. Now the decomposition (2.11) shows that @p(A)C AN ®.</.
This means that the implication (1.16) holds.

Conversely, assume that (1.16) holds. Then (cf. proof of Theorem 1.6)
N =5~ YR ®.o/), where Z#' is a right ideal of .« contained in kere. Using (2.56),
(A.19), and (A.20) one can easily check that #'=%. So we have

r N ARR) =5 (RR.A),
st {ARR)=RR A,
ad(@)=sr {IRR)CAR.A .
The last inclusion means that £ is ad-invariant. Q.E.D.

In many important cases the bimodules that we deal with are endowed with
some additional structure. In these cases considering the concept of left- (right-,
respectively) covariance we shall always assume that the additional structure is
preserved by the left (right, respectively) action of G. For example (see Sect. 3), if I’
isa graded algebra then o/ ® I' (I’ ® .o, respectively) carries natural graded algebra
structure and @ (P, respectively) should be a graded algebra homomorphism. In
what follows we shall (briefly) discuss *-structure on the considered bimodules.
For example, if a differential calculus (I',d) on G is a *-calculus then I is a
*-bimodule (cf. Proposition 1.9).
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Let (I, @p) be a left-covariant bimodule over /. Assume that I" is provided
with a *-structure, i.e. I" is a *-bimodule. Then o/ ® I carries natural *-structure:

(@®o)* =a*®c¢* (2.57)
forany ae .o/ and g e I'. We say that (I', @) is a left-covariant *-bimodule over ./ if
Pr(0*)=P(0)*. (2.58)

In a similar way one introduces the notion of right-covariant *-bimodule. In
this case (2.57) and (2.58) should be replaced by

(e®a)*=¢*®a*, (2.59)

r®e*)=rP)*, (2.60)
respectively. We say that (I', @, @) is a bicovariant *-bimodule if (I, &, (D) is a
bicovariant bimodule and if relations (2.58) and (2.60) hold.

Let (I', &) be a left-covariant *-bimodule over .«/. Then the set
invariant elements of I' is *-invariant: w*e; I" for any we,, I". Therefore, the

mnyv nyv

basis (w;);.; considered in Theorem 2.1 can be chosen in such a way that
¥ =w;, (2.61)

for all i e I. With this choice the functionals f;; (i, j € I) introduced by Theorem 2.1
satisfy the following relation:

vl Of all left-

fil@)=fi(@)®) (2.62)
for any ae .o/. Indeed, using (2.13) and (2.14) we have
2 offijra*)F= <Z (fij* d*)w,->* =(w,a*)*
jel Jjel
=am;= Y ol(fijox Y*a).
jelI
Therefore (cf. Theorem 2.1.2),
(fiy* a*y*=(fyorx"")*a.

Replacing a by x(a) and applying e to both sides we obtain [cf. (A.9)] relation (2.62).
Using (2.61) and (2.13) we have

(Taw)* = X (y*at)o;.

Conversely, if (I', ®;) is left-covariant bimodule over .« and if for some choice
of the basis (w;);., the functionals f;; (i, jeI) introduced by Theorem 2.1 satisfy
relation (2.62), then using the above formula to introduce *-operation on I" we
obtain a left-covariant *-bimodule.

The same remarks apply to right-covariant *-bimodules.

If (I', @, @) is a bicovariant *-bimodule and if the basis (w,);.; considered in
Theorem 2.3 satisfies condition (2.61), then the elements R;;€.o7 introduced by
Theorem 2.4.1 are selfadjoint:

Ri=R, (2.63)

for any i, jel.
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There exists a natural *-operation acting on the bimodule .«7? introduced by
(1.3). For any g=Y a,®b, € .o/* we set

q* =Y b ®ai . (2.64)

One can easily check that g*e./? and that (<% @,, @) is a bicovariant
x-bimodule.

Remark. The notation (2.64) may lead to a misunderstanding: .«7* C &/ ® ./ and the
x-operation introduced by (2.64) does not coincide with the hermitian conjugation
in the tensor product of two copies of x-algebra .«/. We have to stress that in this
section the #-operation applied to elements of .«7* is always understood in the
sense of (2.64).

We know that the #-operation applied to left-invariant elements produce left-
invariant elements. Therefore (cf. Proposition 2.7), for any xekere there exists
yekere such that

FHIx)* =r Y(IQy).
Applying e®id to both sides and using (A.19) and (A.21) we get y = k(x)*. Therefore,
rTHI@x)* =r I @kK(x)¥). (2.65)

Now we can prove the last theorem of Sect. 1. Let (I',d) be a first order
differential calculus on G and ./ be the sub-bimodule of .2/? introduced by (1.7).
Let us notice that the implication (1.32) means that A™*C.4".

Proof of Theorem 1.10. We know that A =r" (o ®R). If A*C.A then for any
xeR, r '(I®x)*e. A and [cf. (2.65)] x(x)* e Z. Conversely, if k(x)* e Z for any
xeA then (2.65) shows that g*e./ for any left-invariant clement ge.4".
Remembering that (cf. Theorem 2.1.1) any element g€ A" is of the form g=) a,g;,
where q;€ ./ are left-invariant we see that /*C_4". Q.E.D.

3. External Algebra

Assume for the moment that we are dealing with classical differential geometry, i.e.
of is the algebra of all smooth functions defined on a smooth compact manifold M
and I is the .«7-bimodule of all first order differential forms on M. Then higher
order differential forms can be introduced in a purely algebraic way. Denoting
by I'"" (where n=2,3,...) the «/-bimodule of all differential n-forms we have

I—'A"———F@"/S", (31)

where I'®" is the tensor product (over .Z) of n-copies of I and S" is the kernel of the
antisymmetrization operation

A, IO o
introduced by the formula

A,= Y (signp)l,,

peP(n)
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where P(n) is the permutation group of n elements and IT is the natural action of
P(n) on I'®". For example, if o = IT,, where t is the non-trivial element of P(2), then
for any 9,0’ €T,

0(0®,0)=0®,0. (3.2)

Trying to repeat Definition (3.1) in the non-commutative setting we meet the
following difficulty: there is no natural action of P(n) on I'®". In particular, the
formula (3.2) is not self-consistent. Indeed, for any g, ¢ €', ae &/ we have ¢®,,ag’
=pa®,0’, whereas in general ap’®,,0 =+ 0 ® 0a.

We shall show, however, that for any bicovariant bimodule I' there exists a
natural bimodule automorphism ¢ acting on I'®,,I" replacing the flip automor-
phism (3.2). This automorphism satisfies the braid equation and defines the
natural action of the n-element braid group [1] on I'®". As a result we shall
obtain the usual external algebra formalism.

As in the previous sections G =(A4, u) is a compact matrix pseudogroup and ./
is the =-subalgebra of 4 generated by matrix elements of u.

Let T be an algebra and

D T>ART,

@ T->TR oA
be linear multiplicative mappings. We say that (T, @, @) is a bicovariant algebra
if (¢®id)@,=1d and (Id®e);P=id and if the following diagrams

T 2, QT

(le ld’@id

M®Tm&¢®&/®’r,

r 2, 1o«
o l l 4@ 0

r 2, geT

T® l l id® e

T®A —— AQTRA
Or®id

are commutative. Then &, and ;@ describe left and right actions of G on T. For
example, (<7, @, ®) is a bicovariant algebra.
If T is a graded algebra

T= Y®T"
n=0
and the actions of G preserve the grading
OTHCART",

T@(T”)C T"®'% B
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then we say that (T, @, ;@) is a bicovariant graded algebra. In this case, for any
n=0,1,2,... we denote by &% (;P", respectively) the restriction of @, (;®,
respectively) to T™ If T®=.of and @9 = ;®° =, then for any n, (T", %, ;D" is a
bicovariant bimodule over 7.

Let (I', @, ;) be a bicovariant bimodule over .«Z. We say that a bicovariant
graded algebra (7, @, +®) is built over (I', &, (D) if
1. T°=o/, %=,0°=9.
2. The bicovariant bimodule (T, ®%, ;®') coincides with (I", @, ;P).
3. Tis generated by grade 1 elements, i.e. any element te T" (n=2,3,...) is of
the form 7= t;, where for each i 7; is a product of n elements of I

In this section, for any bicovariant bimodule (I, @, ®) we shall construct two
bicovariant graded algebras (I'®, &%, [ ®®)and (I' ", }*, ;@ ") built over (T, @y, ;D).
They are called tensor algebra and external algebra over (I', &, 1 9).

We start with the tensor algebra construction. Let

re"=re, ' ®,... ®, (nfactors)

be the n'® tensor power of I' (n=2, 3, ...). We shall define left and right actions of G
on I'®". To this end for any simple element

T=01Qy0,®y .- Ry,

(where ¢,, 0., ...,0,€ ) of I'®" we set

P2 (1)= ;a’{la’gz e O R(EE Ruy bt By o ®lr ), (3.3)

r@"(0)= ;(Czﬂ Rl B -+ ®uylL)@DYDT ... by, (3.4)

where da{',d%,...,d, by b%, .. by are clements of </ and &.&,...&
(., ..., 0 are elements of I' such that

Dr(0)= ; ar® f;cl >
r®(e)= ;Cf,@bfi s

and the summation [in (3.3) and (3.4)] runs over all possible systems
k=(k;,ky, ..., k,)and [=(l,,1,,...,1,). Taking into account (2.1), (2.2), (2.5), and (2.6)
one can easily check that formulae (3.3) and (3.4) introduce well defined linear
mappings

PE": O o QT
oA R R A
Moreover, performing simple but boring computations one can check that
(r®" @2" .®®" is a bicovariant bimodule. For n=0,1 we set
(I®°, @p°, (@) =(o, 0, D),
(F®1, d’?l, r‘I)@l):(Fa P, rP).
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Let

a0

e = 2®F®",
n=0

® w@ ®

or= ) or",
n=0

a0
® __ ® ®
(0= 3O 0%

Clearly, I'® is a graded algebra containing .«/ as the subalgebra of all elements of
grade 0 and I as the subspace of all elements of grade 1, ®2 and ®® are linear
multiplicative maps acting from I'® into .o/ ® I'® and I'® ®.«7, respectively, and
(r®, @2, (@) is a bicovariant graded algebra built over (I', @, (P).

To construct the external algebra built over (I', &, @) we have to introduce
the bimodule automorphism ¢ replacing (3.2).

Proposition 3.1. There exists a unique bimodule homomorphism
c:I®*>r®?
such that
(w1 =nQyw (3.5)

for any left-invariant element wel" and any right-invariant element nel. o is
invertible and commutes with the actions of G: the diagrams
092
]"@2 r &7®F®2
o l lid@o’ (36)
re? — 4re?,

®2
PF

5 ro®2

r®2__, r®2®91&/
al la@id (37)
ré? — ré’.u

ro®2
are commutative. Moreover, ¢ satisfies the following braid equation: on I'®3
(1d®o)(c®id)(1d®0)=(c®id)(1d®0o)(c®id). (3.8)

Proof. Let (w;);c; [(11):< s> respectively] be the basis in the space of all left- (right-,
respectively) invariant elements of I" considered in Theorem 2.4. We shall use

Lemma 3.2. Any element 1€ I'®? can be written in the following ways:

= Zlaijwi®m’7,j’ (3.9)

i, je

i, Jje

= Zlbijr]j@dwi: (3.10)

where a;; and b;; (i, jeI) are uniquely determined elements of <.
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Proof of the Lemma. The existence of decompositions (3.9) and (3.10) follows
immediately from Theorem 2.1.1 and Theorem 2.3.1.

Let jel. For any geI', we denote by 6(¢) the element a;€ ./ occurring in the
decomposition (2.32). Clearly, 0(ag)=a0 (o) for any ae .o/ and g€ I'. Due to this
fact one can introduce linear mappings id®0;: I ®2_, I such that (id®6 M0®,,0)
=00{¢') for any ¢, ¢ e I'. Applying this mapping to both sides of (3.9) we obtain

([d®0)(t)= Y a;w;.

This shows (cf. Theorem 2.1.1) that elements a;;e.o/ (i, jel) are uniquely
determined. Similarly, one can show that elements b;; are uniquely determined.
The lemma is proved. Q.E.D.

If a bimodule automorphism ¢ acting on I'®? satisfies relation (3.5) then
6<,.Zlaifwi®ﬂ/'7j> = ,Zlaif’]f@»“/wi (3.11)
i, Je 1, JE

for any a, (i, jeI) belonging to ./. On the other hand, using Lemma 3.2 one can
easily check that formula (3.11) defines a bijective linear mapping of I'®? onto
itself. We have to show that ¢ is a bimodule homomorphism, i.e. that

a(at)=aa(7), (3.12)
a(th)=a(t)b (3.13)

for any a,be .o/ and te I'®2. Relation (3.12) follows immediately from definition
(3.11). Taking into account the linearity of ¢ and relation (3.12) we see that it is
sufficient to show (3.13) for t=w;®,n; (i, jel). Using (2.13), (2.33) and the
associativity of the convolution product we obtain

G((wi®ﬂ71j)b)=a< Y (fuxb *fjk)%@q;’?k)

Lkel
= l kZl (fi * b f0m Ry = (1;Q,w;)b
=0(w;®uN,)b

and (3.13) follows.
Assume that te I'®? is given by (3.9). Applying #£? to both sides of (3.11) and
using (2.46) and (2.10) we have

‘1516"9 2(0'('5)) = Zk gp(aij) [K(Rk,’)®(77k ®;)]
=(id®o) (Zk ¢(aij) [K(Rkj)®(wi®%’7k)]>
=({1d®o)®P*(1).

This shows that the diagram (3.6) is commutative. Similarly, using (2.31) and (2.35)
one can prove the commutativity of (3.7).

Let o' and o” be left-invariant elements of I'. Then &’ ®, " is a left-invariant
element of I'®2. Using the commutativity of (3.6) we see that o(w ®,,w") is left-
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invariant. Therefore [cf. also (3.15)],
o(w' @y 0") =} 0, ®,w],

where )/, w, are left-invariant elements of I'.
Let # be a right invariant element of I". Then

(id®0)(¢®id)(id ®0) (0 ®y0" @) =(([d® ) (¢ ®id) (@ @y ® ")
=([1d®0)(®,0 ®0")
= Z N @y, @0, .
On the other hand,
(c®id)([([d®0)(c®id)(@ ®yw" ® 1) =(c®id)(id®0) (z o] ®dw;®w)
=(o®id) <z W @M ®ﬂw;)
= Z H@ngf &y,

and formula (3.8) follows. (Using Theorem 2.1.1 and Theorem 2.3.1 one can easily
show that any element of I'®? is a sum of elements of the form aw' ®,0"®,1,
where ae.o/, ' and " are left-invariant and # is right-invariant clement
of I') Q.E.D.

It turns out that the action of ¢ can be expressed by a formula closely related to
Eq. (2.13). To stress this similarity we introduce the convolution product f* g,
where fe.o/’ and ¢eI'. By definition

f*o=0d® [)rP(e).
Then using the notation introduced in Theorem 2.1 we have

G(wj®<1Q) = k; (f;k * 0) @,y (3.14)

for any geI. In particular, setting ¢ =w,; and using (2.35) we obtain

o(0;®y0)= ¥ TR, @, 00 . (3.15)

To prove (3.14) it is sufficient (cf. Theorem 2.3.1) to consider the case g=ay,
where ae o/ and 5 is a right-invariant element of I'. Using (2.13) we have

0;Qy0=0;&Q,,an = w;aQ,N = kz{ (fjk * )y, Q] -

Therefore,
a(@;Q40)= ) (fi* M@y wy.

kel

On the other hand, using (2.31) we get @(0)=P(a)(n®I), fu *0=(f;*ay and
(3.14) follows.
Let n be a natural number, n>2. We consider the set

{01,05,..,0,_1] (3.16)
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of bimodule automorphisms of I'®" introduced by the formula (k=1,2,...,n—1)
0, =1d® ... ®IARoRIA® ... ®id, (3.17)

where the product contains n—1 factors and ¢ occurs in the k™ place. It follows
immediately from (3.8) that these automorphisms satisfy the basic braid group
relations:

O10k+10k= Ok +10k0k + 1 (3.18)

for k=1,2,...,n—1.
Let P(n) be the permutation group of n elements. We consider the set of nearest
neighbour transpositions

{tits oty 1} (3.19)

For any k=1,2,...,n—1, the permutation ¢, transposes k with k-+1 leaving all
other elements of {1,2,...,n} in their places.

For any p € P(n) we denote by I(p) the number of inversed pairs in the sequence
(p(1), p(2), ..., p(n)). Then p is equal to a product of I(p) factors belonging to (3.19):

P=lilky - Ly, - (3.20)

Replacing in this product elements of (3.19) by corresponding elements of (3.16) we
obtain a bimodule automorphism of I'®". Due to (3.18) this automorphism is
independent of the choice of the decomposition (3.20). It will be denoted by IT :

1,=04,04, ... Ohy,, - (3.21)
Clearly,
m,=1,1I, (3.22)

for any p, q € P(n) such that I(pq)=I(p)+ I(q).
The antisymmetrization A4, is a bimodule homomorphism acting on I'®"
introduced by the formula

A=Y sign(p),, (3.23)

where sign(p)=(—1)'" is the sign of permutation p and the summation runs over
all pe P(n). For n=1 we set A, =id (on I).
Let k be a natural number smaller than n and

_ . ql)<gq(j) forany i j=12,...n
Coi= {qu(n). such that either i<j<k or k<i<j{’
One can easily check that C,, consists of (Z) elements. Any permutation p € P(n)
admits unique decomposition
p=ap’p", (3.24)

where ge C,, and p’ (p”, respectively) is a permutation leaving k first (n—k last)
elements in their places. Clearly, I(p)=I(q)+ I(p') + I(p"). Inserting (3.24) into (3.23)
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and using (3.22) we obtain

A=A (A®A4,-), (3.25)
where
Ay = % sign(g)I1, . (3.26)
qgelnk

Now we can introduce the external algebra built over (I', @, -®). Let

S"=kerA4,, (3.27)
be the sub-bimodule of I'®” consisting of all elements zeroed by 4, and
S= y®gs". (3.28)
n=2

By virtue of (3.25) S is an ideal in the algebra I'®. Therefore,
I''=r®/S= yorn», (3.29)
n=0

where I'"%=./, I'"'=T, and I'""=I®"/S" for n>1 is a graded algebra. The
multiplication in I'* will be denoted by A (this sign is usually omitted if one of the
factors is of grade 0).

Taking into account the commutativity of (3.6) and (3.7) we see that S is left-
and right-invariant. Therefore, I'* carries the natural left and right actions of G.
Denoting these actions by @; and ;@" we obtain a bicovariant graded algebra
(', ®p, p@")built over (I, @, ;P). This is the external algebra that we wanted to
construct.

The external algebra construction has the following remarkable functorial

property:

Theorem 3.3. Let (I", &, r@) be a bicovariant bimodule over o/ ,(I'", &}, ,®") be the
external algebra built over (I', &, /@), I be a left- and right-invariant sub-bimodule
of T, & (,—(D respectively) be the restriction of & (D, respectively) to I and
('™, @f, ;@) be the external algebra built over (I', @r, ;®). Then there exists a
grade preserving multiplicative embedding

r~cr (3.30)

coinciding with id on elements of grade 0 and with the inclusion I' C I" on elements of
grade 1. Moreover, (3.30) intertwines the left and the right actions of G on I'" and
", respectively.

Proof. 1t is obvious that the tensor algebra construction obeys the functorial
property described in this theorem. Therefore, I'® ¢ ['®.

Let o, 0y, I, A,, S", and S be the objects introduced by (3.11), (3.17), (3.21),
(3.23), (3.27), and (3.28) and 4, 64, H A,, 8" and S be the corresponding objects
related to the bicovariant bimodule (F @T, +®). 1t is sufficient [cf. (3.29)] to show
that

SAre=s. (3.31)



156 S. L. Woronowicz

It follows immediately from (3.11) that ¢ restricted to I ®2 coincides with o.
Therefore, 6, (II,, A,, respectively) restricted to I'®” coincides with o, (IT,, A4,,
respectively). This shows that

S'Ar®m=(ker4,)nI'®"=ker 4, =S"
and (3.31) follows. Q.E.D.
We end this section with the following result concerning the *-structure.

Theorem 3.4. Let (I', &, ;D) be a bicovariant *-bimodule over </ and (I'", ®}, ;D)
be the external algebra built over (I',®p, ;®). Then (I'",®}, ®") becomes a
bicovariant graded *-algebra. This means that there exists unique antilinear
involution

oY (3.32)

such that

1. * is grade preserving; on elements of grade O it coincides with the hermitian
conjugation on of, on elements of grade 1 it equals the original *-involution on I
2. * is antimultiplicative in the graded sense, i.e. for any homogeneous elements
0,0'eI’'" of grade n and n', respectively, we have

(OAO)=(—1)"0* A O*. (3.33)
3. * is bicovariant, i.e.
PL(0%)= (D7 (O)* %,
r@ M (0%)= (P " (0))F°*
for any OeT'".
Proof. At first we introduce the *-structure on the tensor algebra. On elements of

grade 0 and 1 the *-operation is already defined (<7 is a *-algebra and I is a
+-bimodule). For higher order elements we put

(01040, @y ... ®y0,)*=5,00 R,y ... ®y03Ry07, (3.34)

nn=1/2 is the sign of the permutation

1,2,..,n
"= T . 3.35
<n,n—1,...,1> ( )

One can check that (3.34) defines an antilinear involution acting on I'® and that
this involution is antimultiplicative in the graded sense and bicovariant. We have
to show that this involution can be pulled down to the level of ' =I'®/S. To this
end it is sufficient to show that

where 9,05, ...,0,€ " and s, =signt"=(—1)

s &n

€S (3.36)

for any 7€ 8S.
Let w (7, respectively) be a left- (right-, respectively) invariant element of I
Then w* (n*, respectively) is a left- (right-, respectively) invariant element and using
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(3.34) and (3.5) twice we get
o(N@0)*) = — o(W*@1*) = —N*@yw* =(wRyn)* =(0" ' (1®,w))*.
This shows (cf. Lemma 3.2) that
o(t*)=(c"()* (3.37)

for any 1e '®2.
Let n=2, pe P(n) and (3.20) be the decomposition of p into the product of
nearest neighbour transpositions containing the minimal number of factors. Then
P =ty - otk

is the similar decomposition for p~ . Therefore, using definition (3.21) and formula
(3.37) we obtain (for any te I'®"):

I (t*)= 04,0y, ... O, (T¥) =0y, 0y, . o, (O)F
=y -+ T1,00,) (@) =TT, 1) (D)*.
Let g=t"p [where t" is introduced by (3.35)]. Then gp~ ' =1". One can easily

check that I(q)+I(p~ ') =n(n—1)/2=I(¢"). Therefore [cf. (3.22)], I1,11 ,- .= I1,, and
(I1,-)~'=(I,)"'II,. Taking into account this result we get

() =((IT,) ' (7))* .
Multiplying both sides by signp and summing up over p e P(n) we finally obtain
An(T*) = Sn((Ht") - 11471(‘[))* (338)

for any te '®".
If A,(t)=0 then A4,(t*)=0 and (3.36) follows. Q.E.D.

Remark. According to (3.27) the quotient I"""=I"®"/S" can be identified with the
range of the antisymmetrization A4,. This point of view is used in classical
differential geometry where higher order differential forms are identified with
skew-symmetric covariant tensor fields. In this picture the external product is
expressed by the formula [cf. (3.25)]

AT =A,(1R1T),

where te A, I'®% v € A, I'®*, n=k+k’, and 4,, is given by (3.26). Similarly, using
(3.38) we sce that the =-operation coincides with

AT®" s 15,1, '1)5 e A,I".

4. Higher Order Differential Calculus

In this section we show that the external algebra formalism developed in Sect. 3 is
well adapted to our differential calculus.

Theorem 4.1. Let G =(A, u) be a compact matrix pseudogroup, (I', d) be a bicovariant
first order differential calculus on G, & and @ be left and right actions of G on I’
introduced in Proposition 1.2 and Proposition 1.3, and (I'", @}, ;® ") be the external
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algebra built over (I, @r, ;®). Then there exists one and only one linear map
d:r*~-»r*

such that

1. d increases the grade by one.

2. On elements of grade 0, d coincides with the original derivative (1.1).
3. d is a graded derivative:

AOA)=dO A O +(—1)0 A db’ (4.1)
for any OeT'"* and 0'eI'", k=0,1,2,....
4. d(d)=0 (4.2)

for any eI,
S. d is bicovariant:
P (d0)=(d®@d)Pr (0),
r®Md0)=(d®id); D" (0)
for any 6eI'".
Moreover, if (I',d)is a *-calculus, then endowing I' * with the induced *-structure
(cf. Proposition 1.9 and Theorem 3.4) we have
6. d(0*)=(d0)* 4.3)
for any Bel'".
Proof. We shall use the extended bimodule method described in [8].
Let &/ X be the free left »/-module with one generator X and
F=A4X®r. (4.4)

Any element &I is of the form

E=cX+¢, (4.5)
where ce .o/ and £e [ are uniquely determined.

We introduce right multiplication by elements of .«/: for any e I of the form
(4.5) and any ae o/ we set

Ea=caX +(cda+Ea). (4.6)

One can easily check that the left .«/-module I" endowed with the right
multiplication (4.6) is a bimodule over /. Moreover,

da=Xa—aX 4.7)

for any ae .

We introduce left and right actions of G on I': for any Ee I of the form (4.5) we
set

B8 =2()IRX)+P(9), (4.8)

r®(8)= ()X D)+ (&) (4.9)
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Then (I, &, ;P) is a bicovariant bimodule over </, I’ cI'is an invariant sub-
bimodule and 5r~(r¢1, respectively) restricted to I' coincides with @, (-,
respectively). Let (I'", &}, ;®") be the external algebra built over (I', &, ;P). We
shall use the inclusion

F/\ Cf/\

described in Theorem 3.3.
It followg immediately from (4.8) and (4.9) that X is a left- and right-invariant
element of I'. Therefore [cf. Definition (3.5)],

FX®R,X)=X®,X .
This shows that 4,(X®,X)=0, X®,X €S* and

XAX=0. (4.10)
For any 0el'" we put
d0=[X, 0], 4.11)
where [ X, 0], is the graded commutator
XAO0—0AX | . even
[X’Ojg'ad_{X/\9+6/\X if the grade of 0 is odd.

We check that the conditions 1-5 of the theorem are satisfied. Condition 1 is
obvious: X is of grade 1. Condition 2 follows immediately from (4.7). Condition 3
can be verified by direct computation (see e.g. [2] or [8]). Using definition (4.11)
one can easily check that

AddO)y=X AXANO—O0AXAX

and Condition 4 follows immediately from (4.10). Taking into account the left- and
right-invariance of X we obtain Condition 5.

To end this part of the proof we have to show that dfeI"" for any e I'". We
may assume that

O0=aqda, nda, ~ ... Ada,, (4.12)

where ay, a4, a,, ...,a, € .o/ (according to Condition 2 of Definition 1.1 any element
of I'" is a sum of terms of the above form). Using Conditions 2, 3, and 4 we obtain

d0=dagnda, A ... Ada,, (4.13)

and the inclusion d(I'*)cI'" follows. The above formula proves also the
uniqueness of d.

Assume now that (', d) is a *-calculus. To prove Condition 6 we may assume
that 0 is of the form (4.12). Then [cf. (3.33)]

0% =(—1)"""V2(da,)* A ... A(day)* A(da,)*a¥,
and using (4.1), (4.2), and (1.36) we get
d(O*)=(—1)""" V258 da Y A L. A(das)* Alday)* A(dag)* .
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On the other hand, taking into account (4.13) and (3.33) we obtain
(dO)* =(— )"+ VI2(da )* A ... A(day)* Alda)* A(day)*,
and (4.3) follows. Q.E.D.

5. Commutators, Jacobi Identity, Cartan-Maurer Formula and All That

Assume at the beginning that G is a Lie group. Let o7 = C*(G) and £ be the ideal
in .o/ consisting of all functions vanishing with first derivatives at the neutral
element of G. Then the Lie algebra of G can be identified with the vector space T of
all linear functionals on .7 killing I (I denotes the unity of .«/)and #, endowed with
the Lie bracket (commutator)

TxTs(x)=lnr1eT

given by the formula

Uexd=xxd =1 *x. (5.1
It follows immediately from (5.1) that the Lie bracket is antisymmetric:
Lz x1=0 (5.2)

for any y e T. Moreover, remembering that the convolution product is associative
one can easily verify the Jacobi identity:

FAVEV IV AVE L IV e (5.3)

for any y, 7,1 €T

Let (y;);; be a basis in T. Then there exist left-invariant first order differential
forms w, (ieI) on G such that for any ae .o,

da= Y (y;* a)o;. (5.4)
iel

Moreover, (w;);.; is a basis in the space of all left-invariant first order differential
forms on G. The external derivatives dw; (i € I) are also left-invariant and may be
computed with the use of Cartan-Maurer formula

(d@do= - }[o,0],
h
e 0= 7Y 7,00, (5.5)
iel

is the canonical T-valued first order differential form and

[0, 0]= 'ZI Lo 1@ (w; A w)).

ije
One can easily check that [m, ®] =2 A ®, where

A=Y (1* )R ). (5.6)
jel

Therefore,
(dR®d)o=—0r®.
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In this section we show that the notions and formulae described above remain
valid (after necessary modifications) for any bicovariant differential calculus on a
compact matrix pseudogroup.

In the rest of this section we assume that (I',d) is a bicovariant first order
differential calculus on a compact matrix pseudogroup G (although Theorem 5.1
and Theorem 5.2.1 and 2 hold also for left-covariant calculi).

Let # be the right ideal introduced in Theorem 1.5 and

¥(I)=0 and }

x(@)=0 forany ae (5.7)

T= {Xe,sz/’:

To simplify the notation we shall assume that dim(.e//#)<occ. Then T is finite
dimensional.

Theorem 5.1. There exists a unique bilinear form

I'x Ta(g, y)—<0, 1> eC (5.8)

such that
Cag, > =ela){o, 1, (5.9)
{da, > = y(a) (5.10)

foranyae .o/, 0el',and y e T. Moreover, denoting by ., I the set of all left-invariant
elements of T we have
1. For any we,,J

mnv- 2

{w,1>=0
=0). A
(for any }{ET> = (@=0 (5-11)
2. For any yeT,
(w,1>=0 o
(for any wemvl"> = =0 (5-12)

Remark. Statements 1 and 2 mean that {;,,I", T) is a dual pair of vector spaces.

Proof. The uniqueness of (5.8) follows from Condition 2 of Definition 1.1. To prove
the existence we shall use the projection

P:I'>rI
considered in Lemma 2.2.

Letaekere. Ifa,, b, (k=1,2,..., K)are elements of .7 such that ®(a)= > a,®b,,
then @ (da)=Y a,®db, and formula (2.21) shows that Pda=} «(a,)db,. On the
other hand [cf. (1.23) and (2.50)], ¥ x(a)®b,=r"'(I®a)e.o/?, and using the
canonical projection 7:.7*—1I introduced in Sect. 1 we obtain

Pda=nr '(IQa) (5.13)

forany aekere. If Pda=0thenr  '(I®a)e A" and ae #. Conversely, il a € Z, then
r YI®a)e & and Pda=0. Therefore, for any uekere

(Pda=0) < (ae ). (5.14)
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Let ye T and g e I'. Taking into account Condition 2 of Definition 1.1, formula
(2.18) and relation dI =0 we see that there exists a € kere such that Pgo = Pda. We set

e, 1> =xla). (3.15)

Due to the “only if” part of (5.14) the right-hand side of the above definition is
independent of the choice of a [according to (5.7) y kills all elements of 2].

To end the proof of existence we notice that (5.10) is obvious and that (5.9)
follows immediately from (2.18).

We claim that

{(Pda, 1> =y(a) (5.16)

for any ye T and a€ 7. Indeed, if ae kere then PPda= Pda (P is a projection) and
(5.16) is a particular case of (5.15). If a=AI (where A€ €) then both sides of (5.16)
vanish.

The implication (5.12) is now obvious: Pdae ;I forany ae.«/. To prove (5.11)

mnyv

we may assume that w = Pda, where aekere. If (v, y>=0 for any ye T then [cf.
(5.16) and (5.7)] ae # and using the “if” part of (5.14) we get w=0. Q.E.D.

In the following (y,);.; is a basis of T; (w,).; is the dual basis of ;,,[":

{w,, Xj> = 5ij

for any i, je I and (a;);.; is the family of elements of kere such that
7ila)) =9

for any i, jeI. By virtue of (5.16),

w;=Pda;. (517)
Clearly,

w= g) Lo, 7w,

for any we;,,I'. In particular, taking into account (5.16) we get

myv

Pda= Y y{a)w; (5.18)
iel
for any ae /.
Theorem 5.2. 1. For any ae€ .o/,
da= Y (y;*a)o;. (5.19)
iel

2. Let (f;))ije; be the family of linear functionals on of introduced in Theorem
2.1.3. Then
slab)= Zl 710 f;i(b) +e(a)y(b) (5.20)
i, je

for any i€l and a,be /. In particular,

Zi(ajb)zf;i(b)
for any i, jel and be of.
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3. Let (R;));;cr be the family of elements of o/ introduced in Theorem 2.4.1. Then

Proof. Ad1. Let g, b, (k=1,2,...,K) be elements of .o/ such that
P(a)= ;ak@)bk.

Then (cf. Proposition 1.2.4)
&(da)= ;ak(@dbk,

and using (2.19) and (5.18) we get
da= ;akpdbkz )y (; akXi(bk)> ;=Y (i*a)o;.

el iel

Ad2. Using (5.19) and (2.13) we obtain

dlab)= Y (y;*ab)w;,
iel
(da)b= g] (Xj * a)wjb = i_Z;I (x;* a)(fji *b)w;,

adb=Y" a(y;* b)w;.

iel
Inserting these data into (1.2) and using Theorem 2.1.1 we get
xi*ab= ZI(Xj*a)(fﬁ*b)"‘a(Xi*b)a
Jje

and using (A.9) we get (5.20).

(5.21)

Ad3. Taking into account Proposition 1.3.1 and 4 one checks that the

canonical mapping (see Sect. 1)

n:.d*—>T

intertwines the actions @, and ;@ of G on .o/? and T, respectively. In other words

the diagram
PR

oA —2 s SR

RJ ln®m

r — T'®AS
r®

is commutative. Using (5.13), (2.55) and once more (5.13) we have
r®(Pda)= @ o n(r~'(I®a))=(n®id)(Prr ™~ '(I®a))
=(mr ' ®id)(I®ada)=(Pd®id)(ada).
Therefore [cf. (5.18)],

r@(Pda)= 3 o;®(y;®id)(ada).

Inserting a=a;, using (5.17) and comparing with (2.35) we obtain (5.21).

(5.22)

Q.ED.
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Now we shall derive some formulae related to the higher order differential
calculus. We start with the Cartan-Maurer formula.
Let ae.o/. Taking into account (4.2), (5.19), and (4.1) we compute

o:d(da)=d<z (1 a)w,.>

= Y d(y;*a)Aw;+ Z (7 * a)dw,

el

- Z (/(J*/Cl*a)w A Wy + Z(/z*ad(g

ijel
Applying P to both sides of this relation we get
Z yi@)dow;= — Z @w; A w;. (5.23)

ijel
This shows that
ZX1®dw = Z >‘/(l)®(’0 A W;,
iel ijel
and using the short-hand notation (5.5) and (5.6) we obtain the Cartan-Maurer

formula
(dR®d)ow=—-oro. (5.24)

Remark. Like in the classical Lie group case the object @e T® I is independent of
the choice of basis (y;);c; in T.
Inserting in (5.23) a=a, we have

dog=— 3 (1;* t)a)w; A w;
leI

According to Theorem 2.1.1 any te '®? is of the form

Z aljw ®dw] >
i, jel
where a;;€ ¢/ (i, j e I). Using the same method as in the proof of Lemma 3.2 one can
easily ShOW that elements a;; are uniquely determined. Moreover, 7 is left-invariant
if and only if a;;= 2,1, where 4;€C for all i, jel. It means that ;,,['®* may be
identified with ;,, [ ' ®;,.[.

Due to this fact therc exists a unique bilincar form <-,-> defined on
(i ®?) x (T®T) such that

<<w/ ®J/1(0//’ X/®XN>> — <w/) X/> <0)//’ Z//>
for any o,w"e, [ and y,x"e€T. This form is non-degenerate, i.c.
Koo T2, T® T is a dual pair of vector spaces.
Let 0: I'®2—T®2 be the bimodule homomorphism introduced in Proposition

3.1. We know that ¢ maps ;[ ®? onto itself. We denote by ¢’ the transpose of g. By
definition ¢' is a linear map acting on T® T such that

L' ®,0", o' (' ®1") = Lol ®,w"), 1 &1

for any o', w"€,,,[" and ',y €T.
Now we can formulate the analogue of definition (5.1). Forany i/, v" € T we set

Ul 1 =7y ~245*75, (5.25)
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where ., xv (s=1,2,...,5) are clements of T such that

o'y ®x")= ;x!@xé : (5.26)
Theorem 5.3. 1. For any y', "€ T,
L/ 2" 1eT. (5.27)
2.0 o, xr (s=1,2,...,S) are elements of T such that o' (Z )(;@X;’) = Z 1Ry,
e S04 1=0. (5.29
3. Forany y, 7,7 €T,
U L 21 =L 70 2] = L0 16 26 (5.29)

where yo, xe (s=1,2,...,S) are elements of T introduced by (5.26).

Remark. Relation (5.28) expresses the antisymmetry of the commutator [cf. (5.2)],
whereas (5.29) plays the role of Jacobi identity [see (5.3)].

Proof. We shall show that

L " Na)=(' ®1")Nada) (5.30)
for any ae .o/
To this end we use the extended bimodule language introduced in the proofs of
Theorem 3.3 and Theorem 4.1. According to (4.11)

d[Pda]l=X A Pda+Pdan X .
On the other hand [cf. (5.23) and (5.18)],
d[Pda]=— 3 (z;*z)@w;Aw;.

i.jel
Combining these two relations we get

X APda+PdanX=— 3 (1;% ) a)w; A w;

ijel

This means that

X®,Pda+Pda® X =— Z (¢ * x)a)w;@,0;

ijel

where = denotes the equality modulo §%=ker A, =ker(id — ). Therefore,

(id — )X ®, Pda+ Pda®,X)= —(id—o ( Y G @, ®y/w> (5.31)

ijel
At first, we compute the right-hand side of this relation. Let [cf. (3.15)]

o(w; ®Q/CU Z )u A IWOI

where 4;; ;€ € (i, j,k, I ). Then the transpose

OJ(Xk®XZ) z ;z} kiZi ®/}

ijel
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Therefore [cf. (5.25)],
Ut 0 = 2% 21— Z Aij il * 1

ijel

and

(id— a( (% 1)@, ®g¢w>

Z X * )@, Ry — N % LA, 10 Ry
lel i, J

= ¥ D xd(@w,& ;. (5.32)

klel

To compute the left-hand side of (5.31) we recall that [cf. (4.7) and (5.19)]
Xa=aX+ Z (Xj*a)a)j’

jeI
and using (3.14) we see that
(X ®0)=0R,X + ZI (Xj * Q)@,o/wj
je

for any peI'. For ¢ = Pda the convolution product on the right-hand side may be
computed. By virtue of (5.22)

xj* Pda=(1d®y;)r®(Pda)= ZI (1 ®yx;) (ada)o; .

Therefore,

FX®yPda)=Pda®,X + Z 1:®y,) (ada)w;® ,w;. (5.33)

ijel
Remembering that Pda is left- and X is right-invariant and using (3.5) we get
G(Pda®,X)=X®,Pda.
Combining the last two equations we have

(id— )X ®,Pda+ Pda®,X)= — 2 1y (da)o,® 4o;.

ijel

Inserting this expression and (5.32) into (5.31) we obtain

Ut (@) = (1:®@ 1) (ad a), (5.34)

and (5.30) follows.

Now the proof of Statement 1 is simple. If a € Z then according to Theorem 1.8,
adae AR /. If a=1thenada=I®I. In both cases (5.30) shows that [y, ¥"J(a)=
and (5.27) follows.

Statement 2 is obvious.

To prove Statement 3 we use the commutativity of (1.30). For any y, 1, €T

we have [cf. (5.30)],

[ 21 1@ =[x ¥ 1®1")(ada)
((®x ®y")(ad®id)(ada)
(x®x' ®x")id®P)(ada)
=(x®y *x")ada).

II
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Using this relation we compute [cf. (5.25)]

Lo 0 "1 @) = (x® [ 2" D(ad a)
=((®y * " Nada)— Y (x®y; * x)(ada)

=[x ¥ 7" 1a)— Z L0t 2515 xsd(a),

and (5.29) follows. Q.E.D.

Besides the antisymmetry and the Jacobi identity the commutator obeys an
additional relation (that become trivial in the classical differential calculus). To
formulate this relation we use the linear mapping

C:TRT-T, (5.35)
such that

Co®) =011
for any y, y e T. With this notation we have
Theorem 5.4.
d(id®C)+ o (C®id)(Id® o’
=(C®id)(i[d®s')(¢'®id) +(1d®C)(¢'®id). (5.36)
Proof. Both sides of (5.36) are mappings from T® T® T into T® T. Combining
(5.33), (5.34), and (5.16) we get

(X ®Pda)=Pda®,X + ¥ [11,)(@)0 @0,

ije

=Pda®,X + .Zl (Pda,[y; Xj]>wi®dwj'

ije
Therefore, for any we,, I

inv?t s

HX®yw) =@y X+ Y, 0,1 1,1)0;Q,0;=0Q,X+C'w, (537)

i, jel
where C':, . ['—,,,[®? denotes the transpose of (5.35).

According to Proposition 3.1 ¢ satisfies the braid equation:
(1d®6)(6®1d)(1d®6) =(6 ®id)(1d®6)(6 ®id). (5.38)

Using (5.37) we are able to compute the action of both sides of (5.38) on X ®,,7,
where t€,,,['®2. We obtain

01®y, X +(1d®CYot + (1d®o)(C'®id)at
=(e®1d)(([d®o)(C'®id)t + 01 R, X + (0 ®id)(Id® C')r.
Therefore,
(i[d®CYo 4+ (1d®0)(C'®id)o = (0 ®id)(Id®0)(C'®id) + (6 ®id)(id® CY),
and passing to the transpose mappings we obtain (5.36). Q.E.D.
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Remark. According to (3.5) 0(X ®,X)=X®,X and for any we,,, [, o(w®,,X)
= X ®,,0. Using (5.37) one is able to compute the action of both sides of (5.38) on
X ®,X Q0 where we,, [. One gets

(C'®id)C'o=(1d®CHC'w+(1[d®o)(C'®id)C'w,
and passing to the transpose mappings one has
C(C®id)=CId®C)+ C(C®id)(id®d').

The reader will easily discover that this relation coincides with (5.29). This shows
that there exists a logical link between the braid equation and Jacobi identity.

A. Appendix

Throughout the paper we referred to many formulae obtained in [10]. For the
reader’s convenience we collect them here. The following list contains also a
number of formulae that (although not explicitly contained in [10]) are closely
related to results of [10] and can be casily verified.

We use the following notation: @ and « are the comultiplication and coinverse
associated with a compact matrix pseudogroup G=(4,u), o is a *-algebra
generated by matrix elements of u, e is a *-character of ./ such that e(u,) =0,
m:.o ® .o — .o/ is the multiplication map [m(a®b)=ab for any a,be /], o, is the
flip automorphism of &/ ®.«7 [0 (a®b)=b®a for any a,be o/], and r and s are
linear bijections acting on .7 ®.«/ introduced by (1.21) and (1.22). In the formulae
below a,be.o/, qe 4 ®.«/, f,f' are linear functionals defined on .«/, and =
denotes convolution product. We start with

Standard properties of comultiplication and coinverse:

(PRiI)P=(1dRP)D, (A1)
Pox=0,(k@K)D, (A.2)
m(k®id)P(a) =e(a)l , (A.3)
m(id®@)P(a)=e(a)l . (A4)
Properties of e:

(e®id)P(a)=a, (A.5)
(id®e)P(a)=a, (A.6)
ecrK=e, (A7)

exa=a*e=a,
(A.8)

fre=exf=f,
elfxa)=elaxf)=fla). (A.9)

Cyclicity of the convolution product:

U =a)y=(/=fNa)=f"ax[). (A.10)
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Properties of bijections r and s. These formulae follow immediately from
definitions of r and s:

r(a®Dg)=(a®@r(q), (A.11)
r(qU ®b)) =r(q)P(b), (A.12)
s(a®l)g)=(I®a)s(q), (A.13)
s(qI®@b))=s(q)P(b). (A.14)

Properties of »~ ! and s ~'. These formulae follow immediately from (1.23) and
the corresponding formulae for s~ ! (see (4.35) of [10]):

r Hg)=(d®e)(q), (A.15)
ms” (q)=(e®id)(q). (A.16)
rH (@®Dg)= (@@ '(q), (A.17)
s HI®@a)gq)=(a®@s " '(q), (A.18)
(e®id)r ™ (a®@b)=e(a)b, (A.19)
(e®id)s™ '(a®b)=ae(b), (A.20)
(id®e)r~ (a®b)=ax(b). (A21)
We end with the following formula
; D(i(a)) (b @ ) =1®K(a), (A.22)

where a,, b, are elements of .&/ such that

Dla)=Y a,®b, .

It follows from (A.2), (A.1), and (A.3). Using (A.5) and (A.6) one can easily verify that
(P(a)=1®a) < (P(a)=a®]) <= (a=e(a)l). (A.23)
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