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Abstract. The paper deals with non-commutative differential geometry. The
general theory of differential calculus on quantum groups is developed.
Bicovariant bimodules as objects analogous to tensor bundles over Lie groups
are studied. Tensor algebra and external algebra constructions are described. It
is shown that any bicovariant first order differential calculus admits a natural
lifting to the external algebra, so the external derivative of higher order
differential forms is well defined and obeys the usual properties. The proper
form of the Cartan Maurer formula is found. The vector space dual to the space
of left-invariant differential forms is endowed with a bilinear operation playing
the role of the Lie bracket (commutator). Generalized antisymmetry relation
and Jacobi identity are proved.

0. Introduction

It is difficult to overestimate the importance of the methods of differential
geometry in the theory of Lie groups. Such fundamental notions as tangent Lie
algebra and infinitesimal representation are provided by these methods. In-
finitesimal representations in turn play an important role in applications of Lie
groups in physics: Infinitesimal generators are related to the most important
observables such as energy-momentum, angular momentum, and internal quan-
tum numbers.

On the other hand, for differential geometry the Lie group theory is much
more than just one of the fields of application. It is sufficient to dip into any
contemporary handbook of differential geometry to see that Lie groups lay
behind such basic notions as principal and associated fibre bundles. In fact, the
development of differential geometry in the past 30 years can be considered as a
far reaching implementation of the Erlangen program of F. Klein.

We believe that a similar interplay between differential geometry and group
theory will be very fruitful also in the theory of non-commutative spaces. In this
case instead of Lie groups one has to consider more general objects: non~
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commutative spaces provided with a group structure, i.e. quantum groups [3]
(pseudogroups in the sense of [7] and [10]). Moreover, following the general ideas
of Connes [2] one should use the notion of differential form (rather than that of
vector field) as the basic one.

The main aim of this paper is the presentation of differential calculus of
differential forms on a quantum group. We show that all important notions and
formulae of classical Lie group theory admit a generalization to the quantum
group case. To be more specific we restrict ourselves to compact matrix
pseudogroups as introduced in [10], although we believe that the compactness is
not crucial to the problems considered here.

We use the axiomatic method to introduce the first order differential calculus.
The axioms contain the basic properties of external derivative (Leibnitz rule) as
well as additional requirements related to the underlying group structure (left- and
right-covariance). The axiomatics is not categorical: for a given quantum group
there exist many non-equivalent differential calculi. This fact is in unpleasant
contrast with the more satisfactory situation in classical differential geometry
where the notions of first order differential form and external derivative are
introduced in a constructive (functorial) way. At the moment after many
unsuccessful attempts we accord with the opinion that for the non-commutative
geometry no such functorial definition is possible. We have, however, to stress that
once the first order differential calculus is fixed, all further notions are introduced
in a fully functorial way.

We briefly describe the content of the paper. Section 1 contains the main
definitions and results concerning first order differential calculus. We indicate that
reasonable calculi are in one to one correspondence with right ideals M in the
algebra of "smooth functions" on considered quantum group satisfying certain
conditions. The problem of the right choice of M will be considered in a
forthcoming paper. Here we notice only that if the ideal 0i is too small then the
corresponding differential calculus is over multidimensional, i.e. very complicated
from the computational point of view. If $ is too large then the resulting
differential calculus may become trivial. In this case the infinitesimal generators
may not contain enough information to restore the original representation.

Section 2 is of a more general character. The notion of bicovariant bimodule
investigated in this section corresponds on the classical level to that of vector fibre
bundle over the group manifold endowed with the left and right action of the
group. It is well known that any such bundle is topologically trivial: There exists a
family of left-invariant sections such that for any point of the group the values of
the sections at this point form a basis in the fibre over this point. We shall prove the
corresponding result in the general case (see Propositions 2.1 and 2.3). Moreover,
considering the right shifts of left-invariant sections we arrive at the notion of
adjoint representation. The results of this section provide the proper tools for the
proofs of the theorems of Sect. 1 as well as for further studies related to tensor and
external algebras.

The main role in Sect. 3 is played by the twisted flip automorphism
σ:Γ(x)Γ->Γ®Γ associated with any bicovariant bimodule Γ. We prove that σ

satisfies the braid equation. Due to this equation we shall be able to introduce the
antisymmetrization operation acting on tensor powers of Γ, and consequently to
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carry out the external algebra construction. In Sect. 4 we prove that any
bicovariant first order differential calculus admits a natural lifting to higher order
differential forms.

Section 5 is devoted to the vector space T dual to the space of left-invariant
differential forms. It plays the role of tangent Lie algebra. Using the automorphism
σ considered in Sect. 3 we shall introduce the "commutator" of any two elements of
T. It satisfies the twisted antisymmetry relation and twisted Jacobi identity. Cartan
Maurer formulae are also derived. The results of Sect. 5 may be used to introduce
the notion of enveloping algebra. We would like to stress that in our theory the
relations defining the enveloping algebra remain quadratic [cf. (5.25)] like in the
classical case. On the other hand, the approach to quantum group theory
presented in [3] and [4] uses the quantized enveloping algebra introduced by
relations involving entire analytic functions. It would be interesting to relate these
different points of view. Some results in this direction are obtained by Rosso [6]
and Koornwinder [5].

This paper contains only a few examples illustrating the general theory. All the
examples concern the twisted SU(2) group, and even in this particular case the
detailed computations are not explicitly presented. This gap will be filled by the
forthcoming papers where the differential calculus on the twisted SU(N) group
will be investigated. It turns out that the general theory presented in this paper
can be used to produce non-standard differential calculi on classical Lie groups.

To end this Introduction we would like to formulate a duality principle that in
many cases enables us to omit boring proofs.

For any g e MN(C) we denote by g* the transpose of g. If G C MN(C) is a group of
matrices, then G — {gf: g e G} is also a group of matrices. A similar fact holds for
compact matrix pseudogroups. Let G = (Aiύ) be a compact matrix pseudogroup
and uι be the transpose of u:(ut)kl = ulk (fe,/= 1,2, ...,JV). Then G = {A,ut) is a
compact matrix pseudogroup [one can check that the comultiplication Φ' and
coinverse K! associated with G are given by the formulae Φ' = σA° Φ and K' = κ~\
where Φ and K are the comultiplication and coinverse associated with G and σA is
the flip automorphism of A ® A: σA(a ®b) = b(g)aϊor any α5 b e A~\. This fact leads to
the following LR-duality principle (LR stands for Left-Right).

If DEF is a definition of a notion of the theory of compact matrix
pseudogroups, then replacing in DEF all notions related to a pseudogroup G by
the corresponding notions related to G we obtain a definition of a new notion
related to G. We say that this new notion is the LR-dual of the old one. For
example σA ° Φ and K ' 1 are LR-duals of Φ and K, respectively. Similarly, if THM is
a theorem of the theory of compact matrix pseudogroups, then replacing in THM
all notions by their LR-duals we obtain a new theorem of the theory. For example
in Sect. 1, Proposition 1.3 is the LR-dual of Proposition 1.2.

Throughout the paper we deal with many pairs of LR-dual definitions and
statements. We believe that the reader will easily correctly identify these pairs.

1. First Order Differential Calculus

The first order differential forms on a smooth manifold M are sections of the
cotangent bundle T*(M). The set of all sections Γ{M) = C°C(T*(M)) is a bimodule
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over ^{M). The external derivative

d:C«>(M)-+Γ(M)

obeys the basic property: d(ab) = (da)b + adb for any a, beC™(M). Moreover (at
least for compact manifolds), any differential form ρeΓ(M) is of the form
ρ = Σ akdbk, where αfc, bk e CCO(M) (k = 1,2,..., K). Expressing this situation in more
abstract terms we arrive at the following

Definition 1.1. Let stf be an algebra with unity, Γ be a bimodule over d and

d:d->Γ (1.1)

be a linear map. We say that (Γ, d) is a first order differential calculus over si if

1. For any α, bestf,
d{ab) = {da)b + adb. (1.2)

2. Any element ρ e Γ is of the form

K

ρ= Σ akdbk,
k=l

where ak,bkesi; k = 1,2,...,K K is a natural number.
Two first order differential calculi {Γ,d) and (Γ',df) over ,ζ/ are said to be

identical if there exists a bimodule isomorphism i:Γ~^Γf such that i(da) = d'a for
any α e ^ , In what follows we shall identify identical calculi.

Let stf be an algebra, m\όtf®srf-+<otf be the multiplication map [i.e. linear
mapping such that m(a(g)b) = ab for any α,fce^] and

y / 2 = {qe.srf®d: mq = 0}. (1.3)

Clearly j / 2 is a linear subset of stf®s4. Setting (for any cejtf)

c( Σ ak®bk)= Σ cak®bk, (1.4)

I ak®bk)c= I ak®bkc, (1.5)

we introduce on J / 2 an ^-bimodule structure. For any besd we put
Db = l®b — b®l. One can easily check that D\stf-+srf2 is a linear mapping and
that (j^/2, D) is a first order differential calculus over .J/. From the practical point of
view this calculus is not very interesting. Its theoretical importance is revealed by
the following simple.

Proposition 1.1. Let JV be a sub-bimodule ofsrf2, Γ = j^2/Jr, π be the canonical
epimorphism s#2-*Γ and d~π^Ώ. Then (Γ,d) is a first order differential calculus
over ,Q/. Any first order differential calculus over s$ can be obtained in this way.

Proof. Only the last remark needs a proof. Let (Γ, d) be a first order differential

calculus over si. For any Σak®^ke^2 w e have

A ) dc = (Σ akdbλ c.akd(bkc) = ΛΠ akdbλ c + (Σ «
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These relations show that the mapping π:s/2-+Γ induced by the formula

is a bimodule homomorphism. We shall show that π is surjective. Indeed, if ρ e Γ,
then ρ = Σ akdbk (where ak,bkestf\Σ denotes the sum over k = 1,2,..., K). Clearly,
Σak®bk-(Σakbk)®Iesf2 and π(Σak®bk-(Σakbk)®I) = ρ-(Σakbk)dI = ρ [the
relation dl = θ follows immediately from (1.2)]. Let

Jf= \Σak®bke^2: Σ^dbk = θ] (1.7)
\k k J

be the kernel of π. Then Γ may be identified with s^2j.J{ and for any b e srf we have
[cf. (1.6)]

π(Db) = π{I®b-b®I) = Idb - bdl = db. Q.E.D.

The main subject of this paper is the investigation of differential calculus on
compact matrix pseudogroups (quantum groups). Let G = (A,u) be such a group.
We shall use the notation introduced in [10]. In particular, Φ is the comultiplica-
tion and K is the coinverse associated with G and sd is the *-algebra generated by
matrix elements of u. Moreover, e will denote the ^-character defined srf such that
Φki) = δki ( M = 1,2,..., JV). We shall treat stf as the set of all C00 functions defined
on G. This means that stf defines the smooth structure on G. By definition
differential calculus on G is a differential calculus over j / . The group structure
existing on G implies some natural conditions that should be satisfied by any
reasonable differential calculus on G. The covariance conditions introduced below
are the most important.

If Γ is an j/-bimodule, then j/(χ)Γ (and Γ®,G/) carries a natural (^/® J / ) -
bimodule structure. For example (a®b)(c®ρ) = ac(g)bρ for any a,b,cestf and
ρeΓ.

Definition 1.2. Let (Γ, d) be a first order differential calculus on G. We say that (Γ, d)
is left-covariant if

{Σakdbk = ϋ) => (ΣΦ(ak)(ίd(g)d)Φ(bk) = 0) (1.8)

for any ak,bkestf (k = l,2, ...,K).

The content of this definition is revealed by the following

Proposition 1.2. Let (Γ, d) be a left-covariant first order differential calculus on G.
Then there exists a linear mapping

such that
1. For any aestf and ρeΓ,

ρ), (1.10)

= ΦΓ(ρ)Φ(a). ( 1 . 1 1 )
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2. The diagram Φr

Φr\ \Φ®id (1.12)

id®Φr

is commutative.
3. For any ρeΓ,

(έ>®id)ΦΓ(ρ) = ρ. (1.13)

4. The diagram
rf d τ-i

| r (1.14)
J / ® Γ

id®d

is commutative.

The linear mapping (1.9) is determined uniquely by (1.10) am/ Condition 4.

Proof. Using (1.10) and Condition 4 one can easily check that

ΦΛΣ akdbk) = Σ Φ{ak)(ιά®d)Φ(bk) (1.15)

for any ak,bkejtf. This proves the uniqueness of (1.9). On the other hand, the
implication (1.8) shows that ΦΓ, as introduced by (1.15), is a well defined linear
mapping from Γ into jtf®Γ. Equation (1.10) and the commutativity of (1.14)
follows immediately from (1.15).

Let a.besέ. Using (1.15) we have

(Φ®iά)ΦΓ(adb) = (Φ®iά)lΦ(a)(iά®d)Φ(b)']

= (Φ ®id)Φ(α)(id® id® d)(Φ ®id)Φ(b).

On the other hand, using (1.15) twice we get

{id® ΦΓ)ΦΓ(adb) = (id® ΦΓ)[Φ{a)(id®d)Φ{b)~]

= (id®Φ)Φ{a){id®id®d){id®Φ)Φ{b),

and (A.I) of the Appendix shows that the diagram (1.12) is commutative.
Let a.bes^. Remembering that e is multiplicative and using (A.5) we obtain

(e®id)ΦΓ(adb) = (e ® id) \_Φ{a) (id ®d)Φ(b)]

= l(e® id)Φ(α)M(e® id)Φ(b)] - adb,

and (1.13) follows.
Let a,b,cejrf. Then (adb)c = ad(bc) — abdc, and using (1.15) we have

ΦΓ((adb)c) = Φ(a) (id ® d) Φ(bc) - Φ(ab) (id ® d) Φ{c)

= Φ(a)[(id®d)Φ(bc)-Φ(b)(id®d)Φ(c)']

= Φ(a) [(id® d)Φ(b)]Φ(c) = ΦΓ(adb)Φ(c),

and (1.11) follows. Q.E.D.
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Definition 1.3. Let (Γ, d) be a first order differential calculus on G. We say that (Γ, d)
is right-covariant if

= O) (1.16)

for any ak,bke<z/(k= 1,2, ...,K). (Γ, rf) is said to be bico variant if it is left- and right-
covariant.

Using the same techniques as in the proof of Proposition 1.2 one can prove

Proposition 1.3. Let (Γ, d) be a right-covariant first order differential calculus on G.
Then there exists a linear mapping

ΓΦ\Γ-*Γ®stf (1.17)

such that
1. For any aestf and ρeΓ,

) = Φ(a)ΓΦ(ρ),
(1.18)

ΓΦ{ρa) = ΓΦ(ρ)Φ(a).

2. The diagram
ΓΦ

ΓΦ id®Φ
4, ψ

r Φ®id

is commutative.
3. For any ρeΓ,

(id®e)ΓΦ(ρ) = ρ.

4. The diagram

Γ Φ

is commutative.

The linear mapping (1.17) z's determined uniquely by (1.18) am/ Condition 4.
Clearly,

Φ(ΣMW ΣΦ()W®id)Φ(b) (1.19)
for any ak, bk

We also have

Proposition 1.4. Let (Γ, d) be a bicovariant first order differential calculus on G and
ΦΓ and ΓΦ be linear mappings introduced by Proposition 1.2 and Proposition 1.3,
respectively. Then the diagram

ΦΓ

F

®ΓΦ (1.20)

ΦΓ®id

Ϊ5 commutative.
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Proof. Let a.bestf. Using (1.15) and (1.19) we have

(id® ΓΦ)ΦΓ(adb) = (id® ΓΦ) [Φ(α)(id® rf)Φ(b)]

= [(id® Φ)Φ(α)](id®d®id)[(id®Φ)Φ(2>)].

On the other hand, using (1.19) and (1.15) we obtain

(ΦΓ®id)rΦ(adb) = (ΦΓ® id) [Φ{a){d® id)Φ(fc)]

and (A.I) shows that the diagram (1.20) is commutative. Q.E.D.

The covariance conditions imply some restrictions on the sub-bimodule j \ r

considered in Proposition 1.1. To formulate these restrictions we shall use the
linear mappings r and s acting on J / ® s$ introduced in [10] and the adjoint action
of G on itself denoted by ad (cf. [9]). Let us recall that, by definition, for any
α, bes/:

(1.21)

(1.22)

Mappings r and s are bijections, for example the inverse of r is given by (a, b εs$\

(1.23)

More useful formulae describing properties of these mappings can be found in the
Appendix.

Theorem 1.5. Let Mbe a right ideal of J / contained in kere and JV* = r~ 1(stf ®9ί).
Then Jί is a sub-bimodule of stf2. Moreover, let Γ = j/ 2/yΓ, π be the canonical
epimorphism s$2-+Γ and d = π o D. Then the first order differential calculus (Γ, d) is
left'Covariant. Any left-coυariant first order differential calculus on G can be
obtained in this way.

The proof will be given in Sect. 2.

Examples. 1. If G is a Lie group then setting ?̂ = (kere)2 we obtain the usual
differential calculus on G.
2. The differential calculus on the twisted SU(2) group presented in [8] is left-
covariant. In this case the right ideal 91 is generated by six elements: α* + μ2α
- ( 1 +μ 2 )/ , y2, y*y, y*2, (α-/)y, and (α-/)y* (cf. Proposition 2.4 in [8]). In the
following this calculus will be called 3D-calculus on SμU(2) [one can check that

3. Let G = SμU(2) and ̂ + (β_, respectively) be the right ideal in J / generated
by the following nine elements:

y\ y(α* - α), μ 2 α* 2 - (1 + μ2)(αα* - y*y) + α2, y*(α* - α), γ*2 , (1.24)

ay, a(ot* — α), ay*, (1.25)

2 - ( l + μ 2 ) / ) , (1.26)
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where a = μ2a + (χ* — [(1 +μ4)/μ]I (α = μ2α + α* + [(l -f μ4)/μ]/, respectively). One
can check that 0t± Ckere and dim(ker^/^±) = 4. The corresponding differential
calculi on SμU(2) will be called 4D +-calculi.

Theorem 1.6. Let Mbe a right ideal of s$ contained in kere and J/' — s~ι(β®s4).
Then Jί is a sub-bimodule of <Q/2. Moreover, let Γ = s^2/Ar, π be the canonical
epimorphism J / 2 —>Γ, and d = π o D. Then the first order differential calculus (Γ, d) is
right-covariant. Any right-covariant first order differential calculus on G can be
obtained in this way.

The proof will be given in Sect. 2.
To formulate the next theorem we need the concept of ad-invariance.
Let

(1.27)

be the adjoint action of G onto itself introduced in [9], We recall that for any
aestf:

(1.28)

Combining (1.22) and (1.23) one can easily check that

ad(α)= Σbk®Φk)ck, (1-29)
k

where ak, bk, and ck (k= 1,2, ...,K) are elements of jtf such that

Using (1.29) and standard properties of comultiplication and coinverse [cf.
(A.I), (A.2)] one can check that the diagram

ad

adΘid (1.30)

id®Φ

is commutative.
We say that a linear subset Tc <o/ is ad-invariant if ad(Γ) C Γ(χ)c<?/. We shall use

Lemma 1.7. Let T be a linear ad-invariant subset of $4 and 0ί be a right ideal of s4
generated by T. Then 2k is ad-invariant.

Proof. Let a,bejrf. We claim that

(1.31)
k

where b'k, b
f

k (k = 1,2,..., K) are elements of stf such that

Σ
k

Indeed, using (1.23) and remembering that K is antimultiplicative we see that
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Inserting this expression into (1.28) and using (A. 13) and (A. 14), we obtain (1.31).
The assertion of the lemma follows easily from (1.31). Q.E.D.

Theorem 1.8. Let 2k be a right ideal of stf contained in ker^ and (Γ,d) be the left-
covariant first order differential calculus described in Theorem 1.5. Then (Γ,d) is
bicovariant if and only if 01 is ad-invariant.

The proof will be given in Sect. 2.
The standard differential calculus on Lie groups is bicovariant. The 3D-

calculus on SμU(2) described in [8] is not bicovariant. This fact does not
incapacitate this calculus; due to the computational simplicity it remains a useful
tool in many problems related to twisted SU(2). One has to stress, however, that
the general theory presented in this paper is not applicable to 3i)-calculus, so some
of the results obtained in [8] (e.g. the existence of the higher order calculus)
remain mysterious.

Let T2 (Tx and To, respectively) be the linear subsets of J / spanned by (1.24)
[(1.25) and (1.26), respectively]. One can check that Ts (5 = 0,1,2) are ad-invariant.
In fact, the adjoint action of G on Ts is equivalent to the representation of spin s
(note that dim Ts = 2s +1). Therefore, according to Lemma 1.7 the ideals 0t ± are ad-
invariant and 4D ± -calculi are bicovariant. These calculi as well as the correspond-
ing calculi on twisted SU(N) will be investigated in a separate paper.

To end this section we present some definitions and results related to
^-structure.

Definition 1.4. Let (Γ, d) be a first order differential calculus on G. We say that (F, d)
is a ^-calculus if

( Σ « A = 0 ) ^ (Σd(bΐ)aΐ = 0) (1.32)

for any ak,bkestf (k= 1,2, ...,K).

We have

Proposition 1.9. Let (Γ, d) be a first order differential ^-calculus on G. Then there
exists unique antilinear involution

ρ*eΓ (1.33)

such that

ρ*α*, (1.34)

α*ρ*, (1.35)

(da)* = d(a*) (1.36)

for any ρeΓ and aestf. In other words, Γ is a *-bimodule and d intertwines the
^-operations on szf and Γ. Moreover, using the induced ^-structure on &/®T and
Γ®^ (cf (2.57) and (2.59); we have
1. If (Γ,d) is left-covariant, then using the notation introduced in Proposition 1.2,
for any ρeT we have

(1-37)

In other words, (Γ, ΦΓ) is a left-covariant *-birnodule.
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2. // (Γ, d) is right-covariant, then using the notation introduced in Proposition
1.3, for any ρeΓ, we have

(1.38)

In other words, (Γ,ΓΦ) is a right-covariant *-birnodule.

Proof. Using (1.34) and (1.36) one can easily check that

a£ (1.39)

for any ak,bkestf. This proves the uniqueness of (1.33). On the other hand, the
implication (1.32) shows that * as introduced by (1.39) is a well defined antilinear
mapping from Γ into Γ. Equations (1.34) and (1.36) follow immediately from (1.39),
and (1.35) can be checked by direct computation: if ρ = bdc (where b,cestf\ then

(ρa)* = (b(dc)a)* = (bd(ca) - bcdάf

= d{{ca)*)b*-d(a*)(bc)*

= d(a*c*)b* - d(a*)c*b* = a*ρ*,

and (1.35) follows. Using (1.35) and Definition (1.39) one easily checks that * is an
involution. Similarly, one can verify relations (1.37) and (1.38). Q.E.D.

We also have

Theorem 1.10. Let 01 be a right ideal of s$ contained in kere and (Γ,d) be the left-
covariant first order differential calculus described in Theorem 1.5. Then (Γ,d) is a
*-calculus if and only if κ(x)*eβ/l for any x e f .

The proof will be given in Sect. 2.
Using this criterion one can easily check that all examples of differential calculi

considered in this section are *-calculi.

2. Covariant Bimodules

Let T be a vector bundle over a Lie group G. In many cases the left and the right
actions of G on itself admit a natural lifting to T. This is the case when Tis a bundle
obtained from the tangent bundle by one of the operations considered in the tensor
algebra. Then we have the natural actions (left and right) of G on the set of all
smooth sections of T. In the pseudogroup case G = (A, u) this situation is described
by the following definitions:

Definition 2.1. Let Γ be a bimodule over srf and ΦΓ: Γ'->^'(χ)Γ be a linear map. We
say that (Γ, ΦΓ) is a left-covariant bimodule if
1. For any aestf and ρ e Γ ,

ΦΓ(aρ) = Φ(a)ΦΓ(ρ), (2.1)

= ΦΓ(ρ)Φ(a). (2.2)
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2. The diagram

ΦΓ I ΦΘid (2.3)

idΘΦr

is commutative.
3. For any ρe Γ,

(e®id)ΦΓ(ρ) = ρ. (2.4)

Definition 2.2. Let Γ be a bimodule over s/ and ΓΦ: Γ-+Γ® srf be a linear map. We
say that (Γ, ΓΦ) is a right-covariant bimodule if
1. For any ae,otf and ρeΓ,

) = Φ(a)ΓΦ(ρ), (2.5)

ΓΦ(ρ)Φ(α). (2.6)

2. The diagram

Γ >

ΓΦ idΘΦ (2.7)

is commutative.
3. For any ρ e F ,

(id®e)ΓΦ(ρ) = ρ. (2.8)

Definition2.3. Let Γbe a bimodule over ^ and ΦΓ\Γ-*stf®Γ and ΓΦ°.Γ—>Γ®^
be linear maps. We say that (Γ, ΦΓ,ΓΦ) is a bicovariant bimodule if
1 ( Γ Φ ) is a leftcovariant bimodule
be linear maps. We say that (Γ, ΦΓ,ΓΦ
1. (Γ, ΦΓ) is a left-covariant bimodule.
2. (Γ, ΓΦ) is a right-covariant bimodule.
3. The diagram

Γ — ^

id®rΦ (2.9)

is commutative.
Let (Γ, ΦΓ) be a left-covariant bimodule over s/. An element ω e Γ is said to be

left-invariant if

Φr(ω) = / ® ω . (2.10)

We denote by i n v Γ the set of all left-invariant elements of Γ. Clearly, i n v Γ is a linear
subspace of Γ. We have

Theorem 2.1. Lei (Γ, ΦΓ) fre α left-covariant bimodule over s$ and (ω f) ί e / be α foαsis zn
f/ze sector space of all left-invariant elements of Γ. Then
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1. Any element ρeΓ is of the form

ρ= Σ α f ω f , (2.11)
iel

where the ates^ (iel) are uniquely determined.
2. Any element ρeΓ is of the form

0= Σ ω A , (2.12)
iel

where b{e^ (iel) are uniquely determined.
3. There exist linear functionals f^e^tf' (ί,jel) such that

<".*= Σ(fu*b)coj, (2.13)

aωi ~ Σ ωj((fij ° K ~ 1) * β) (2-14)
jel

for any a,bes$ and i e I. These functionals are determined uniquely by (2.13). They
satisfy the following relation:

fίj(ab)= X fik{a)fkj{b) (2.15)
kel

for any i, jel and a,bestf. Moreover,

fijj) = h (2 1 6 )

Remark. We do not assume that dim i n vΓ<oo. In general, / is an infinite set.
However, in any case when we perform a summation over /, only a finite number of
terms do not vanish. In the worst cases, when we sum functionals, sums are
pointwise finite.

First we shall prove

Lemma 2.2. Let (Γ,ΦΓ) be a left-covariant bimodule over s$ and i n v ΓcΓ be the
subspace of all left-invariant elements of Γ. Then there exists a unique projection

P:Γ^invΓ (2.17)

such that
P(bρ) = e(b)P(ρ) (2.18)

for a n y be<P/ and ρeΓ. Moreover, for a n y ρeΓ we have

Q=ΣahP(Qk)> (2-19)
k

where ak (ρk, respectively) are elements of ^ (Γ, respectively) such that

Σak®Qk- (2.20)

Proof. For any ρ e Γ we set

Σκ{ak)Qk, (2.21)

where ak e J>/ and ρk e Γ (k = 1,2,..., K) are chosen in such a way that (2.20) holds.
Clearly, P is a linear mapping acting on Γ. We shall prove that P{ρ) is left-invariant
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for any ρeΓ. Let
Φ(ak)=Σakl(g)bkl,Σ

1 (2.22)

where akbhkbckmes#; ρkmeΓ. Commutativity of the diagram (2.3) shows that

Σaki®hι®
k,l

Moreover, using (A.22) we see that

Σaki®hι®Qk= Σ ak®ckm®ρkm. (2.23)
k,l k.m

Σ
i

Now using (2.1) and the above formulae we compute:

)= Σ Φ(Φk))
k.m

I
k.l

This shows that P(ρ) is left-invariant. If ρ is left-invariant then decomposition (2.20)
takes the form ΦΓ{ρ) = I®ρ and definition (2.21) shows that (2.17) is a projection.

Now we shall prove (2.18). Let bestf and

φ(b)= ΣK®K,
n

where b'n, b"n e •$?. Then

ΦI(bρ)= ΣKak®Kρk
n.k

P(bρ)= Σ ΦMKQk-
n,k

Remembering that K is antimultiplicative and using (A.3) we obtain

P(bρ)= Σ
n,k k

Formula (2.19) can also be checked by direct computation. Taking into
account (2.22) we see that

and using (2.23), (A.4), and (2.4) we obtain

ΣakP{Qk)= Σ akκ(ckm)ρkm= Σ
k k,m k.l

If P':Γ > i n vΓ is another projection such that P'(bρ) = e(b)P'(ρ), then
applying P' to the both sides of (2.19) we obtain [cf. (2.4)]

P\Q) = Σ Φk)P(Qk) = P(Σ e(ak)ρλ = P((e®id)ΦΓ(ρ)) = P{ρ).
k \k J

This shows the uniqueness of (2.17).
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Proof of Theorem 2.1. Ad 1. The existence of the decomposition (2.11) follows from
(2.19). To prove the uniqueness assume that ρ e Γ is given by (2.11). Then [cf. (2.1)
and (2.10)]?

and using (2.18), the relation P(ωi) = ωι and (A.6) we obtain

(id® P)ΦΓ(Q)= Σ

Remembering that ωt (i e /) are linearly independent we see that the coefficients
a{esi are uniquely determined. This proves the uniqueness of the
decomposition (2.11).

Ad 3. For any beM and JGI, ωp admits a decomposition of the form (2.11).
Let Fji(b) denote the coefficient preceding ωt in this decomposition:

ωfi = ΣFjiibyOi. (2.24)
i liel

Clearly, the Fβ (z, jeI) are linear mappings acting on si. For any a.besi and any
jel, we have

ΣFji(ab)ωi = ωjab= Σ Fjh(a)ωhb= Σ Fjh(a)Fhi(b)cOi,
iel he I h.iel

and using the uniqueness of the decomposition (2.11) we obtain

Fji(ab)= ΣFjh(a)Fhi(b) (2.25)
hel

for all i, jel and a.besi.
Let fji (z, j E I) be the linear functional, defined on s/, introduced by the formula

for any aes/.
Applying e to the both sides of (2.25) we get (2.15). Inserting in (2.24) b = Iwe see

that Fβ) = δjil and (2.16) follows.
To prove (2.13) we apply ΦΓ to both sides of (2.24). Using (2.2), (2.10), and (2.1)

we get

^ Σ j
iel

On the other hand, by virtue of (2.24) we have

(/®ω,.)Φ(fc)= Σ (id®Fji
iel

Comparing the two formulae we see that

for any bes$ and UjeL Applying {iά®e) to both sides of this equation we
obtain [cf. (A.6)],

Fjί(b) = (id®fji)Φ(b)=fjί*b.

Inserting this result into (2.24) we obtain (2.13).
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Let i,hel. In order to prove (2.14) we have to show that

(2.26)

Let aejtf. Then

Σ Λi*(Λ/°O(Φ))= Σ (fj
jel jel

= Σ U j j
jel

= Σ (Λj®/}ί)(id(8)ιc)Φ(α). (2.27)

Formula (2.15) means that Σ fhj®fji=fhim- O n the other hand [cf. (A.4) and

(A.7)], we have m(\ά®κ)Φ(a) = e(κ(a))L Therefore [cf. (2.16)], the expression (2.27)
equals to δhie(κ(a)) and (2.26) follows. In the same way one can check that

Σ{fik°κ-ι)*fiS = δhie. (2.28)
jel

Inserting in (2.13) b = (fhjo κ~ι)*a, summing over j and using (2.26) we
obtain (2.14).

Ad 2. The existence of the decomposition (2.12) follows immediately from
Statement 1 and formula (2.14). To prove the uniqueness assume that for some bt

(ί e I, only a finite number of bi are different from 0) we have

We have to show that all bt = 0 (iel). Using (2.13) and the uniqueness of (2.11) we
obtain

for all jel. Computing the convolution product with fjhOJC"1, summing over j
and using (2.28) we obtain bh = 0 for all he I. Q.E.D.

Theorem 2.1 gives the complete description of left-covariant bimodules. Using
(2.13) and (2.1) we have

(Σafi)λb= Σ 0f(./u*&K-> (2.29)
\iel J ijel

$r(Σ atωλ = Σ Φ[ad{I®ωd. (2.30)
iel

If (fij)ijeI is a family of functionals defined on s4 satisfying relations (2.15) and
(2.16), then considering the free left module Γ over sd generated by ωt (iel) and
using the above formulae to introduce the right multiplication by elements of s/
and the left action of G we obtain a left covariant bimodule.

Let (Γ, ΓΦ) be a right-covariant bimodule over J / . An element ηeΓis said to be
right-invariant if

(2.31)
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We denote by Γ[nΎ the set of all right-invariant elements of Γ. Clearly, Γ{ny is a linear
subspace of Γ. The following theorem gives the complete description of right
covariant bimodules.

Theorem 2.3. Let (Γ, ΓΦ) be a right-covariant bimodule over stf and (f]i)ieI be a basis
in the vector space of all right-invariant elements of Γ. Then
1. Any element ρe Γ is of the form

Q= Σ « Λ i ' ( 2 3 2 )
iel

where a{es$ (iel) are uniquely determined.
2. Any element ρe Γ is of the form

Q = Σ >Φi,
iel

where b{e^ (iel) are uniquely determined.

3. There exist linear functionals f^es^' (i,jel) such that

nιb=ΣΦ*fιfa3, (2-33)
jel

a>li= I )?>*(./;.,.OK"1)) (2.34)

for any a.bestf and i e I. These functionals are determined uniquely by (2.33). They
satisfy the following relation:

fij(ab)= Σ
kel

for any i, jel and a.besd. Moreover,

Proof. Apply the duality principle (see Sect. 0) to Theorem 2.1 or repeat the proof
of Theorem 2.1 with the necessary modifications. In the latter case one proves at
first Statement 2, then 3, and at the end Statement 1. Q.E.D.

For bicovariant bimodules besides Theorems 2.1 and 2.3 we have additionally

Theorem 2.4. Let (Γ, ΦΓ, ΓΦ) be a bicovariant bimodule over s$ and (ω f) ί e / be a basis
in the vector space of all left-invariant elements of Γ. Then
1. For any iel,

(2-35)

where R-3ies$ (ί,jel) satisfy the following relations

, (2-36)
hel

eiRji^δji. (2.37)

2. There exists a basis {η^)ieI (indexed by the same set I) in the vector space of all
right-invariant elements of Γ such that

ωί= Σ VjRji (2-38)

for all iel.
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3. With this choice of basis in Γinv, the functionals ftj (i,jel) introduced in
Theorems 2 A and 2.3 coincide.
4. For any j,hel and any aestf,

. (2.39)j Σj
ieI ίel

Proof. Adi. Using the commutativity of (2.9) we see that

It shows that ΓΦ(ωf) e i n v Γ ® ^ / and formula (2.35) follows. Applying (id® Φ) to the
both sides of (2.35) and using (2.7) we obtain

Σ j j Σ h i = Σ a>j®Rjh<8)Rhi,
jel hel jhel

and formula (2.36) follows. To prove (2.37) it is sufficient to apply (id®<?) to the
both sides of (2.35) and use (2.8).

Ad2. Inserting in (A.3) and (A.4) a = Rtj (/, je I) and using (2.36) and (2.37) we
obtain

Σκ(RiύRhj = δijI9 (2.40)
hel

ΣRiARk^δijI- (2.41)
hel

For any jel, let

ηj^ΣωrfRtj). (2.42)
iel

Then formula (2.38) follows immediately from (2.40). Using (2.6), (2.35), (2.36), (A.2),
and (2.41) we compute

Σ j Σ
iel i.h,k

= Σ ωhκ(Rj Σj j
i,h,k h,k

It means that η} (j e /) are right-invariant.
Let ηeΓ be right-invariant. According to Theorem 2.1.2 and (2.38),

(2.43)

where bj e d (j eI)Aϊη = Q then [cf. (2.42) and Theorem 2.1.2] Σ κ(Rij)hj = 0{ie I)
jel

and using (2.41) we get f?; = 0 for all jel. This shows that the decomposition (2.43)
is unique. Applying ΓΦ to the both sides of (2.43) and using (2.31) and (2.6) we get

Comparing this formula with (2.43) we get Φ(bj) = fo; ® / and [cf. (A.5)] bj = e(bj)I for
all j e I. This way we proved that any η e Γim is a unique linear combination
of r\j (jel). Therefore, (η^eI is a basis in Γinv and Statement 2 is proven.
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Ad 3. In this part of the proof the functionals introduced in Theorem 2.3.3 will
be denoted by J}i. So Eq. (2.34) takes the form

Using (2.42) and (2.14) we obtain

Σ ω h ( ( / i h O K " 1 ) * a M R i j ) = Σ 0Jhκ(Rhi)(a*(Jβo κ~ι)).
i,h i.h

Therefore (cf. Theorem 2.1.2),

Σ [(/^O*«M#uH Σ KiR^iaHfji^-1)). (2.44)
iel ίel

We know that e(f * a) = e(a* f) = f(a) for any aed and fes4' [cf. (A.9)].
Therefore, applying e to both sides of (2.44), remembering that e is multiplicative
and using (A.7) and (2.37) we get fjh(κ~1{a)) = Jjh(κ~ι(a)) for all aed. It shows
that/}h = 7/h.

Ad 4. Applying K 1 to the both sides of (2.44) we get

X RijK'Wto oκ-1)*a)=Σκ~\a* (/), o κ~ ̂  . (2.45)
i e / i e /

We compute

= (id®fji)Φ(κ-ί(a))=fji*κ-1(a).

Inserting these data into (2.45) and replacing a by κ(a) we obtain (2.39). Q.E.D.

Applying ΦΓ to both sides of (2.42) and using (2.2), (2.10), (A.2), and (2.36) we
obtain

<W=Σ>(Ky)®»/« (2 4 6 )
iel

Theorem 2.4 gives the complete description of bicovariant bimodules. By
virtue of (2.5) and (2.35),

ΓΦ(Σ<*iθ>ι) = Σ ΦίαiXω,®*,,). (2.47)

One can prove the following

Theorem 2.5β Let (fij)ijeI be a family of functionals defined on srf satisfying relations
(2.15) and (2.16) and (Rίj)ijeI be a family of elements of srf satisfying (2.36), (2.37), and
(2.39). We consider the free left module Γ over s$ generated by ωt (iεl) and use
formulae (2.29), (2.30), and (2.47) to introduce right multiplication by elements of sd
and left and right actions of G on Γ. Then (Γ,ΦΓ,ΓΦ) is a bicovariant bίmodule.

Let J / 2 be the bimodule introduced in Sect. 1. In order to prove Theorems 1.5,
1.6, and 1.8 we have to introduce left and right actions of G on J / 2 .
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Let qesi®stf and (Φ®Φ)(q)=Σak®bk®ck®dk, where ak9bk,ck,dke,o/
(fc = l,2,...,K). We set k

ΦM=Σ*kCk®bk®dk, (2.48)
k

ΦR{q)^Σak®ck®bkdk. (2.49)
fc

We claim that ΦL(q)esi®si1 and ΦR(q)es#2®s# for any ^ e i 2 . Indeed, the
multiplicativity of Φ immediately implies that (id®m)ΦL(q) = Φ(mq) = O and
(m®id)ΦR(q) = Φ(mq) = O. Therefore,

are linear maps. Using (A.I), (A.5), and (A.6) one can check that (,β/2, ΦL, ΦR) is a
bicovariant bimodule.

Let r and s be bijections introduced by (1.21) and (1.22). Using (A.I 5) and (A.I6)
one can easily show that

φ / 2 ) = ,^®(kere) (2.50)

and s(j^2) = (kere)®jz?.

Proposition 2.6. The diagrams

Φ®id

idΘΦ

(2.51)

(2.52)

(2.53)

(2.54)

-c/2

(kere)®si®

are commutative.

Proof. We claim that

Indeed, if a, c e srf and

where ak,bk,chdxesi (fe = l , 2 5 . . . , K ; / = 1,25 . . . 5 L), then

Φ L ( α ® c ) =
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and using (A.6) and (A.5) we have

(id(χ)e(x)id)ΦL(α®c)= Σ
k,l

(e®id®id)ΦΛ(α®c) = Σ
kj I

The commutativity of (2.51) follows easily from (2.53) and Condition 2 of
Definition 2.1 [ ( J / 2 , ΦL) is a left-covariant bimodule]. Similarly, the commutativ-
ity of (2.52) follows from (2.54) and Condition 2 of Definition 2.2 [(^/2, ΦR) is a
right-covariant bimodule]. Q.E.D.

Using (A.23) and commutativity of (2.51) and (2.52) one easily obtains

Proposition 2.7. An element of sd2 is left- (right-, respectively) invariant if and
only if it is of the formr~1(I®x) (s~1(y®I), respectively) where xekere (y ekere,
respectively).

By virtue of Condition 3 of Definition 2.3 the right shifts applied to left-
invariant elements produce left-invariant elements. Therefore (cf. Proposition 2.7),
for any xekere there exists q e ( k e r e ) ® ^ such that

Applying (e®id®id) to the both sides of this equation and using (2.54), (1.28),
and (A. 19) we get

This way we proved that

(2.55)

for any xekere.

Now we can prove theorems of Sect. 1. Let (Γ, d) be a first order differential
calculus on G and Jf be a sub-bimodule of J / 2 introduced by (1.7). Let us notice
that implication (1.8) [(1.16), respectively] means that ΦL(,/V)

respectively].

Proof of Theorem 1.5. Let &ί be a right ideal of sd such that ^Ckere. According
to (A.11) and (A.I2) r~\srf®ffl) is a sub-bimodule of ^ 2 . Assume that
j \ r = r~x^®m\ Then using (2.51) we see that ΦLpK) = (id®r" 1 )(Φ(j^)®^)
C(id®r" ' ι\M'®sέ'®M) = si'®Jί'. This shows that the implication (1.8) holds.

Conversely, if (1.8) holds then (J//%,ΦL) is a left-covariant bimodule and (cf.
Theorem 2.1.1 and Proposition 2.7) there exists a family (Xi)ieI of elements of kerβ
such that .JV coincides with the set of all elements of the form

where a*x e sd. Using (1.4) and (A. 17) one can easily check that the right-hand side of
the above relation equals r~1 (Σai®xί] - Denoting by ffl the linear span of xt we
obtain A" = r
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We have to show that 3ft is a right ideal in srf. Let xe3ft and α e ^ . Then
r~1(I®x)eJί and {Jί is a bimodule) [r- 1(/®x)](/(χ)α)GyΓ. Therefore [cf.
(A. 12)], {l®x)Φ{a)e^®3k and (β®id)[(/®x)Φ(fl)] = x α 6 ^ . Q.E.D.

Proof of Theorem 1.6. Let 3ft be a right ideal of si such that 3ft C ker e. According to
(A. 13) and (A. 14) s~ι(β®si) is a sub-bimodule of si2. Assume that
Jf = s~~\9l®$t\ Then using (2.52) we see that ΦR{Jί) = {s~ι®\ά){0l®Φ{si))
C{s~x ®\ά)(0t®si ®si) = Jί ®si. This shows that the implication (1.16) holds.

Conversely, if (1.16) holds then {Jί, ΦR) is a right-covariant bimodule and (cf.
Theorem 2.3.1 and Proposition 2.7) there exists a family (y f) i e / of elements of ker e
such that Jί coincides with the set of all elements of the form

iel

where a{ e si. Using (1.4) and (A. 18) one can easily check that the right-hand side of

the above relation equals s~1 (Σyi®aλ. Denoting by 3ft the linear span of y{ we

obtain Jf = s~1(0t®si).
We have to show that 3ft is a right ideal in si. Let ye 3k and be si. Then

'.Jί and («yf is a bimodule) [5"1(j®/)](/®b)G«yK>. Therefore [cf.
and {id®e)\_{y®I)Φ{b)^\ = ybe3#. Q.E.D.

Proof of Theorem 1.8. Let 3ft be a right ideal of <s/ such that ^ C k e r e and

(2.56)

Then (cf. proof of Theorem 1.5) (Jf, ΦL) is a left-covariant bimodule. Assume that
01 is ad-invariant. Then formula (2.55) shows (cf. Proposition 2.7) that the set inyJί
of all left-invariant elements of Jί is invariant under right shifts:
φ i ί ( i n v ^ ) Q n v ^ ® ^ . N o w t h e decomposition (2.11) shows that ΦR(Jf)QAr®d.
This means that the implication (1.16) holds.

Conversely, assume that (1.16) holds. Then (cf. proof of Theorem 1.6)
Jf = s~'ί(βl®st\ where 3ft' is a right ideal of <$# contained in kere. Using (2.56),
(A. 19), and (A.20) one can easily check that 3ft' = 3ft. So we have

The last inclusion means that 3ft is ad-invariant. Q.E.D.

In many important cases the bimodules that we deal with are endowed with
some additional structure. In these cases considering the concept of left- (right-,
respectively) covariance we shall always assume that the additional structure is
preserved by the left (right, respectively) action of G. For example (see Sect. 3), if Γ
is a graded algebra then stf® Γ (Γ® stf, respectively) carries natural graded algebra
structure and ΦΓ (ΓΦ, respectively) should be a graded algebra homomorphism. In
what follows we shall (briefly) discuss ^-structure on the considered bimodules.
For example, if a differential calculus (Γ, d) on G is a ^-calculus then Γ is a
*-bimodule (cf. Proposition 1.9).
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Let (Γ, ΦΓ) be a left-covariant bimodule over si. Assume that Γ is provided
with a ^-structure, i.e. Γ is a *-bimodule. Then stf®Γ carries natural ^-structure:

(2.57)

for any a e s$ and ρeΓ. We say that (Γ, ΦΓ) is a left-covariant *-bimodule over sd if

(2.58)

In a similar way one introduces the notion of right-covariant *-bimodule. In
this case (2.57) and (2.58) should be replaced by

, (2.59)

(2.60)

respectively. We say that (Γ, ΦΓ, ΓΦ) is a bicovariant *-bimodule if (Γ, ΦΓ, ΓΦ) is a
bicovariant bimodule and if relations (2.58) and (2.60) hold.

Let (Γ, ΦΓ) be a left-covariant *-bimodule over j / . Then the set i n v Γ of all left-
invariant elements of Γ is ^-invariant: ω * e i n v Γ for any ω e i n v Γ . Therefore, the
basis (ω f ) i e / considered in Theorem 2.1 can be chosen in such a way that

ωf = ω( (2.61)

for all i e I. With this choice the functional jVj (i, j e I) introduced by Theorem 2.1
satisfy the following relation:

fij{a)=fij(κ{aY) (2.62)

for any aes$. Indeed, using (2.13) and (2.14) we have

Σ ω// u *α*)*= (Σ (fij*a*)ajλ* =(ω;α*)*

= aωt= Σ ωj{(fij°κ~ι)*a)

Therefore (cf. Theorem 2.1.2),

Replacing a by κ(a) and applying e to both sides we obtain [cf. (A.9)] relation (2.62).
Using (2.61) and (2.13) we have

Conversely, if (Γ, ΦΓ) is left-covariant bimodule over jrf and if for some choice
of the basis (ω f) f e / the functional ftj (ί,jel) introduced by Theorem 2.1 satisfy
relation (2.62), then using the above formula to introduce ^-operation on Γ we
obtain a left-covariant *-bimodule.

The same remarks apply to right-covariant *-bimodules.
If (Γ, ΦΓ, ΓΦ) is a bicovariant *-bimodule and if the basis (ωt ) ι e / considered in

Theorem 2.3 satisfies condition (2.61), then the elements Rtjes^ introduced by
Theorem 2.4.1 are selfadjoint:

Rΐi = Rij (2-63)

for any i, j e I.
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There exists a natural ^-operation acting on the bimodule stf1 introduced by
(1.3). For any q=^Yjak®bkes^2 we set

q* = Σbk*®ak*. (2.64)

One can easily check that q*esi2 and that (si2,ΦL,ΦR) is a bicovariant
*-bimodule.

Remark. The notation (2.64) may lead to a misunderstanding: si2 Csi®stf and the
^-operation introduced by (2.64) does not coincide with the hermitian conjugation
in the tensor product of two copies of *-algebra si. We have to stress that in this
section the *-operation applied to elements of si2 is always understood in the
sense of (2.64).

We know that the ^-operation applied to left-invariant elements produce left-
invariant elements. Therefore (cf. Proposition 2.7), for any xekere there exists
j/ekere such that

Applying e® id to both sides and using (A. 19) and (A.21) we get y = κ(x)*. Therefore,

r~\I®x)* = r-\l®κ{x)*). (2.65)

Now we can prove the last theorem of Sect. 1. Let (Γ,d) be a first order
differential calculus on G and Jf be the sub-bimodule of srf2 introduced by (1.7).
Let us notice that the implication (1.32) means that Jf*<zJf.

Proof of Theorem l.ίO. We know that Jf = r~\stf®$). IϊJr*cJr then for any
X G ^ , r-\l®x)*eJΓ and [cf. (2.65)] κ{x)*e3l. Conversely, if κ(x)*effl for any
x e l then (2.65) shows that q*e,Ar for any left-invariant element qeJf.
Remembering that (cf. Theorem 2.1.1) any element q e Jf is of the form q = Σ ai<ϊv
where q{eJf are left-invariant we see that Jr*(LJr. Q.E.D.

3. External Algebra

Assume for the moment that we are dealing with classical differential geometry, i.e.
sd is the algebra of all smooth functions defined on a smooth compact manifold M
and Γ is the jaZ-bimodule of all first order differential forms on M. Then higher
order differential forms can be introduced in a purely algebraic way. Denoting
by Γ Λ π (where n = 2,3,...) the j/-bimodule of all differential n-forms we have

Γ A n = Γ Θ 7S π , (3.1)

where ΓΘ" is the tensor product (over si) of π-copies of Γ and Sn is the kernel of the
antisymmetrization operation

introduced by the formula

A n = Σ
peP(n)
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where P(n) is the permutation group of n elements and Π is the natural action of
P(n) on Γ®n. For example, if σ = i7f, where t is the non-trivial element of P(2), then
for any ρ, ρ' e Γ,

Trying to repeat Definition (3.1) in the non-commutative setting we meet the
following difficulty: there is no natural action of P(n) on Γ®n. In particular, the
formula (3.2) is not self-consistent. Indeed, for any ρ, ρ' e Γ, a e si we have Q®^aq'
= ρa®^ρ\ whereas in general aρf®^ρ + ρ'®^ρa.

We shall show, however, that for any bicovariant bimodule Γ there exists a
natural bimodule automorphism σ acting on Γ®^Γ replacing the flip automor-
phism (3.2). This automorphism satisfies the braid equation and defines the
natural action of the n-element braid group [1] on Γ®n. As a result we shall
obtain the usual external algebra formalism.

As in the previous sections G = (A, u) is a compact matrix pseudogroup and stf
is the *-subalgebra of A generated by matrix elements of u.

Let T be an algebra and

be linear multiplicative mappings. We say that (T, Φτ, TΦ) is a bicovariant algebra
if (e®id)Φτ = id and (id®e)τΦ = id and if the following diagrams

J φτ

are commutative. Then Φ Γ and Γ Φ describe left and right actions of G on T. For
example, ( J / , Φ, Φ) is a bicovariant algebra.

If T is a graded algebra
np v^@ ηnn

n = 0

and the actions of G preserve the grading
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then we say that (T, Φτ, TΦ) is a bicovariant graded algebra. In this case, for any
n = 0,1,2,... we denote by Φ\ (ΓΦn, respectively) the restriction of Φτ (TΦ,
respectively) to Tn. If T° = s4 and Φ°τ = TΦ° = Φ, then for any w, (Tn, Φ"Γ, ΓΦn) is a
bicovariant bimodule over srf.

Let (Γ, ΦΓ, ΓΦ) be a bicovariant bimodule over J / . We say that a bicovariant
graded algebra (T, Φ τ , ΓΦ) is built over (Γ, ΦΓ,ΓΦ) if
1. T° = , < Φ°T = TΦ° = Φ.
2. The bicovariant bimodule (T 1, Φ^, ΓΦX) coincides with (Γ, ΦnrΦ).
3. T is generated by grade 1 elements, i.e. any element τ e T" (n = 2,3,...) is of
the form τ = £τt-, where for each i τf is a product of w elements of Γ.

i

In this section, for any bicovariant bimodule (F, ΦΓ, ΓΦ) we shall construct two
bicovariant graded algebras (Γ®9Φf9 ΓΦ®) and (Γ\Φ^ΓΦ

A) built over (Γ, ΦΓ, ΓΦ).
They are called tensor algebra and external algebra over (Γ, ΦΓ, ΓΦ).

We start with the tensor algebra construction. Let

Γ Θ " = Γ(χ)^Γ(χ)^ ... ®^Γ (n factors)

be the nth tensor power of Γ (n = 2,3,...). We shall define left and right actions of G
on Γ®n. To this end for any simple element

(where ρ 1 ? ρ 2 , . . . , ρ n e Γ ) of Γ®n we set

Φf n(τ)= Σa^a1? ... α ^ ® ^ ® ^ ® ^ ... ®^«J, (3.3)

® ^ i ••• Kn, (3.4)

where a\\ak

2

2,...,ak

n

n, bl{,bl£,...,bl; are elements of si and ξlt,ξl2, ...,ξ"kn,
ζlιtζf2, •• ,ζ"n are elements of Γ such that

and the summation [in (3.3) and (3.4)] runs over all possible systems
k = (ku k2,..., kn) and / = (lί912,..., /„). Taking into account (2.1), (2.2), (2.5), and (2.6)
one can easily check that formulae (3.3) and (3.4) introduce well defined linear
mappings

Moreover, performing simple but boring computations one can check that
(ΓΘ n, Φf\ΓΦ®n) is a bicovariant bimodule. For n = 0,1 we set
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Let

00
r® __ y ® jr®«

0

Clearly, Γ® is a graded algebra containing srf as the subalgebra of all elements of
grade 0 and Γ as the subspace of all elements of grade 1, Φf and ΓΦ® are linear
multiplicative maps acting from Γ Θ into J/(X)Γ® and Γ®® J / , respectively, and
(Γ®,Φf,ΓΦ®) is a bicovariant graded algebra built over (Γ,ΦΓ,ΓΦ).

To construct the external algebra built over (Γ, ΦΓ,ΓΦ) we have to introduce
the bimodule automorphism σ replacing (3.2).

Proposition 3.1. There exists a unique bimodule homomorphism

such that

) = η®^ω (3.5)

for any left-invariant element ωeΓ and any right-invariant element ηeΓ. σ is
invertible and commutes with the actions of G: the diagrams

φ®2
Γ® 2 r > o/{χ\Γ®2

| i d ® σ (3.6)

— ^®Γ®2,

»id (3.7)
ψ

r-^®2 Γ®26d ςrf

are commutative. Moreover, σ satisfies the following braid equation: on Γ®3

)σ) = (σ®id)(id®σ)(σ®id). (3.8)

Proof. Let (ω f ) ί e / [0^) ίe/, respectively] be the basis in the space of all left- (right-,
respectively) invariant elements of Γ considered in Theorem 2.4. We shall use

Lemma 3.2. Any element τ e Γ ® 2 can be written in the following ways:

τ = Σ flfj^i®^, (3.9)

ijel

where atj and btj (U j £ I) are uniquely determined elements of srf.
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Proof of the Lemma. The existence of decompositions (3.9) and (3.10) follows
immediately from Theorem 2.1.1 and Theorem 2.3.1.

Let j e /. For any ρ e Γ, we denote by θj(ρ) the element a-} e stf occurring in the
decomposition (2.32). Clearly, θj(aρ) = aθj(ρ) for any ae s$ and ρ e Γ . Due to this
fact one can introduce linear mappings id®0j: Γ®2->Γ such that (id®βj)(ρ®^ρ/)
= ρθj(ρ') for any ρ,ρ' eΓ. Applying this mapping to both sides of (3.9) we obtain

This shows (cf. Theorem 2.1.1) that elements aVjes$ {Ujel) are uniquely
determined. Similarly, one can show that elements bi} are uniquely determined.
The lemma is proved. Q.E.D.

If a bimodule automorphism σ acting on Γ®2 satisfies relation (3.5) then

Σ aifi>i®J*1j)= Σ aiinj®^^i (3.11)
\ , jel J ί, jel

for any au(U jel) belonging to j / . On the other hand, using Lemma 3.2 one can
easily check that formula (3.11) defines a bijective linear mapping of Γ®2 onto
itself. We have to show that σ is a bimodule homomorphism, i.e. that

σ(aτ) = aσ(τ), (3.12)

σ{τb) = σ(τ)b (3.13)

for any a,bestf and τeΓ®2. Relation (3.12) follows immediately from definition
(3.11). Taking into account the linearity of σ and relation (3.12) we see that it is
sufficient to show (3.13) for τ = (L>i®^ηj (i,jel). Using (2.13), (2.33) and the
associativity of the convolution product we obtain

\l,kel

= Σ (fn
l k l

and (3.13) follows.
Assume that τeΓ®2 is given by (3.9). Applying Φ®2 to both sides of (3.11) and

using (2.46) and (2.10) we have

Φf2(σ(τ))= Y Φ(aι

= (id®σ

= (id®σ)Φ®2(τ).

This shows that the diagram (3.6) is commutative. Similarly, using (2.31) and (2.35)
one can prove the commutativity of (3.7).

Let ω' and ω" be left-invariant elements of Γ. Then ω ;®^ω / ; is a left-invariant
element of Γ®2. Using the commutativity of (3.6) we see that σ{ω'®^ω") is left-
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invariant. Therefore [cf. also (3.15)],

where ω", ω'r are left-invariant elements of Γ.
Let η be a right invariant element of Γ. Then

(id ® σ) (σ ® id) (id ® σ) (ω' ®^ω" ®ja,*/) - (id ® σ) (σ ® id) (ω'

On the other hand,

(σ ® id) ΛΓ ω"

and formula (3.8) follows. (Using Theorem 2.1.1 and Theorem 2.3.1 one can easily
show that any element of Γ®3 is a sum of elements of the form aω1 ®^ω"®^η,
where aestf, ω' and ω" are left-invariant and η is right-invariant element
of Γ.) Q.E.D.

It turns out that the action of σ can be expressed by a formula closely related to
Eq. (2.13). To stress this similarity we introduce the convolution product / * ρ ,
where fe^' and ρeΓ. By definition

Then using the notation introduced in Theorem 2.1 we have

j®^Q)= Σ (fjk*Q)®^k (3.14)
kel

for any ρ e Γ . In particular, setting ρ = ω t and using (2.35) we obtain

^ ω ^ Σ fjk(RnH®^k- (3-15)
k l l
Σ

klel

To prove (3.14) it is sufficient (cf. Theorem 2.3.1) to consider the case ρ = aη,
where α e ^ and η is a right-invariant element of Γ. Using (2.13) we have

j j j £
kel

Therefore,

On the other hand, using (2.31) we get ΓΦ(ρ) = Φ(a)(η®I), fjk*ρ = (fjk*a)η and
(3.14) follows.

Let n be a natural number, n ^ 2 . We consider the set

{σ ι,σ2,... ίσ l l_1} (3.16)
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of b i m o d u l e a u t o m o r p h i s m s of Γ®n i n t r o d u c e d b y t h e f o r m u l a (fc = l , 2 , . . . , n — 1 )

(3.17)

where the product contains n — \ factors and σ occurs in the kth place. It follows
immediately from (3.8) that these automorphisms satisfy the basic braid group
relations:

σkσk+ισk = σk+iσkσk + \ (3.18)

for fc = l , 2 , . . . , n - l .
Let P(n) be the permutation group of n elements. We consider the set of nearest

neighbour transpositions

{ίi,ί2,. .Λ- i } (3.19)

For any fc = l,2, ...,n—ί, the permutation tk transposes k with fc+1 leaving all
other elements of {1,2, ...,n} in their places.

For any p e P{n) we denote by I(p) the number of in versed pairs in the sequence
(p(l),p(2), ...,p(n)). Then p is equal to a product of I(p) factors belonging to (3.19):

P = hJk2-tkl{p). (3.20)

Replacing in this product elements of (3.19) by corresponding elements of (3.16) we
obtain a bimodule automorphism of Γ®n. Due to (3.18) this automorphism is
independent of the choice of the decomposition (3.20). It will be denoted by Πp:

Πp = σkισk2...σklip). (3.21)

Clearly,

Πpq = ΠpΠq (3.22)

for any p,qe P(n) such that I(pq) = I(p) -f I(q).
The antisymmetrization An is a bimodule homomorphism acting on Γ®n

introduced by the formula

^ n =Σsign(p)/7, , (3.23)

where sign(p) = ( — ί)I{p) is the sign of permutation p and the summation runs over
all peP(n). For n = ί we set Ax =id (on Γ).

Let k be a natural number smaller than n and

Γ = L ί = p r M V * ) < 4 ( j ) for any ij=ί,2,...,nnk | * f c r W s u c h ώ a t e i t h e r f < J ^ k o r

One can easily check that Cnk consists of elements. Any permutation p e P{ή)
\kj

admits unique decomposition

p = qp'p\ (3.24)

where q e Cnk and p' (p", respectively) is a permutation leaving k first (n — k last)
elements in their places. Clearly, I(p) = I(q) + /(/?') -f /(/?")• Inserting (3.24) into (3.23)
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and using (3.22) we obtain

J, (3.25)

where

Λnk= Σ signte)J7€. (3.26)
qeCnk

Now we can introduce the external algebra built over (Γ, ΦΓ, ΓΦ). Let

Sn = keτAn (3.27)

be the sub-bimodule of Γ®n consisting of all elements zeroed by An and
oo

S = Σ®S\ (3.28)
n=2

By virtue of (3.25) S is an ideal in the algebra Γ®. Therefore,

00

ΓA=Γ®/S = Σ®ΓA\ (3.29)
n = 0

where Γ A 0 - ^ / , Γ A 1 = Γ, and r*n = Γ®n/Sn for n > l is a graded algebra. The
multiplication in Γ A will be denoted by Λ (this sign is usually omitted if one of the
factors is of grade 0).

Taking into account the commutativity of (3.6) and (3.7) we see that S is left-
and right-invariant. Therefore, Γ Λ carries the natural left and right actions of G.
Denoting these actions by Φp and ΓΦ

 Λ we obtain a bicovariant graded algebra
(ΓA,Φ£,ΓΦ

A) built over (Γ, ΦΓ, ΓΦ). This is the external algebra that we wanted to
construct.

The external algebra construction has the following remarkable functorial
property:

Theorem 3.3. Let (F, ΦΓ, ΓΦ) be a bicovariant bimodule over s^,(ΓA,Φp,ΓΦ
A)be the

external algebra built over (Γ, ΦΓ, ΓΦ), Γ be a left- and right-invariant sub-bimodule
of Γ, ΦΓ (ΓΦ, respectively) be the restriction of ΦΓ (ΓΦ, respectively) to Γ and
(ΓA,Φp,ΓΦ

A) be the external algebra built over (Γ,ΦnrΦ). Then there exists a
grade preserving multiplicative embedding

Γ A c f Λ (3.30)

coinciding with id on elements of grade 0 and with the inclusion Γ CΓ on elements of
grade 1. Moreover, (3.30) intertwines the left and the right actions of G on ΓA and
fA, respectively.

Proof. It is obvious that the tensor algebra construction obeys the functorial
property described in this theorem. Therefore, Γ®CΓ®.

Let σ, σk, Πp, An9 S\ and S be the objects introduced by (3.11), (3.17), (3.21),
(3.23), (3.27), and (3.28) and σ, σk, 77p, Άn9 S", and S be the corresponding objects
related to the bicovariant bimodule (f, ΦΓ, ΓΦ). It is sufficient [cf. (3.29)] to show
that

(3.31)
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It follows immediately from (3.11) that σ restricted to Γ®2 coincides with σ.
Therefore, σk (Πp, Άw respectively) restricted to T®n coincides with σk (Πpy Aw

respectively). This shows that

^ n ) n = k e r A n = Sn

and (3.31) follows. Q.E.D.

We end this section with the following result concerning the ^-structure.

Theorem 3.4. Let (Γ, ΦΓ, ΓΦ) be a bicovarίant *-bimodule over srf and (ΓA,Φp,ΓΦ
A)

be the external algebra built over (Γ,ΦΓ,ΓΦ). Then (ΓA,Φ^,ΓΦ
A) becomes a

bicovariant graded *-algebra. This means that there exists unique antilinear
involution

*:ΓA-*ΓA (3.32)

such that
1. * is grade preserving; on elements of grade 0 it coincides with the hermitian
conjugation on s$, on elements of grade 1 it equals the original ^-involution on Γ.
2. * is antimultiplicative in the graded sense, i.e. for any homogeneous elements
θ,θ'eTA of grade n and n\ respectively, we have

(0Λ0')* = ( - 1 Γ ' 0 ' * Λ 0 * . (3.33)

3. * is bicovariant, i.e.

r Φ
Λ (0*) = (ΓΦΛ(0))*®*

for any θeΓA.

Proof. At first we introduce the ^-structure on the tensor algebra. On elements of
grade 0 and 1 the ^-operation is already defined (jrf is a *~algebra and Γ is a
*-bimodule). For higher order elements we put

ί 3- 3 4)

where ρ l 5ρ2? •••ĵ n̂ Γ and sn = signtn = {—l)n{n~1)/2 is the sign of the permutation

«•-( U , - " ) . (3.35,
\n,n — 1, . . . , 1 /

One can check that (3.34) defines an antilinear involution acting on Γ® and that
this involution is antimultiplicative in the graded sense and bicovariant. We have
to show that this involution can be pulled down to the level of Γ A = Γ®/S. To this
end it is sufficient to show that

τ*eS (3.36)

for any τ e S.
Let ω (η, respectively) be a left- (right-, respectively) invariant element of Γ.

Then ω* (η*, respectively) is a left- (right-, respectively) invariant element and using
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(3.34) and (3.5) twice we get

This shows (cf. Lemma 3.2) that

σ(τη = (σ-\τ)r (3.37)

for any τeΓ® 2 .
Let n^2, peP(n) and (3.20) be the decomposition of p into the product of

nearest neighbour transpositions containing the minimal number of factors. Then

is the similar decomposition for p~*. Therefore, using definition (3.21) and formula
(3.37) we obtain (for any τeΓ®"):

Let q = tnp [where f is introduced by (3.35)]. Then qp~~ι =tn. One can easily
check that I(q) + I(p~x) - n(n-1)/2 = I(tn). Therefore [cf. (3.22)], ΠqΠp-i = Πtn and
(Πp~x)~ι =(Πtn)~1Πq. Taking into account this result we get

Multiplying both sides by signp and summing up over peP{n) we finally obtain

An(τ*) = sn((Πtny
1An(τψ (3.38)

for any τeΓ®\
If An(τ) = 0 then An{τ*) = 0 and (3.36) follows. Q.E.D.

Remark. According to (3.27) the quotient rAn = Γ®n/Sn can be identified with the
range of the antisymmetrization An. This point of view is used in classical
differential geometry where higher order differential forms are identified with
skew-symmetric covariant tensor fields. In this picture the external product is
expressed by the formula [cf. (3.25)]

where τ e AkΓ®k, τ' e Ak,Γ®k\ n = k + k', and Ank is given by (3.26). Similarly, using
(3.38) we see that the ^-operation coincides with

4 Higher Order Differential Calculus

In this section we show that the external algebra formalism developed in Sect. 3 is
well adapted to our differential calculus.

Theorem 4.1. Let G = (A, u) be a compact matrix pseudogroup, (Γ, d) be a bicovariant
first order differential calculus on G, ΦΓ and ΓΦ be left and right actions of G on Γ
introduced in Proposition 1.2 and Proposition 13, and (Γ Λ, ΦΓ

A, ΓΦ
 A) be the external
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algebra built over (Γ, ΦΓ, ΓΦ). Then there exists one and only one linear map

d:ΓA-+ΓA

such that

1. d increases the grade by one.
2. On elements of grade 0, d coincides with the original derivative (1.1).
3. d is a graded derivative:

d(θ A θ') = dθ Λ 0' + ( - \fθ A dθf (4.1)

for any θeΓAk and 0 ' e Γ \ fc = 0,l,2,... .

4. d(dθ) = O (4.2)

/or any θeΓA.

5. d ΐs bicovariant:

= (d®id)ΓΦ
A(θ)

for any θeΓA.
Moreover, if (Γ, d) is a ^-calculus, then endowing Γ Λ with the induced ̂ -structure

(cf. Proposition 1.9 and Theorem 3.4) we have

6. d{θ*) = {dθ)* (4.3)

for any θeΓA.

Proof. We shall use the extended bimodule method described in [8].
Let stfX be the free left ^/-module with one generator X and

(4.4)

Any element ξeΓ is of the form

ξ = cX + ξ, (4.5)

where cestf and ξeΓ are uniquely determined.

We introduce right multiplication by elements oϊ ,stf: for any ξeΓ of the form
(4.5) and any α e ^ / w e set

ξa = caX + (cda + ξa). (4.6)

One can easily check that the left ^/-module Γ endowed with the right
multiplication (4.6) is a bimodule over si. Moreover,

da = Xa-aX (4.7)

for any aesi.
We introduce left and right actions of G on Γ: for any ξeΓ of the form (4.5) we

set

ΦΓ(ξ) = Φ(c)(I®X) + ΦΓ(ξ), (4.8)

ΓΦ(ξ) = Φ(c)(X®I) + ΓΦ(ξ). (4.9)
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Then (f, ΦΓ, ΓΦ) is a bicovariant bimodule over sέ, Γ C Γ is an invariant sub-
bimodule and ΦΓ (ΓΦ, respectively) restricted to Γ coincides with ΦΓ (ΓΦ,
respectively). Let (f Λ, Φ/^,ΓΦΛ) be the external algebra built over (Γ, ΦΓ,ΓΦ). We
shall use the inclusion

Γ Λ C Γ A

described in Theorem 3.3.
It follows immediately from (4.8) and (4.9) that X is a left- and right-invariant

element of Γ. Therefore [cf. Definition (3.5)],

This shows that A2(X®^X) = 0, X®^XεS2 and

IΛI-0. (4.10)

For any ΘeΓΛ we put

d0 = [X,θ] g r a d , (4.11)

where [X, # ] g r a d is the graded commutator

l even

X if the grade of θ is

We check that the conditions 1-5 of the theorem are satisfied. Condition 1 is
obvious: X is of grade 1. Condition 2 follows immediately from (4.7). Condition 3
can be verified by direct computation (see e.g. [2] or [8]). Using definition (4.11)
one can easily check that

d(dθ) = X ΛX Λθ-θ ΛX ΛX

and Condition 4 follows immediately from (4.10). Taking into account the left- and
right-invariance of X we obtain Condition 5.

To end this part of the proof we have to show that dθe ΓA for any θ e Γ Λ. We
may assume that

θ = aoda1 Λda2Λ ... Λ dan, (4.12)

where α o ,α 1 ,α 2 , . . . , α n e j / (according to Condition 2 of Definition 1.1 any element
of Γ Λ is a sum of terms of the above form). Using Conditions 2, 3, and 4 we obtain

dθ = da0Adaι A ... Λdan, (4.13)

and the inclusion d(ΓA)cΓA follows. The above formula proves also the
uniqueness of d.

Assume now that (Γ,d) is a *-calculus. To prove Condition 6 we may assume
that θ is of the form (4.12). Then [cf. (3.33)]

θ* = (-l)n< l |-1^2(dflπ)*Λ ... /\{da2)* A{dax)*a*,

and using (4.1), (4.2), and (1.36) we get
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On the other hand, taking into account (4.13) and (3.33) we obtain

(dθ)*=(-ψn+1)/2{dan)*Λ ... Λ f ώ / Λ f ώ ^ Λ f ώ o f ,

and (4.3) follows. Q.E.D.

5. Commutators, Jacobi Identity, Cartan-Maurer Formula and All That

Assume at the beginning that G is a Lie group. Let stf = C^(G) and $ be the ideal
in £0 consisting of all functions vanishing with first derivatives at the neutral
element of G. Then the Lie algebra of G can be identified with the vector space T of
all linear functional on stf killing / (/ denotes the unity of ,G/) and ̂ , endowed with
the Lie bracket (commutator)

given by the formula

ίx,x'] = x*x'-x'*x (5Λ)
It follows immediately from (5.1) that the Lie bracket is antisymmetric:

[/,χ]=o (5.2)

for any χeT. Moreover, remembering that the convolution product is associative
one can easily verify the Jacobi identity:

ίx, ίx', x"]] = ίίx, x'l xl - ίίx, xΊ, xΊ (5.3)

for any χ, χ', χ" e T.
Let (Xi)ieI be a basis in T. Then there exist left-invariant first order differential

forms ωt (iel) on G such that for any ae,otf,

da= Σ(Xi*Φi- ( 5 4 )
iel

Moreover, (ω f) ίe/ is a basis in the space of all left-invariant first order differential
forms on G. The external derivatives dωi (i e I) are also left-invariant and may be
computed with the use of Cartan-Maurer formula

(id®d)(o = — 2~[ω, ω] ,

where
ω = ΣXi®ωί ( 5 5 )

iel

is the canonical T-valued first order differential form and

[ω,ω]= Σ iXhXj]®(«
ijel

One can easily check that [ω, ω] = 2ω Λ ω, where

Σ ,
ijel

Therefore,
(id®d)ω= — ω Λ ω.
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In this section we show that the notions and formulae described above remain
valid (after necessary modifications) for any bicovariant differential calculus on a
compact matrix pseudogroup.

In the rest of this section we assume that (Γ, d) is a bicovariant first order
differential calculus on a compact matrix pseudogroup G (although Theorem 5.1
and Theorem 5.2.1 and 2 hold also for left-covariant calculi).

Let m be the right ideal introduced in Theorem 1.5 and

(/) = O and

(fl) = 0 for any

To simplify the notation we shall assume that dim(j//5?)<oo. Then T is finite
dimensional.

Theorem 5.1. There exists a unique bilinear form

ΓxT3(ρ,χ)-><ρ,χ>eC (5.8)

such that

9 (5.9)

(5.10)

for any aejtf,ρeΓ, and χeT. Moreover, denoting by i n v Γ the set of all left-invariant
elements of Γ we have
1. For any ωeinvΓ,

for any χe

2. For any χeT,

(r < ω ' Z > = ° ) => (χ = 0). (5.12)
\forany ω e i n v Γ /

Remark. Statements 1 and 2 mean that < invΓ, Γ> is a dual pair of vector spaces.

Proof. The uniqueness of(5.8) follows from Condition 2ofDefinition 1.1.To prove
the existence we shall use the projection

considered in Lemma 2.2.
Let a e ker<?. lϊah, bk(k = l,2i...,K) are elements of J / such that Φ(a) = Σ ak®bk,

then ΦΓ{dd)~Σaι®dbk and formula (2.21) shows that Pda = Σκ(ak)dbk. On the
other hand [cf. (1.23) and (2.50)], Σκ(ak)®bk = r~ι(I(g)a)e,Qtf2, and using the
canonical projection π j/ 2—>F introduced in Sect. 1 we obtain

Pda = πr"\l®a) (5.13)

for any a e ker e. If PJα = 0 then r"\I®a)e Λr and αef . Conversely, if a e m, then
r~ι(I®a)e Jr and Pda = 0. Therefore, for any aekcre

(Pda = 0) o {aem). (5.14)
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Let χ E T and ρ e Γ. Taking into account Condition 2 of Definition 1.1, formula
(2.18) and relation dl = 0 we see that there exists a e ker e such that Pρ — Pda. We set

<ρ,χ>=χ(α). (5.15)

Due to the "only if" part of (5.14) the right-hand side of the above definition is
independent of the choice of a [according to (5.7) χ kills all elements of 9t\

To end the proof of existence we notice that (5.10) is obvious and that (5.9)
follows immediately from (2.18).

We claim that

(Pda,χ) = χ(a) (5.16)

for any χ e T and aes#. Indeed, if a E ker e then PPda = Pda (P is a projection) and
(5.16) is a particular case of (5.15). lϊ a = λl (where λ e(C) then both sides of (5.16)
vanish.

The implication (5.12) is now obvious: Pda e i n v Γ for any a e stf. To prove (5.11)
we may assume that ω = Pda, where aekere. If <ω,χ> = 0 for any χeT then [cf.
(5.16) and (5.7)] aeM and using the "if" part of (5.14) we get ω = 0. Q.E.D.

In the following fe)ie/ is a basis of T; (ω f) i e / is the dual basis of i n v Γ:

for any i, j e J and (a f) i e 7 is the family of elements of kerβ such that

for any UJEI. By virtue of (5.16),

ω — Pdaj. (5.17)
Clearly,

ieJ

for any ω e i n v Γ . In particular, taking into account (5.16) we get

Λ*α= ΣXiiΦi ( 5 1 8 )
ie/

for any aEstf.

Theorem 5.2. 1. For any a e -J/,

2. Lβί (fij)ijeI be the family of linear functίonals on s$ introduced in Theorem
2.13. Then

Ii(ab)= Σ XjW»{b) + e(aMb) (5.20)

for any iel and a,be^. In particular,

φjb)

for any i, jel and bestf.
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3. Let (Rij)ijeI be the family of elements of s^ introduced in Theorem 2.4.ί. Then

^ ) . (5.21)

Proof. A d i . Let ak,bk(k = l,2,...,K) be elements of $0 such that

Φ{a)=γjak®bk.
k

Then (cf. Proposition 1.2.4)

k

and using (2.19) and (5.18) we get

da = Σ akPdbk = Σ (Σ akXiibk)) ωt = Σ (Xι * Φi
k ίel\k J iel

Ad 2. Using (5.19) and (2.13) we obtain

Σ
iel

(da)b =Σ(χj* a)ωp = £ (Xj * a)(fβ * fc)ω,.,
jel ijel

adb = Σ a(lί * b)ωt.
iel

Inserting these data into (1.2) and using Theorem 2.1.1 we get

Xt * ab = Σ (Xj * a)(fji * b) + αfc * fe),

and using (A.9) we get (5.20).
Ad3. Taking into account Proposition 1.3.1 and 4 one checks that the

canonical mapping (see Sect. 1)

intertwines the actions ΦR and ΓΦ of G on s$2 and Γ, respectively. In other words
the diagram

Γ
ΓΦ

is commutative. Using (5.13), (2.55) and once more (5.13) we have

Therefore [cf. (5.18)],

ΓΦ(Pda)= Σ ωfOtoOidJίadα). (5.22)
iel

Inserting a = a^ using (5.17) and comparing with (2.35) we obtain (5.21). Q.E.D.
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Now we shall derive some formulae related to the higher order differential
calculus. We start with the Cartan-Maurer formula.

Let aejtf. Taking into account (4.2), (5.19), and (4.1) we compute

Σ

= Σ Ufa * a) A cϋi + X (χi * a)dωi

ιel ίel

= Σ (λj*Xi*a)ωjΛωi+ Σ(Xi*a)dωi-
ίjel iel

Applying P to both sides of this relation we get

Σ XiWdcOi = - Σ (Xj * XdiΦj A ω f . (5.23)
i e I ij e /

This shows that

i=~ Σ
ijijel

and using the short-hand notation (5.5) and (5.6) we obtain the Cartan-Maurer
formula

- ω Λ ω . (5.24)

Remark. Like in the classical Lie group case the object ω e T(χ)Γ is independent of
the choice of basis (Xi)ieI in T.

Inserting in (5.23) a = ak we have

According to Theorem 2.1.1 any τeΓ®2 is of the form

ίjel

where atj e si (i, j e I). Using the same method as in the proof of Lemma 3.2 one can
easily show that elements atj are uniquely determined. Moreover, τ is left-invariant
if and only if aij = λijl, where l ^ e C for all Ujel. It means that i n v Γ® 2 may be
identified with i n v Γ® i n v Γ.

Due to this fact there exists a unique bilinear form <<( °, » defined on
( i n v Γ® 2 )x(T®T) such that

for any ωf, ω" e i n v Γ and χ\ χ" ε T. This form is non-degenerate, i.e.
« i n v Γ® 2 , T®T}} is a dual pair of vector spaces.

Let σ: f®2^Γ®2 be the bimodule homomorphism introduced in Proposition
3.1. We know that σ maps i n v Γ® 2 onto itself. We denote by σr the transpose of σ. By
definition σι is a linear map acting on T® T such that

«α/®^αΛ σ\χ'® / ) » = «σ(ω ;®^ω"), χ'® f)>

for any ω', ω" G i n v Γ and χ\ χ" ε T.
Now we can formulate the analogue of definition (5.1). For any χ\ χ" e T we set

[χ',χ"] = z ' * ; r - Σ t f * z ; > (5-25)
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where χf

s, χ'^ (s = 1,2,..., S) are elements of T such that

s

Theorem 5.3. 1. For any χ',χ"e T,

lx',xleT. (5.27)

2. // χ's, Is (s = \,l,...,S) are elements of T such that σ1 (Y χ's®χ';) = Σ U®&
then ^ s >

Ώ=0. (5.28)

3. For any χ, χ\ χ" e T,

[z, Dί', x"]] = ίίx, x'l xΊ - Σ [[χ, zΠ, χΰ, (5.29)

χ^χ^ ("5= 1,2, ...,S) are elements of T introduced by (5.26).

Remark. Relation (5.28) expresses the antisymmetry of the commutator [cf. (5.2)],
whereas (5.29) plays the role of Jacobi identity [see (5.3)].

Proof. We shall show that

[*', *"](«) = (* W X a d α ) (5.30)

for any a e to/.
To this end we use the extended bimodule language introduced in the proofs of

Theorem 3.3 and Theorem 4.1. According to (4.11)

d[Pda] = X A Pda + Pda A X.

On the other hand [cf. (5.23) and (5.18)],

dlPdά]=- Σ (Xj*Xi)(Φi*<»i.
i. j e l

Combining these two relations we get

X,
ijel

This means that

where = denotes the equality modulo »S2 = kerJ42 — ker(id — σ). Therefore,

\ijel J

At first, we compute the right-hand side of this relation. Let [cf. (3.15)]

klel

where λijkle(L (i,j,kjel). Then the transpose

= Σ λij,kiX
ijel
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Therefore [cf. (5.25)],

and ιje

\ijel J J * ι)

k,lel k,l,i,j

~ 2-j LXk^ Xu\a)(JJk<y^LUι yj.JΔ)
klel

To compute the left-hand side of (5.31) we recall that [cf. (4.7) and (5.19)]

and using (3.14) we see that

for any ρeΓ. For ρ = Pda the convolution product on the right-hand side may be
computed. By virtue of (5.22)

Xj * Pda = (id® Xj)ΓΦ{Pda) = £ (χt ®Xj) (adα)ω f.
iel

Therefore,

(5.33)^ 7
ijel

Remembering that Pda is left- and X is right-invariant and using (3.5) we get

Combining the last two equations we have

(id -σ)
ijel

Inserting this expression and (5.32) into (5.31) we obtain

[fcXJW = fe®Xi)(adα), (5.34)

and (5.30) follows.
Now the proof of Statement 1 is simple. liaeM then according to Theorem 1.8,

diάaeffl®^. If a = I then adα = /®/. In both cases (5.30) shows that [/, χ"](α) = 0
and (5.27) follows.

Statement 2 is obvious.
To prove Statement 3 we use the commutativity of (1.30). For any χ, χ', f e T

we have [cf. (5.30)],

= (χ®χ'®f)(ad®id)(cϊda)

= {χ®χ'®χΊ(id®Φ)(ada)
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Using this relation we compute [cf. (5.25)]

' * χ")(adα)- Σ(x®ϊs * χl

and (5.29) follows. Q.E.D.

Besides the antisymmetry and the Jacobi identity the commutator obeys an
additional relation (that become trivial in the classical differential calculus). To
formulate this relation we use the linear mapping

C:T®T-^T, (5.35)

such that

for any χ, χ' e T. With this notation we have

Theorem 5.4.

σ ί(id®C)-fσ ί(C®id)(id®σ ί)

= (C®id)(id®σ ί)(σ ί®id) + (id®C)(σ ί®id). (5.36)

Proof. Both sides of (5.36) are mappings from Γ® Γ® T into T® T. Combining
(5.33), (5.34), and (5.16) we get

Σ
ijel

Σ / ;
ijel

Therefore, for any ω e i n vΓ,

ί ω , (5.37)

(5.38)

where C ί : i n v Γ-^ i n v Γ® 2 denotes the transpose of (5.35).
According to Proposition 3.1 σ satisfies the braid equation:

Using (5.37) we are able to compute the action of both sides of (5.38) on
where τe i n v Γ® 2 . We obtain

Therefore,

(id®

and passing to the transpose mappings we obtain (5.36). Q.E.D.
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Remark. According to (3.5) σ(X®^X) = X®^X and for any ωe i n v Γ,
= X®^ω. Using (5.37) one is able to compute the action of both sides of (5.38) on

where ωe i n v F. One gets

(C ®id)Crω = (id ®C)Cω + (id ®σ)(Cί®id)Cίω,

and passing to the transpose mappings one has

C(C®id) - C(id®C) + C(C®id)(id® σι).

The reader will easily discover that this relation coincides with (5.29). This shows
that there exists a logical link between the braid equation and Jacobi identity.

A. Appendix

Throughout the paper we referred to many formulae obtained in [10]. For the
reader's convenience we collect them here. The following list contains also a
number of formulae that (although not explicitly contained in [10]) are closely
related to results of [10] and can be easily verified.

We use the following notation: Φ and K are the comultiplication and coinverse
associated with a compact matrix pseudogroup G = (Λ,u\ sέ is a *-algebra
generated by matrix elements of u, e is a ^-character of s/ such that e(ukl) = δkι,
m: J / ® J / - > J / is the multiplication map [m(a®b) = ab for any a,bestf\ σA is the
flip automorphism of J / ® J / [σA(a(g)b) = b(g)a for any a,besέ\ and r and s are
linear bijections acting on srf®$4 introduced by (1.21) and (1.22). In the formulae
below a,bes$, qestf®s$, f,f are linear functionals defined on J/, and *
denotes convolution product. We start with

Standard properties of comultiplication and coinverse:

(Φ®id)Φ = (id® Φ)Φ, (A.I)

φoK = σA(κ®κ)Φ, (A.2)

m{κ®id)Φ(a) = e(a)I, (A.3)

m(id® κ)Φ(a) = e(a)I. (A.4)

Properties of e:

(e®id)Φ(α) = α, (A.5)

(id®e)Φ(α) = α, (A.6)

eoK = e9 (A.7)

e* a = a* e = a,
(A.8)

f*e=e*f=f,

e(f*a) = e{a*f)=f(a). (A.9)

Cyclicity of the convolution product:

/ ( / ' * α) = (/*/')(α)=/'(α * / ) . (A.10)
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Properties of bijections r and s. These formulae follow immediately from

definitions of r and s:

(A.ll)

) = r(q)Φ{b), (A. 12)

(A.I 3)

) = s(q)Φ(b). (A. 14)

Properties of r~' and s" 1. These formulae follow immediately from (1.23) and

the corresponding formulae for s " 1 (see (4.35) of [10]):

(e®iά)r~\a®b) = e(a)b, (A. 19)

αe(fo), (A.20)

We end with the following formula

> (A.22)

where αfc9 fcfc are elements of s$ such that

Σ
k

It follows from (A.2), (A.I), and (A.3). Using (A.5) and (A.6) one can easily verify that

(Φ(α) = J®α) o (Φ(fl) = α®7) <̂> (a = e(a)I). (A.23)
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