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Polynomial Integrals of Evolution Equations

Eugene Litinsky
Eliahu Nahayassi 3/5, Bat-Yam 59205, Israel

Abstract. In this paper a complete description is achieved, for the first time, of
polynomial integrals (conservation laws) for a broad range of evolution
equations: the Sivashinsky-Kuramoto equation, the Burgers equation and
others.

1. Introduction

We shall consider an evolution differential equation of the following type:

vt = 0>{v,υ(1\vi2\...); vii)=-Λ> v = v(t,x); t^xeR1. (1.1)

We put

] 1 2 \ I), (1.2)

and consider the complete derivative d/dt of the integral I(R(v)) with respect to the
time ί, where υ is a solution of Eq. (1.1):

\— (R(υ))=U X —-—-'-—-)dx=U X — ^ • k ) dx. (1.3)
dί a\k^o dvw dt ) a\k^o dv{k) dxk )

In this paper we shall study dI(R{v))/dt. Since this integral does not depend
explicitly on t, we may treat v(t, x) for any fixed t as an element of some set E of
functions of x, x e [α, b~\. An element of E will be denoted by u = u(x), uι = (d/dx)ιu.
The integral (1.3) will henceforth be interpreted as an integral in which v = υ(t, x) is
replaced by u e E.

We shall assume throughout that the elements of E are infinitely differentiable
functions on [α, fc], satisfying the periodicity condition u{k\a) = u(/c)(fo),
fc = 0,l,2

It should be noted that

L (1 4)
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can also be studied with reference to Eq. (1.1), when it is not known whether the
latter has solutions in the space E.

Definition ί. If dI{R(u))/dt = 0 for all ueE, where I(R(u)) is defined by (1.4), then / is
called an integral of the motion described by Eq. (1.1) (relative to E); briefly, we
write IE(l.l).

Let AN denote the set of all homogeneous polynomials of degree N in an
arbitrary finite sequence of abstract symbols {u0, uu...} over the real field; Ao will

denote the set of constants. We put A— \J AN, A = AouA.
N= 1

The algebra A is spanned by the set of all products uffuΊ1^2..., where αt are
nonnegative integers, only finitely many of which do not vanish. The standard
partial differentiation operations d/dui are defined in A; we shall also define an
operation

^ f v u — ίi 51

dx~,hi+1δut'
 ( '

relative to which A becomes a differential algebra:

Έ=u>"> {1 6 )

da1 da2= l 1 — +λ2—

^ = a 1 μ + a 2 μ , Va,eA, ^eR\ , = 1,2.
ax dx dx

It is easy to see that if H e A, there exists a unique expansion

H= Σ HN, HNeAN. (1.8)

Remark ί. If F e A, u e E, then F(ύ) will always denote the element of E obtained
from F by the substitution {Mf->M(ί), z' = 0,1,2,...}.

Definition 2. I(R) will be called a trivial IE if there exists F = F(u, w(1), u{2\ ...) such
that JR = R(u, u(1\ ...) = dF/dx, where d/dx is defined by (1.5). If no such function F
exists, I(R) will be called a nontrivial IE.

In the trivial case, I(R(u)) = 0 for all ueE, because of the boundary conditions in
E. We shall confine attention in this paper to the case in which & e A, and Re A.
We shall call such IEs polynomial integrals, or briefly PIEs.

There exists a well-developed theory for the Korteweg-de Vries equations, in
view of which it is legitimate to investigate the state of affairs regarding PIEs in
larger classes of evolution equations. It is clear that in the general case one cannot
expect the set of nontrivial PIEs to be sufficiently rich. The present paper,
confirming this point of view, will present an exact description of all nontrivial
PIEs for a very large class of evolution equations and indicate the reasons that the
class of nontrivial PIEs is not rich. Of the previous work in this direction we
mention [2].
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Write the fundamental equation (1.1), &eA, as

vt= Σ W ( i ) + Σ ^ , ϋ ( 1 ) , ϋ ( 2 ) . . . ) , (1-9)
iO i

where / Σ μiV{ι)\eAu ^6v4 I . Two of the main results of this paper can now be

stated:

Theorem 1. Let μ 0 φ 0 in Eq. (1.9). Then all PIEs of (1.9) are trivial.

Theorem 2. Let μ0 = 0 in Eq. (1.9). Assume that there exists p ̂  1 such that μ2p =t= 0
dF m

and there exists FeA such that —— = Y 0J.
dx i = 2

b

Then there exists exactly one nontrivial PIE (1.9) of the form C J udx, where C is
a nonzero constant. a

Thanks to this theorem, we can offer a qualitative interpretation of our results:
the presence of at least one even-order derivative in the linear part of Eq. (1.9)
implies that, in the informal sense, the equation has no nontrivial PIE, since a PIE

b

of the form C J udx corresponds to the fact that
a

dl b

-—(cu) = c\0>(u)dx = O \JueE, (1.10)
at a

and this equality, for all & actually occurring in equations of type (1.1), seems more
or less obvious a priori.

As to the restrictions on the nonlinear part, note that, for example, such a
common nonlinearity as uu{1) satisfies the condition of Theorem 2: uu{1)

= d(u2/2)/dx.
However, we shall prove a much more general result - Theorem 3 - which

makes it possible to investigate equations with nonlinear parts not of the form
dF/dx, such as (u{1))2.

Before formulating Theorem 3, we must first introduce a transformation Γ of
elements of A - a special case of a transformation defined in [1, Chap. 1, p. 82].

Definition 3. For primitive polynomials uilui2ui3...uiNEA, ike[0,1, ...oo)

N Ui,J2.- JN}eSN

where the sum extends over all permutations {/l5t/2J • -JN} m t n e symmetric group
SN. If cij are primitive polynomials in A, and λjβR1, then we define

). (1.12)

Thus, Γ maps AN into the algebra SP(N) of all symmetric polynomials in the

abstract symbols ξl9ξ2, --ΛN o v e r t n e r e a l field R1-

Lemma 1. For all N^il, Γ is an isomorphism of the linear spaces AN and SP(N).
(The proof will be presented in Sect. 4).
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The following three properties (1.13), (1.14), and (1.16) justify our definition of

Γ:
Let F E ΛN. Then

where zN transforms the set of symbols (ξu ...,ξN) in accordance with the rule:
z;v(£;)= ζt f° r ' < N a n ( l ZN(£N) = 0 Note moreover that since d/dup maps AN into
y4N_!, it follows that Γ(δF/dup)eSP(N-ί),

(1.14)

Note that d/dx [see (1.5)] maps AN into AN. Put

c/ duk

def^'-^YΛ (1.15)

Clearly δ/δu maps ΛN into i ^ ^ . W e have

i,ξ2,...,ζN-i,- ΣJt), (1-16)Σ
A Γ - 1

where Γ F e SP(N), but the substitution £#•"•[— X £f I takes this polynomial into
SP(N-l), so that ^

Brief proofs of (1.13), (1.14), and (1.16) may be found in [1, Chap. 1]. Since the
transformation Γ seems to be a quite interesting and promising analogue of the
Fourier transform for the differential algebra Λ, the proofs will be presented in
detail below (Sect. 4) for the reader's convenience.

It is convenient to introduce the following notation:

-:-(ξi) = ξi if i = l ,2 J V - 1 ; Γ(ξN)=- Σ ξf

Note that

This follows from property (1.16). Put

»= Σ μΛ(-iy[ Σ ί J + Σ^l (i 20)
jgo ( \ t i / , =i '
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In the sequel we shall need the expansion (1.8) of R:

R= ΣQRi> Ridi, (i-2i)

then

ψψ ψ ^ ,,.22,
ou i^i ou ou ou

We have to consider the system

where the ^ are as in (1.9), ̂  = 0 for / > m, C is an arbitrary fixed constant. Denote
the set of solutions {JR£}5 RtEAb i = 2,3,4,..., of this system by £(C). Of course, it
may occur that ζ(C) = 0, but C(O)Φ0, since {Rf = 0, i = 2,3, ...}eζ(0). Note that
ζ(C) = 0 if there exists ι0 ^ 2 such that the io-th equation in (1.23) is not satisfied for
any R^eA^

Theorem 3. Let μo = 0 in Eq. (1.9). Assume that for all C such that ζ(C) + 0 and all

δu ' >>>••••
Then:
1) // ζ(C) = φ for all CφO, then all PIE (1.9) are trivial
2) // there exists Cx Φ 0 such that ζ(Cx) φ 0, ί/zerc there exists a unique nontrivial

b

PIE (1.9) of the form C\udx.
a

2. Proofs (in Outline)

Our main task is to investigate the existence and structure of the solution of the
equation

(2.1)

' [see (1.3)]. Using the following nontrivial lemma, we shall reduce Eq. (2.1)
to a purely algebraic equation:

b

Lemma 2. The relationship J Q(u)dx — OVueE, QeΆ is true if and only if there
a

exists GeA such that Q = dG/dx.

The proof will be presented in Sect. 4.
Note that integration by parts, using the boundary conditions in E, yields

dI(R(u)) )( dR dk&(u)\A \δR

at a\k^O 0Uk OX ) a OU

where δ/δu is as in (1.15). ( ^ 0 = 0, then 0>eA and -=—(u)0>(u)eA).
\ δu J
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It now follows from Lemma 2 that Eq. (2.1) is equivalent to the following
relationship

δu dx

for some G e l Using (1.8) we see that (2.3) is equivalent to the following system of
equations:

Σ — k —'@ > i -k=—-> i = 0,l,2,..., (2.4)

where ^_ f cG^4 t _fc; ^0 = 0 and ^ Ί = Σ μ Uj by (1.9); 0>

2,...,0
>

m are as in the

nonlinear part of (1.9); ^ = 0 for i>m.
Note that we are using the same notation Θ>{ for the polynomial

0\(u,u{1\u{2\...) in the right-hand side of (1.9) and for the polynomial
^•(w,ul9u2, ...)eA obtained by the substitution u{l)-^ut\ this should not cause any
confusion.

The following lemma is technically important:

Lemma 3.

for N = 293,..., where ΦN-λ is defined in (1.20).

For the proof, see Sect. 4.

Proof of Theorem 1. We shall prove that system (2.4), as a system of equations in
the unknowns dRJdu, has only the trivial solution.

If i = 0: -^'0*0= —:—, since ^0 = 0, G0 = const, and this equality holds
ou dx

identically for any δRx/δu = const.

τ f . _ . δR7 _ δRλ _ δRλ ^x dGλ

δu δu δu dx
Since δRί/δu = const, it follows that Gx exists if and only if μo = 0. But this
contradicts the assumptions of the theorem, and so δRJδu = 0.

Both here and later we shall need the following proposition :

K e r — = I m — in A. (2.5)
ou ax

(For the proof see [1, Chap. 1, p. 81].) Note that δ^Jδu = μQ.
If i = 2;

δR3 δR2 δRt δR2 dG2

± ι up ± i op L — op ± — ± n fλ
r <s2 ^ Δ Ό )

p p p p f

δu δu δu δu dx

Apply the operator (δ/δu)Γ to both sides of (2.6), using (2.5) and the fact that (as
follows from Lemma 1) KerΓ = 0. The result is that (2.6) is equivalent to the
following equation:

l
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and from Lemma 3 and (1.19) it follows that (2.6) is equivalent to

Φ1 r ( - ^ - ) = 0 . (2.8)

It now follows from (1.20) that

Φ i = 2 Σ ^ p f i ' + O since

Hence Γ(δR2/δu) = 0 and (δR2/δu) = 0. It remains to carry out the induction
step: Assume that

δRδR ^
δu δu δu

Considering the equation of system (2.4) for i = n + 1 , we obtain

δu
(2.9)

Repeating the arguments used in the case ί = 2 word for word, noting that Φn + 0,
we obtain δRn+1/δu = 0.

Consequently,

δ R δ

and this completes the proof of Theorem 1.

Remark 2. By (2.5) δR/δu = 0 if and only if R = dF/dx for FeA, i.e., R is trivial.
Similarly, if δR/δu is given, then R is defined up to a term dF/dx.

Proof of Theorem 2. Proceeding just as in the proof of Theorem 1, we consider the
equation of system (2.4) for ί = 0; it holds identically.

If Ϊ = 1 the equation is satisfied by any δR1/δu = C, since μo = 0. In that case
R1 = Cu + dFί/dx, where F1 EAV

τ f Λ ^ δR2 δR, dG2 ^ Δ. .
Liι = 2\g/>

λ — h £r>> —— = ——. Proceeding just as in the case (2.6), we obtain
δu δu dx

the equivalent equation

--0. (2.10)

Since 0>

2 = dF2/dx for F = X F ;, F eAj, and dF/dx = £ ^ , it follows in view of

(2.5) that i=1 ι=2

Since Φ ^ O (because μ 2 φ0), it follows that
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Repeating the arguments used in the case ί = 2 word for word and noting that
φ.φOfor i = l , 2 , . . . , we obtain δR3/δu = 0.

The proof now continues by induction; analogous arguments yield the equality
δR/δu = C = const, completing the proof.

Proof of Theorem 3. Proceeding just as in the proofs of Theorems 1 and 2, we see
that the equation of system (2.4) for ί = 0 reduces to an identity; and for ι = l,
δRJδu = C, where C is an arbitrary constant. Let C = Cι be such that C(C1)Φ0.

If ι = 2, we obtain Eq. (2.10), but by assumption δR2/δu = 0. Repeating the
procedure for i = 3,4,..., using induction and the assumption concerning C(C), we
see that δRJδu = 0, i = 2,3,4,....

δu i^i δu * '

If Cγ can be assumed distinct from 0 (i.e., Case 2 holds), then R = Cxu and,
multiplying by an arbitrary constant, we see that R = Cu up to a trivial term.
Otherwise, we obtain the assertion of Case 1, and this completes the proof of
Theorem 3.

3. Examples

1) Burgers equation ut = vuxx — uux, v = const. Since we can use Theorem 2, whence
b

it follows that l = C\ udx is the unique nontrivial PIE of the Burgers equation in
the space E. a

2) Ut = Uχxxx+ fa{ll-(uΆ}+

This equation describes Benard convection in a nearly isolated liquid layer [3-5].
Theorem 1 states that in this case, if α =f= 0, there are no nontrivial PIEs in E.

3) The Kuramoto-Sivashinsky equation [6, 7]:

Uχx Uχ .

The first equation of system (1.23) for i = 2, gives

c ± V-*V2/ ' ^ S l — v ? ^ 1 — ^ V S l i S I / ? ^ — cj ?

Next, Γ(R2) is a symmetric polynomial in (ξuξ2), but <)Γ(R2)/δu is simply a
polynomial in ξ1:

δ k

^ / T R 2 ) = Σ α£ft,
where at are constants. Thus, we can rewrite the equation of (1.23) for ί = 2 in the
following form:

-U\ = 0- (3-D
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We now prove by induction on k that

at = c = 0 for i = 0,l,...9k, (3.2)

Le.,δR2/δu = C = 0.
Q

a) k = 0: (ξi + ξt)ao-—ξi=O, whence it follows that ao = 0, and so C = 0.

α f c + 1^
f c + 5 is the highest-degree term in this polynomial, and therefore ak + ι=0.

Thus by the induction hypothesis, at =C = 0, i = 0,1, ...,/c.
This proves (3.2). We now consider the equations of (1.23) with i ^ 3 :

where

ί-1 \2 i-ί 1 y j

Σ 4 + Σ «+ Σ U + Σ « r y =o, (3.3)

i - l \ 2 ί - l / i - l \ 4 i - l

Σ {* + Σ ti+ Σ U + Σk=ί / fc=l

It follows from (3.3) t h a t Γ ( ^ δ w ) = 0 and, by Lemma 1, δRi/δu = 0. Thus the
assumptions of Theorem 3 are satisfied, and C = 0 if ζ(C) Φ 0. Thus all PIEs of the
Kuramoto-Sivashinsky equation are trivial in E.

4) K=-Kxxχ-Kχ-Kh

This equation describes the evolution of the surface of a disturbed film of viscous
liquid flowing down a vertical plane [9J.

Theorem 2 enables us to state that this equation has a unique nontrivial PIE in
b

E, namely, / = C J udx.
a

5) ut = 6uux-uxxxx.

It is interesting to observe how the technique we have developed here breaks
down in the case of the KdV equation. The obstruction here is the equality
Φ1 =2 £ ^2p£iP = 0 for the KdV equation, i.e., the fact that the linear part does

not contain even-ordered derivatives. ,
The nonlinear part of the KdV equation is a total differential: 6uux = 3-—u2.

One can therefore use the argument of Theorem 2, but since Φ1 =0, it does not
follow from (2.10) that δR2/δu = 0. Hence we cannot arrive at the conclusion of
Theorem 2, and we cannot state that the KdV equation has PIE's of the form

b

c$udx only.
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As to the equality Φt = 0, in view of the fact that — Γ(6uux) = 0 and ^- = 0 for

Ϊ = 3,4, ..., we can infer that system (1.23) assumes the form K Φ ^ W - Γ - M =0,

i = 2,3,4,... > and the derivative δR'2/δu in £(c) does not necessarily vanish. Thus

Theorem 3 cannot be applied, as its assumptions are violated.
In sum, we see that the methods developed in this paper are only illustrated by

the above five examples. It is quite clear that they may be applied over a
considerably broader range of problems. At the same time, the exact descriptions
obtained here of classes of PIEs provide radically new information about classical
objects.

4. Proofs of Lemmas etc.

Proof of Lemma 1. Let

P ( C l , C 2 > • • • > < ; # ) = _ Σ α 7 * C l ζ 2 ' ~ ζ N > l = \}ul2' ' l N ) >

where Z+(N) is the set of all vectors in RN with nonnegative integer coordinates. It
is easy to show that θ e SP(N) if and only if aπl = aj for all TeZ + (N) and all π e SN,
where πf=(/π ( 1 ), zπ(2), ...,zπ(Λ0).

Assume that θeSP{N). Then

i i i

Summing both sides of the equality θ= Σa~iζlπ(i)ζlπ(2y -£l*(N) o v e r a ^ πeSN, we
obtain 7

(4.1)

This equality shows that for all θeSP(N) there exists reΛN, r= ΣaΊuίiui2 uίN>
such that Γ(r) = θ, i.e., Im Γ = SP(N). J

We now show that K e r Γ = 0. Let a=ΣaΊuiiui2

uiN> i={h>h> •••>*#} εZ+(N)
i

denote an arbitrary element of ΛN. Since ΛN is commutative, we may assume
without loss of generality that

a^^aj for any πeSN and any ίez+(N). (4.2)

Define
W:ξk->0 for fc=l,2,...,iV;

l / d V2 i / d

We have

= 4τ Σ β,3 (4-3)
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Suppose that Γ(d) = 0. Noting that WD]0 = 0, we obtain

iV ! πeSN

aπl. (4.4)

It follows from (4.4) and (4.2) that cij = 0, and so a = 0. Thus Ker Γ = 0, completing
the proof of Lemma 1.

For the reader's convenience, we present the proofs of properties (1.13), (1.14),
and (1.16), which were only outlined in [1]. We begin with the proof of (1.13):

Π"i1Mi2 WίN)=-j^]- Σ ζlπ\l)ζπ(2)'-ζπN(N)
IV πeSπ

= 4τ Σ #<"&<»...ft""- (4-5)

Since v4 is commutative, we may assume without loss of generality that i1^i2

^...-^ίN. Now,

rKUh'"Uj~N\JsJl ξl "'ξN-1 \Pl\dξJ ξN

= 4 ϊ Σ ^ ( 1 ) ^ ( 2 ) ^ - 1 ) ^ l π ( J v Γ (4-6)

Continuing, we can establish a one-to-one correspondence between S^
= {π:πeSN, π(N) = q} and SN_1, where q is a fixed number, g e [ l , . . . , N ] . The
correspondence of σ<->π, πeSq

N, is defined by means of the function

US)~\S+ί, S^

putting χq(σ(ή) = π(t\ te[l,...,N-llσeSNrί.
Assume that p has the property: there exists iq e {iu ..., ίN} such that ίq = p. To

be precise, q is such that

Then

1 1 *
^ i λ SI C2 ---CiV-1 Op^iN)— M L L > 1 S2 •••SN-1
IV I πeSN IV I j=0 peS^ J

\ P

N\j=oσesN-ι (4.7)

But

(tf^X^^^ (4 8)

Combining (4.8), (4.7), and (4.6), we obtain (1.13). If ίs + p for all se [1, . . . , JV], then
the sum (4.6) vanishes, and (1.13) is identically true.
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Proo/ of (1.14).

5π(l)ί=π(2) (5π(s) '"^π(N)

Proof of (1.16).

δu) UoV
/ jv-i \P N ί d \"

N/

y i / θ \p

" Σ ) ^[J^i i ) r\ \oξN

= ZN N{ΓF)(ξl9...,ξN-l9ξN-1-
NΣ ξt

= N (ΓF)(ξ1,...,ξN-1,-
J V - 1

ί = l

b

Proof of Lemma 2. If Q = dG/dx, then J β(w) (x)dx = 0 because of the boundary

conditions in £. α

b b

Conversely, let JQ{u)(x)Jx = 0 for all w e £ , β e i Putw = 0e£, then Jβ(w)rfx
& a a

= Jρodx = 0andβ o = 0,whereβ(w) = ρ o + Σ βi Goe^o, Σ Gie
α i ^ l i ^ 1

Define

(x), (4.9)

where w is arbitrary but fixed, εe [0,1]. Note that

χfe / d \k δQ(u)
x)-{-ε[ — I (x), fc=l,2,.... (4.10)

\dxj δu

Hence we obtain the expansion

8Q(u) ( d V δQ(u)
Q{Wε(w, x)) = Q(u) (x)-\-ε Σ — ^ - ( X ) Ί — I (x) + o(ε). (4.11)

Since Wε(u; x)eE9 it follows that J Q(Wε(u; x))dx = 0 for all ueE. Hence



Polynomial Integrals of Evolution Equations 681

identically in εe [0,1], whence it follows that

ίί Σ φg(x)(fΐψ-(x)dx = 0 for all ueE. (4.12)
ifcto duw \dxj δu

Using the boundary conditions in E, we obtain

( x ) d x = 0> f o r a 1 1 U E E > ( 4 1 3 )

whence, since the functions involved are continuous, it follows that δQ(u)/δu(x) = 0
for all UEE. This implies that δQ/δu = 0 as an element of A. In order to prove this
almost obvious fact, we observe that the sequence u(x0), u(1\x0), ...,u{N\x0) may
assume arbitrary given real values α0, α l 5 . . . , αN; x 0 is arbitrary but fixed. In order
to complete the proof, we reason by reductio ad absurdum, using Theorem 14 of [8,
Chap. 1, Sect. 18]. From δQ/δu = 0 we now deduce, using (2.5), that Q = dG/dx.

Proof of Lemma 3. For convenience, we denote

Using (2.5), we can state that

e - i " , ( .-Γ\v(-^Γ-)\ forany V,WEA. (4.14)
δu I dx J δu I \ dx

Note that W—9 V-1-9 —,— eA.
\ dx dx dx

Hence

N

Σ •
k=l,fcΦi

s = I . S Φ Ϊ

where ff means that the element ^ is omitted. Noting that-—( ^ ξfeV equals
ΛΓ-1 \j 0U\k=l,k*i

if i = N, and equals ( —^y if i + N, we obtain

.ΣO μji - iy ( V ίij} w (̂ ,..., ξN-1, - V ^
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