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Abstract. New formulation of bosonization is given so that it is defined over
the ring Z of integers. The charge zero sector of the new boson Fock space is
the completion of the coordinate ring of the universal Witt scheme. By using
new bosonization, conformal field theory of free fermions over Z is given.

Introduction

String theory and conformal field theory have a deep connection with arithmetic
geometry. (See for example, [ABMNV, B, BK, BM, FS] and references therein.)
There are several attempts to generalize the theories in arithmetic directions: /?-adic
strings [FO], [V], adelic strings [FW, MA2], arithmetic bosonic strings [S, U],
modular geometry of string theory and conformal field theory [F], conformal field
theory over an arbitrary field which is related to automorphic representation [W].
(See also [MAI]. These papers are mainly based on the arithmetic properties of
partition functions and correlation functions.

In the present paper we choose another approach to arithmetization of
conformal field theory. Namely, conformal field theory of free fermions shall be
realized arithmetico-geometrically so that the theory can be formulated over any
commutative ring A with unity. If the ring A is the complex numbers C, we have
the usual conformal field theory.

Conformal field theory of free fermions on compact Riemann surfaces has a
deep connection with geometry of the moduli space Jίg of compact Riemann
surfaces of genus g (cf. [ABMNV, AGR, BMS, BS, EO, IMO, and KNTY]).
Especially, the determinant line bundle λ1/2 of spin bundles plays an essential role
in the theory. The moduli space Jίg is an algebraic variety defined over the ring
of integers Z and λ1/2 is a line bundle on the moduli space JίgΛ of level 4 structure
defined over Z[£|. Therefore, it is natural to ask whether the theory can be
formulated over the integers Z or at least over Z [ | ] . The main purpose of the
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present paper is to show that this is indeed the case.
Let us explain briefly our theory. Conformal field theory of free fermions

consists of three parts: geometry of Riemann surfaces with additional structures
(dressed Riemann surfaces in the terminology of [KNTY]) ([ACKP, BS, KNTY]),
the theory of the universal Grassmann manifold ([SS]) and physical theory of free
fermions with bosonization ([AGR, EO, IMO, KNTY, VV]). To each dressed
Riemann surface there corresponds a point of the universal Grassmann manifold
and by the Plϋcker embedding the universal Grassmann manifold is embedded
into the projective space P ( ^ ) associated with the fermion Fock space # \ In this
way, to each dressed Riemann surface we associate a physical state (vacuum of
the dressed Riemann surface) of fermions.

Thanks to modern algebraic geometry we can formulate the above procedure
over Z (and over any commutative ring). To develop the theory over Z we need
to generalize the notion of points so that even if we consider the theory over Z
we need to consider the theory over any commutative ring. (See Appendix below.)

The important operators such as fermion operators, φ(z\ φ(z), current operators
Jm are also defined over Z and Virasoro operators Ln are defined over Z[£| . We
can also modify the definition of Virasoro operators so that they are defined over
Z. Thus the usual conformal field theory can be already formulated over Z.

The only non-trivial problem is bosonization, since we need the operator

expί £ Jmtm which is not defined over Z but defined only over the rational
\m=l J

numbers Q. Difficulty is overcome by introducing new variables x l 5 x2, x3, .. such
that

d\n

where ί 1 ? ί 2 ,£ 3 , . . . are variables by which current operators have the forms

d

for any positive integer m. The variables x l 5 x2, x3,... are the coordinates of the
universal Witt scheme W^. The zero sector of the new boson Fock space Jf (Z)
over Z is Z [ [ x l 5 x 2 5 x 3 , . . . ] ] , the completion of the coordinate ring Z[x 1 ,x 2 ,x 3 5 . . . ]
of the universal Witt scheme W^. Thus the current algebra and the modified
Virasoro algebra with central charge 1 operates on Z [ [ x l 9 x 2 , x 3 , . . . ] ] and the
Virasoro algebra with central charge 1 operates on Z [ | ] [ [ x 1 , x 2 , x 3 , . . . ] ] . We
may also regard Z[x 1 ,x 2 ,x 3 , . . .] as the complex oriented cobordism ring Ω over
a point. Thus the Virasoro algebra operates on the completion Ω of Ω. This fact
was pointed out by Morava. There is also a deep relationship between the new
boson Fock space and formal groups. This will be discussed in the forthcoming
paper.

Let us explain briefly the content of the present paper. In Sect. 1 we shall define
the universal Grassmann manifold over a commutative ring A, which is a natural
generalization of the one over the complex numbers C due to M. Sato. In Sect. 2
we shall define the fermion Fock space and fermion operators over a commutative
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ring A. Current operators and Virasoro operators will be also defined. In Sect. 3
by introducing new boson variables, new bosonization over Z will be defined. In
Sect. 4 arithmetico-geometrical realization of conformal field theory of free fermions
will be given. Here we need the language of schemes. We formulate the realization
naively and our description is awkward from the viewpoint of algebraic geometry.
The discussion in Sect. 4 shows that it is better to use the notion of functor or
the language of adeles. The theory of the τ-function and correlation functions will
be treated in the forthcoming paper.

For the reader not familiar with the language of schemes, in the Appendix we
shall give a brief introduction to the theory of schemes.

1. Universal Grassmann Manifold

In this section we shall define the universal Grassmann manifold over a commuta-
tive ring A. For that purpose first we recall the definition of the universal Grassmann
manifold over a field due to M. Sato.

+ 00

Let k be a field. By Y = k((ζ)) we mean a field of formal Laurent series ]Γ anζ
n in

n = N

ζ with coefficients in the field k. We regard Y as an infinite dimensional vector space
over k. A filtration {FmY}meZ of Y is defined by

= {£ a A.

Note that the filtration is decreasing

and F°Y is the formal power series &[[£]] with coefficients in k. For any vector
subspace U aYfy/Q have a natural homomorphism

Definition 1.1. The universal Grassmann manifold UGM(fc) over the field k consists
of vector subspaces U of Y which satisfy the following condition:

dim f cKerα [ /< oo, dimk Coker % < oo. (1.1)

By [I/] we denote the point in UGM(fe) corresponding to a subspace U c Y. For
[l/]eUGM(fc) we define the charge of U by

χ(U) = dimfc Ker % — dimk Coker OLV.

For each integer p we define

VGMip)(k) = {[l/]εUGM(fc)|χ(ί/) - p).

UGM(p)(/c) is called the universal Grassmann manifold of charge p and has the
structure of a proscheme (a projective limit of schemes) over k. Its tangent space
at a point [I/] is given by

Tm UGM<*>(*) = Hom,.cont(ί/, r/U), (1.2)
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where "/c-cont" means a continuous homomorphism of fc-vector spaces with respect
to the topology induced by the filtration {Fmi^}meZ. The universal Grassmann
manifold UGM(fc) is a disjoint union of UGM(p)(fc)'s. For the details of the universal
Grassmann manifold, we refer the reader to [SS, SN].

Next we define the universal Grassmann manifold over a commutative ring
A. Let A be a commutative ring and (Spec A, ΘA) the corresponding affine scheme.
Let an ^-module if {A) = (9A{{ζ)) consist of formal Laurent series with co-
efficients in GA. A filtration {Fmif{A)}meZ is defined by

Then Fmif(A) is a free $A-submodule of if (A) and the filtration is decreasing. For
an d^-submodule °U of if [A) we have a natural (^^-homomorphism

Definition 1.2. The universal Grassmann manifold UGM(A) consists of locally free
0^-submodules °U of if (A) which satisfy the following condition:

Kerα^ and Cokerα^ are locally free (^-modules of finite rank. (1.3)

Precisely speaking, UGM is defined as a covariant functor from the category
of commutative rings with unity to the category of sets and the functor is represented
by a proscheme UGM defined over the integer ring Z. Moreover UGM(^4) in
Definition 1.2 is the set of A-valued points of this proscheme. UGM (i) (precisely
speaking U G M ® .4) has the structure of an ^[-proscheme π: UGM (A)-* Spec A.
For an element °U of i^{A\ we define the charge of tfl by

= rank^ (Ker αφ) - rank^ (Coker αφ).

Moreover, for each point peSpec/1, the fibre π - 1 (p) is the universal Grassmann
manifold UGM(fc(p)) over the residue field fc(p).

Put

^ (1.4)

where z = ζ~1. Then for each element Pe@z(A), there exists an integer n such that

P(Fmr'(A))czFm+nr'(A)

for any meZ. This implies, by (1.2), P defines a regular vector field on each fibre
π~ x(p), and moreover defines a regular relative vector field θ(P), that is, an element
o f H ° ( U G M μ ) , Θ U G M U ) / S p e c J .

For the later purpose we introduce a new notation. Let Zh be the set of integers
shifted by half. We put

Then, to any point [ f ] e U G M ( i ) we associate a set M{^ί) of integers shifted by
half defined by
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where

We call M(%) the Maya-diagram associated to %. A subset M of Zh is a Maya-
diagram if and only if there exist an integer p and a mapping

such that
μ(p - 1/2) > μ(p - 3/2) > μ(/> - 5/2) > ...,

M = {μ(p - 1/2), μ(p - 3/2), MP - 5/2),...}

and there exists a positive integer n0 such that

2n + 1 \ In + 1

for all n^n0. The number p is called the charge of the Maya-diagram M.
Let M(^) be the Maya-diagram associated to a point [ f ] e U G M (A). Let p be

the charge of M^lί). Then we have

= {μ(p - 1/2), μ(p - 3/2), μ(p - 5/2),...}

by a suitable mapμ.

Definition 1.3. A frame {ξp_1/2, £p_3 / 2,...} is a basis of ^ as an (^-module
satisfying the following conditions.

1. ξveFμ{v)+ lilϋU for all veZ, with v < p.
2. There exists v0 such that ξγ = evmodFv + 3/2W for all v ̂  v0.

By Definition 1.2, there always exists a frame of °U for any point [^]eUGM(v4).
Note that the Maya-diagram M{% (x) k(p)) with peSpec A coincides with M{°U).

2. Fermion Fock Space

We use the same basis {eμ}μeZh of Ψ"(A) introduced in the previous section. To
each Maya-diagram M = {μ(p — i),μ(p — fX } of charge p, the symbol |M> is
defined by

\M} = e

μip-1/2) A eμ{p-3/2) A -". (2.1)

The symbol | M > is regarded as a pure state of free fermions of charge p.

Definition 2.1. The fermion Fock space $PP(A) of charge p over a commutative
ring A is a direct product

&P(A)= Π ^I M >>

where Jίp is the set of Maya-diagrams of charge p. The fermion Fock space
over A is a direct sum

peZ
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For each fermion Fock space J%(Λ) of charge p we define the projective space
by

where A * is the set of invertible elements of A. We put

peZ

For any point [^]eUGM(,4), we choose a frame ξ = {£p_1/2,<|;p_3/2,...} as in
Definition 1.3. Then the infinite wedge product

ζp-l/2 Λ ζp-3/2 Λ * "

is written as a linear combination of |M>'s, where MeJίp, and defines a point of
Ί*(!Fp(A)). The point is uniquely determined by the point [flί~\ and does not depend
on the choice of a frame.

Lemma 2.2. The mapping

is arc embedding and the image of λ is characterized by the Plύcker relations.
The embedding λ is called the Plϋcker embedding.
We introduce the dual fermion Fock space 3FP(A) of charge p as follows. For

a Maya-diagram M = {μ(p — %\ μ{p — fX } °f charge p, we define the dual
symbol by

< M | = ••• Λ eμ(p-3/2) Λ βμip-i/2),

where {^μ}μeZ is a dual basis with pairing

<eμ,ev> = <5;. (2.2)

Then the dual fermion Fock spaces &P{A) and #(,4) are defined by

The pairing (2.1) induces a natural pairing

which can be naturally extended to a pairing

#(v4)

We also use the following notation:

= ••• Λ e p _ 5 / 2 Λ e p _ 3 / 2 Λ β p _ 1
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Definition 2.3. For each half integer μeZh, the fermion operators ψμ, ψμ operating
on IF (A) by the left (respectively on &(A) by the right) is defined by

φμ = eμj (respectively Λ eμ\

A (respectivelyJ? _ μ \~μ

where J means the interior product.
These fermion operators have the following anticommutation relations.

lΨμ, Ψv~]+ = 0, LΨμ, * M + = 0, lψμ9 ΨJ+ = <5μ + v,0>

Moreover, we have

Ψμ\P> = 0 (μ>p% <p\Φμ = O (μ<p%

The normal ordering:ψvφμ: is defined by

' — ψμψv9 if v > 0 and μ < 0,

'' [ΨvΨμ, otherwise.

Put

μeZh

ψ(z)= ΣΨμz-μ-m-
μeZh

Definition 2.4. For a differential operator Pe@z(A) (see (1.4)), the second quantized
operator Φ(P) is defined by

where Resz = 0 means taking the coefficient of dz/z.
A direct calculation shows

where the adjoint operator P+ of P is defined by the following rules:

i z z ( ± y
\dzj dz

2. (PQ)+ = Q + P+ for any P, Qe$z(A)-

Theorem 2.5. (i) For any Pe@z(A), we have

(ii) For P, QeS)z(A) we have

[Φ(P), Φ ( 0 ] = Φ([β, P]) + c(P, Q)id,

Note that c(P, β) is an element oϊH2(9z{A\ A). By the same reason as in [KNTY,
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Sect. 3, 3.24, 3.25], Φ(P) induces a vector field Θ(P) on ^X{A) = ®p^p{A\
^p(Λ) = ^p(A)-{0} and Θ(P) induces a vector field Θ(P) on ¥{^{A)) =
]J P(3?P(A)). Moreover, Θ(P) preserves the Plίicker relations and coincides with the
image of Θ(P) defined in the previous section by the Plίicker embedding.

The current J(z) is defined by

J(z)=:φ(z)ψ(z):.

The current J(z) has the formal expansion

rceZ

where
Λ = - Φ ( z " ) .

The current operators Jn have the following commutation relations

If 2 is invertible in A (e.g. A = TL\_^\\ the energy momentum tensor T(z) is
defined by

dz αz

T(z) has the formal expansion

neZ

where

The Virasoro operators Ln form the Virasoro algebra. In our case we have

[Ln,L J = (n - m)Ln + m + ̂ -(m3 - m)<5Λ + OT>0.

If 2 is not invertible, we define the modified energy momentum tensor T(z) by

The modified Virasoro operator Ln is defined by

Φί znl Z-— + -(n + 1) I I if n is odd,

\ ί ί A \\
Φ\ zΊ 2z~- + (n+ 1)1 I if n is even.

\ \ dz ))
Then Ln's form a Lie algebra over any ring A.

3. Bosonization over the Ring of Integers

To define a new bosonization, first we recall the usual bosonization. The boson
Fock space J^T(Q) over the rational numbers Q is defined by
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where ί/s are infinite numbers of variables. We define the degree and the charge
of these variables as follows:

deg tt = U deg w = 0,

charge ti = 0, charge um = m.

The usual bosonization B:έF(Q)^> Jf7

Γ(Q) is defined by

B|«F>=£<n|exp X Jmtm)\Ψ)u» (3.1)
neZ \m=l /

for any | ι F)e#'(Q).
The bosonization £ has the following properties.

1. 5 is an isomorphism.
2. 5 preserves the charge and the degree.
3. For any linear operator P:#XQ)-> J*(Q), put PB = BPB~X. Then we have the

following:

neZ

where we have

an = ^r> a_n = ntn for rc>0,

(3.2)

4. For any integer k, the Vertex operator Kfc(z) of charge k is defined by

f ίBz" )ttfcexpffculogz|—ft; f — ^-Y (3.3)

Then we have

N o w we introduce new variables xl9 x2, x3,... as follows:

ntn = Y^dx^. (3.5)

For example, we have

t ί = x ί ,

Λf == v -4- 2 x —I— 4\"

We can express xd as a polynomial of ίf's with coefficients in the rational numbers
Q. For example, we have
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Ύ —t W1

X 4 — L4. 2 L 2 1 I 1 ! 1 ! " 8*Ί

Now we introduce a new boson Fock space J^(Q) over Q by

where

J d e g x ^ i , degw = 0,

[charge xf = 0, charge un = n.

Then there is a ring isomorphism

defined by

w*(t) = y - χnjd

γ v \ιn) Lu xά 9
d\nn

W*(u) = u. (3.7)

Thus we have the mapping

We regard the fermion Fock space #"(Z) over the integer ring Z as a subspace
(lattice) of #XQ). The image W*<>B(&r{Z)) is characterized as follows.

Theorem 3.1. We have

W*oB(^(Z)) = Z [ [ x l 9 x 2 , . . . ]] ® Z[M, M " X ] .

Hence ^*oβ(^"(Z)) is α Z-subrίng of ^f(Q).
To prove the theorem we need several notations. The Schur polynomials

/?/ί1? ί2,..., tj)(j -1,2,...) are defined by

where we put

Put
pj(xl9...,Xj) = Pj(W*(t1),...9W*(tJ)).

Lemma 3.2.

Pj\xl> X2> ->Xj) — Li X l X 2

exp X Σ
π = l / j=O
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Proof. The result is clear from the following:

/ °° \ / °° d
exp Σtnz" =exp £ Σ " ^

\π=l / \n=ί d\n1ϊ

= e χ p( Σ

For a Young diagram Y of signature (fu..., / J , /Ί ̂  / 2 ^ ^ /m,

(3.8)

Q.E.D.

/ l

we define the Schur function χγ(ή by

The modified Schur function χγ(x) is defined by

χγ(x) - d e t ^ . ^ / x ) ) ! < u < m .

By the definition of the fermion Fock space of charge p,

(3.9)

(3.10)

are a basis of J%(^4) for any ring A.

Lemma 3.3. If A is a field of characteristic 0 (e.g. A = Q, C), ίfen we ftαt e

where p = s — r, and where Y is the Young diagram of signature

( - i! - p + 1/2,..., - i2 -p + 3/2,..., - is-p + s - 1/2,r,...,r,

-jr-l/2

r - l , . . . , r - 1,..., 1,..., 1)

J r - J r - l " 1 J2-JI-1

For the proof, see [DJKM].

Lemma 3.4. B^(Z) is naturally a ring.

Proof. By Lemma 3.3 it suffices to prove that B^0(Z) is a ring. This follows from the
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fact that for Schur functions χγ(t) and χγ(t) there exist Schur functions χγ»(ή and
integers mγγ,γ» such that

{t) = ΣmYtΓtY,,χγ.,(t). Q.E.D.
Y"

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Since we have

βJ%(Z) = Z[_χγ(t)~]Ys<& = Z[p l 5p 2» •],

where ^ is the set of Young diagrams, it suffices to show

Z[[pl9p2, •.•]] = Z [ [ x 1 ? x 2 , . . . ] ] .

By induction on n9 we prove xn€Z[_pl9p29...~]. This is clear for n= 1, since px =xx.
Assume that xJ eZ[p 1 ,p 2 , . . . ] for rgrc — 1. By Lemma 3.2,

Pn\Xl> ' >Xn) — Xn "+" 2 J ^ 1 X2 ' " ' Xn - 1

The second term of the right-hand side is in Z[/? l 5 /?2 , . . . ] by Lemma 3.4 and the
induction hypothesis. Hence, xn€Z[βup2,...']. This implies Z [ x 1 ? x 2 , . . . ] cz
Z[βl9p2,...']. The opposite inclusion is clear. Thus we have

Now by the completion by means of the degrees, we have

Z[[p 1 ,p 2 , . . . ] ] = Z[[x 1 ,x 2 , . . . ] ] . Q.E.D.

Definition 3.5. The boson Fock space Jf(A) on a ring A is defined by

jjf(A) = A\_{xl9 x29...]] ®AAtu9 u~1],

where

deg xt = i, deg M = 0

charge xt = 0, charge un = n.

Definition 3.6. The bosonization B:έF(A)-+J^(A) is an X-linear map defined by

where p = s — r, and where χγ(x) is defined by (3.10).
By Theorem 3.1 we obtain the following corollary.

Corollary 3.7. The bosonization B:^(A)-^J^(A) is an isomorphism.
To express the Vertex operators Vk(z) by means of new coordinates, we need

to define the universal Witt vector ring W^A). Put

d\n ft

(3.Π)

Σ
d\nΠ
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There are polynomials

1,y2,...,yn,y'ί,y'2...,y
f

n], n = 1 , 2 , . . . ,

such that

S» + *" = Σ-Adlyi>y2,.. ,yd\yuy2'..,ydr
l\

a\n u

^ • ^ Σ / Λ i , ^ , . . , ^ / ! , ^ - , ^ , n = 1,2,3,....

Thus, we can ihtroduce a new addition + w and a new multiplication w on A"0 by

(al9 a2,...) +w(bί9 b2,...) = (^ltei, «2)» ^ f a i , ^ &i, b2)9...,

^(fl!,. . .,^;^!,.. .,^),.. . ),

(α l9 α 2 , . . .)'w(bu fc2,...) = (Miί^i, α2), M 2 (α l 9 α2; b l 9 ft2),...,

Then W^(A) = (y4°°, + w , w) is a commutative ring and is called the universal Witt
ring over the ring A. The unity of W^A) is

(1,0,0,0,0,...),

and the zero is

(0,0,0,0,0,...)

(cf. [M, Lecture 26]). If we use the language of schemes, there exists a commutative
ring scheme W^ defined over Z, called the universal Witt scheme, whose ,4-valued
points W^(A) is the universal Witt ring defined above. Then the ring Z[x l 5 x 2 , . . . ]
is the coordinate ring of the universal Witt scheme and Z [ [ x 1 ? x 2 5 . . . ] ] is the
completion of the coordinate ring with respect to the degree defined in (3.6).

By [1/z] we denote the element (l/z,0,0,...) in the ring WO0(A[l/z']). By the
5-coordinates defined in (3.11), this element corresponds to the element (1/z,
l/2z,..., l/nzn,...). By 1 we mean the inverse of the addition of W^A), that is,

ι(au α2,...) + w (α 1 ? a2,...) = (0,0,0,...).

For any element a = (α l5 α 2 , . . .)e W^(A) and any positive integer fe, by fea we mean

and - fea means z(fea). Note that ι2 = 1 and /(fea) = fe(za).
Now we express the vertex operator Vk(z) by means of the variables (x l 5 x2,

First note that

=/(t 1 - fe/z, ί2 - fe/2z2,..., ίΛ - k/nz",...).
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Hence, in the new variables xι,x2,...,this operator is expressed in the form

We define M% by

M*kh(u) = h(zku).

Note that

3

Put

Kk(z) = fl (l-^l-VoAfJoΓ^, (3.12)
d = 1

00

where f ] (1 — xdz
d)~huk operates on J4?(A) by the multiplication. By (3.3) and

(3.8) Vk(z) is the vertex operator expressed by the variables xux29.... Thus we
have the following proposition.

Proposition 3.8. On the boson Fock space J^(Λ), thefermion operators are expressed
in the following forms:

The current operators are expressed by the following forms.

Proposition 3.9. For a positive integer n, we have

BJnB-i= £ bnm,n

d

dXnm'

d\n

where

I=dι<d2< <dr<m

Proof. Consider a matrix B of infinite size whose (nm, n)-components feπm>II are
defined as above and other (fe, n)-components bkftt are zero. Then by a direct
calculation we have B = A~1, where the matrix A is defined by

,—,...,—,...WΛ«(—,—....,—,.
^ dx2

9'"9 dxn

9'" J \dt1'dt2^ Stn

9

by using (3.5). Q.E.D.

Remark 3.10. The above proof of Theorem 1 shows that as a new boson Fock
space over a ring X we may choose A[[p1,p2,>"Y\®A\_u,u~~i\ where pi is the
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iίh Schur polynomial. This is related to a λ-ring and formal groups associated with
Jacobians of curves. This point of view will be discussed in our forthcoming
paper.

4. Curves and their Moduli Space

In this section, we connect the theory developed in the previous sections with
geometry of algebraic curves. The present section corresponds to Sects. 2C) and
D) of [KNTY] in which the theory over the complex numbers C is treated. Below
we shall formulate the theory over a commutative ring A with unity. Since we
need to use the language of schemes, the reader who is not familiar with scheme
theory is recommended to read the appendix first where we shall give a brief
introduction to scheme theory. Though the theory below seems complicated, it is
essentially the same as that over the complex numbers C.

By a curve π:C->Spec(,4) of genus g over a commutative ring A we mean that
π is a proper smooth morphism of schemes whose generic geometric fiber is a
non-singular algebraic curve of genus g. Hence for any point peSpec(/l), the fiber
is a non-singular curve of genus g defined over the residue field fc(p). Let
β:Spec(,4)->C be a section of π, i.e., Q is a morphism of schemes with π Q = id.
By IQ we denote the ideal sheaf of the image β(Spec(>4)). Note that there is a
homomorphism π*:ΘA-^>Θc which defines an ^-algebra structure on Θc via the
morphism π. There is a canonical 0^-algebra isomorphism

The ideal sheaf IQ is an invertible $c-module, s i n c e π *s smooth and of relative
dimension 1. Therefore the conormal bundle N% = IQ/IQ of g(Spec(/4)) in C may
be regarded as an invertible ΘA-module via the morphism π. Assume that AΓg is a
free tf^-module. This means that there is an element seΓ(^/,IQ) such that
s = smod/g generates iVg as an β^-module, where % is an affine neighborhood
of the section g(Spec(/l)).

Lemma 4.1. Under the above hypothesis, there is an ΘA-algebra isomorphism

Proof. For any aeΘCx, xeQ (Spec(/I)), there is a unique expansion

a = ao + a1s + a2s
2 + + ans

n mod ΓQ

+ x,

where aieΘAMx). The mapping

is a desired d^-algebra homomorphism. Q.E.D.

Note that if A is a principal ideal domain, NQ is always ΘA-ϊree.

Definition 4.2. Fix a positive integer ίΞ>3. For any commutative ring A, the set
cβliβil(A) is defined by
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where π is a curve of genus g over A, Q is a section of π, and σx is a level I structure
of π. (For the definition of the level / structure, see [OS, Sect. 1].)

2) For any integer n ^ 2 and any commutative ring A, the set (€n g t(A) is defined
by

^n,gΛ
A) = {(π:C->Spec(Λ), Q with ΛΓ* free as an ^-module,

where un is an 0^-algebra homomorphism.
Note that for any n > m, there is a natural mapping

Let π:<ί^gtl(A)-^Jίgίl(A) be the universal family of curves over the moduli space
of curves of genus g with level / structure. π'.Ή g ^ Jί g ι is defined over the ring

Theorem 4.3. 1) For any commutative ring A, <€lt9il(A) is equal to the set ^g,ι(A) of A-
valued points of^gl.

2) For any integer n^2, there exists a scheme ^g

n\ with morphism fn' ^g"}^^g,ι
such that for any principal ideal domain A, the set of A-valued points of <&$ is
equal to %>„ g ι(A). Moreover, fn is a principal bundle with structure group &n, where

1

Proof. 1) The first part is clear from the definition.
2) Put V = Ήgj, Jί = MqΛ. Let A : ^ - > ^ x J€ be the diagonal mapping and

IΔ the ideal sheaf oϊ Δ{<g) in ^ x Jg. We let \°Ua}aeA be the all maximal affine
open sets of ^ such that (IΔ/IΔ)\^a is Θ^ -free. For each xeA, we fix an &% -algebra
isomorphism

where p:^ x J€-+*€ is the projection to the first factor.
Put %an = °l/ax <Sn. If mac\%βΦ 0 , then we patch together %^n and <%βtH by

uβ,n°ua,n I n ^ ί s way we have a scheme ^g

n\ with a morphism
induced by the projection pa:Wa x ^n^^a.

Let q:Spec(A)^^g

n} be an ,4-valued point. Since ^ α n , oceA, is an affine open
covering, g(Spec(;4)) is contained in, say, °U^n. Put p~1(^(Spec(>l))) = C,π:C->
Spec 04), Q = Δn°q, where Δn is the diagonal mapping ^ j ^ ^ j x ^ j . Since
IΔ/I2Δ\^* i s ^-free, IQ/IQ = q*{IJI2

Δ) is ΘA-ϊree. Moreover, q determines an
element βqe#ntf) = Aut(^[C]/(Cn + 1)) Put un = βqoq*{u^n). Then (π,Q,un)E^JA)-
Conversely, to any element of %>ngl(A), by a similar way we can always associate
an ,4-valued point of # $ . Q.E.D.

Definition 4.4. The proscheme <€q
n\ is defined by

The tangent spaces of ^g
n\ and <βgΛ are given as follows. Let Xn = {π:

Spec^, Q with free ^-module N%, un] correspond to an A-valued point of
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The infinitesimal deformation of Xn-1 is given by H1(C,Θc/A( — nQ)). By using
homomorphism un, we have an exact sequence

0-+Θc/A(-nQ)^Θc/A((m-n)Q)

where Θc/A is the sheaf of relative vector fields of π: C -• Spec (A).
If m > n + 2g — 1, then we have

TXn_x<#£\~H\C,ΘCIA{-nQ))

d

'd~ζ,
<ζ-im-n\A®Aζ®...®Aζm-1)-jH0(C,Θc/A((m-n)Q)).

Note that we can take the projective limit of both sides since Θc/A( — n'Q)^ >
Θc/A( — nQ) for ή > n. Now fixing m — n = k>2g—ί and taking n -• oo, we have

This holds for any k > 2g — 1, hence taking k-> oo, we finally obtain

M H°(C,ΘCIΛ{*Q)).

The right-hand side is independent of gf. Hence each element of Z((z~1))(d/dz\z =
C"1, induces a tangent vector at each I e ^ , ( 4

Next let us assume that for a point X = (π:C-*Spec(,4),Q,u)e^g l(A\ there
exists an invertible sheaf if on C such that J^®2= ω C M , where ωc/A is the relative
dualizing sheaf of π:C-»Spec(,4). For any positive integer m, we have an exact
sequence

Since ^Jdζ gives a trivialization of j£?(x)0c/Jg as ^^-module up to sign +, via
«„_! we have a natural mapping

and taking n-» oo, we have

where z = 1/ζ.

Lemma 4.5. σm(X) is injectiυe and Coker σm(X) is a locally free ΘA-module.

Proof. For injectivity, we have

OO

Ker σJX) = f] π^((m - ή)Q)) = 0.
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If m - n<g - 1, then π^i f ( (m- n)Q) = 0. Hence

The sheaf Rιπ^((m — ή)Q) is locally free of rank n — m-\-g—\ for n » 0. Hence

Coker σm(X) = lim R1π^((m — n)Q)

which is a locally free tf^-module. Q.E.D.
Taking m-> oo, we obtain

Corollary 4.6. σ(X) is injective and the image defines a point of IJGM(Ά)

Proposition 4.7. There exist a finite έtale covering π\jϊlgΛ-± JMg^x defined over
Z[l/2/] and an invertible sheaf 5? on <βqΛ = <£gJ x y/ {MgΛ with t?®2 = ω(?} $

We denote the pull back of the sheaf i f to <€gΛ = <€gl x H MgΛ by the same
letter 5£.

Corollary 4.8 There exists a morphism

σ:<^ z -»UGM ( 0 )

such that σ(X) is given by (4.1).

Corollary 4.9. For any element p(z)(djdz)eT\\j2ϊ\\_z,z''v\ we have

Appendix. Brief Introduction to Scheme Theory

We begin with the definition of a ring. A ring R is a set with addition + and
multiplication such that R with addition is an additive group and multiplication
is associative and distributive over addition, that is, for all a, b, CER, we have

a (b c) — (a - b) c,

a-(b + c) = a-b + a-c,

(b + c)-a= b-a + c a.

Moreover, if we have

a-b = b-a,

for all a,beR, the ring R is called a commutative ring. If there exists an element
eeR such that

a e — e-a = a,

for all aeR, the element e is called unity of R. In the following unity is written by
1 and we write ab instead of a-b for multiplication.

For example, the set Z of integers is a commutative ring with respect to the
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usual addition and multiplication and 1 is unity. The set 2Z of all even integers
is a commutative ring but has not unity. In the following we only consider a
commutative ring with unity. Such a ring is often called a unitary commutative ring.

Definition A.I. A subset 3 of a ring R is called an ideal, if for all elements α, fce3
and any element teR, we have

fl + fre3, ίαe3.

Note that for an ideal 3, if αe3, then — αe3. Let au a2,...,an be elements of the
ring R and let 3 be the set defined by

3={b1a1 + » + bnan\bieR9i=l929...9ή}.

T h e n 3 is a n ideal of R. T h e ideal 3 is sa id t o g e n e r a t e d by aί9...9an a n d w r i t t e n

by(al9a29...9an).

Let us consider a non-zero ideal of 91 of Z. Define the integer n by

n = min {m\me% m > 0}.

Note that if me% then — me9l. Take a positive integer /eϊt. Then we have

l = lxn + l2 0 S l2 < n-

By definition, l2e9l. Then by the definition of the integer n9 we have l2 = 0. This
means that the ideal 91 is generated by the integer n. Thus any ideal of Z is
generated by a single element.

For an ideal 3 of a ring R the quotient ring R/3 is defined as follows. Introduce
an equivalence relation ~ in R by

Hence for an element aeR the equivalence class a containing a is a + 3. Now the
set K/3 consists of all the equivalence classes in JR and the addition and
multiplication are given by

άb = ab.

It is easy to show that this is well defined and R/3 is a ring with respect to these
operations.

Let R and S be rings. A map φ.R^S is called a homomorphism of rings, if

φ(α + fc) = φ(α)

<p(αb) = φ(a)φ(b)9

for all α, freΛ. Then the kernel Ker φ of φ is defined by

Also the fraαge Im φ of φ is defined by

Imφ = {φ(a)\aeR}.
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Then Ker φ is an ideal of R and Im φ is a subring of S. Moreover, the quotient
ring R/Ker φ is isomorphic to Im φ.

A non-zero element a of a ring R is called a zero divisor, if there exists a

non-zero element b of R with αέ> = 0. A ring containing no zero divisors is called

a domain. For example, let n = pqbε the product of two prime numbers p9 q and

let us consider the quotient ring Z/(n). Then the classes p and q are non-zero in

R/(n) but /?<? = 0. Hence p and g are zero divisors. On the other hand Z/(p) has

no zero divisors, hence is a domain (actually, Z/(p) is a field with p elements).

Definition A.2. An ideal 3 of a ring R is called a prime ideal, if the quotient ring
#/3 is a domain. An ideal 3 is called a maximal ideal, if any ideal of R containing
3 is either 3 or #.

It is easily shown that an ideal J is maximal if and only if the quotient ring
R/3 is a field. Hence a maximal ideal is a prime ideal. For example, an ideal (ή)
of the ring Z of integers is prime if and only if n is a prime number or zero.
Moreover an ideal (n) of Z is maximal if and only if n is a prime number. Let us
give other examples.

Example A3. The ring C[x] consists of polynomials in x with coefficients in the
complex numbers C. Let 3 be a non-zero ideal of R. Let/(x) be a non-zero element
of 3 which has the minimal degree. Then any element g(x) of 3 is written by

g{x) = gfi(x)/(x) + 02(x), degg2(x) < deg f(x).

But # 2(x)e3 and/(x) has the minimal degree among non-zero polynomials in R,
g2(x) = 0. Hence the ideal 3 is generated by a single element/(x). Let

/(x) - (x - fllΓ(x - α 2 Γ . . . ( x - αj1""

be the factorization of f(x). By the similar argument to that in the case of Z, an
ideal (/(x)) is prime if and only if f(x) is irreducible, hence of degree 1 or /(x) = 0.
Moreover, (/(x)) is maximal if and only if /(x) is of degree 1. Thus there is a one
to one correspondence between the complex numbers and the set of maximal ideals
in C[x] given by a\-^(x — a).

A domain R any of whose ideal is generated by a single element is called a
principal ideal domain. The above examples show that the ring Z of integers and
the polynomial ring C[x] are principal ideal domains. Next let us give more
complicated examples.

Example A.4. Let p be a prime number. As we stated above Fp = Z/(p) is a field
with p-elements. The ring F p [x] consists of polynomials with coefficients in the
field ¥p. Then any ideal 3 of F p [x] is generated by a single polynomial f(x) and
an ideal (/(x)) is a prime ideal if and only of the polynomial /(x) is irreducible.
Contrary to the above Example A.3 there are infinitely many irreducible poly-
nomials of degree > 1. For example, if p = 3 mod 4, then x2 + 1 is irreducible.

The polynomial ring C[_x,y] of two variables with coefficients in C is also a
domain but not principal. For example, (x, y) is a maximal ideal which has two
generators.
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Example A.5. Let R = Z[x] be a ring consisting of polynomials with coefficients
in integers. Let p be a prime number. Then (p) is a prime ideal. Also an ideal
(p,f(x)) is prime if and only if f(x)moάp is irreducible in F p [x].

A subset S of a ring R is called a multiplicative subset, if IGS and it is closed
by the multiplication, that is, a,beS implies abeS. The localization S~1R of R
with respect to the multiplicative subset S is the ring

where the equality is defined by

— = —os3(s2a — s1b) = 0 for some s3eS,

and the addition and the multiplication are defined by the usual formulas about
fractions. Note that S~1R = 0 if and only if OeS. The natural mapφ R^S'^
defined by φ(a) = a/1 is a homomorphism of rings.

Let / be an element of a ring R. Then the set {fm:m is a non-negative integer}
is a multiplicative subset of R. In this case the localization is often denoted by Rf.
Let p be a prime ideal of a ring R. Then the subset S = R — p is a multiplicative
subset. In this case the localization S~1R is denoted by R . The ring Rp is a local
ring, that is, it has only one maximal ideal pRp. Note that Rp/pRp is a quotient field
of R/p.

Now we are ready to define a scheme. First we define an affine scheme.
Let A be a commutative ring with unity. We denote by Spec A the set of all

prime ideals of A. We set X = Spec A. For an ideal 21 of A, we denote by 7(21)
the set of all prime ideals of A which contain 21. Then the family 3Γ — {7(51)121
is an ideal of A} enjoys the following properties.

(i) V(0)) = Spec A, V(A) = 0 (the empty set),

(ii) For ideals ^λ{λeA) of A, V[ £ 9Iλ ) = f) 7(9lλ).

(iii) For ideals 21 1 ? . . . , 9IΠ, 7(91 x n n 91 n) = 7(91 J u ί/ 7(9IΠ).

Therefore, the set 3 satisfies the axioms of closed sets of a topological space.
Hence, the set 3 defines a topology of X, which is called the Zariski topology.
Another way to introduce the Zariski topology is to define a basis of open sets.
For any element feA, the set D(f) is defined by

D(f) = Spec A- 7((/)) = {VeSpecA\fφp}.

Then D(f) is an open set and the family {D(f)}feA is a basis of open sets of Spec A.
Indeed, if 7(21) is a closed set and p^7(2I), then p φ. 91, hence there is an element
fe% fφp. Then peD(f) and D(f)n 7(91) = 0 . Hence, we have

For a prime ideal p of A, we denote by Ap the localization of A at p. For an
open set U of X, a ring 0x(l/) is defined by the set consisting of maps s: U -» f| # p
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with s(p)eRv for each pe U such that for each p of U there exist a neighbourhood W
of p contained in U and elements a,f of A such that for each qeW, fφq and
s(q) = a/f in Ap. The ring ΘX(U) is nothing but the set of "regular functions" on U.
For open sets U, W with W c= (7 we have a natural restriction homomorphism

For example, if U = D(f), then ^(D(/)) = A/. Put W = D(fg), geA. Then
c (7, and RQSWU:ΘX(U)-+ΘX(W) = Afg is given by

a agn

fn (fg)"'

A sheaf J* of rings (respectively abelian groups) over a topological space X

consists of the data

(1) for every open set U c X, a ring (respectively abelian group) tF(JJ\ and
(2) for every inclusion W a U of open sets of X, a homomorphism pwι]\$F{\J) -•

#"(W) of rings (respectively abelian groups) which enjoys the following
properties:

(a) #X0) = 0, where 0 is the empty set,
(b) puv = id (the identity map),

(c) If W c V c U are inclusions of open sets, then pwu = pwv°pvu,
(d) if U is an open set, {Wt}ieI is an open covering of U and se^(U) is

an element such that pWiU(s) = 0 for all i, then s = 0,

(e) If (7 is an open set, { W j ^ is an open covering of U and seβ^(W^) is

given for each i such that pWιnwjwι(
si) = P ^ i n ^ ^ ^ ) f° r all ^ andj, then

there is an element SG#"([/) such that p^ιC/(s) = sf for all i.

We can show that Θx is a sheaf of rings on the topological space X = Spec A
The sheaf Θx is called the structure sheaf'of Spec A A pair (X, Θx) consisting of a
topological space X and a sheaf # x of rings on X is called a ringed space. The
ringed space (Spec A, GA) is called an affine scheme. For the afϊine scheme the stalk
(9Av of a point psSpec.4 is a local ring. In this case a ringed space is called a
/oca/ ringed space. A morphism of ringed spaces φ:(X, 0X)->(Y, 0 y ) is a collection
of a continuous mapping φ:X-^ Y and ring homomorphisms

for every open set U <= 7 which commute with restriction homomorphisms of
sheaves.

Let φ:A-*B be a ring homomorphism. For each prime ideal p of the ring 5,
φ~1(p) is a prime ideal of A Hence there is a natural map φα:Spec 1? —• Spec A It
is easy to show that the map φa is a continuous map of topological spaces. For
an element feA, φ induces a natural ring homomorphism Af-+Bφif). These facts
imply that φ:A-+B induces a morphism of ringed space ίφ:(Spec5,(Pβ)->
(Spec 4̂, ΘA). Conversely, it is shown that any morphism of affine schemes is induced
from a ring homomorphism. In this way we can show that the category of affine
schemes and the category of commutative rings with unity are anti-equivalent.

Let R be a ring. An R-valued point of an affine scheme X = (Spec ,4, ΘA) is a
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morphism ψ:(SpecR9ΘR)-+(SpecA9ΘA). By X(R) we denote the set of R-valued
points of X. Note that X(R) = Hom r i n g (^, R) by the above consideration. The notion
of R-valued points is a generalization of the usual notion of points.

Example A.6. Put A = C[x] and X = (Spec A,ΘA). Let φ:A^C be a ring homo-
morphism. Then Keτψ is a prime ideal (x — α) for some αeC. Hence we have
X(C) = C. Note that there is no ring homomorphism C[x] -> Z. Hence X(Z) = 0 .

Put B = Z[x] and 7 = (Spec 5,0B). Then we have Y(Z) = Z and Y(C) = C.

Finally we define a scheme. A scheme (X, Θx) is a ringed space such that there

exists an open covering X = IJ Uλ of X and that (£/λ, 0 X | L/A) is an affine scheme.
λeΛ

That is, a scheme is obtained by patching together affine schemes. A morphism
of schemes is that of ringed spaces. It is easily shown that a morphism of schemes
is induced from morphisms of affine schemes. An jR-valued point of a scheme
(X, Θx) is a morphism (SpecK, ΘR)->(X9 Θx).

Example A.I 1) Put A = Q\_x\ B = C[_y] and consider affine schemes
X1 = (SpecA9ΘA) and X2 = (Spec B, ΘB). We patch together X1 and X2 by
identifying open sets D1 — D((x)) in Xί and D2 = £(00) in X 2 by a ring isomorphism

x\-+l/y.

The scheme thus obtained is the one-dimensional projective space P£ over C. The
set P ^ Q of C-valued points is the usual one-dimensional complex projective space
(or Riemann sphere). Namely, P1(C) = Cu{oo}.

2) Let R be a ring and put A = R[x]9 B = R[y~]9 Xx = (Spec A, ΘA)9

X2 = (SpecB,ΘB). Again we patch together Xx and X2 by identifying open sets
Dx = D((x)) in X1 and D2 = D((y)) in X2 by a ring isomorphism

xi—>Ί/J;.

Tn this way we obtain the one-dimensional projective scheme P^ over the ring
R. The natural inclusions JR Γ- >R[X] and R c- >K[j;] defines a morphism φ:P^ ->
(SpecK, C?κ) which is called the structure morphism. The set P 1 ^ ) of ^-valued
points of P 1 is equal to Ru{co} as a set.

For affine schemes X = (Spec A, ΘA) and Y — (SpecJS, ΘB) the product X x Y
is the scheme (SpecC,^c), where C = A®ZB. Let φ:X = (SpQcA,ΘA)->Z
= (SpecR,ΘR) and ψ:Y = (SpecB9ΘB)-+Z = (SpecR9ΘR) be morphisms of affine

schemes. The fibre product X x ZY of X and Y over Z is the scheme
W=(Spec D9&D), where £) = yl®jRB. The notion of the product and the fibre
product of affine schemes is easily generalized to that of schemes by using the fact
that a scheme is covered by affine schemes. Let φ X^Y be a morphism of
schemes and x is a point of Y. Hence there is an affine scheme U = (Spec £, &E)
which is isomorphic to an open set of Y containing the point x. Let p be the prime
ideal of E corresponding to the point x. The fibre φ~ι(x) of φ over the point x is
the fibre product X x VV, where V is the scheme (Spec K, Θκ), K is the field EJpE
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which is the quotient field of E/p and a natural ring homomorphism
f:E->E/p^K induces a natural morphism φ V^Y.

To develop scheme theory further we need the notion of functors and cohomo-
logy theory of sheaves. For the details we refer the reader to [H, M, Lecture 3,
and S].
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Note added in proof. After the present paper is submitted to the publication, the authors received the

following paper in which some of our results are proved independently.

De Concin, C, Kac, V. G., Kazhdan, D. A.: Boson-fermion correspondence over Z. preprint.






