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Abstract. We investigate the stability of the super-KMS property under
deformations. We show that a family of continuous deformations of the super-
derivation in the quantum algebra yields a continuous family of deformed
super-KMS functionals. These functionals define a family of cohomologous,
entire cocycles.

I. Introduction

In this paper we investigate the super-KMS (sKMS) property of functionals ω on a
quantum algebra. Our interest in sKMS functionals was inspired by work of
Kastler and by conversations with Alain Connes [Cl, K, JLO2]. The sKMS
construction relies on the existence of a super-derivation d acting on a dense
subalgebra of a C*-algebra si. The square of d is the infinitesimal generator of a
continuous, one-parameter automorphism group oct of the quantum algebra. The
usual KMS property relates the cyclicity of a state ω to the analytic continuation of
a group αt of automorphisms. The sKMS property also involves invariance under
the super-derivation d whose square generates the automorphism group av

It is known that an sKMS functional on a quantum algebra defines an entire
cyclic cocycle τ. This is just the Chern character which Jaffe, Lesniewski, and
Osterwalder defined in the context of supertrace functionals on a quantum algebra
[JLO1]. The sKMS property ensures that the functional ω - and the cocycle τ
which is derived from it - are invariant under this group action.

In this paper we study the stability of this structure under perturbations of d.
We study only bounded perturbations which arise from the graded (super)
commutator with an odd element q of the algebra s/. We show that such
perturbations dq of d can be used to define a deformation ωq of ω which satisfies the
sKMS property. Furthermore, the corresponding family of cocycles τq are
cohomologous. Of course, more singular (unbounded) perturbations can lead to
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nontrivial perturbations of the cohomology, but we do not investigate this
question here.

Much of our analysis has an analog in the theory of KMS states, see for
example, [R, HKT, BKR, A, BR]. However, we carry through all the arguments
here without using a positivity property for ω. In fact, we do not know a natural
positivity property which would lead to a GNS construction representing ω as an
invariant, vector state in a Hubert space. Nor do we know whether a positivity
property such as Osterwalder-Schrader positivity (or a spectral condition) holds.

Just as in statistical mechanics where a KMS state generalizes the notion of a
Gibbs state, an sKMS functional generalizes the positive temperature supertrace
functional. This allows us to deal with situations which occur in examples, both
finite dimensional and infinite dimensional. One interesting class of infinite
dimensional examples are supersymmetric field theories on a noncompact
manifold. The Hamiltonian of such a theory is a Laplace-Beltrami operator on an
infinite-dimensional, non-compact manifold. It will have continuum spectrum, so
the heat kernel it generates will not be trace class. This is also characteristic of
many other examples.

The line of several analytic arguments we use is the following: consider a
function /(α, t) for a in an algebra si and t e R. For a in a dense subalgebra sia C si,
we know that f(a, t) is the boundary value of an entire function f(a, z) of the
variable z. Moreover, for z on the boundary of a strip 0 ̂  Imz ̂  1, we use the sKMS
property to establish a bound of the form

Using a Pfragmen-Lindelόf type theorem, we extend the bound (I.I) to the interior
of the strip. Since (I.I) is uniform in ||<z||, we can also establish the analyticity of
f(a,z) and the bound (I.I) for all operators aesi.

For some examples, such as [JL, JLW1-2], the sKMS functional ω is given by
the supertrace of a trace-class heat kernel. In these examples, the related functional

ρ(a) = ω(Γa)/ω(Γ), (1.2)

is a state. Here Γ denotes the grading operator. However, in general Γ is not an
element of the algebra si; thus ω(Γ) is not defined in general. This is the case if we
consider the heat kernel for a noncompact manifold M, where the heat kernel has
continuous spectrum and cannot be trace class. However, it may be the case that
the functionals ω and ρ can both be defined (e.g., as limits of functionals on a
sequence of compact approximations Mn to M).

In this case, ω and ρ will have characteristically different properties. The
functional ρ is normalized, ρ(l) = 1. On the other hand, ω(l) should be topological
invariant of M. In a special case, where ω is the supertrace weighted by the heat
kernel of a compact manifold, we can identify ω(l) as the index of a Dirac type
operator on M. More generally, we define the abstract index of a super-derivation
ί ί o n a quantum algebra, relative to an sKMS functional ω, by

ίω(d) = ω(l). (1.3)

This is a natural notion, invariant under deformations, as we see in the final
section.
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II. Super-KMS Functionals on a Quantum Algebra

In [JLO2] we define a quantum algebra as a quadruple {si, Γ, oct, d), where
si = stf+®stf- is a Z2~gra(ied C*-algebra. Let a = a+ + α_ denote the decompo-
sition of α e j / into homogeneous components under the grading. Define an
involutive ^-automorphism Γ of si by a^>aΓ = a+—a_. An automorphism of si
which commutes with Γ is said to be even.

In [JLO2] we assumed that for t real, α, is a continuous one-parameter group
of even, ^-automorphisms of si. Here we only assume that oct is a continuous, one
parameter group of even, bounded automorphisms of si. Continuity means that
|| αf(α) — α || —*0, as f->0, for each as si. Hence there exists a constant c< oo such
that

ί | α j ^ c | ί ! , ί e R . (II.1)

If at is a ^-automorphism, then we may take c = 0.
Let sia denote the (norm dense) subalgebra oϊsi such that t-*u.t{A) extends to

an entire, j</-valued analytic function. Let

(II.2)

denote the derivation (with domain sij which is the infinitesimal generator of at.
Finally, we assume that d is a super (odd) derivation of si with domain Q)(d) and
range in J*(jf). We assume that siΛ is a core for d and that d: sia-^sia. A super-
derivation satisfies

dΓ = —d, d(ab) = (da) b + aΓdb, (IL3)

and that d is a square root of D, namely

D = d2. (II.4)

As a consequence, αr and d commute,

Definition II.1. A super-KMS (sKMS) functional ω on the quantum algebra {si, Γ,
αί3 d) is a continuous linear functional on si such that for all a,besfa9

ω(da) = 09 and ω(αfo)-ω(fcΓ

αi(α)). (II.6)

Composition of a functional ω o n i with an automorphism σ of si defines a
functional of = ω o σ. The functional ω is said to be invariant under σ if ωσ = ω. An
sKMS functional is translation-invariant and even,

ωat = ω, and ω Γ = ω.

Another property of sKMS functionals is the integration by parts identity

ω(a db) = ω(da -bΓ)=- ω(daΓ b), (II.7)

which follows from (II.3, 5) and ωΓ = ω. We use the notation a(t) = ait(a). As a
consequence of (II.6-7), an sKMS functional satisfies

ω(a db) = ω{b'da(l)). (II.8)
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Given an s K M S functional on the quantum algebra (jtf, Γ, αf5 d\ we define the

function

for a^est and ί^-eR. Let ^ n c ( C " denote the complex domain

l } . (11.10)

Theorem II.2 (Fundamental Theorem for s K M S Functionals). Let ω be an s K M S

functional for ( j / 5 Γ, αf5 d) and let a0, ...,anestf. Then ω(aoati(aι)... octn(an)) is the

boundary value of a function, which we denote ω(aoaZι(aι).. .aZn(an)\ and which is

holomorphic in the interior of 3)n and continuous on the boundary. Furthermore, for

|ω(α oαZ l(α1)...α z>J)|^|ω|(l)/ΓJ- | R e Z j7 Π Wl, (Π.H)
j=o

where c is the constant in (II. 1).

Remark 1. We do not wish to suggest by our notation that the operator αf(α) is an

analytic function of t. Rather the expectations ω(aoίt(b)\ etc., are holomorphic. It is

sufficient, however, to prove the theorem for cijEjtfa,j = O, ...,n, where s/a is the

dense subalgebra of entire elements oϊs/. The estimate then extends by continuity

to all djEjrf, since the upper bound (11.11) only depends on α,- through its norm.

However, since for a^ e jtfa, (II.9) is an entire function of t u ..., tn, we infer from the

Weierstrass approximation theorem that (II.9) is holomorphic in the interior of Q)n

for all

Remark 2. An s K M S functional is not necessarily positive. Hence for doing

estimates we have to bound ω by the positive functional |ω|, which according to the

general theory, see e.g., [ P ] , is defined as follows. F o r ω there is a unique

decomposition

ω = ( ω 1 + - ω 1 _ ) + i(ω2 + — ω 2 _) (11.12)

with ωk± ^ 0 and ωk + ±ωk_. Then

|ω| = ω 1 + +ωγ_ + ω 2 + + ω 2 _

is positive and satisfies

| | . (11.13)

Remark 3. As was shown in [ J L O 1 ] , this estimate (11.11) follows immediately in

case αf(α) = exp( ί ίϋ)αexp( — UH), where 0 ̂ H = H*, where e~tH is trace class, and

where ω is a supertrace.

Lemma II.3. Let f be holomorphic in the interior of the strip @ε = {z =

^ 1} and continuous on the boundary. Assume there are constants C, c such that

(11.12)

on the strip. If in addition the function f satisfies the estimates

xl and | / ( x + 0 I ^ M e c | x | (11.13)
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on the boundary of the strip, then for all z e @ε,

\f(z)\SMec{lxl + ί). (11.14)

Proof For c = 0, this is a standard Pfragmen-Lindelόf type theorem. Applying this
theorem to /(z)(cosh((πz)/4))~(4c/π) yields the bound

Since 2 4 / π <e, we have the bound (11.14) as claimed.

Proof of Theorem 11.2. We assume that a }esέ^ so the function
ω(aooctl(aι)...octn(an)) extends to an entire function on C". Thus we need only
establish the bound (11.11). We proceed by induction on n. Let (in) denote the
estimate (11.11). Clearly (i0) holds, as

We now show that (ίn+ί) is a consequence of (in). Let

f(z) = ω K α ^ α J . . . ocZn(an)ocz(an + J ) .

We fix z l 5 ...,zne@n and let (z l5 ...,zn,z)e@n+1. First we prove that the a priori
bound on f(z) in the strip ^ I m Z n . Note that for α7 e j / α ,

Furthermore, 0 ^ . . . ^ Imz7 _ x ^ I m z 7 ^ . . . ^ 1, so |Imz7 | ^ 1. We can define a norm
II II. on Λ/β by ^

\\a\\Λ= Σ πi i^H

Then

We thus have

: Y IRez. M Π IM/llα)e xP(c|Rez|)-Cexp(c|Rez|),
j = o J \j=o '

where the constant C is given by

|ω|(l)expfc £ IRez^Vπ ||α; ||α.
j=o

Now we bound f(z) on the boundary of the strip ^ I m Z n . For Imz = Imzπ, we infer
from the induction hypothesis (in) that

|/(Rez + i ImzJ| = |ω(αoαZl(«i) αίimJ%eznW«Rezn+ ^ ^ ^ i)))l

f f n + V |Rez,.| j) ( Π
\ J=o J J \j=o

But

zJ + c
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SO

|/(Rez + iImzJ^|ω|(l)expίcL^

which is the desired bound.
Secondly, on the other boundary Imz = 1, we use the sKMS property to obtain

the estimate: we have

/(Rez + i) = ω{aQcLZι{μγ)... α J α J α ^ R , ^ ^ + x)))

= ω(αRez(α£+ Ja^fa)... ocZn(an)).

Thus from (in) and

we infer

We apply Lemma II.2 in the variable z to obtain (in + ί\ which completes the proof.

III. Perturbation Theory

In this section we consider the perturbation of the super-derivation d by an odd
element q both in si and in the domain Q)(d) of d. Define the bounded super-
derivation δq by

δq(a) = qa + (aq)Γ = qa- aΓq, (III. 1)

and the perturbed derivation dq by

Let d+a = (da*)*Γ be an adjoint super-derivation. With this definition, dq=dq

when d = d+ and q = q*. The square of dq is the derivation

where

(III A)

is the curvature determined by g. Since g is bounded, the assumption that q is in the
domain of d is equivalent to Ωestf+. Also Ω = Ω*, if d = d+ and q = q*.

Let α, denote the group of automorphisms of ^ generated by D = d2. We define
a? as the group of automorphisms of si generated by Dq. Explicitly,

We also use the group of transformations
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Standard perturbation theory then yields the following:

Theorem III.l. With the assumption q e J / _ n3)(d\ the perturbation series

«?(β) = Σ ('0" ί ad(α t t l(O))...Άd(a tJΩ))a,(a)dS l ...dsn, (III.7)
n = O σn

where σn denotes the simplex 0 ^ sί ^ ... ^ sn ^ 1, and

y » = Σ ΨT J αίSl(G)...atSn(Ω)oct(a)dSl ...dsn (III.8)
n = O σn

converge in norm to the groups oc? and γf respectively. They are bounded by

where

and where c is the constant in (II. 1).
// αf is a ^-automorphism and if Ω is self adjoint, then ||α?|| = ||y? || = 1.
Finally, if q, qf are two such perturbations Ω, Ω\ then

(111.11)

where

Proof. We study cή in detail. The treatment of yq

t is similar. Let us first estimate the
norm convergence of (III.7). We use

| |ad( α ί (β)) | |^2 | |β | |exp(c | ί | ) .

Furthermore, we note that for c ^ 0,

s , . . ^ ^ . (111.12)
nι

Thus the nth term in (IΠ.7) is bounded in norm by

Summing over n yields the bound for | ί | ^ 1,

| |αf| |^exp(c + 2||

For | ί | > l , we can choose neZ+ such that \t/n\<\, and n ^ | ί | + l. Thus

which is the bound (III.9) as claimed for αf.
Clearly, we can estimate the norm of αf —αf in a similar fashion. The factor

| |β |Γ in (III. 13) will be replaced by
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Summing over n yields (III.ll) for aξ — at}'.
The convergence of the sum (III.7) shows that α? is well defined and bounded,

when defined as this sum. We identify αf

g as (III.6) by showing that aξ satisfies the
differential equation

-i^a) = D^a) (111.14)

with the initial data satisfying

l im| |α?(α)-α | |=0. (111.15)
t->0

The uniqueness of the continuous solution to (III. 14) with given initial data shows
that cc? is the desired automorphism (III.6).

Let us first observe that the group property of <x?(a) follows from the
rearrangement of the power series (III.7), namely

Secondly, we observe that continuity of α? in t follows from the group property and
continuity at ί = 0. Since by assumption

lim \\at(a) — a\\ = 0,

we conclude that as ί->0,

- α | | S ||α?(fl)-αt(α)|| + \\φ)-a\\

SO(t)\\Ω\\\\a\\

where we use (III.ll) to dominate the first term.
Thus our analysis of αf is complete if we can establish (III. 14) for a in the

domain of Dφ which equals the domain of D. Using the group property, we need
only establish the equation for t = 0. Furthermore, the integration over 5 in (III. 14)
ensures that, if a is in the domain @(D) [or @(d)\ then each term in (III. 14) is also in
Q)(D) (or 2(d)). Thus we can use the estimate (III. 13) to justify term by term
differentiation of the series (III.7) to obtain

dt

Alternatively, we see that α?:^(d)-»^(d). This completes the analysis of αf. The
study of yf is similar, except that we obtain the equation

d
- i - y ? ( α ) = (D + ί2)y?(fl). (III. 16)

In the course of proving the theorem, we have also established the following

Proposition III.2. With the assumption q e si - n£)(d\ the groups OL? and yf map 3)(d)
into 3)(ά). If furthermore aeΘ(D\ then α?(α) and γf(a) are differentiate and satisfy

- i ~ α?(α) = Dqa*(a) = α?φ, α) (III. 17)
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and

-i~yf(a) = (D + Ω)yKa). (111.18)

We remark that if there is a self adjoint H such that

φ) = eUHae-itH,

then the perturbed automorphism has the form

(111.19)

and

γf(a) = eitiH + Ω)ae'itH. (111.20)

These transformations α? and γf do not necessarily continue analytically to
complex t on the algebra j ^ a , unless also Ω e j / α .

Theorem III.3. (i) Let q e stf- c\Q){ά) and let ω be an sKMS functional for ( J / , Γ, αf,

d). Lei ^ 6 ^ , 7 = 1,2,3. Then the function

ω(aiyl(a2)az(a3)) (111.21)

w/iΐc/z is defined for real z, ftαs an analytic continuation in z into the strip

to a function which we also denote by (III.21).
(ii) In addition,

\ω(aiy*(a2)*z(a3))\ £ \ω\ (l)eM> f[ \\aj\\, (111.22)

where

M ! = 2 c | R e z | + \z\ \\Ω\\ eclRez{. (111.23)

(iii) // g, ςf' are two such q's, then for each z in the strip

|ω(a17?(a2)az(a3))-ω(a1yf(a2)az(a3))|^O(||Ω-ΩΊI) Π N l > aπ.24)

as HΩ-ΩΉO.

(iv) For z = i, and a,bes/, we have

ω(abγKl)) = ω(bΓyKl)φ)). (111.25)

Proof We use the expansion (III.8) for aq

z to write for real z

/(z) = £ (iz)" J ω(α i α , S l (Ω). . . α zJΩ)α z(α 2)α z(α 3))rfs 1... dsn. (111.26)
n = 0 σn

We now infer from the fundamental Theorem II.2 that each term on the right of
(111.26) can be analytically continued in z into the strip O ^ I m z ^ 1. This requires
0 ^ s 1 ^ . . . ^ s M ^ l , which is the case on σn.
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We now prove that the series (111.26) is absolutely convergent and bounded by
(111.22). It follows that the limiting function f(z) is also analytic. From (11.11), we
conclude that the nth term in the sum (111.26) is bounded in absolute value by

Π ll«ill ) l | Ω i r N Λ ^ | R e z | ί exp(c |Rez| £ Sj)dSl...dsn

which by (III. 12) is bounded by

j=i J n\

Summing this bound over n yields (111.22). The proof of (111.24) is similar.
The proof of (111.25) follows from applying the sKMS property for ω to the

analytic continuation of (111.26) to z = i, in the case a2 = l. We can first assume
Ωestf^ and then pass to a limiting Ωejtf using (111.24).

IV. Stability of the sKMS Property

Let ω denote an sKMS functional on ( J / , Γ, αf, d). Let q e j / _ r\S){d) and let Ω = Ωq

~dq + q2. As a consequence of Theorem III.2, the functional

ωq(a) = ω(ay«(l)) (IV.l)

can be obtained by analytic continuation of ω(ayq(l)) for t e R . This has the sKMS
property associated with dq = d + δq.

Theorem IV.l. If ω is an sKMS functional for {srf, Γ, αf, d\ and q e ^ _ c\<3{d\ then
ωq is an sKMS functional for (s$, Γ, ocg, dq).

Lemma IV.2. For t real, a,bestf,qas above, and ω an sKMS functional for {s$, Γ,
αf5 d), we have

ω(α(dy?(l) + qy*{l) - y?(l) α t ( # = 0, (IV.2)

and

Proof Note that le@(d), so Proposition III.3 ensures that dyf(ΐ) is defined. It is
then sufficient to establish (IV.2-3) for q e srfa, since the continuity estimate (III. 11)
then allows us to pass by continuity to qestf-n@(d).

The first identity follows by studying the derivatives of the operator valued
function

e(t) = dy«{ΐ) + qγf(l) - yf(l) φ). (IV.4)

Clearly e(0) = 0, and we now see that e(n\0) = 0. Using (III. 16) for γf, we obtain

We use
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so D + Ω commutes with d + q. Therefore

It follows that

dtn
t = 0

= 0.
ί = 0

Each term in (IV.2) is real analytic in t, as a consequence of Theorem III.3.(i). Thus
the vanishing of all derivations at t = 0 ensures the vanishing of (IV.2).

In order to establish (IV.3) we study

Again E(0) = 0. We claim that

which establishes (IV.3) by repeating the above analysis. But

- / ̂  = {(D + ad(Ω))α?(α)} y?(l) + α?(α) (D + Ω)yf(l)

to complete the proof.

Proof of Theorem IV.ί. We first show that

ωq(dqa) = 0, ae3f(d).

Using integration by parts (II.7), and the fact that y\ is even, we obtain

Hence by (IV.2),

ω((da - flΓςf)y?(l)) = - ω(aΓy«(lMq)) = ω(ay%l)at(q))

Using Theorem III.3, this analytically continues in t to the point t — i. Using
definition (IV. 1), and property (111.25), we obtain

ω\da - aΓq) = ω(αyf (1) α^)) = ω(/αyf(1)) - -

In other words

ω«(dα + qa - aΓq) = ωq(dqa) = 0,

as claimed.

Next we use (IV.3) to give



538 A. Jaffe, A. Lesniewski, and M. Wisniowski

Again Theorem III.3 assures an analytic continuation to t = i, while using (111.25)
we obtain

ωq{bΓ(xq(a)) = ωq(ab).

Hence we have verified the sKMS property as claimed.

V. Homotopy Invariance of the Chern Character

Let ω be a sKMS functional. Recall [JLO1-2, K] that the Chern character
τ = {τn}n>o o n the quantum algebra ( J / , Γ, αf, d) defined by ω is

τn(aθ9au...,an) = iBn f ω(a0aiSl(daΓ

1)(xiS2(da2)cciS3(daΓ

?))

...ocisβaΓ

n

n))ds1...dsn, (V.I)

where επ = nmod2. Our present formulation does not require that cct is a
*-automorphism, but the algebraic constructions of [JLO1-2, K] still apply. The
analytic estimates are a consequence of Theorem II.2. We introduce Connes' entire
cyclic complex with coboundary operator d, see [C3, JLO1-2] for the definitions.

We consider now a deformation of d defined by

da(λ) = d + δQ(λ), (V.2)

where [0, 1^3λ-+q(λ)ejtf_n@(d) is continuously differentiable. Let ωq{λ) be the
corresponding sKMS functional defined in Sect. IV, and let τλ denote the Chern
character associated with ωq(λ\

Theorem V.I. With the above definitions, τλ and τ are in the same cohomology class.
In fact

ίτλ = dG\ (V.3)
dλ

where Gλe^(^) is given by

j=o σn

... x ocq("λHd aΓ J)θLq(<λ^ (q(λ))oίq(<λ) (d aΓJ + 2)...ofi^λ\d aγn_ )dns. (V.4)

Proof. The sequence Gλ = {Gfy satisfies the entire growth condition, as follows
from the estimates of Sects. II-IV. In fact,

with C a constant independent of λ. Since
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uniformly in λ e [0,1], it follows that

\Gλ

n(qo,q1,...,qn)\S^C1C
n

2 f\ \\aj\\^ (V.5)
n\ j=o

with C l 5 C2<oo.
The algebraic identity (V.3) is a consequence of the following two identities:

~ c4lλ\d) = J [αf \a\ afs

λ\dq{λ)q(λm ds (V.6)
uA o

and

ί y?λ)W = ~ ί ^λ\dq{λ)q{λ))dsyfλ\\), (V.7)
aλ o

and the identities of [JLO1, GS, K, EFJL].

Definition V.2. The index of the super-derivation d relative to ω is defined by

iJd) = Φ) (V.8)

Corollary V.3. The index of a super-derivation is stable under bounded deformations
of the form (V.2),

Ud) = Udq). (V.9)
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Note added in proof. In a recent preprint entitled "Algebra cochains and cyclic cohomology",
D. Quillen has related the cocycle constructed in [JLOl] to his notion of superconnection.




