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Abstract. We generalize to the case of superalgebras several properties of
simple Lie algebras involving the use of Dynkin diagrams. If to a simple Lie
algebra can be associated one Dynkin diagram, it is a finite set of non-
equivalent ones which can be constructed for a basic superalgebra (or B.S.A.).
The knowledge of these diagrams, which can be obtained for each B.S.A. in a
systematic way, allows us to deduce the regular subsuperalgebras of a B.S.A.
The symmetries of the Dynkin diagrams are related to outer automorphisms of
B.S.A. and lead to some singular subsuperalgebras. Finally we consider the
extended Dynkin diagrams in order to classify the affine B.S.A. and use their
symmetries to construct the twisted basic superalgebras.

1. Introduction

In his classification of simple Lie superalgebras, Kac [1-3] distinguishes two
general families: the classical Lie superalgebras in which the representation of the
even subalgebra on the odd part is completely reducible and the Cartan type
superalgebras in which such a property is not valid. Among the classical
superalgebras, one naturally separates the "strange" series P(ri) and Q(n) from
the basic or contragredient superalgebras which include the A (m, n) unitary series,
the B(m,n\ C(w-hl) , and D(m,n) orthosymplectic series and the exceptional
superalgebras F(4) and G(3) as well as D(2, l α) - these last ones being a de-
formation of D (2,1). These basic superalgebras - up to now denoted by B.S.A. -
are in some extent very close to the usual simple Lie algebras. For example, they
can be studied with the help of Cartan matrices and Dynkin diagrams. However a
fundamental difference with the Lie algebras occurs at this level because of the
unavoidable presence in the simple root systems of odd - or fermionic - roots
together with even - or bosonic- ones. Indeed for each simple Lie algebra si, there
is only one simple root system, up to a transformation of the Weyl group W(jtf).
In a B.S.A. several unequivalent simple root systems, that is systems which cannot
be related one to each other by a Weyl transformation, can be in general defined,
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leading to different Cartan matrices and Dynkin diagrams. Let us make precise
that the Weyl group in a B.S.A. is generated by the reflections associated with the
bosonic roots, and therefore is isomorphic to the Weyl group of the even part. This
special feature [1] of B.S.A. has been considered in detail in [4-6], and a practical
method to construct all the simple root systems of a B.S.A. from a given one has
been described in [5].

The complete knowledge of the Dynkin diagram can be exploited in different
directions. First, by extending the Dynkin diagram of a B.S.A. one can repeat the
Dynkin method for obtaining the regular subalgebras of a simple algebra to the
case of a B.S.A., and thus construct the regular subsuperalgebras of B.S.A.
Secondly, as for simple Lie algebras, the symmetry of the Dynkin diagram must be
related to the outer automorphisms of B.S.A. Such symmetries can in particular be
used to construct some non-regular - or singular - subsuperalgebras. Moreover,
the extended diagrams can be considered in order to classify the affine untwisted
B.S.A. Symmetries of the Dynkin diagrams could then be studied to obtain the
twisted affine B.S.A. as well as special inclusions among them.

The paper is organized as follows. Section 2 is devoted to the study of the
simple root systems of a B.S.A. ,̂ the definition of the Cartan matrix and the
classification of the Dynkin diagrams associated to <§. With these tools at hand, we
can construct in Sect. 3 the regular sub(super)algebras of a B.S.A., and in Sect. 4
make a correspondance between the symmetries of the Dynkin diagram of a
B.S.A. and its outer automorphisms. The case of affine B.S.A. is considered in
Sect. 5: symmetries of the Dynkin diagrams are then directly used to construct in
an explicit way the twisted B.S.A. We conclude by mentioning some possible
developments and physical applications.

Although the properties on superalgebras contained in Sects. 2 and 3 do not
constitute new results, it has seemed to us useful to present them in a synthetic
way, mainly for the two following reasons. First we want to show as far as possible
how properties of simple algebras can be extended to superalgebras. Such a
program becomes much easier owing to the practical tool proposed in [5], i.e. the
use of Weyl transformations associated to zero length roots allowing us to
construct from a given one all the Dynkin diagrams of a superalgebra. Secondly,
introducing in some detail such basic properties makes more clear our diagram-
matic study of outer automorphisms for basic superalgebras in Sect. 4, as well as
the construction of twisted affine superalgebras via outer automorphisms of
extended Dynkin diagrams in Sect. 5.

2. Cartan Matrix and Dynkin Diagrams for B.S.A.

2.1. Notations and First Properties

Let us start with a brief reminder about root systems of basic superalgebras. The
Lie bracket in a Lie superalgebra ^ = ̂ 0 -f <&l is defined by the equality:

for all Λ, 6e0, (2.1)

the degree being 0 for elements of the subalgebra % and 1 for elements of the
representation ̂  . Moreover, one has globally:

(2.2)
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Let H be a Cartan subalgebra of ^0 . A root α of (& (α φ 0) will be an element
αe //*, the dual of //, such that:

^α={flε^ [Λ,fl] = α(/z) α, λ e / / } φ O . (2.3)

A root α is called even or bosonic (respectively odd or fermionic) if ^0 n ^α φ 0
(respectively ^n^φO). A contragredient or basic superalgebra is a superal-
gebra such that dim ̂ α = dim^_α for any root α of ̂ . The Killing form on ̂  is the
bilinear form:

(2.4)

Note at this point that, if dim ̂ 0 = m and dim^ = n, Ad (a) for any ae$ can
be seen as a (m + 77) x (m + «) matrix M

C D)"

where A (respectively D) is a 777 x 777 (respectively 77 x 77) matrix, and the supertrace
of M acting on the Z2 graded space ^ is then defined as:

SΊrM=ΊrA-ΊτD. (2.5)

Now let us rapidly introduce the different families of basic superalgebras and
define their corresponding root system: we will denote by zί0 (respectively Δ^) the
set of even (respectively odd) roots.
• The unitary series A (m, m) or Sl(m + 11/7 + 1):
The bosonic part is ^0 - Sl(m + 1)0 Sl(n + 1)0 £7(1) if 777 φ 77 (the U ( l ) part
being absent if m = n), and ̂  reduces with respect to the Sl(m + 1)0 Sl(n + 1)

group as the representation (777 + 1, n + 1) + (m + 1, n + 1).
The roots can be expressed in terms of ε^, . . . , εm+1, δ^, . . . , δn+l as:

9 The orthosymplectic series OSp(m\2ri):
The bosonic part is a non-compact form of O (m) © Sp (2/7) and ̂ l reduces for
m φ 2 to the (777,2/2) ^-representation.
The roots expressed in terms of ε^, . . . , εw, δly . . . , δn are:
for B (m, 77) or OSp (2m + 112/7) with 777 Φ 0

Λ I = {±<5, ; +εί + c > / } , (2.7)

for 5(0,77) or OSp (I \ 2n)

Λ - { ±δ{ ± όj , ±20t} (/Φy) A{ - { ±^J , (2.8)

for D (m, n) or OSp (2m \ 2n) with 777 Φ 1

(2.9)
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while for C(n + 1) of OSp (2 1 2ri) the odd part is ̂  twice the fundamental (2n)
representation of Sp(2ri), and the roots in terms of ε, δί , . . . , £w are:

^ι = { ± f i ± < ϊ ί } . (2-10)

- The exceptional superalgebras:
- Z)(2,l;α) (with α φ O , — 1) which are deformations of D (2,1), corresponding
actually to the case α = 1 . The bosonic part is a non-compact form of
SU(2)@SU(2)®SU(2) and the fermionic one ̂  is the 8-dimensional (2,2,2)
^-representation. In terms of ε l 5 ε2, £3 the roots are:

Λ 0 = {±2εJ /4 1 = {±ε 1 ±ε 2 ±e 3 } . (2.11)

- F(4) the ̂ o part of which is a non-compact form of SU(2) © O (7) and the ̂
part the (2,8) ^-representation. Note that D (2, 1 α) and F(4) share the property
to have for <g} spinorial representations of their ̂ 0 part. In terms o f δ and ε} , ε2 , ε3

the roots are:

Δv = {±δ\ ±ei + ε/; + £,.} ^1 = { i(±ε 1 ±ε 2 ±ε 3 ±<5)}. (2.12)

- G (3) with a non-compact form of SU(2) ®^2> if ^2 *s the Lie algebra of the
exceptional Lie group G2 , for the ̂ 0 part and the (2,7) ^-representation for the
^ 1 part. In terms of δ and ε1 , ε2>

 83 with ε1 -f s2 +
 εs = 0 ^ne ro°ts are:

zf 0 = {±2(5;ε.- ε j.;±ej ^I j = {±5; ±fi f + (ί} . (2.13)

This classification can be closed by a few remarks. One can find B.S.A. such
that the representation of ̂ 0 on ̂  is irreducible, and ̂ 0 is semi-simple: this is the
case for the superalgebras B(m,ri), D(m,n\ F(4), G(3) and D(2,l;α) which are
called superalgebras of type II. The other ones, i.e. A (w, n) and C(n + 1), admit a
unique consistent Z2 gradation of the form ^ = ̂ ^ΐ@^0®

(^ί (i.e.
[^i,9j] <= ^ί+J (mod2) with z,; = -1,0, 1) with the ̂ 0-modules ^_l and ̂  ir-
reducible. They are called superalgebras of type I.

Among the fermionic roots, one can notice that there exist roots δ such that 20
is a bosonic root. Such a root will be associated with the B.S.A. OSp (I |2). The
other fermionic roots will be associated with the B.S.A. 57(1 1 1).

2.2. Carton Matrix

In a contragredient Lie superalgebra ^ of rank r, it is always possible to define a
r x r Cartan matrix ^ = (α^ ) associated to a set of simple roots (cq , . . . , α,) with
the following conditions:

(2.14)

the Λ l 5 . . . , /?„ generating the corresponding Cartan subalgebra #.
One defines, using Eq.(2.4), a non-degenerate bilinear form on //* by:

(2.15)
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such a form being invariant under the Weyl group of ,̂ generated by the
reflections of the bosonic roots. The Cartan matrix can be chosen symmetric [6]
and defined as follows:

*y = ( α i> α j ) (2.16)

once the normalization on the Cartan generators is fixed, or equivalently in the
root lattice.

Note that such a Cartan matrix can be obtained from the Kac-Cartan matrix
defined in [2] by multiplying this last one on the left by the following diagonal
matrix (where lm denotes the m x m identity matrix):

for S / ( w + l | « + l ) ,

for OSp (2m \ In} ( m φ l ) ,

for OSp (2m -f \ | In} (m φ 0),
/ !„ 0 0

0 -!„-, 0
\ o o -

/I 0 0
0 !„_, 0

\0 0 -1/2

Λ o o N

0 - 1 0

\0 0 -1/3,

/Ί 0 0
0 - 1 0
0 0 -1/2

V o o o

2 + α
— y— 2 + α

4 + α
~2" 3

2 + α
~2~ ~

\

i/

\

/

\

/

0
0
0

-1/2

1/2

3/2

2 + α
2α

for

for C (3),

for F(4),

(2.17)

for Z ) ( 2 , l ; α ) .

Now we shall associate to each simple root system of ^ a Dynkin diagram
according to the following rules:

i) To each simple bosonic root we associate a white dot O, to each simple
fermionic one α f a black dot if an φ 0 (i.e. 2α / eJ 0 ) and a grey dot Qif % = 0.
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ii) The ith and/h dot will be joined by ηtj lines with:

ηϊ} = 2 . — Yη -- Γ- if ati aπ Φ 0 ,llj - JJmm

if

if 0.. = α.. = 0 .

(2.18)

iii) We add an arrow on the lines connecting the z t h and 7th dot when η{j > 1,
pointing from ί t o j i f a ^ α^ φ 0 and | α^ | ori f% = 0, α^ φ 0, |̂ < 2 and pointing
from / to / if ati — 0, αj; φ 0, | a^ \ > 2.

Let us emphasize at this point that to a given superalgebra CS will not in general
be associated only one system of simple roots up to a transformation of the Weyl
group W(^), and therefore not only one Dynkin diagram. This will be discussed
in more detail in the subsequent paragraph. We want for the moment to illustrate
the above rules by constructing for each kind of B.S.A. a particular Dynkin
diagram related to a special simple root system. We will call such a system a
"distinguished" one, its characteristic being that it contains the smallest number
of fermionic roots. Note that the labels appearing above each dot are the
coefficients of the decomposition of the highest root with respect to the simple
roots.

fil-ε2 C 2 ~ £ 3 C m - C m + 1 £„,.,! -(5} ί^!-^

with the normalization

and the corresponding Cartan matrix

0-0
<5«-ι-^,ι ^;-4,

2 -1

-1 0 1

1 -2

1 -2

o—o
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with the normalization

(et,Ej) - -<Jy (/,./= 1, . . . , m\ (<?*,<?,) - δkl(k,l=ί,

and the corresponding Cartan matrix

9 - 1jL 1

-i ••. •-.
• . 2 -1

-1 0 1

1 -2 ' - .

463

£;A) = 0

B(Q,n)

2 2

o— o~
δ1 — 02 ό2 — ^3

with the normalization

and the corresponding Cartan matrix

1 2 2 1

O— O -OΦO

with the normalization

and the corresponding Cartan matrix

0 -1
-i •-. ••.

• . 2 -1

-1 0 1
1 9 * •i z,

1 -2 2
2 ~4
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D (m, n)

o— o

with the normalization

(εi9εj) = -ay (ij= 1, , . . , m), (δ^

and the corresponding Cartan matrix

2 -1
-1 •-. •-.

9 1z, i

- 1 0 1

- <5W (/c, / = ! , . . . , n), (εi9δk) = 0

• . ••. i i
1 ~2 0
1 0 -2

4 2

with the normalization

and the corresponding Cartan matrix

0 1 0

-2 3

.o 3 -e

3 2

with the normalization
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and the corresponding Cartan matrix

* £(2,l;α)

ό—d—ό
with the normalization

(c1,ε1) = -(l+α)/2, (fi 2,ε 2) = l/2, (c3,c3) = α/2, (ε., f i j.) = 0 (/Φy)

and the corresponding Cartan matrix

2.J. Simple Root System of a Super algebra

In this subsection we describe a very practical way [5] to obtain all the simple root
systems - or equivalently all the Dynkin diagrams - of a given B.S.A. once given
any one of them.

Let us recall that the Weyl group W(^} of a superalgebra ̂  is generated by the
Weyl reflections relative to the bosonic roots - such reflections read:

ωa(β)=β-2(^x (2.19)

with α E AQ (&) and β e Δ 0 (<g) u Δ ± (^). Under a transformation of W(f§\ a simple
root system will be transformed into an equivalent one, with the same Dynkin
diagram.

Now let us, following [5], extend W(^) to a larger group by adding the
following transformations associated to fermionic roots

(α,«)Φθ ω , 0 3 ) = / ? - 2 - - α

(α.α) = 0 ω,(β)=β + θί i f ( x , / Γ ) Φ θ (2,20)

ωα (α) = — α .

Of course, a transformation ωa with (α, α) = 0 cannot be lifted to an automorph-
ism of the B.S.A. since even (respectively odd) roots being transformed by ojα into
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odd (respectively even) ones, the grading would not be respected. However such
transformations can be simply used to deduce from one simple root system B all
the other, unequivalent under W(^S\ bases. The method is as follows: construct
from any aeB such that (α, α) = 0 the system ωα(J5), and then repeat the same
operation on the obtained systems until no new basis arises. Now it is an easy job
(at least for not-too-high-rank superalgebras) to construct from a given Dynkin
diagram all the other ones, once noticing that only the roots linked to the grey root
with respect to which the root system is transformed will be affected. For example
a white dot will become a grey or a black one depending on the number of links
and the direction of the arrow between the white dot and the grey dot associated to
the transformation. Examples are given in Table 1 where all the Dynkin diagrams
for the unitary and orthosymplectic superalgebras of rank rg4 are constructed.
The general form of Dynkin diagrams of the B.S.A. is presented in Table 2. In this
table the small black dot (in the unitary and orthosymplectic series) represents
either a white dot O or a grey one Q, and K is the parity of the number of grey
dots.

3. Regular Semi-Simple Subsuperalgebras of a B.S.A,

The complete knowledge of the different Dynkin diagrams relative to a given
superalgebra fS will be used in this section for the construction of its regular semi-
simple sub(super)algebras. Considering the canonical decomposition

where H is a Cartan subalgebra and A — zί0 u A λ its corresponding root system, a
subsuperalgebra ^ is called regular, by analogy with the Lie algebra, case, if it is
such that:

<0Λ, (3.2)

with H c= H and A c= A. The semi-simplicity of <H will be insured if to each
then — OCE A and H is the linear closure of A.

The method for finding the semi-simple regular sub(super)algebras of a B.S.A.
is completely analogous to the usual one for Lie algebras by means of extended
Dynkin diagrams [7]. (Note that a very clear presentation of the techniques and an
explicit classification for regular subalgebras can be found in [8].) But now, one
has to consider all the Dynkin diagrams associated to the inequivalent simple root
systems. A first classification of the regular semi-simple sub(super)algebras of
basic B.S.A. and the proof of the method has been recently given in [9]. Therefore
we will limit ourselves to summarize hereafter the used techniques.

Given for a B.S.A. a simple root system and the associated Dynkin diagram,
we draw the extended Dynkin diagram by adding to it a dot corresponding to the
lowest root. Now, deleting arbitrarily one or more than one dot of this extended
diagram, will yield one Dynkin diagram or a set of disjointed Dynking diagrams
corresponding to a regular semi-simple sub(super)algebra of .̂ Indeed, taking
away one or more roots, one is left with a set of linearly independent roots which
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Table 1. Dynkin diagrams of unitary and orthosymplectic Superalgebras of rank 1, 2, 3, 4

Osp(l/2) SLi

• i2 1

OSp(l/4)

O^Φ
2 2

OSp(4/2)

OO4O
1 2/"~\ *

i Qf jL 1

^v"j 1

Q-0— Q
1 2 1

OSp(l/6)

o-o
2 2 2

SL(l/3)

o-o-o
1 1 1

O-ΦO
1 1 1

SL(2/2)

αo-o
1 1 1

OQ-O
1 1 1

o-αo
1 1 1

i/l) SL(l/2) OSp(2/2) OSp(3/2)

I CHP CHO o^φ
1 1 Z Z Z 1 1 1 2

™" ™* /*r*\ S S~~\ /f*~κ\ \. κ "̂̂ v

C>VU OrO
1 1 1 1 2 2

OSp(5/2) OSp(2/4) OSp(3/4)

o-o^ o-<xo αoo
1 2 2 1 2 ι 2 2 2

O-OX) CKKO O-G^
1 2 2 2 2 1 2 2 2

iHΌX) _x i O-O
2 2 2 2 CΓ1L 1 2 2

OSp(6/2) QSp(7/2)

O— O— O^O rv-Γx-rvv-Λ
V^y \_y v^x^^^r

1 2 2 1
1 2 2 2

O— ̂ Cl O— €)— O^O
1 2 IP ! 1 2 2 2

Γ) i HI— €1— O^O
€HIIC^ 1 2 2 2

1 2 X3 1 •— O-Q^O

.Q 1 2 2 2 2

v|ii' \_^^^_^
2 9 1 ) 1
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OSp(4/4)

1 2 2 1

o-o<xo
2 2 2 1

SL(2/3)

1 1 1 1

o-o-o-o
1 1 1 1

o-o-o-o
1 1 1 1

o-o-o-o
1 1 1 1

1 1 1 1

o-o-o-o
1 1 1 1

OSp(5/4)

2 2 2 2

2 2 2 2

1 2 2 2

o-o-o
1 2 2 2

o-o-o
1 2 2 2

2 2 2 2

OSp(l/8)

O-OO
2 2 2 2

SL(l/4)

o-o-o-o
1 1 1 1

o-o-o-o
1 1 1 1

O-OO-O
1 1 1 1

OSp(2/6)

1 2 2 2

OOO4O
2 2 2 2

2 2

OSp(3/6)

2 2 2 2

2 2 2 2
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Table 2. Dynkin diagrams of basic Superalgebras
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OSp(2m/2n)

^Pi--*-<jC
2 2 2 2 >Q j

1 2

2 2 2 2 j

K = 0

1 2 2 2

2 2 2 2

1 2 2 2

K= 1

OSp(2m+l/2n)

1 2 2 2 2 2 2 2

2 2 2 2 1 2 2 2 2

K = l

SL(m/n)

1 1 1 1

φ represents either or

K is the parity of the number of ( )

(see Sect. 3.2.3. for more details)

G(3)

2 4 2 3 4 2 3 3 2
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Table 2 (continued)

F(4)

2 4 3 2 2 3 2 1 2 3 2 1

OCKO-Ό Q-CKO-Ό
1 2 2

1 2 3 2

α l+α

constitute the simple root system of a semi-simple regular sub(super)algebra of ̂ .
Then repeating the same operation on *the obtained Dynkin diagrams, i.e.
adjunction of a dot associated to the lowest root of a simple part and cancellation
of one arbitrary dot (or two dots in the unitary case) as many times as necessary,
we will obtain in this way all the Dynkin diagrams associated with regular semi-
simple B.S.A. One can easily notice that in order to get the maximal regular semi-
simple B.S.A. of the same rank as ,̂ only the first step has to be achieved (which
does not mean that all the so-obtained subsuperalgebras are maximal). The other
possible maximal regular subsuperalgebras of ̂  if they exist, will be obtained by
deleting one dot in the (non-extended) Dynkin diagram of ̂  and will be therefore
of rank r— 1. Examples are explicitly studied in Tables 3-6 while the list of
maximal regular semi-simple subsuperalgebras for the B.S.A. is presented in
Table?.

4. Outer Automorphisms of Superalgebras

In the same way that outer automorphisms of a simple Lie algebra are related to
symmetries of its corresponding Dynkin diagram, we can show that outer
automorphisms of a B.S.A. can also be connected with some Dynkin diagram of
.̂ Let us recall [10] that in the case of a simple Lie algebra j/, one has the following

isomorphisms:

Aut(,c/) Aut(zl)

Int(^) W(Δ)
(4-1)
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Table 3. Maximal regular sub(super)algebras of OS/? (5/4)
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—>

O

OSp(2/2)

x OSp(3/2) oW) r;-> «**>

OSp(2/2)

x OSp(3/2)

O

OSp(4/2)

x OSp(l/2)

<b
OSp(4/4) OSp(3/4)

OSp(5/4)

O
Sp(4) x S0(5) OSp(2/4) OSp(4/4) OSp(5/4)

x SIJ(2) x SU(2)

O O

™»

OSpO/4) OSp(4/2) QSp(4/4)

x SU(2) x SU(2) x OSp(i/2)

—>

OSp(3/4)

OSp(5/4)
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Table 3 (continued)

L. Frappat, A. Sciarrino, and P. Sorba

—>

o

OSp(4/4)

O

o

o —>

OSp(2/4) OSp(2/2)

x SU(2) x OSp(3/2)

OSp(3/4)

OSp(5/4)

OSp(5/2) OSp(2/2) OSp(4/2)
PV } OSp(4/4) OSp(5/4)

x SU(2) x OSp(3/2) x OSp(l/2)

Table 4, Maximal regular sub(superalgebras) of OSp(6/4)

o

OSp(6/2)

x SU(2)

OSp(4/2)

x OSp(2/2)

o o
OSp(2/4)

x SU(2) x SU(2)

OSp(6/4)
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Table 4 (continued)
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O

—>

OSp(6/2)
x SU(2)

O

O

S0(6) x Sp(4)

OSp(6/2)

x SU(2)

OSp(4/2)

x OSp(2/2)

O O
OSp(2/4)

x SU(2) x SU(2)

OO
OSp(4/2)

x OSp(2/2)

OSp(6/4)

OSp(6/4)

OSp(6/4)

—>

SL(3/2) OSp(4/4)
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Table 4 (continued)
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OSp(6/4)

OSp(6/4)

—*

OSp(4/4)

SL(3/2) OSp(4/4) OSp(4/4)

O
OSp(6/2)

x SU(2)

OSp(4/2)

x OSp(2/2)
OSp(6/4)

SL(3/2)
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Table 4 (continued)
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—>

OSp(4/2)

x OSp(2/2) OSp(6/4) SL(3/2)

OSp(4/4)

0 0 0 0

o
O=Ό

OSp(4/2)

x OSp(2/2)

OSp(2/4)

x SU(2) x SU(2)
OSp(6/4) OSp(6/4)

OSp(4/4)

OSp(4/4)

SL(3/2)
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Table 5. Maximal regular sub(superalgebras) of G (3)

O

OSp(4/2;3) SL(l/3)

O

G(3) SU(2) x G 2 OSp(4/2;3)

O

G(3)

—>

G(3)

—»

OSp(4/2;3)

OSp(3/2)
x SU(2)

OSp(l/2) SL(1/3)

x SU(3)

OSp(4/2;3) G(3)

G(3)
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Table 6. Maximal regular sub(super)algegras of F(4)
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o

S0(7)
x SU(2)

SL(l/2)
x SU(3)

o
OSp(4/2;2)

x SU(2)
F(4)

OSp(2/4)

F(4)

SL(l/4)

O
SL(l/2) OSp(4/2;2)
x SU(3) x SU(2)

OO

SL(l/4)

SL(l/2)

x SU(3)

OSp(4/2;2)
x SU(2)

SL(l/4)

OSp(2/4)

OSp(2/4)
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Table 7. Maximal regular subsuperalgebras of the B.S.A.

A (m, n)

B(m,n)

Cn

D(m,n} D(/t i) Θ D(/,./) k+l=m, / 4 / =• n

A (m, n)

A (0,2)
D(2,1;3)
G(3)

F(4)

/ I 1 0 £ ) f 2 , l ; 2 )
/I (0, 3)
C(3)
F(4)

where Aut(^/) (respectively Int(j3/)) denotes the group of automorphisms
(respectively inner automorphisms) ofW. Aut(zί) is the group of automorphisms
of the set of non-zero roots Δ of s$ with respect to a Cartan subalgebra if and
W(Δ) the Weyl group of A. F(^} is called the factor group and is therefore
isomorphic to Out(j/) if we define Out(j/) as the group of ^/-automorphisms
up to an element of ίnt(j?/), itself isomorphic to si since si is simple. F(,ς/) is
isomorphic to the group of automorphisms of the Dynkin diagram and is simply
the cyclic group of order two Z2 for the algebras Al(!^2), Dz(/§;4) and £6J the
cyclic group of order three Z3 for the D4 case while it reduces to the identity for the
algebras Al,Bl(l^2),EΊ,Es,F4.,G2> Actually the Weyl group transforms a basis
or simple root system of s# into another basis in a transitive way, while
Aut (Δ (s/J))jW(Δ (.j/)) leaves a basis of .j/ unchanged. In the same way an element
of W(A) can be lifted to an inner automorphism of ._£/, a symmetry of the Dynkin
diagram could be associated to an (outer)automorphism of si. We illustrate the
action of F(X) on the Dynkin diagram of the An algebras:
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which corresponds to the transformation £;-» — εn + 2-iι 0= ̂  ? n+\}.
The automorphisms of a basic superalgebra ^ have been worked out in

[4,11,12] and the results can be summarized as follows. Since any automorphism
of a B.S.A. must respect the grading, it will act on the reductive bosonic part ̂ 0 of
^ as an automorphism of Aut(^0). Denoting Out(^) = Aut(0)/Int(0), where
ίnt (<&) ~ ̂ o, then Out (^) is isomorphic to Z2 for the superalgebras A (m, n) (with
raφ/? and m, n Φ 0), ,4(1,1), ^(0,2« + 1) and D(m,ri) (with m φ l ) . It is iso-
morphic to Z2 xZ 2 for A(m,m) (with mφO,l) and to Z4 for ΛI(0,2«). Out(^)
reduces to the identity for B (m,«), C (« +1), F(4) and G (3). Out (D (2,1 α)) (with
α φ 0, — 1) is trivial in general, except for the values α = 1, —1/2, — 2, where it is
isomorphic to Z2 and α = <?2 ι π / 3

? e
4ιπ/3, where it becomes isomorphic to the three

element group Z3. Out(^) can be reconstructed in general by looking at the
symmetries of the Dynkin diagrams of ,̂ except in some special cases.

Consider first the Sl(m \ ή) case. For all values of m and n (with m φ n and m, 77 not
simultaneously odd), it is always possible to construct a Z2 symmetric Dynkin
diagram as follows:

Sl(2m + \ \ 2 n ) with m<n

o-
SI(2m -f 112n) with m > n

—O
-m + 2 ^ 2 n - l ~ ^ 2

O O

both cases corresponding to the same transformation

βI -
>-fi2Wι + 2 - i O ' = l » . . . , 2m + l) and .̂-^ -5 2«-fi -j 0'=

• Sl(2m +\\2rn)

the transformation is here

m + l ) and ί = l , . . . , 2m).
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• SI(2m 12n) with
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O O

in which the transformation is

e i - » - e 2 m + ι - f O ' = l , - . . , 2 m ) a n d

Then for the symplectic case, one has:

• OSp (2m \ 2n) with m φ 1

the transformation being εm ->• — εm .

2 1 2/7)

the transformation being here ε-> — ε.
At this point, one can notice that each symmetry τ described above induces a

direct construction of the subsuperalgebra <$' invariant under the ^ outer
automorphisms associated to τ. Indeed if the simple root α is transformed into
τ(α), then ^(α-hτ(α)) is τ-invariant since τ2 = 1, and appears as a simple root of ̂ ;

associated to the generator EΛ + £τ(α), if £α (respectively jE1^^) corresponds to the
root α (respectively τ(α)). A Dynkin diagram of ^x will therefore be obtained by
folding the Z2 symmetric Dynkin diagram of ,̂ that is by transforming each
couple (α, τ(α)) into the root ^-(α + τ(α)) of ̂ '. Let us add that this folding method
has already been used in [13] in order to obtain the non-simply laced simple Lie
algebras from the simply laced ones. One obtains here the following invariant
subsuperalgebras
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-o
SL(2m+1/2π)

oo-o
i i ι

n-m-1 2(2m-ι-1)

OSp(2m+1/2n)

O--O-Q- -φ
(m < n) n-m-1 2m

SL(2m+1/2n)

o-oo-
2m-2n

OSp(2m+1/2n)

O -> OO-O OK)
(m > π) 2π m-π-1

SL(2m+1/2m)

O- -O- -O- -O
OSp(2m+1/2m)

4m

SL(2m/2n)

2m-2n-1

OSp(2m/2n)

O

(m > π) 2m -1

OSp(2π/2m)

-> Q- -Q-p- -Q<O
2π m-n-1

OSp(2m-1/2n)

-> O -OO-O OX3
π - 1

OSp(2/2π)

O

m-2

—>

n-1 m-2

OSρ(1/2n)

O O
n-1

The previous method cannot be used in the case of SI (2m + 1 | 2n -f 1) (m φ ή)
since there does not exist any symmetric Dynkin diagram associated to this type of
superalgebra. However one notes a global symmetry of the set of Dynkin
diagrams. For example, in the case of 57(1 | 3), one has the following tableau:

In the case of S7(2w+l |2m+l) , besides the global symmetry of the set of
Dynkin diagrams, there exist a Z2 symmetric diagram

o -o O
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the transformation being £Γ-» — δ2m + 2-i(i— 1» • • • > 2m -hi), associated to the
permutation of the two 5/(2m+ 1) subalgebras. However, the folding does not
give any information: actually the invariant subsuperalgebra under the above
symmetry is a strange simple superalgebra to which a Dynkin diagram cannot be
associated.

In the case of SI (2m 2m), one finds a Z2 symmetric Dynkin diagram

4, 4; j, 4,

with the transformation £;-> — ε 2 m + ι - ι an^ <^-» — <5 2 m+ι-iO' = ̂  • • • ? 2m). By
folding, this diagram leads to the invariant subsuperalgebra OSp (2m 1 2m) as in
the general case of SI (2m \2ri)\

SL(2m/2m) OSp(2m/2m)

-OOO -O -> OO
2m-1 2m-1

One notes also another Z2 symmetric Dynkin diagram

ί

the transformation being εz -> ~(52m + 1 _ ί ( z = 1, . . . , 2m), associated to the
interchange of the two SI(2m) subalgebras: as in the case of SI (2m 4-11 2m + 1)
just discussed, the invariant subsuperalgebra is a strange one which cannot be
obtained by folding.

The D (2,1; α) needs a little more attention. Using the corresponding Dynkin
diagrams of Table 2, one can observe a Z2 symmetry on the linear diagrams for the
values α = — 2 (corresponding to 1 + α| = 1), α = 1 (corresponding to |α =1) and
α = — 1 / 2 (corresponding to | l + α | = |α|). The triangular diagram has a Z3

symmetry, generated by the circular permutations of 3 elements, for the values
α = e2 ι π / 3, a = e4ιπ/3. It might be interesting to consider in more detail this
"triality" property.

5. Untwisted and Twisted Affine Superalgebras

5.7. Untwisted Affine B.S.A.

Properties on the structure of affine Lie superalgebras [14,15] can also be deduced
by extending the classification of Dynkin diagrams to the affine case. This will in
particular allow us to construct in a diagrammatic way twisted affine super-
algebras from untwisted ones.
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The definition of affme untwisted B.S.A. ^(1) follows that of affine algebras,
i.e. ^(1) is the loop algebra constructed from ^ as

c, (5.1)

where C(t, t~l) stands for the algebra of Laurent polynomials in the complex
variable t and c is the central extension term. The generators of ^(1) satisfy the
commutation relations:

[tm®a,tn®b] = tm + n®[a,b] + m(a,b)δm + n.0c9 (5.2)

using relations of Sect. 2.
A simple root system of an affine B.S.A. ^(1) is obtained from a simple root

system B of ^ by adding to it the affine root which project on B as the
corresponding lowest root. The simple root systems of ^(1) are therefore
associated to the extended Dynkin diagrams used to determine the regular
subsuperalgebras studied in Sect. 3. The Dynkin diagrams for the affine B.S.A. of
rank less than 5 of the unitary and orthosymplectic series are constructed in
TableS, whereas their general form for all the B.S.A is given in Table 9.

5.2. Twisted Affine B.S.A.

Twisted Lie superalgebras ̂  (m) (m φ 1) are associated with outer automorphisms τ
of ,̂ m being the smallest positive integer such that f m = l. ^(m) is a ^
subsuperalgebra, the elements of which are ^-valued functions

tn ® a = 1 1 Γ einθ ® a =/(0) ® a (5.3)

submitted to the condition:

f(θ + 2π)®a=f(θ)®τ(ά). (5.4)

Decomposing ̂  with respect to the f-eigenvalues e2ιπklm(k = 0, . . . , m — 1) one has

»=0^ k (5.5)
k = 0

with
^k = {0e^ τ(a) = e2ίnklma], (5.6)

satisfying the Z/mZ gradation:

[^,^]<z^ + / (modm), (5-7)

while ^f0 is the τ-invariant subsuperalgebra of .̂ The decomposition for ̂ (m}

follows:
m- 1

^(m)= 0 r + fc/w®<^. (5.8)
k = 0
πeZ

The Dynkin diagrams for the twisted affine B.S.A. can be constructed directly
by the following method. For a twisted B.S.A. ^(2) related to an outer
automorphism of order 2, one can decompose ^(2) as a f-invariant sub-
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Table 8. Dynkin diagrams of affme unitary and orthosymplectic superalgebras of rank 1, 2, 3, 4, 5

(1) (1)
OSp(l/2) OSp(l/4)

(1)

OSp(3/2)
(1)

OSp(4/2)
(1)

1 2

SL(l/2)

1 2 2

OSp(2/2)

1 f?

1 1

(1)
OSp(5/2)

OQ-OO
1 2 2 2

OSp(l/6)
(1)

1 2 2 2

SL(l/3) (1)

OSp(2/4)
(1) (1)

OSp(3/4)

OO-OK)
1 2 2 2

1 2 2 2

OXXXO
1 2 2 1

SL(2/2)
(1)

1 1 1

1 1 1
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TableS (continued)
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(1)

1 2 2 2 2

OXXD-OX)
1 2 2 2 2

OSp(3/6)
(1)

1 2 2 2 2

2 2

OSp(l/8)
(1)

1 2 2 2 2

1 2 2 2 2

1 2 2 2 1
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Table 9. Dynkin diagrams of affine B.S.A.

(1)
OSp(2m/2n)

1 2

1 2 2 2

K= 1

2 2 2 2

(1)
OSp(2m+l/2n)

2 2 2 2 2

1 2 2 2 2

! 2 2 2 2 2

K = 1

(1)
SL(m/n)

1 1 1 1
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Table 9 (continued)

487

3 6 4 2

(1)
0(3)

3 4 2

3 3 2 1

1 2 2

2 4 3 2 1

F(4)
(1)

3 2 i

D(2,l;α)
(1)

1 2 1
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(super)algebra <I0 of ̂  and a ^-representation Φγ of this algebra, ^0 and ̂
satisfying Eq. (5.7). A Dynkin diagram of *£(2) is obtained by adding to the Dynkin
diagram of < 0̂ the lowest weight of the ^-representation ^ L . We will call such a
diagram a distinguished one. All the possible diagrams are obtained then by using
the transformation (2.20) with respect to the grey dots. Let us see in detail how it
works for the two kinds of twisted B.S.A., namely Sl(m \ n)(2) and OSp (2m \ 2n)(2\

For the Sl(m n)(2} case (with m, n ̂  3), one can choose τ such that the invariant
subalgebra ^0 is O(πί)@O(ή) and the ^-representation is the (m,ή) repre-
sentation of O(m) φ O(n). A simple root system of the invariant part is given by

2l = {ε1-ε2, . . . , ε m _ 1 - c m , cw-! + em} for O(2m),

zl = {β1-6 ι

2, . . . , fim-ι-fim, εm} for 0(2m-f l ) and

^{^-^,...,^-4,^-1 + 4} for 0(2/7),

A = {δl~δ2, . . . , <>Vι-A, <U for 0(2/7 + 1),

The lowest weight of the representation (m,/ι) is — β j — δl.
One has therefore a Dynkin diagram of the type

(2)
SL(2m/2π)

(2)
SL(2m f1/2π)

(2)
SL(2m+1/2n+1)

In the case SI(2 \ 2n){2) (with n ̂  2) (respectively 5/(2 \ 2n + 1)(2) (with « ̂  1)X the
automorphism τ can be taken such that the invariant subsuperalgebra ^0 is
OSp (2n \ 2) (respectively OSp (2n + 1 2)). The ^0-representation ̂ t is the (2/7,2)
(respectively (2 n -f 1,2)) representation of SO (2 /7) (x) Sp (2) (respectively
SO (277 + 1) (x) S/?(2)), whose lowest weight is — ε — J t . The distinguished simple
root system associated to the distinguished diagram of the invariant part
OSp(2n\2) (respectively OSp(2n + 112)) is

2l = { ε - ( 5 l , d \ - ί 5 2 5 . . . , ( J I I _ 1 - d ; 5 5 n _ 1 + < J π } for O5/?(2«|2),

zί = {ε - δ,, δ, - (J2, . . . , ί Λ _ ! - (Jπ, δn} for OS/H2/7+ 1 1 2 ) .

Therefore the Dynkin diagrams for S I ( 2 \ 2 n ) ( 2 } and S/(2|2/7-f 1)(2) are
respectively

SL(2/2n) ( 2 )

SL(2/2π + 1)
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In the case of SI (I \ 2n)(2} (with n ̂  2), one can choose as invariant subalgebra ̂ 0

O(2n). The ̂ -representation $1 is the fundamental representation (2ri) of O(2ή).
Its lowest weight is —δl. Therefore the Dynkin diagram of SI (I |2π) (2) is

SL(1/2n) (2)

For the O5/? (2m 1 2n)(2} case (with m ̂  2), one can choose τ such that the invariant
subsuperalgebra ^0 is OSp(2m—l\2n). A simple root system of the invariant
part is given by

The ^-representation ̂  is the fundamental representation of OSp(2m — 1 \2ή)
whose lowest weight is —δl. The Dynkin diagram for OSp(2m\2ή)(2^ is then

1 1 1 (2)

-0 - Q \ φ OSp(2m/2π)

In the case oΐOSp (2 \ 2n)(2\ there exist an automorphism τ such that the invariant
subsuperalgebra ^0 is OSp(i \2ή). The ^-representation Φ λ is the fundamental
representation of OSp(\ \2ή). The simple root system of the invariant part ^0 is

The lowest weight of the ̂ l representation of ^0 is —δ1. One obtains the
following Dynkin diagram for OSp(2\2n)(2):

OSp(2/2n)(2)

For SI (112/7 + 1)(4) the invariant subalgebra can be taken as O (2n + 1) and the ̂ 0-
representation Φ\ is the fundamental representation of O(2njr 1) whose lowest
weight is —δί. The Dynkin diagram of SI (I \2nJ

Γ 1)(4) is thus

SL(1/2π + 1)(4)

Some more details about this particular case can be found in [16].
The Dynkin diagrams for the twisted affine B.S.A. of rank less than 4 of the

unitary and orthosymplectic series are constructed in Table 10, whereas the
general form of all the twisted B.S.A. is given in Table 11.

5.3. Folding Method for Affine B.S.A.

The folding method (see Sect. 4) applied to Dynkin diagrams of affine Lie algebras
can lead in certain conditions to twisted affine Lie algebras [17]. Such a property
can also be obtained for affine B.S.A. Hereafter we will study the folding of
symmetric Dynkin diagrams associated to affine B.S.A. Special inclusions among
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Table 10. Dvnkin diagrams of twisted unitary and orthosymplectic superalgebras of rank 1, 2, 3, 4

OSp(2/2)

OSp(2/4)

CΣ\V ;

(2)

SL(l/3) SL(l/4)

SL(2/2)

1 2 1

SL/3/2) (2)

1 1 2

OSp(4/2) (2)

cxcs
1 1 1

(2)
OSp(2/6)

1 2 2 2

(2)
OSp(4/4)

cxo-o^
1 1 1 1

1 2 2 2

OSp(6/2) (2)

CXO-O^φ
1 1 1 1

SL(l/6)

T^x>

1 2 1 1 2 2

SL(2/4)

2 1

1 2 2 1

SL(5/2) (2)

1 2 2 2

OXX3X)
1 2 2 2

2 2

SL(l/5)
(4)

cxo^
i i i

SL(3/3) (2)

CXOX)
1 1 1

1 1 2

SL(3/4) (2)

(2)
SL(3/5)

CXO-OX)
1 1 1 1

1 1 1 1

1 2 2

SL(l/7) (

1 1 1 1
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Table 11. Dynkin diagrams of twisted affϊne B.S.A
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SL(2m/2n)
(2)

2 2 1

2 2 2

2 2 2 2

2 2 2 2 !

K = l

SL(2m+l/2n)
( ^

2 2 2 2 2 2 2

1 iir 2 2 2 2 2

2 2 2 2

K = 0

1 1

2 2 2 2

κ = l

2 2

OSp(2m/2n)
(2)

SL(2m+l/2n+l) K = 0
(2)

OSp(2m/2n)

SL(2m+l/2n+l)

K = 0

K = 1
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affine B.S.A. will be obtained. More precisely we will see that starting from the set
of untwisted affine B.S.A.'s, successive foldings allow us to reconstruct all the
possible twisted B.S.A.

• Folding of OSp(2m\2n)(l) (with m^2)
Let us start with the following Dynkin diagram of OSp (2m \ 2/?)(1) which has a Z2

symmetry

« .
OSp(2m/2n)

The corresponding simple root system is

Λ = {aQ = k-2δl9 cίί = δί -δ2, . . . , oίn.1 = δn,1-δn, xn = δn-εl9

ttn+ 1 = £1 ~~ C2' 5 αn + m- 1 ~ £m- 1 ~ £w > ^π + m ~ 6'm - 1 "i~ εm) '

where fe is the isotropic affine direction. The folding is defined by the
automorphism τ such that

τ(α ί) = α ί ( z = 0, . . . , m + w - 2) τ(απ + w _ 1 ) = αw + m τ2 - 1 .

The folded Dynkin diagram is

Q-VΓV -O - @ - O- -Ql̂ Q OSp(2m-1/2π)( 1 )

α 0 α 1 α π - ι oc n α n+1 <x n+m_2 α

with α^ + m _ ] = (αM + m _ ! 4- αn + m)/2 and the corresponding folded simple root
system is

Therefore, the folding of the affine superalgebra OSp(2m\2n)(i} leads to the
superalgebra OSp (2m — 1 \2n)(l\ See the general schemes in Table 12.

• Folding of OSp (2 \ 2n)(1)

In the case of OSp(2\2ri)(l\ the Z2 symmetric diagram is

OSp(2/2π)^

α n

 α π+1

with the simple root system

The folding is defined by
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Table 12. Folding schemes for affme B.S.A.
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OSp(2m/2n) (1)

2 2

OSp(2m-l/2n)
(1)

2 2 2 2 2

2 2 2 2 1 ) 1

2 2 2 2

2 2 2 2 0

1 2 2 2 2 2

(^J ^ 2 2 2

2 2 2 2

2 2 2 2

K= 1
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Table 12 (continued)
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(1)
OSp(2m+l/2n)

i (X

1̂ *"*
1 LΓ 2 2 2 2 2

2 2 2 2 2

K = 0

2 2 2 2 2

C^_^>~*~'
CT2 2

K = l

OSp(2m/2n)

2 2 2 2

The folded Dynkin diagram is

α α

corresponding to the simple root system

with α'0 = (α0 + α t)/2. One obtains the twisted superalgebra OSp (1 1 2n)(2] which is
actually isomorphic to OSp(\ \2n)(1\

• Folding of OSp(2m + 1 12«)(1) (with m^2)
We consider the following Z2 symmetric Dynkin diagram of OSp (2m + 1 12/7) ( 1 )

OSp(2m+1/2π)
(1 )

with its simple root system
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The folding is defined by the automorphism τ

τ (αf) = oct (i = 2, . . . , n + m) τ (α0) = α A τ2 = 1 .

The folded Dynkin diagram is

(2)
-Q—--ϋ—O OΦO OSp(2m/2n)

« o α 2 α n « n^i α n+2 α ̂ ^ α n+m

and the corresponding simple root system is

π + 2

with α'0 = (α0 4- αJ/2. One obtains as folded superalgebra the twisted affine
superalgebra OSp(2m\2n)(2\ See also the general schemes in Table 12.

$ Folding of OSp(3\2n)(1]

In the case of OSp(3\2ri)(1\ the Z2 symmetric diagram is

• "~ Q ^ φ OSp(3/2n;

«- rr̂  ex 9 α α

(1)

with the simple root system

J = {α0 = A:-e-(J 1 , α 1 =c-5 1 , α2 = ί l-(J2, . . . , απ = 5 π _ 1 -(Jπ,

The folding is defined by

τ(α ί) = α ί (/ = 2, . . . , w + 1) τ(α0) = α1 τ 2 - ! .

The folded Dynkin diagram is

OSp(2/2n) (2)

corresponding to the simple root system

χ4 / = {αό = fc/2-5 l5 α 2-c5 1~(5 2, . . . , α^^.j-^, αtt + ]-4}

with αό •= (α0 + α1)/2. One obtains the twisted superalgebra OSp(2\2n}(2\

9 Folding of SI (2m \ 2n)(l] (with m, n ̂  2)
One starts from the distinguished diagram of Sl(2m\2n)(l} (which is simply the
extended diagram of the distinguished diagram of SI (2 m \ 2 n)),
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The associated simple root system is

Δ = {aQ = k-δl+ε2m, α 1 =(5 1 -(5 2 5 . . . , α 2 n _ t =(52π-ι -<52π,

α2n ~ ^2n ~£1 5 ^2n + 1 = el ~ C 2 ? > α2n + 2m- 1 = £2m - 1 ~~ £2m j

The folding is defined by the automorphism τ of order 2 such that

τ(α ί) = α 2 w _ ί ( ί = 0, . . . , 2n) τ(α,0 = α4w + 2 w _ / (/ = 2fl + l, . . . , 2« + 2w-l ) .

The folded Dynkin diagram is

O— - O <XO SL(2m/2π) ( 2 )

α π α n - 1 α 1 α Q

 α n+ι α n+m_, oc n+m

and the simple root system attached to it is

J / = { α ό = fe/2-^ 1-£ l, α/

1 = z/ 1 -zί 2 , . . . , α;_! =J n _ 1 -^ί l l ,

απ = 2^ίn, otn+ 1 = E± ~ E2, . . . , αn + m _ t = ^cm_ i — ̂ m9 αw + w = 2

where £",- and zίj correspond to the rescaled roots

with a) - (αf + α 2 / 7_ J/2 (z = 1 , . . . , w) and α}_w - (a7- + a4n + 2 m_ j)/2 (/= 2n + 1, . . . ,
2n + m). One obtains finally the twisted affine superalgebra Sl(2m\2n)(2\

• Folding of Sl(2m\2n)(2) (with m, n^2)
Consider the Dynkin diagram of Sl(2m\ 2n){2} obtained just above. At first sight,
this diagram has no apparent symmetry. Using Weyl transformations with respect
to grey dots, we will transform this diagram into a Z2 symmetric one, as follows:

SL(2m/2π) }

which corresponds to the simple root system

The automorphism τ associated to the folding is

r(a;) = a f ( / = 1, . . . , « + w, / Φ « — !,«) τ(a n _ 1 ) = aw τ2 = 1 .

The folded Dynkin diagram is

K>£O SL(2m-1/2π,(2)

α n - 1 α π - 2 ttO α n+1 " n+2 « n+m-1 α π+m



Basic Lie Superalgebras and their Affme Extensions

with the simple root system
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with <*„_! =•(#„_! +αw)/2. The folding of the Sl(2m\2n)(2} superalgebra leads
therefore to the SI (2m — I \ 2 n ) ( 2 } superalgebra.

* Folding of SI (2m - 1 1 2/?)(2) (with w, /t ̂  2)
Let us start with the previous diagram of SI (2m— 1 \ 2 n ) ( 2 } . After Weyl
transformations with respect to the grey dot, we obtain the following diagram,
which exhibits a Z2 symmetry

α π - 1 α π - 2 i

The associated root system is

The automorphism τ defining the folding is

τ(α.) = α ί ( / = l 5 . . . , n + m-2) τ(an+m_{

The folded Dynkin diagram is

SL(2m-1/2n-1)
(2)

with the simple root system

with < + m _ 1 = (αn + w l _ 1 -r αΛ + ΪW)/2. The folding of S7(2w-l |2«)(2) gives the
twisted superalgebra SI (2m — 1 2/7 - 1)(2).

Φ Folding of Sl(2\2n)(2] and 5/(l 2/7)(2)(^^2)
The case of Sl(2\2n)(2} and S/(l 2n)(2} demands special attention since the
resulting folded diagram doesn't contain any grey dot, i.e. any fermionic root of
null length. Consider the diagram of Sl(2\2n){2} which is constructed by the
standard way explained above

0 « n+1
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Successive Weyl transformations with respect to the grey dots lead to the diagram

SL(2/2n) ( 2 )

with the simple root system

The Z2 symmetry of the left of the diagram is associated to the automorphism τ
such that

The folded Dynkin diagram is

J^*-s α °

and the folded simple root system is

with α;_ 1 = (α n + 1 +α n ) 2 ,

which corresponds to the twisted superalgebra 57(1 2n)(2\

Now the remaining Z2 symmetry of the diagram gives rise to the folding
defined by

The folded diagram is

SL(1/2π-1)

and the corresponding simple root system is

with α'0 = (α0-}-αM + 1)/2. One obtains therefore the twisted superalgebra

6. Conclusion

We have shown that the use of Dynkin diagrams, which is so convenient to deduce
many characteristics of a Lie algebra, can be extended to the case of Lie
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superalgebras. The main difference between a simple Lie algebra and a
superalgebra at this level is the possibility for a Lie superalgebra to admit several
Dynkin diagrams. This technical difficulty is in part softened by a systematic
method of determining the non-equivalent Dynkin diagrams [5]. It has therefore
been possible to construct the regular sub(super)algebras of a B.S.A. and to
recognize in most cases the outer automorphisms of a superalgebra by looking at
the symmetries of its Dynkin diagrams. If some singular sub(super)algebras have
been determined by folding symmetric diagrams, the general classification of
singular sub(super)algebras of a B.S.A. is not yet known. Let us mention at this
point a first step in that direction can be found in [18] where symmetric
superspaces are studied - see also [19]. It is obvious to say that superalgebras
constitute a natural ingredient in supersymmetric theories. Note in particular that
in conformal extended supergravity the symmetry group is SU(2,2\N), which
contains the (anti) De Sitter supergravity symmetry group OSp(N\4) [20] (see
also Sect. 4). In the spirit of a systematic research of possible symmetries in
supergravity theories, the complete knowledge of sub(super)algebras of a unitary
or orthosymplectic superalgebra might be useful. Among other relevant
approaches, let us also note the attempt of treating supergravity models as theories
of spontaneous breakdown in analogy to the pure Einstein gravity [21].

Still in the context of finite dimensional superalgebras, one may wonder to
what extent the feature of a superalgebra to admit in general more than one
Dynkin diagram can be exploited in the study of highest weight representations
and also in the reduction of product of representations.

In the case of affine Lie superalgebras, symmetries of the Dynkin diagrams
involving the affine root give a simple method for obtaining the twisted affine
superalgebras. Vertex operators representation of orthosymplectic superalgebras
have already been constructed [22]. Using special inclusions among superalgebras
the case of SU(m n) vertex operator representation can also be studied, and the
just mentioned folding procedure used to determine the vertex operator
construction for twisted affine superalgebras [23]. Actually affine superalgebras
show up when considering symplectic bosons appearing in the BRST treatment of
fermionic string theories [24]: in this approach vertex operators occur in
constructing the corresponding superconformal ghosts [25].
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