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Abstract. In this paper, we study the Lyapunov stabilities of some "semi-
classical" bound states of the (nonhomogeneous) nonlinear Schrδdinger equation,

ifi — = - — Δφ + Vφ-\φ\p~ιφ, 1 ^ p < l + 4 .
dt 2 n

We prove that among those bound states, those which are "concentrated" near
local minima (respectively maxima) of the potential V are stable (respectively
unstable). We also prove that those bound states are positive if h > 0 is
sufficiently small.

1. Introduction

In [W.a] and [FW], the following nonlinear Schrδdinger equation (abbreviated
as NLS) on R

was proposed to study to stabilize linear modes concentrated near local minima
for sufficiently small h > 0 for potentials bounded below. Unlike the linear case,
Floer and Weinsteίn proved the existence of solutions of (1) for sufficiently small
h > 0, which is localized near each nondegenerate critical point of V for all time.
We call these solutions "semiclassical solutions." In [O3], the present author
generalized the existence result for arbitrary potentials with mild restrictions on
the oscillations of V at infinity. Let us briefly summarize the existence result in
[FW] and [O3]: If we rescale time and space by t-+hs and x-*hy, then rewriting
5 by t, Eq. (1) becomes

where Vh(y) = V(hy). Without loss of generalities, we assume that 0 is the critical
point we are considering and that V(0) = 0. Then as h -± 0, Vh -> 0 uniformly over
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all compact subsets of R. In this sense, we consider the standard nonlinear
Schrδdinger equation

as a limit of Eq. (2). It is well-known that among the standing solutions of (2), i.e.,

the solutions of the type e~iEtu(y) for a fixed £ < 0 , there is the unique ground

state with center 0, uo(y) = yj — 2E sech yj — IEy. Now we are ready to state the

main existence result in [FW] and [O3].

Theorem (Existence). Let V be a potential which is bounded below and (V — a) > 0
and (V — a)'112 is uniformly Lipschίtz for some αeR. Moreover we assume that 0 is
a nondegenerate critical point and V(0) = 0 and V — E > ε > 0 for some ε > 0. Then
there is some ho>0 such that for all h with 0 < h < h0, the equation

(4)

has a solution of the type u0 + φh with the estimates;

|| φZth \\2

h £ K(e~w + sup I V(hy + z) - F(0)|2

for any p with 0 < p < 1/h and \z\ < hv, v > 1, where \\-\\h to be defined later. Moreover

φzh depends on h in the C1-sense.

From the point of view of Hamiltonian systems, NLS is an infinite dimensional
Hamiltonian system whose generating Hamiltonian is the energy functional

where Hh:= — (l/2)(d2/dy2) + (Vh — E) as a quadratic form whose domain is given by

Q{HHY-=

1, dφ
ly

•«Vh-E)φ,Φ>dy<co\.

(Note that under the assumption on Kand E in Theorem (Existence), the differential
expression —(l/2)(d2/dy2) + (Vh — E) is essentially self-adjoint on CJ(R) and so it
has the unique self-adjoint extension). Moreover, NLS has a natural S1 — symmetry
(i.e., phase rotations) in general and an additional translational symmetry for
constant potentials. The conserved quantity, corresponding to the S1 -action is
nothing but the probability density

In this point of view, the bound states found above correspond to relative equilibria
with respect to the Sι-symmetry. Thus a natural question to ask is the orbital
stability of the bound states under the flow of NLS. The main theorem of this
paper is the following:

Theorem (Stability). Assume that (1) has a global flow on Q(Hh) and that V satisfies
the conditions in Theorem (Existence). Then when 0 is a local minimum (respectively
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maximum), then the bound state found in Existence Theorem is (Lyapunov) orbitally
stable (respectively unstable) ifh is sufficiently small.

Here we will not attempt to make the assumption more clear because the
Cauchy problem of NLS itself is still to be investigated for general unbounded
potentials. However we should mention that the present author has established
the existence of the global flow on Q(H) (for Cauchy problem h is irrelevant as
long as it is positive) for potentials satisfying the condition that \DaV\ are bounded
for aU\oί\^2 (e.g., harmonic potential) in [O2]. Therefore in those cases, this theorem
is a rigorous theorem but this theorem will still hold as long as the global flow
on Q(H) exists.

For the case when V=0, it has been proven in [LS, CL] and [W.m] that the
ground state of NLS is orbitally stable with respect to the angular and translational
symmetries, i.e. the shape of the wave packet is stable near the ground state. But
in our case, the translational symmetry is irrelevant and so we also have to take
care of the "spatial stability" as well as "shape stability." To take care of this spatial
stability, we exploit the nonlinear Ehrenfest's law established in [O2].

Now let us summarize the contents of the present paper. In Sect. 2, we establish
an easy estimate on the error term φzh. In Sect. 3, we study spectral properties of
the real and imaginary parts of the linearized operator. As a corollary, we prove
(Theorem 3.5) that the bound states are positive iίh is sufficiently small. In Sect. 4,
we prove that the semiclassical bound states are stable if 0 is a local minimum.
For the stability, we use a priori estimates on the linearized operator established
in Sect. 2 and then use a standard procedure of the "Energy-Casimir Method"
(see [HMRW]) to get Lyapunov stability. In Sect. 5, we prove that the semiclassical
bound states are Lyapunov unstable if 0 is a local maximum. For the instability,
we follow the idea behind Ehrenfest's law mentioned above to construct a Lyapunov
function to get instability. This kind of instability result is a new phenomenon for
the nonlinear Schrδdinger equation with potentials, which does not appear in the
case when V is constant.

Around the same time, Grillakis-Shatah-Strauss also [GSS] obtained the
stability result modulo the fact established in Propositions 3.4 and 3.6 in the present
paper. And after this work was done, we got a preprint of Grillakίs [G] where he
studied spectral properties of Schrδdinger type operators (a similar result on
symplectic matrices was obtained previously by the present author and his
collaborators [OSKM]). With his results and some general arguments on getting
Lyapunov instability from spectral instability, he was able to get the same instability
result, if the spectral properties established in Propositions 3.4 and 3.6 in the present
paper were given. But our proofs are quite different from theirs in both cases and
in particular our instability proof is more intuitive and explicit.

2, Preliminaries

Since we study the stability of "semiclassical" bound states, i.e., only for small
h > 0, it is crucial to have control of the perturbation term φh in Theorem (Existence).
Following [O3], we control the perturbation term φzh by the following norm:
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Definition 2.1.
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d2φ

If \{Vh-Ef\φ\2dy.

Now the following lemma will be essential for later discussions.

Lemma 2.2 Let φz h be as in Theorem (Existence). Then we have for any fixed

if 0 < h < h4 for some ft4 > 0 where K1 depends only on ε.

Proof By Theorem (Existence), we have

KΛh^K:
sup I V(hy + z) - K(0)[2 + eμμψl

for any p with 0 < p < l/h. Obviously, the first and the third terms satisfy the
required estimates since they are of order O^00). All we have to estimate is the
middle term. Since V is non-degenerate at 0 and

V(y) - V(0) = i V"(Q)y2 + 0(y3)

a s I jμ j —> 0, w e h a v e

\V(y)-V(0)\^K3\V"(0)\y2

if I y I < r for a sufficiently small r > 0. Now,

sup I V(hy + z)- K(0)|2 - sup | V{x + z) - V(0)\2 ^ sup | V{x) - F(0)|2.
ly|<P \x\<ph \x\<\z\ + ph

Recall that \z\ < hμ for μ > 1 and p is arbitrary as long as 0 < p < l/h. Setting p =
h~\ ε > 0 , we have

sup ^ sup
\x\<\z\ + ph

•phf

if ft is sufficiently small. Hence,

sup I V(hy + z) - F(0)|2 ^ K4ft4(1 " ε )

IJ'KP

for some K4 > 0 since μ > 1. Since ε is arbitrary in 0 < ε < 1, we are done.
Q.E.D.

It is quite confusing to directly consider the stability in the original NLS,

dt 2 dx2 Vψ-\φ\2ψ,

as we want study the stability properties for sufficiently small h and we have to
estimate many quantities with respect to h, and so we rescale the time and space
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variables by t = hs and x = hy. Replacing s by t, we get the rescaled equation

.dψ 1 d2ψ 2

dt 2 dy2 h

3. Spectral Properties of Lh

+

Lemma 3.1. i) The operator L% = — (l/2)(d2/dx2) + λ — 3ul has just one negative
eigenvalue —3λ and one dimensional kernel in H1. Moreover the corresponding
eigenspaces are spanned by u% and u'o respectively.
ii) The operator Vί = — (l/2)(d2/dx2) + λ — u% has one dimensional kernel in H1,
which is spanned by u0.
iii) Neither operator has positive eigenvalues, and

inf ess (L%) - inf ess (L°_) = λ.

Proof. Recall that uo(x) = ̂ /2λ sech ^/ΐLc. It is enough to prove the proposition
for λ= 1 by the standard rescaling procedure. Then, the statements in i), ii) and
the first part of iii) are well-known (see [T]). The second statement of iii) comes
from the fact (see e.g., [A]) that λ — 3u\ and λ — u% approach ias}c-> + oo.

Q.E.D.

Corollary 3β2. i) Let v be orthogonal to the eigenspaces of'L°+, i.e., v 1. span {u'o, u^}.
Then

ii) Let v be orthogonal to the eigenspace of L°_, span{tί0}. Then,

Proof. These come from Lemma 3.1 and the mini-max principle (see [ReS]). More
specifically,

inf < L ° P ' P >

J-Jeigenspaces} \V ,U)

Hence, we are done. Q.E.D.

Definition 3.3.

+ ~~ 2dx2 h Mfi>

Note that L+ (respectively ίΛ) is the real (respectively imaginary) part of
the linearized operator of (4) at uh. Now the following propositions are crucial for
both positivity and Lyapunov stability of the semiclassical bound states.
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Proposition 3.4. There exists h5>0 such that ίfh<h5, then ίΛ has no negative
spectrum and one dimensional kernel spanned by uh. Moreover, the spectrum besides
zero is positive away from zero, uniformly in h.

Proof. We know that uh satisfies the equation,

Lh_u = - + (V — E)u —u2u = 0
h 2 d χ 2 v h ) h h h

i.e., uh is in ker ίΛ. To prove the proposition, again by the mini-max principle we
have only to prove

inf ~ > μ > 0, (6)

where μ does not depend on h if h is sufficiently small. Let υluh, i.e., (vvuh) = 0
and decompose

where ίλ, =(<MO 5U>/<WO,MO>)UO and vλ = v — vr By definition, (uo,vλ} = 0. Since
ίΛ = Li + Vh + (UQ - u\\ we have

< L?!_ y, v ) = < L0. ι;, z; > + < F̂ z;, t; > + < (MQ ~ w^) y? y ) 0)

Recall that we have assumed that

V-E=V + λ>ε>0,

and so

Vh - E > s > 0 for all h > 0.

Now,

^/t<D1,i;1> (by Corollary 3.2 ii))

^λ^υy-λiv^}. (8)

And,

_ (wo?17) _ (uo-~uh,v)

since we assume that (uh,v} = 0. Therefore,

<t/0,w0>

By Lemma 2.2, we have \\uo — uh\\h-+0 as ^z-^0. Moreover, by the Sobolev
imbedding theorem D(Hh) q ί ί 2 q L0 0, we have | | M 0 — Mft||Lco->0 as h->0 and in
particular
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for some K5 > 0. Now we choose ft > 0 so small that

\\uo-uh\\< έ I I w0 II> (10)

From (9) and (10), we have

Substitute this into (9) and then we get

/ T 0 \ ~^> i / \ / \ I 2 \ / \ ί1 O\

2 V 2 /
Moreover,

^^~2K5(v,v)=j(v,v). (13)

Here, we used (10) and (11) for the second inequality. Now substitute (12) and (13)
into (7) and then,

^ ε < ϋ 5 v > i ε < ι ; , ι ; > = < ι ; , ι ? > .

For the second inequality, we used the assumption λ+ Vh>ε>0. Therefore,

if we choose ft > 0 so that (10) and (11) are satisfied. Hence 0 is the lowest eigenvalue
of Lh_ and inf ess (iΛ) ^ (3ε/4) > 0 where ε does not depend on ft if ft is sufficiently
small. Q.E.D.

With this proposition, it is immediate to get the following theorem.

Theorem 3.5 The semiclassical bound states found in [FW] and [O3] are positive
ifθ<h<h5 so that ίΛ satisfies the properties in Proposition 3.4.

Proof. From Proposition 3.4, we have proved that yh is the ground state of the
Schrδdinger operator
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The theorem then follows from the general fact on Schrodinger operators that the
ground state is positive (see [ReS]). Q.E.D.

Now we study the operator L +.

Proposition 3.6 There exists some h6>0 such that if 0 < h < h6, then Lh

+ has no
kernel and

i) when the critical point is a local minimum, then L+ has one negative eigenvalue
near — 3λ and one positive eigenvalue near 0,
ii) when the critical point is a local maximum, then L+ has one negative eigenvalue
near — 3λ and one negative eigenvalue near 0.

And all the remaining spectra besides the ones above are positive away from 0
uniformly in ft, i.e.,

vy (14)

for some K6>0 if v is orthogonal to the above eigenspaces.

Proof Let us first prove the last statement. This can be proved in the same way
as the proof of Proposition 3.4 using i) of Corollary 3.2. More specifically, consider

iπf < L ^ > .

Note that uh -> u0 in H2 because

where C does not depend on h and hence uh -» u0 in H2 from Lemma 2.2. Therefore
the projection of υ onto span {WQ, U'O} can be made arbitrarily small uniformly over
v if v±{u2,u'h} and ||y|| = 1. Now apply the similar arguments as the proof of
Proposition 3.4 using Corollary 3.2 to get the last statement, since the eigenspaces
of L\ are close to span {u2} or span {i^}.

Now for i) and ii), it is easy to prove the existence of one negative eigenvalue
near each of — 3λ and 0 from the perturbation theory of Schrodinger operators
noting that L+ -*L+ in the strong resolvent sense (see [ReS] or [K]). To prove
the remaining statements, we need the following lemmas.

Lemma 3.7. There exists some hΊ>0 such that ifQ<h<hΊ, we have

Lemma 3.8. Let ueQ(Hh). Then there exists some h8>0 such that ifθ<h<h8,

\<L\u'h,u>\^K8h
2\\u'J'\\u\\

for some Ks>0.
Assuming these two lemmas for the moment, we first prove i). If 0 is a local

minimum (nondegenerate), then V"(0) > 0, and so

u'h9u'h>. (15)
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Now, let (u,u%y = 0 and decompose ιι = u,+u1, where u, is a multiple of u'h
and uy is the orthogonal to u'h. Then

since <χ,«,? > = 0. Now,

<L*+H,H> = <L f t

+(K.+M1),M | + M1>

= <L*+M.J,M | |> + 2 < L * + « | | , M ± > + (Lh

+uL,

£ i V"(0)h2<uP «|,> - 2K8fc2 ||un || || u

£ i H 0 ) f t 2 < M | ! , « t > + C<« ± ,« ± > -

= ( i K"(0) - K8h)h\uv «(> + (C -

± ||

if ft is sufficiently small. Here, the first inequality comes from Lemmas 3.7, 3.8 and
Eq. (15). Therefore,

Hence, the second eigenvalue is positive again by mini-max principle.
Finally let us prove ii). When 0 is a local maximum, then V"(0) < 0 and so we have

Wh,u'h)<o. (16)

Note that <χ,u%} = 0 and that if h is sufficiently small, then

(L\ul,uly< -C,

where C is independent of h. Now by the Rayleigh-Ritz principle (see, e.g., [ReS]),

the second eigenvalue of L\ ^ -\V"(0)\h2 < 0

from (16), hence the proposition. Q.E.D.

Now we prove Lemmas 3.7 and 3.8

Proof of Lemma 3.7. Differentiate the equation

2dy2

with respect to y; we get

dy dy dy

i.e.,

L\u'h=~V'huh. (17)
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Therefore,
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u £ X > = - <V'huh, u
;

h) = - J

(18)

by integration by parts. Now,

(y) - xl{y)<{y))dy.

We can easily see using Lemma 2.2 that the second term is of order O(h3). For the
first term, since V is smooth and we cut-off u0 by χh, and so that the integrand
and its derivatives are uniformly bounded, §V"(hy)χ%(y)ul(y)dy is smooth at ft = 0
as a function of h. Hence,

J V"{hy)ul{y)dy = J K"(0)w§

as we assume that V(0) = F'(0) = 0. Therefore,

<L*+«;, M;> = W\uW H O ) + o(ft3) = in 2
 H O ) < «0, "0

Since !<<><> - <"Ό>"Ό>I = °(h3)> w e h a v e

Proof of Lemma 3.8.

Q.E.D.

£ ί
dV

ι dy\\u\2dy.

Now, we estimate j

dVh

dyU"
dy,

ί I V\hy)utl{y)\2dy = h2\\ V'(hy)χh(y)u0(y)\2dy + O(h3),

as in the proof of Lemma 3.7. Moreover,

G(hy.= l\V'(hy)χh(y)u°(y)\2dy

is a smooth function of h. Then, we have

G(0) - G;(0) = 0

and

G"(0) = 2V"(0)2$y2u2

0(y)dy.
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Therefore,

Hence,

and so we have

dVh

dy

21

G(h) = 2F"(0)2 \y2u2(y)dy h2 + 0(h3).

dy = 2F"(0)2 $y2ul(y)dyh* + O(h5),

dy^K8h
2\\uf

h\

if h is sufficiently small, as || u'h \\ ~ \\ u'o || in the obvious sense. Q.RD.

4. Stability at Local Minima

With the study of spectral properties of the linearized operator in the previous
section, the remaining argument on stability is quite standard. We will follow the
standard procedure of "Energy-Casimir (or Energy-Momentum) method" (see
[HMRW]) by adapting the arguments by Laedke-Spatschek [LS] and M.
Weinstein [W.m].

If we view Eq. (1) as an (infinite dimensional) Hamiltonian system with
51-symmetry (i.e., phase rotation), the solution uh is a "relative equilibrium" with
respect to this symmetry. It is a general fact that

satisfies Eq. (1) with the initial condition ψ(0,y) = uh(y). Since uh is nontrivial, we
must prove "orbital stability" rather than "point stability" of uh.

Definition 4.1.

= mϊ(i(eiyVφ - Vuh,e
iyVφ - VuΛ>

+ ((Vh~E)(ei->φ-uh),ei?φ-uh)).

Here we have chosen this distance because it is associated with the norm under
which the energy functional is smooth.

Definition 4.2. The solution uh is (Lyapunov) stable if for any given ε > 0, there exists
a δ > 0 such that if p& (ψ(0)) < δ, pΘ (φ(ή) < ε for all ίeR, where φ(ή satisfies the
time-dependent NLS (1).

This is just the standard definition of the Lyapunov (orbital) stability restricted
to the solution uh which we want to study.
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Let us write the perturbed orbit as

φ{t) = uh + u(ή + iv(t)

and set w(ί) = u{ή + iv(t), where u, v are real. Now consider the function

"Energy" "Momentum"

Recalling the definitions of E(φ) and L(φ), we have

Fh(φ) = Eh(φ)-EL(φ).

Since the energy and momentum are conserved, this Fh is also conserved under
the flow of (1). As in the Energy-Casimir method, we control the distance function
pΘ with this conserved function. A little computation using that uh is a solution
of the time independent NLS (4) gives

Fh(uh + w) - Fh(uh) = ϊ\<K + w), (Hh - E)(uh + w)> - \\\uh + w\4dy

2wV

since Q(H)<^. H1 c; L 3 or L4. We write

0 L*_

As we showed in the previous section, Lft_ has one dimensional kernel and
L+ has one negative eigenvalue with the corresponding eigenspace one dimensional
A priori, these eigenvalues obstruct the point stability, but since we want to prove
orbital stability we will use some constraints to overcome this problem. These
constraints naturally come in from the 51-symmetry. The constraint will be removed
using conservation of the corresponding momentum function, i.e., L2-norm.

First, let us consider initial conditions which satisfy

l\ψ(0)\2dy = $uϊdy, (19)
and so

for all t by the conservation of lAnorm. This constraint will take care of the
negative eigenvalues of L°+. We still have to take care of the kernel of L0,, and so
we introduce another constraint which naturally comes in from the fact that we
want to prove orbital stability.

Lemma 4.3. Assume that

pϊJφ) = ((Hh-E)(φ-uh),φ-ufιy

i.e., φ realizes the minimum distance between φ-orbίt and uh-orbit. Then if φ — u + iv,
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u,v real,

jv{y)' uf (y) dy = 0. (20)

Proof. Differentiate {{Hh — E){eiyφ — uh), eiyφ — uh) with respect to y at γ = 0. Since
the above function of y attains its minimum at y = 0 from the hypothesis, we have

= 2Re(i((Hh-E)φ,φ-uh))

Here, we used the self-adjointness of Hh — E for the third equality and the fact that
uh satisfies

for the seventh equality. Q.E.D.

Now, we prove that iΛ is positive definite under the constraint (20).

Proposition 4.4. Assume that veQ(Hh) satisfies {20). Then, there is a constant K9 > 0,
h9 > 0 such that

ifθ<h<h9.

Proof. Let us first prove that

(Lh_v,υ}^C(v,υ} (21)

for some C > 0 if v satisfies (20) and h is sufficiently small. Note that we already
proved that

and equality holds if υ is a scalar multiple of uh, for 0 < h < h5. Let 0<h<h5 be
a fixed constant. Assume that

inf <^>=0.

Then the above infimum is attained by some nontrivial u with < u, u\ > = 0,
and u satisfies the Euler-Lagrange equation

for some ηsR. Indeed, let vt be a minimizing sequence with H^ || = 1 and

<JL
Λ_ι;ίίi;i>J,O. Then,

0 < {{Hh - E)vh vt) ^ $u*vfdx + η (22)
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eventually for all η>0. Since \\Vi\\ = 1 and u\ is bounded, ll^llρ^) is bounded.
Therefore vt converges weakly to some u in Q(Hh). Since uh has an exponential
decay, we have

Moreover u satisfies <w, u^> = 0 by the weak convergence. Now recall by the
choice of E in Theorem (Existence) that

for all veQ(Hh), and in particular

<(Hh-E)vi,υi>^s(vi9vi> = ε.

Then from (22) and if we choose η < ̂ ε, we have

§u2vfdx>^ε

eventually and so

\u\u2dx>\^

hence u is not zero. Then it follows from the lower semi-continuity of the quadratic
form <ίΛy> that

0 ^ <ίΛu,u) g liminf <L*_ vi9 vt) = 0

and thus a nontrivial u/1| u || attains the minimum and it satisfies the Euler-Lagrange
equation. Now by rewriting u/\\u\\ by u, we have

0 = (u,Lfluh) = (Llu,uh) = η(uluh}.

Therefore, η = 0 and so Lh_u = 0 which implies M = Cwft for some C. However, it
contradicts the fact that uφO and <u,u\> = 0. Therefore,

mf — — : = C1 > 0

<υ,Mft>=0

for some Cx > 0. Hence we have proved (21). Next

= (Hhv,v)> — <u2v,v> ^ (Hhv,v} — C2(v,υy (23)

for some C2 > 0, since uh is uniformly bounded. From (21) and (23)

Therefore,
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Setting C o = 1/(1 + C2ICX\ we are done. Q.E.D

Now let us take care of the negative eigenvalue of L+ using the constraint
(19). As in [W.m], we first consider the constraint

<uh,u) = 0, (24)

which is the first order approximation of (19).

Proposition 4.5. Assume that V has a local minimum at x = 0. Then

<L+tt,tt>^C3<u,M>G W

for some C 3 > 0 and u with (u,uh} = 0 if h is sufficiently small

Proof First, we prove that

. (Lh

+u,u)
W * : = m f (uu^ ( 5 )

Suppose that mh ̂  0. Since <L+ , > is again weakly lower semicontinuous because
l}+ = jj1 — 2u\ and so it is a compact perturbation of iΛ, we can prove that
mh is realized by some ah with (ah,uh} = 0 and | | α j = 1, by the similar argument
as in Proposition 4.4. Then it satisfies the following Euler-Lagrange equation,

Lh

+ah = mhah + ζuh (26)

for some ζ ΦOeR. Now, we claim that ζ φO and

mh > λh, (27)

where λh is the lowest eigenvalue of h\ < 0. Suppose mh S λh (which implies
mh = λh). Therefore,

since the dimension of the eigenspace of λh is one dimensional, and so ah is the
normalized eigenfunction. However, we know that u\ is the eigenfunction of the
negative eigenvalue of L+ and L+ ->L+ in the strong resolvent sense. Moreover,
we know from Lemma 2.2 that uh-+u0 in D(Hh). Therefore ah~Cu%, CφO if
h is sufficiently small and so

<X, ah) - C<Mft,w;f > - C<Mθ5 wg> > 0,

which contradicts the assumption (uh,ah} =0. Therefore, we get (27) and thus
K < mh = 0, since we have proved in Proposition 3.6 i) that λh is the only negative
eigenvalue if 0 < fi < h6. Therefore, L+ — mh is one to one. Now from (26)

Substituting this into (24), we have

0=(uh,(L"+-mhr
1(ulί)L}.

Decompose uh into «,, = «, + uλ, where M, is the part parallel to the eigenvector
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with the eigenvalue λh. Then

0 = (λh + \mh\rι\u2dy

In other words, we have

if ft is sufficiently small. On the other hand, we have

1 d
L°- u0 = - - — τ + λu0 - ul = 0

2 dy

and u0 — +Jlλ sech ^Jlλy. Differentiate (29) with respect to ^ / I to get

2 3wn

(28)

(29)

Now

= 0 i .e.,(L° + )- 1 M 0 =-

= _ 4 A J2A sech2
= - 8 -~ JA sech2

nJ
V

However, this contradicts (28) if ft is sufficiently small since uh -* w0 in H2 and
L+ ~>LQ in the strong resolvent sense. Hence, we have proved (25). Now applying
the same argument as in Proposition 4.4, we are done. Q.E.D.

Once we have Propositions 4.5 and 4.4, the remaining argument to get
Lyapunov stability is a standard argument using Sobolev inequalities (see e.g.,
[W.m]). Hence, we have proved the orbital stability with the constraint (19). Now
let us remove this constraint using the fact that φz^h depends on ft in the C1-sense
(see Theorem (Existence)). Denote the bound states for the nonlinear eigenvalue

E(= -λ) by ul. If ι/>(0) is close to u\, then is close to \\ul\2dy
\ 2

too. Moreover, note that ul is a C1-function of ft and λ and so \\u^\2dy is
differentiable. Now

dλ

if ft is sufficiently small. Therefore if ft is sufficiently small, then
d/d?v\λ = λ$\ul\2dy φ 0, and so by the implicit function theorem, we can find some λ
near λ so that

Now applying the previous argument to «£, we have the following main theorem

of this section.
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Theorem 4.6. There exists some hlo>0 such that our solutions uh found in Theorem
(Existence) are Lyapunov stable ίfO<h<h10 and the critical point of V is a local
minimum.

5. Instability at Local Maxima

In this section, we prove the Lyapunov instability of the solution uh when the
critical point of V is a local maximum, without the restriction on V at oo if the
global evolution exists (e.g., if V is quadratic at infinity (see [Ol])).

5.1. Idea of the Proof. We first outline the idea behind the proof. We have proved
Ehrenfest's law for NLS in [O2],

~<Φt,pΦty = -<ψt,v
fφt)

if φ(0)eQ(H)n£f. From these equations, we can heuristically say that if φt is
localized, then it behaves like.a particle under Newton's equation. Therefore, if
our bound state is translated from the equilibrium position at a local maximum
of V and it is localized for some time, then classical mechanics tells us that the
wave packet should fall into a nearby well. From this heuristic argument, it is
quite natural to choose either the "position expectation value" X:= (φt,xφt) or
the "momentum expectation value" P:= (φt,xφt) as a Lyapunov function. Here
we mean by the Lyapunov function a continuous function which proves the
instability. However, although we believe it to be so, we have not been able to
prove that X or P is in fact a Lyapunov function, due to the fact that the bound
state has a "tail" which gives some difficulty in the proof. Instead, we prove the
instability result from the following general "instability principle":

"Instability Principle". Let M be a symplectic manifold (which may be infinite
dimensional) and H be a Hamiltonian function. Assume that xoeM is a critical
point of H (i.e. an equilibrium of the Hamiltonian vector field XH) and that the
Hessian d2H(x0) has just one negative eigenvalue with all the remaining spectrum
positive bounded away from zero. Then the equilibrium x0 is unstable.

This is obviously true for the finite dimensional case because in this situation,
the equilibrium is spectrally instable (see e.g. [Ol]). However, for the infinite
dimensional case we have to take care of some technicalities to make this heuristic
principle a theorem.

Let us collect some facts which we have proved in the previous sections.

Proposition 5.1. The function,

has uh as a critical point, and its Hessian
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has only one negative direction if we restrict δ2Fh to the space

{weQ(Hh)\(w,uhy = 0 and <wju3

h} = 0}.

Corollary 5.2. Consider the reduced space L~1(L(uh))/S1 and reduced Hamiltonian
of Fh. Then its linearization has only one negative eigenvalue, and all the remaining
spectrum is positive and bounded away from zero.

Proof of Proposition 5.1. Let w = M + iv. We have proved in Proposition 4.4 that

for all VEQ(H) with (v,u*} = 0. Moreover, note that (uh,u'h} = 0 and
<L + u'h, u'h) < 0, i.e. λh < mh < 0 from Lemma 3.7. Also we can prove that
(Lh

+u,u}>0 for any ueQ(Hh) such that <M,M^> = <w,wft> = 0 in the same way
as we proved Proposition 4.5. Therefore, L+ has just one negative eigen-direction
in the sense above for (u,uh} = 0. Since

and
<w,wft> = O,^>, (wju%) = (v,uf),

we have proved the proposition. Q.E.D.

Since the principle is not mathematically rigorous for NLS, we will follow
[GSS] and find the Lyapunov function by hand to prove the instability using the
basic idea behind the instability principle.

5.2. Construction of a Lyapunov Function. In this subsection, we assume h > 0 so
small that all the results proved in the previous sections are true. Once we assume
this, we omit the subscript or superscript h from all variables, since h will not play
any role in later discussions. In other words, we write L+,a(notu)9H and F for
Lh

±,uh,Hh and Fh respectively.
Note that the function

restricted to Q{H) is smooth, and so L~1(L0\ Lo = L(uh) is a smooth submanifold
of Q(H) with codimension one.

Definition 5.3. SLo:=l~x(Lo)

Pφ:= the orthogonal projection of Q{H) onto the tangent space

Following [GSS], we define the following:

Definition 5.4. In a tubular neighborhood °lίz of the S^orbit of a, define
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s(φ)\= the unique phase seR/2π such that eιs{φ) φ realizes the infimum in
Definition 4.1.

It is obvious that this function is well-defmed and smooth if we choose ε sufficiently
small.

Now, consider the following function on °lίε c Q(H\

Remark 5.5 Recall the definition of the momentum observable;

1 Pi

Then this function A is essentially the linearization of P at the solution a(=uh), if
we omit the projection Pa.

We will spend the remaining section proving that this function A is a Lyapunov
function near a(=uh), so that uh is unstable. The proof of this is an adaptation of
the instability proof in [GSS] in our context. In particular, we refer readers to
[GSS] for several functional analytic technicalities which appear in our proof. We
want to remark that not only our case but also that in [GSS] are in the context
of the "instability principle" if we go down to the reduced space. In this light, it
might be interesting to investigate under what conditions the heuristic principle
could be made rigorous in a way, which encompasses both ours and [GSS]. In
fact, all the statements following make sense in the general abstract symplectic
context.

Lemma 5.6. Let V A be the L2-gradient of A with respect to ( , ). Then V A(a) = id
and so ί VA(a) ~ — d'.

Proof. Immediate by a direct computation. Q.E.D.

Now consider the differential equation

d^=-NA(φ). (30)

By the definition of A, it is easy to see that the flow of (30) is well-defined in Q(H)
(see Lemma 4.6 [GSS]). Let R(λ,φ) be the flow map at time λ with the initial
condition φ.

Lemma 5.7o There exists a smooth function

Λ:L-1(L0)-R

such that E(R(A(φ), φ)) ̂  E(a) for all φeϋttε such that L(φ) = L(α), with equality only
for φeΘa, where Θa:= the S1 orbit of a.

Proof Since F is ^-invariant, we have

F(em-φ) =
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Writing em φ as M(φ\ we have

) = F{M(φ))

= F(a) + i(δ2F{a){M(φ) - a\ M(φ) - α> + o( || M(0) - a | | 2). (31)

We shall define λ = Λ(φ) to be the unique solution of the equation

f(λ, φ):= (Pa(M(R(λ, φ)) ~ a\ d) = (M(R(λ, φ)) - α, a!) - 0. (32)

Here we used the fact that aid with respect to ( , ). We have

/(0, a) = (M(R(0, a)) - a, d) = 0
and

0,a) = (DM(a)™(0,a),d } = (DM(a)(d\d\

Here,
DM(a)(d) = d + i(ds(a% a')-a.

Since (a, d) = 0, we have

Therefore, by the implicit function theorem and the equivariance of /, A is well
defined and smooth in %ε if ε is sufficiently small. Now, if we restrict ourselves to
</>'s such that L(φ) = L(a), then we may rewrite (31) as

F(φ) = F(a) + \{δ2F{a)(Pa{M{φ) - a\Pa{M{φ) - α))> + o{\\ Pa(M(φ) - a) | |2). (33)

Into (33), we substitute φ = R(A(φ), φ), and then we have

(Pa(M(φ)-ala} = 0
and

(Pa(M(φ) - α),α'> = 0 from (32).

Moreover since M(φ) realizes the infimum in Definition 4.1,

from Lemma 4.3. Then from Proposition 5.1,

(δ2F(a){Pa{M{φ) - a)), Pa(M{φ) - α)> ̂  C || M(φ) - a \\2

for some C > 0. Therefore,

F(φ)^F(α) + ̂ | | M ( 0 ) - α | | 2 (34)

if the tubular neighborhood ύlίε is sufficiently small, i.e. ε is sufficiently small. Hence
we have

as F(φ) = £(0) - EL(φ) and L(φ) = L(a\ and so we are done. Q.E.D.
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Lemma 5.8. // ε is sufficiently small, we have

for φE°Uz with L(φ) = L(a) and φ not in Θa, where

{E9A}(φ):=Im<VE9VA}(φ).

Remark 5.9. This is the standard definition of the cannonical Poisson bracket. In
[GSS], it is denoted as P.

Proof. Note that

d
Tλ λ--=o

,~ = (VE(φ),-NA(φ))

and

= <δ2F(a)a',a')<0.

Here, for the first equality, we used the fact that L is invariant under the flow of
R(λ, φ) due to the fact that A is S1-invariant, and for the last inequality, we applied
Lemma 3.7. By the Taylor expansion, we have

for all sufficiently small λ,ε. By combining this with Lemma 5.7, we have

E(a) < E(R(Λ(φ), φ)) ̂  E(φ) + Λ(φ){E9 A}(φ)

for all φ not in Θa. Q.E.D.

Now choose a smooth curve α:(— δ,δ)-*ύUε such that α(0) = α, da/ds\s=0 = d
and L(α(s)) = L(a) which is certainly possible as L " 1 ^ ) is a smooth submanifold
and aΈTa(L~ι(L0)). Moreover, if we choose δ > 0 sufficiently small, then E(ψ(s))
has a strict maximum at s = 0. Indeed,

d

ds

d*_

aΨ

s = O
κ v n ds

E{0L{s))=/δ2

= <δ2F{a)a\d)<0.

da
)~(

ds

da

' ds

(0) \ = 0,

<5F(α),~(0)
ds

Remark 5JO. We have chosen α so that it drops down into the "mountain pass"
through a(=uh) in the reduced space L~1(L0)/S1.

Lemma 5.11. {E9A}(a(s)) changes its sign from positive to negative at s = 0.
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Proof. From Lemma 5.8, we have

0 < E(a) - E{φ)) ̂  Λ{φ)){E9A}(φ))

for all 5^0. Thus, we have only to prove that Λ(OL(S)) changes its sign from positive
to negative. Obviously, /l(α(0)) = 0 since α(0) = a. Now it is enough to prove that

~ Λ ( φ ) ) < 0 .
ds s = 0

Consider the equation

(M(R(Λ(φ)l φ)) - a9 a')) = 0

and differentiate this with respect to s at s — 0. We get

^(DM(a)lDφR(O,a)~

= ( DM(a)<a'

DλR(0,a)
dλ(a{s))

ds

Jds

On the other hand, we have

DM(a)d = a' + i < ds(a), a' > a.

Therefore we have

0 =
dλ(φ))

ds
+ 1 >(DM(a)a',a') =

J

dλ(φ))
ds

since (ia, a') = 0. As {a\ a') φ 0, we have dΛ(φ))/ds\s = 0 = — 1 < 0. Q.E.D.

5.3. Proof of the Instability Theorem. Now we are ready to prove the main theorem
in this section.

Theorem 5.12. The function A is a Lyapunoυ function and so a is unstable.

Proof Let φ(0) = φ ) . Then {£, A}{φ(0)) = {£, A}(φ)) > 0. We will prove that the
flow of (1) eventually goes out of ΰlίε for any small s < 0.

Suppose that ψ(ήe%ε for all t. Since E(φ)) has a strict maximum at s = 0, we
have

0 < E(a) - E(ψ0) = E(a) - E(ψ(ή) ^ Λ(ψ(t)){E, A}(φ(ή).

Here we used the conservation of the energy E for the second equality. By letting
ε be smaller if necessary, we may assume that Λ(φ(t)) < 1. Therefore,

for all t. Now
d

di

for all t. Therefore,

{E,A}(φ(t))>E(a)-E(φ0) = ε0

= {A,E}{ψ{t))=-{E,

A(ψ(t))<A(ψ(0))-εot

- ε 0
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for all t. Hence A is a Lyapunov function. Indeed, we have

Therefore if t is sufficiently large, then ψ(t) eventually goes out of ΰίίz if we choose
the initial condition in the arc α however small s is if s φ 0 and so α(s) φ a.

Q.E.D.
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