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Abstract. In this paper, we study the Lyapunov stabilities of some “semi-
classical” bound states of the (nonhomogeneous) nonlinear Schrodinger equation,
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We prove that among those bound states, those which are “concentrated” near
local minima (respectively maxima) of the potential V are stable (respectively
unstable). We also prove that those bound states are positive if 7>0 is
sufficiently small.

1. Introduction

In [W.a] and [FW], the following nonlinear Schrédinger equation (abbreviated
as NLS) on R

L0 1. ,d?
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was proposed to study to stabilize linear modes concentrated near local minima
for sufficiently small # > 0 for potentials bounded below. Unlike the linear case,
Floer and Weinstein proved the existence of solutions of (1) for sufficiently small
fi > 0, which is localized near each nondegenerate critical point of V for all time.
We call these solutions “semiclassical solutions.” In [O3], the present author
generalized the existence result for arbitrary potentials with mild restrictions on
the oscillations of V at infinity. Let us briefly summarize the existence result in
[FW] and [O3]: If we rescale time and space by t — hs and x — fiy, then rewriting
s by t, Eq. (1) becomes
16°
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where V,(y) = V(hy). Without loss of generalities, we assume that 0 is the critical
point we are considering and that V(0) =0. Then as #—0, V, >0 uniformly over
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all compact subsets of R. In this sense, we consider the standard nonlinear
Schrodinger equation
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as a limit of Eq. (2). It is well-known that among the standing solutions of (2), i.e.,
the solutions of the type e “u(y) for a fixed E <0, there is the unique ground
state with center 0, uy(y) =./—2E sech./—2Ey. Now we are ready to state the
main existence result in [FW] and [O3].

Theorem (Existence). Let V be a potential which is bounded below and (V — a) >0

and (V — a)~ Y2 is uniformly Lipschitz for some acR. Moreover we assume that 0 is

a nondegenerate critical point and V(0)=0 and V — E > &> 0 for some ¢ > 0. Then
there is some ho > 0 such that for all i with 0 <h < hy, the equation

1d%u

(V. — —ud = 4

2dy2+(h Eyu—u*=0 4)

has a solution of the type uq + ¢, with the estimates;

19,4117 < K(e™"* + sup | V(hy + 2) = VO)* + e ")

Iyl<p

SJorany pwith0< p < l/hand |z| <h’,v > 1, where || ||, to be defined later. M oreover
., depends on h in the C'-sense.

From the point of view of Hamiltonian systems, NLS is an infinite dimensional
Hamiltonian system whose generating Hamiltonian is the energy functional

E(¢):=3{¢,H,d) — %[l d|*dy,
where H,:= — (1/2)(d?*/dy?*) + (V, — E) as a quadratic form whose domain is given by

O(H,)= {%mmlé i {%

LV = E)p. ¢)dy < OO}-

(Note that under the assumption on Vand E in Theorem (Existence), the differential
expression —(1/2)(d*/dy?) + (V, — E) is essentially self-adjoint on CZ(R) and so it
has the unique self-adjoint extension). Moreover, NLS has a natural ' — symmetry
(i.e., phase rotations) in general and an additional translational symmetry for
constant potentials. The conserved quantity. corresponding to the S'-action is
nothing but the probability density

L(¢)=3{¢,¢> =[l$[*dy.

In this point of view, the bound states found above correspond to relative equilibria
with respect to the S'-symmetry. Thus a natural question to ask is the orbital
stability of the bound states under the flow of NLS. The main theorem of this
paper is the following:

Theorem (Stability). Assume that (1) has a global flow on Q(H,) and that V satisfies
the conditions in Theorem (Existence). Then when 0 is a local minimum (respectively
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maximum), then the bound state found in Existence Theorem is (Lyapunov) orbitally
stable (respectively unstable) if h is sufficiently small.

Here we will not attempt to make the assumption more clear because the
Cauchy problem of NLS itself is still to be investigated for general unbounded
potentials. However we should mention that the present author has established
the existence of the global flow on Q(H) (for Cauchy problem # is irrelevant as
long as it is positive) for potentials satisfying the condition that | D*V'| are bounded
forall|a| = 2 (e.g., harmonic potential)in [O2]. Therefore in those cases, this theorem
is a rigorous theorem but this theorem will still hold as long as the global flow
on Q(H) exists.

For the case when V=0, it has been proven in [LS, CL] and [W.m] that the
ground state of NLS is orbitally stable with respect to the angular and translational
symmetries, i.e. the shape of the wave packet is stable near the ground state. But
in our case, the translational symmetry is irrelevant and so we also have to take
care of the “spatial stability” as well as “shape stability.” To take care of this spatial
stability, we exploit the nonlinear Ehrenfest’s law established in [O2].

Now let us summarize the contents of the present paper. In Sect. 2, we establish
an easy estimate on the error term ¢, ,. In Sect. 3, we study spectral properties of
the real and imaginary parts of the linearized operator. As a corollary, we prove
(Theorem 3.5) that the bound states are positive if 7 is sufficiently small. In Sect. 4,
we prove that the semiclassical bound states are stable if 0 is a local minimum.
For the stability, we use a priori estimates on the linearized operator established
in Sect. 2 and then use a standard procedure of the “Energy—Casimir Method”
(see [HMRW]) to get Lyapunov stability. In Sect. 5, we prove that the semiclassical
bound states are Lyapunov unstable if 0 is a local maximum. For the instability,
we follow the idea behind Ehrenfest’s law mentioned above to construct a Lyapunov
function to get instability. This kind of instability result is a new phenomenon for
the nonlinear Schrodinger equation with potentials, which does not appear in the
case when V is constant.

Around the same time, Grillakis—Shatah—Strauss also [GSS] obtained the
stability result modulo the fact established in Propositions 3.4 and 3.6 in the present
paper. And after this work was done, we got a preprint of Grillakis [G] where he
studied spectral properties of Schrodinger type operators (a similar result on
symplectic matrices was obtained previously by the present author and his
collaborators [OSKM]). With his results and some general arguments on getting
Lyapunov instability from spectral instability, he was able to get the same instability
result, if the spectral properties established in Propositions 3.4 and 3.6 in the present
paper were given. But our proofs are quite different from theirs in both cases and
in particular our instability proof is more intuitive and explicit.

2. Preliminaries

Since we study the stability of “semiclassical” bound states, i.c., only for small
h > 0,itis crucial to have control of the perturbation term ¢, in Theorem (Existence).
Following [O3], we control the perturbation term ¢_, by the following norm:
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Definition 2.1.

2

dz
O dy + [(V,— EPIg dy.

l|¢||f?=fgy‘2—

Now the following lemma will be essential for later discussions.

Lemma 2.2 Let ¢, be as in Theorem (Existence). Then we have for any fixed
O<e<l,

. ll7 = K=o
if 0 <h<hy, for some hy >0 where K, depends only on e.
Proof. By Theorem (Existence), we have

I¢.alli = Kz(ff"‘”’ +sup [V(hy +2)— V(O)]* +e ’”")

I¥l<p
for any p with 0 < p < 1/h. Obviously, the first and the third terms satisfy the
required estimates since they are of order O(f®). All we have to estimate is the
middle term. Since V is non-degenerate at 0 and

V(y) = V(0)=3V"(0)y* + 0(y°)
as |y|—0, we have
V() = V(O)] = K3 V"(0)]y?
if |y| < r for a sufficiently small » > 0. Now,

sup | V(hy +2)— V(0)]> = sup | V(x +z) = V(0)|>? < sup |V(x)— V()%

Iyl<p |x|<ph x| <lzl+ ph

Recall that |z| < h* for u> 1 and p is arbitrary as long as 0 < p < 1/h. Setting p =
h™% e>0, we have

sup (V)= V(0)? = sup K3[V'O)y*= K3V (0)*(|z| + ph)*

|x| <|z|+ ph |x| <lz|+ ph

SKIVO)P(h+hty*
if 71 is sufficiently small. Hence,

sup|V(hy +z) — V(0)]? £ Kh* 79

Iyf<p

for some K, >0 since x> 1. Since ¢ is arbitrary in 0 <¢ < 1, we are done.

Q.ED.
It is quite confusing to directly consider the stability in the original NLS,
o 1, 0%
in D2l Y 2
llat 2h 6XZ+V¢ 'w' wa

as we want study the stability properties for sufficiently small # and we have to
estimate many quantities with respect to #, and so we rescale the time and space
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variables by ¢ = his and x = fiy. Replacing s by t, we get the rescaled equation

d 0*
o = =yt =, )

3. Spectral Properties of L",

Lemma 3.1. i) The operator LS = — (1/2)(d*/dx?) + A — 3u} has just one negative
eigenvalue — 32 and one dimensional kernel in H'. Moreover the corresponding
eigenspaces are spanned by u} and uj, respectively.

ii) The operator L° = —(1/2)(d?/dx?) + /. —u? has one dimensional kernel in H*,
which is spanned by u.

i) Neither operator has positive eigenvalues, and

infess (L% ) =infess(L%) = A.
Proof. Recall that uy(x) = \/ﬁsech. /22x. It is enough to prove the proposition
for A= 1 by the standard rescaling procedure. Then, the statements in i), ii) and
the first part of iii) are well-known (see [T]). The second statement of iii) comes

from the fact (see e.g., [A]) that 1 — 3u? and 4 — u3 approach 4 as x — + .
Q.E.D.

Corollary 3.2. i) Let v be orthogonal to the eigenspaces of L%, i.e., v Lspan {uy, u}.
Then

(LG v,0) Z A<{v,v).
ii) Let v be orthogonal to the eigenspace of LY, span {uy}. Then,
L2 v, 0y = 4w, ).

Proof. These come from Lemma 3.1 and the mini-max principle (see [ReS]). More
specifically,

0
inf (LaB02

~EC L = infess(LY) = 4.
vl {eigenspaces} <U, U> -

Hence, we are done. Q.ED.

Definition 3.3.

h ldz 2
L+ = *Egdx2—|—(Vh~—'E)—3uh,
g
L;. = —5874“([/}1—‘1‘2)—“5

Note that L. (respectively L") is the real (respectively imaginary) part of
the linearized operator of (4) at u,. Now the following propositions are crucial for
both positivity and Lyapunov stability of the semiclassical bound states.
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Proposition 3.4. There exists hs >0 such that if h<hs, then L' has no negative
spectrum and one dimensional kernel spanned by u,. Moreover, the spectrum besides
zero is positive away from zero, uniformly in h.

Proof. We know that u, satisfies the equation,
1d*u,

Lh_uh = —§W+(Vh~E)uh~ufuh=0,

i.e., u, is in ker L" . To prove the proposition, again by the mini-max principle we
have only to prove

IR C SR
inf

ulup <Us U>

>0, (6)
where p does not depend on # if # is sufficiently small. Let v Lu,, i.e., {v,u,) =0
and decompose

v=0v, +0,

where v, = ({ug, v)/{ug, U Jug and v, =v —v,. By definition, {uy,v, ) =0. Since
L' = L% + V, + (ud — u?), we have

(L 0,0y = (L2 0,0) + (Vw0 + {(ud — udv,v). (7
Recall that we have assumed that

V—E=V+i>e>0,

and so
V,—E>e¢>0 forall A>0.
Now,
Lovvy=<L% v, )+ {Lov,v)=<{L% 0>
= <v,,v,» (by Corollary 3.2 ii))
2 Av,v) — ALv,, v, ). (8)
And,
_ Cugovy o Sup = w0

= Uo = 0
- Lug,up) ubg, U ’
since we assume that {u,, vy =0. Therefore,

Cug — Uy, V)
<u07 u0>

g —uyll

o

o Il = vl ©)

Yuoll =

By Lemma 2.2, we have |[u,—u,l,—0 as #—0. Moreover, by the Sobolev
imbedding theorem D(H,)s H? 5 L*, we have |ug—u,|/,»—0 as h—0 and in
particular

lull = < Ks
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for some K5 > 0. Now we choose # > 0 so small that

o =] </§|iuo I (10
&

luo —u, i'1.7‘<8f;' (11)

From (9) and (10), we have
o, 12 =<v,0,) <§%<v,v>.

Substitute this into (9) and then we get

<L(lv,v>g)v<v,v>*%@,v):(/i*;)(v,z)). (12)
Moreover,
[ g —upv, v | < ug — ugll = v, v) S Nug —uy || lug + || ,={v,0)

&
8K .

< o 2K (0,0 = (0,0, (13)

Here, we used (10) and (11) for the second inequality. Now substitute (12) and (13)
into (7) and then,

(L' v,vd g(}.——§><v,v> + (V0,00 —§<u,u>
={(A+V)v,v) —3elv,v)
=edv,v) —2edv,v) =§<v, ).

For the second inequality, we used the assumption 1+ V, > ¢ > 0. Therefore,

&
lo L) <U, U> 4

if we choose i > 0 so that (10) and (11) are satisfied. Hence 0 is the lowest eigenvalue
of L" and infess(L" )= (3¢/4) > 0 where ¢ does not depend on # if # is sufficiently
small. Q.E.D.

With this proposition, it is immediate to get the following theorem.

Theorem 3.5 The semiclassical bound states found in [FW] and [O3] are positive
if 0 <h < hs so that L' satisfies the properties in Proposition 3.4.

Proof. From Proposition 3.4, we have proved that y, is the ground state of the
Schrodinger operator

1 d?

h -
L-= 2dx?

+(V,+ 4) —uf.
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The theorem then follows from the general fact on Schrédinger operators that the
ground state is positive (see [ReS]). Q.E.D.

Now we study the operator L .

Proposition 3.6 There exists some hg >0 such that if 0<h<hg, then L' has no
kernel and

i) when the critical point is a local minimum, then L. has one negative eigenvalue
near —34 and one positive eigenvalue near 0,
i) when the critical point is a local maximum, then L". has one negative eigenvalue
near — 34 and one negative eigenvalue near 0.

And all the remaining spectra besides the ones above are positive away from 0
uniformly in h, i.c.,

LMo, 0> = Koo, 0) (14)
for some K¢ >0 if v is orthogonal to the above eigenspaces.

Proof. Let us first prove the last statement. This can be proved in the same way
as the proof of Proposition 3.4 using i) of Corollary 3.2. More specifically, consider

inf
UL{uﬁ,u'h} <U9 v >

Note that u, —u, in H* because
lu, — o g, < Cllu, —uo ||, —0,

where C does not depend on # and hence u, — u, in H? from Lemma 2.2. Therefore
the projection of v onto span {ug,uy} can be made arbitrarily small uniformly over
v if vL{u},u;} and |v| =1. Now apply the similar arguments as the proof of
Proposition 3.4 using Corollary 3.2 to get the last statement, since the eigenspaces
of L% are close to span {u?} or span {u}.

Now for i) and ii), it is easy to prove the existence of one negative eigenvalue
near each of —3/ and 0 from the perturbation theory of Schrodinger operators
noting that L" — L% in the strong resolvent sense (see [ReS] or [K]). To prove
the remaining statements, we need the following lemmas.

Lemma 3.7. There exists some i, >0 such that if 0 <h <h,, we have
L oy = S VO a1y + OGR?)
Lemma 3.8. Let ueQ(H,). Then there exists some hg >0 such that if 0 <h < hg,
[CLY uyu ] < Kgh? g |- u]

for some Kg > 0.
Assuming these two lemmas for the moment, we first prove i). If 0 is a local
minimum (nondegenerate), then V”(0) > 0, and so

L)y 2 VO iy . (15)
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Now, let {u,u?»=0 and decompose u=u +u,, where u is a multiple of u;,
and u, is the orthogonal to u;. Then
{upuiy=0
since (uj,uy = 0. Now,
<L’; l/l, u> = <L,1(- (M + u_L)a u;‘ + uj_>
= (Lhuu)y + 2L u,u, )+ (Luyu )

3
> 2V uuy + Cluuy )y — Ko Cuuy + hdu,u, ))
=G V"(0)— Kghh*Cuy,u, > +(C — Kgh)(uy,u )

> min {(zV"(0) — Kgh)h?, C — Kgh} (Cu,u, ) + {uy,u, )

= (3 V"(0) — Keh)h*Cu, uy,

if #1 is sufficiently small. Here, the first inequality comes from Lemmas 3.7, 3.8 and
Eq. (15). Therefore,

inf »<L"'+ u,uy

> 2
uLu,% <u’ u> - O(h ) ~ O

Hence, the second eigenvalue is positive again by mini-max principle.
Finally let us proveii). When 0 is a local maximum, then ¥”(0) < 0 and so we have
(Lt < — [ V'(O)[h2 > <. (16)
Note that (uj,u7 > =0 and that if # is sufficiently small, then
w2 uty < —C,
where C is independent of . Now by the Rayleigh—Ritz principle (see, e.g., [ReS]),
the second eigenvalue of L' < —|V"(0)/h? <0

from (16), hence the proposition. Q.E.D.

Now we prove Lemmas 3.7 and 3.8

Proof of Lemma 3.7. Differentiate the equation

1d%u
_—iﬁ +(V,+ Au, —up =0

with respect to y; we get

1 d? [du, du, du dv,
LD DA S B W e S
2dy? <dy>+( nt )dy i dy dy .

Lh+ u;1 = - V;luh' (17)
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Therefore,
<L]:' 1/[;1, u;l> = <thh’ uh IV/ uhuhdy

d 1.d*V,

= - jV,,d 2)dy —_j " uidy (18)

by integration by parts. Now,

dz
| 0 updy = h* [ V"(hy)ui (y)dy

=02 [V ()i ug()dy + 02 V" (hy) (w3 (v) — 23 )ug(»)dy.

We can easily see using Lemma 2.2 that the second term is of order O(h3). For the
first term, since V' is smooth and we cut-off u, by y,, and so that the integrand
and its derivatives are uniformly bounded, [ V"(hy)y? (y)uj(y)dy is smooth at i =0
as a function of #. Hence,

[V (yg(ndy = [V O)ug(y)dy + O(h?),
as we assume that V(0) = V'(0) = 0. Therefore,
LY up )y =45h2 [uddy- V'(0) + O(h®) = 3h2V7(0) < ug, up ) + O(h®).

Since | {uy, uyy — {ug, g )| = 0(h%), we have

L up, upy =3V"(0)uy, 1y, > + O(R3). Q.E.D.
Proof of Lemma 3.8.
i<L"+u}1,u>|2='<—il'I;"u,.,u> = Py
< j)*uh dy-{|u|*dy.
Now, we estimate jj; dyh hdy,
) dd‘; dy = W {[V'(hy)uy(y) Pdy = 02 {1V (hy)z(nue()Pdy + O(h),

as in the proof of Lemma 3.7. Moreover,
= [V () (u’() Py
is a smooth function of 4. Then, we have
G(0)=G'(0)=0
and

G"(0) = 2V"(0)* [ y*ug(y)dy.
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Therefore,
G(h) = 2V”(O)2jyzué(y)dy-h2 + O(h®).
Hence,
dVﬁ 2 " 2 2,,2 4 5
f ol dy = 2V"(0)* [ y*ug(y)dy-h* + O(h®),
and so we have
av, [
fig;"uh dy < Kgh? |, |
if 4 is sufficiently small, as || u; || ~ |ug ]l in the obvious sense. Q.E.D.

4. Stability at Local Minima

With the study of spectral properties of the linearized operator in the previous
section, the remaining argument on stability is quite standard. We will follow the
standard procedure of “Energy-Casimir (or Energy-Momentum) method” (see
[HMRW]) by adapting the arguments by Laedke-Spatschek [LS] and M.
Weinstein [W.m].

If we view Eq. (1) as an (infinite dimensional) Hamiltonian system with
S'-symmetry (i.e., phase rotation), the solution u, is a “relative equilibrium” with
respect to this symmetry. It is a general fact that

Y, y) =e Fu,(y)

satisfies Eq. (1) with the initial condition (0, y) = u,(y). Since u, is nontrivial, we
must prove “orbital stability” rather than “point stability” of u,.

Definition 4.1.
0, = {u,e”eQ(H,)|yeR},
pZ, (@)= inf(<(H, — E)(e"¢ —u,), e — ;)

veR

=inf(${e"V¢p —Vu,, "V —Vu,)
yeR

+L{V, = E)e"¢ —u,). €7 — 1, ).

Here we have chosen this distance because it is associated with the norm under
which the energy functional is smooth.

Definition 4.2. The solution u, is (Lyapunov) stable if for any given ¢ >0, there exists
a 0 >0 such that if p%(w(O)) <9, p%(lp(z)) <e¢ for all teR, where Y(t) satisfies the
time-dependent NLS (1).

This is just the standard definition of the Lyapunov (orbital) stability restricted
to the solution u, which we want to study.
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Let us write the perturbed orbit as
o(t) = u, + u(t) + iv(t)
and set w(t) = u(t) + iv(t), where u, v are real. Now consider the function
) E
Fi(@)=3{d.H,$> —%jld)l“dy*zﬂrﬁlzdy.

N —

“Energy” “Momentum”

Recalling the definitions of E(¢) and L(¢), we have
Fi(¢) = E(¢) — EL().

Since the energy and momentum are conserved, this F, is also conserved under
the flow of (1). As in the Energy—Casimir method, we control the distance function
p,, with this conserved function. A little computation using that u, is a solution
of the time independent NLS (4) gives

Fy(u, +w)— F(u,) = 2j< (w, +w),(H, — E)(u, + w)) — ﬂ|“ﬁ+wl4dy
— 3wy (Hy— Eyuyy + 5[ luy|*dy
=3 L uud + 1L v,0)
— 3 @Guyu® + utduuo® + 2uPv® + v*)dy
2 %<UL u,uy +%<Lh— v,vy—C, ”W”%(H) -G, ||w|!$(H),
since Q(H)s H! g L3 or L*. We write

L' 0
2 _ +
0 Fh(uh) - < 0 Lh_)

As we showed in the previous section, L" has one dimensional kernel and
L’ has one negative eigenvalue with the corresponding eigenspace one dimensional
A priori, these eigenvalues obstruct the point stability, but since we want to prove
orbital stability we will use some constraints to overcome this problem. These
constraints naturally come in from the S'-symmetry. The constraint will be removed
using conservation of the corresponding momentum function, i.e., L?>-norm.

First, let us consider initial conditions which satisfy

SO dy = fuidy, (19)

I dy = fu;dy

for all ¢ by the conservation of L?-norm. This constraint will take care of the
negative eigenvalues of LY . We still have to take care of the kernel of L° , and so
we introduce another constraint which naturally comes in from the fact that we
want to prove orbital stability.

and so

Lemma 4.3. Assume that

p, (b)) = (H, — E)(¢ — ), — )

iy

ie., ¢ realizes the minimum distance between ¢-orbit and u,-orbit. Then if ¢ = u + iv,
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u,v real,

o) (y)dy =0. (20)
Proof. Differentiate {(H, — E)(e"¢ — u,), ¢ ¢ — u, » with respect to y at y = 0. Since
the above function of y attains its minimum at y =0 from the hypothesis, we have
_d
dy]y=
=2Re(i{(H, — E)p, ¢ —u,))
=2Re(i{(H, — E)¢p, —u, ) =2Re(i{¢, — (H, — E)u;»)
=2Re(i{u+iv, —(H,— E)u,))=2{v,(H, — E)u, >
=2<v,uy > =2{v(y) u dy.

Here, we used the self-adjointness of H, — E for the third equality and the fact that
u, satisfies

0 (Hy = E)e$ —uy). e —u,>

(H,—Eu,—u} =0
for the seventh equality. Q.E.D.

Now, we prove that L" is positive definite under the constraint (20).

Proposition 4.4. Assume that veQ(H,) satisfies (20). Then, there is a constant K4 > 0,
ho >0 such that

(LMvvy = K9<U,U>Q(Hﬁ)
if 0<h<hy.
Proof. Let us first prove that
(LLv,0) 2 C{o,v) 1
for some C > 0 if v satisfies (20) and # is sufficiently small. Note that we already
proved that
(Llv,v) 20,

and equality holds if v is a scalar multiple of u,, for 0 <h <. Let 0 <h <5 be
a fixed constant. Assume that

i LR
v#0 <U>U>
oy =0

Then the above infimum is attained by some nontrivial u with {u,u} ) =0,
and u satisfies the Euler—-Lagrange equation

h
L' u=nu}

for some neR. Indeed, let v; be a minimizing sequence with |v;/|=1 and
(L" v;,v,5]0. Then,

0< ((H, ~ By v, < [ulvldx +1 (22)
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eventually for all # > 0. Since |v;|| =1 and u}? is bounded, |v, ll g,y 18 bounded.
Therefore v; converges weakly to some u in Q(H,). Since u, has an exponential
decay, we have

fugv}dx — [uju*dx.
Moreover u satisfies (u,u?» =0 by the weak convergence. Now recall by the
choice of E in Theorem (Existence) that
{(H,— Ey,v) 2 e{v,0)
for all veQ(H,), and in particular
{(H, = E)v;,v;p 2 6,00 =¢.

Then from (22) and if we choose 1 < ¢, we have

fupvldx>%e
eventually and so

fufu*dx > Je,
hence u is not zero. Then it follows from the lower semi-continuity of the quadratic
form (L" > that

0< (L uu) <liminf (L v,v,> =0
and thus a nontrivial u/||u| attains the minimum and it satisfies the Euler-Lagrange
equation. Now by rewriting u/|[u| by u, we have
0=Cu, L u,> =L uu,y =ndud,u,.

Therefore, # =0 and so L" u =0 which implies u = Cu, for some C. However, it
contradicts the fact that u #0 and {u,u; ) = 0. Therefore,

(LM vU)
20 <U"U>.‘—‘ Cl >0

rupy=0

for some C,; > 0. Hence we have proved (21). Next

1d?
(L v,0) = < —an—z+(Vh+ v — u,fv,v> ={(H,—u?)v,v)
=(H,v,v) — (ufv,0y 2 (H,v,v) — Cy{v,0) (23)

for some C, > 0, since u, is uniformly bounded. From (21) and (23)

C
(LM v,0) = (H,,v) —63<L"_ v, 0.
1
Therefore,
1
<L’Lv,u>g—c--<H,,v,v>.

1+-2
Cy
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Setting C, = 1/(1 + C,/C,), we are done. Q.ED

Now let us take care of the negative eigenvalue of L. using the constraint
(19). As in [W.m], we first consider the constraint

{uy,uy =0, (24)
which is the first order approximation of (19).
Proposition 4.5. Assume that V has a local minimum at x = 0. Then
LYy uuy 2 Colu,ud gy,
for some C3 >0 and u with {u,u,y =0 if h is sufficiently small.
Proof. First, we prove that
= <uhij1>f:0 s > 0. (25)

Suppose that m, < 0. Since { L, -, » is again weakly lower semicontinuous because

L' =L" —2u2 and so it is a compact perturbation of L" , we can prove that

m, is realized by some q, with (a,,u,)> =0 and | q,| = 1, by the similar argument
as in Proposition 4.4. Then it satisfies the following Euler—Lagrange equation,

L a,=mya, + Cu, (26)
for some { # 0eR. Now, we claim that { #0 and
m, > A, 27)

where 4, is the lowest eigenvalue of L. <0. Suppose m, </, (which implies
m, = 4,). Therefore,

h "
CLY ays ) = Ay

since the dimension of the eigenspace of 4, is one dimensional, and so g, is the
normalized eigenfunction. However, we know that u3 is the eigenfunction of the
negative eigenvalue of L% and L. — LS in the strong resolvent sense. Moreover,
we know from Lemma 2.2 that u, —>u, in D(H,). Therefore a,~ Cu?, C#0 if
# is sufficiently small and so

Cuyyayy ~ Cluy,ui Y ~ Clug,udy >0,

which contradicts the assumption {u,,a,) =0. Therefore, we get (27) and thus
A, <m, =0, since we have proved in Proposition 3.61) that 1, is the only negative
eigenvalue if 0 < < hg. Therefore, L', —m, is one to one. Now from (26)

aﬁ = (Lh+ - mh)‘ ! (Cufx)'
Substituting this into (24), we have
0 = <uf1’ (LZ’ - mr‘;)— ! (uh)L>

Decompose u, into u, =u, +u , where u is the part parallel to the eigenvector
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with the eigenvalue 4,. Then
0=(4, +|m)" futdy + fu (L', +m,])” ‘u, dy
< (&) Hurdy + fu (L) tuy dy = [u (L) P, dy.
In other words, we have
fu (L) tu,dy 20 (28)
if £ is sufficiently small. On the other hand, we have

2

(U
L uy=—=

3 gyt o~ =0 (29)

and ug = \/ 24sech \/§7y Differentiate (29) with respect to Nﬁ to get

2 Oug

NZENCY

dug
Lo —% 42 0uy=0 ie,(L%) ‘'up= —

ol

Now

- ﬁu 0
f”o(LO+) fug = — ——ugdy = ~45/;ju(2)dy

NAING

0
= — 4;[22 sech? ﬂy dy = — 8 [/Asech? \/[2—/1ydy
A OA

d
= -8/ )= ~8,/23/i=—12,/2i<0.

However, this contradicts (28) if # is sufficiently small since u,—~u, in H 2 and
L" — Ly in the strong resolvent sense. Hence, we have proved (25). Now applying
the same argument as in Proposition 4.4, we are done. Q.E.D.

Once we have Propositions 4.5 and 4.4, the remaining argument to get
Lyapunov stability is a standard argument using Sobolev inequalities (see e.g.,
[W.m]). Hence, we have proved the orbital stability with the constraint (19). Now
let us remove this constraint using the fact that ¢,, depends on #_in the C'-sense
(see Theorem (Existence)). Denote the bound states for the nonlinear eigenvalue
E(=—4) by u}. If ¥(0) is close to uf, then [[y(0)°dy is close to [|u}|*dy
too. Moreover, note that uf is a C'-function of # and 4 and so [|u/|[*dy is
differentiable. Now

F
_ A2 ~
57|, Jlildy~

A=A

flufPdy = —3/24 <0,
if 1 is sufficiently small. Therefore if # is sufficiently small, then B
0/0A), =, [lu}1?dy #0, and so by the implicit function theorem, we can find some 4
near 4 so that

[19(0)12dy = [luf > dy.

Now applying the previous argument to u;:', we have the following main theorem
of this section.
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Theorem 4.6. There exists some hi o > 0 such that our solutions u, found in Theorem
(Existence) are Lyapunov stable if 0 <h < hy, and the critical point of V is a local
minimum.

5. Instability at Local Maxima

In this section, we prove the Lyapunov instability of the solution u, when the
critical point of V is a local maximum, without the restriction on V at oo if the
global evolution exists (e.g., if V is quadratic at infinity (see [O1])).

5.1. Idea of the Proof. We first outline the idea behind the proof. We have proved
Ehrenfest’s law for NLS in [O2],

d
EE<¢!>XI/JI> = <'//tsp¢t>a

d !
a<l/1npl//t> ==Y, V)

if y(0)eQ(H)n<. From these equations, we can heuristically say that if , is
localized, then it behaves like.a particle under Newton’s equation. Therefore, if
our bound state is translated from the equilibrium position at a local maximum
of ¥ and it is localized for some time, then classical mechanics tells us that the
wave packet should fall into a nearby well. From this heuristic argument, it is
quite natural to choose either the “position expectation value” X := {y,,xy,> or
the “momentum expectation value” P:= {y,, x},> as a Lyapunov function. Here
we mean by the Lyapunov function a continuous function which proves the
instability. However, although we believe it to be so, we have not been able to
prove that X or P is in fact a Lyapunov function, due to the fact that the bound
state has a “tail” which gives some difficulty in the proof. Instead, we prove the
instability result from the following general “instability principle™:

“Instability Principle”. Let M be a symplectic manifold (which may be infinite
dimensional) and H be a Hamiltonian function. Assume that x,eM is a critical
point of H (i.e. an equilibrium of the Hamiltonian vector field X ) and that the
Hessian d? H(x,) has just one negative eigenvalue with all the remaining spectrum
positive bounded away from zero. Then the equilibrium x, is unstable.

This is obviously true for the finite dimensional case because in this situation,
the equilibrium is spectrally instable (see e.g. [O1]). However, for the infinite
dimensional case we have to take care of some technicalities to make this heuristic
principle a theorem.

Let us collect some facts which we have proved in the previous sections.

Proposition 5.1. The function,
E
F(¢)=3{d,H,d> —3ifIp|*dx —5fi¢|2dx

has u, as a critical point, and its Hessian

L' 0
2 . +
0 Fh(“h)—< 0 Lﬁ_)
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has only one negative direction if we restrict 6*F, to the space
{weQ(H,)|<{w,u,» =0 and {w,iu} » =0}.

Corollary 5.2. Consider the reduced space L™*(L(u,))/S* and reduced Hamiltonian
of F,. Then its linearization has only one negative eigenvalue, and all the remaining
spectrum is positive and bounded away from zero.

Proof of Proposition 5.1. Let w=u + iv. We have proved in Proposition 4.4 that
<Lh~— U’U> g C0<U,U>

for all veQ(H) with {(v,u}>=0. Morecover, note that <u,u,»=0 and
(L up,u> <0, ie. A,<m,<0 from Lemma 3.7. Also we can prove that
(L u,u) >0 for any ueQ(H,) such that {u,u;) =<u,u,y =0 in the same way
as we proved Proposition 4.5. Therefore, L, has just one negative eigen-direction
in the sense above for {u,u,» =0. Since

(O2F,(u)w,w) = (L uyuy + (L v,0)

and )
<w7uh>=<u’uﬁ>7 <W9lu2>=<vaus>a

we have proved the proposition. Q.E.D.

Since the principle is not mathematically rigorous for NLS, we will follow
[GSS] and find the Lyapunov function by hand to prove the instability using the
basic idea behind the instability principle.

5.2. Construction of a Lyapunov Function. In this subsection, we assume # > 0 so
small that all the results proved in the previous sections are true. Once we assume
this, we omit the subscript or superscript # from all variables, since # will not play
any role in later discussions. In other words, we write L, ,a(notu), H and F for
L' ,u,, H, and F, respectively.

Note that the function

L) =31913=3{d, >

restricted to Q(H) is smooth, and so L™ *(L,), L, = L(u,) is a smooth submanifold
of Q(H) with codimension one.

Definition 5.3. S, =L~ *(L,)
(9. ¥):=Re{,¥),
P,:= the orthogonal projection of Q(H) onto the tangent space
T,S., = {veQ(H)l(v, ¢) = 0}.
Following [GSS], we define the following:
Definition 5.4. In a tubular neighborhood %, of the S'-orbit of a, define

U= {peQ(H) pz(P) < e},



Stability of Semiclassical Bound States 29

s(¢):= the unique phase seR/2n such that - ¢ realizes the infimum in
Definition 4.1.

It is obvious that this function is well-defined and smooth if we choose ¢ sufficiently
small.
Now, consider the following function on %, = Q(H),

A(P)=Tm{d, Po(e"” ¢ —a)) =ITm{d’, P, (") ).

Remark 5.5 Recall the definition of the momentum observable;

1
PI;E; and P ={y,py,>).

Then this function 4 is essentially the linearization of P at the solution a(=u,), if
we omit the projection P,.

We will spend the remaining section proving that this function 4 is a Lyapunov
function near a(=u,), so that u, is unstable. The proof of this is an adaptation of
the instability proof in [GSS] in our context. In particular, we refer readers to
[GSS] for several functional analytic technicalities which appear in our proof. We
want to remark that not only our case but also that in [GSS] are in the context
of the “instability principle” if we go down to the reduced space. In this light, it
might be interesting to investigate under what conditions the heuristic principle
could be made rigorous in a way, which encompasses both ours and [GSS]. In
fact, all the statements following make sense in the general abstract symplectic
context.

Lemma 5.6. Let VA be the L*-gradient of A with respect to ( , ). Then V A(a) = ia'
and so i*VA(a)= —d'.

Proof. Immediate by a direct computation. Q.E.D.

Now consider the differential equation

dp .
e iVA(Q). (30)

By the definition of A4, it is easy to see that the flow of (30) is well-defined in Q(H)
(see Lemma 4.6 [GSS]). Let R(4,¢) be the flow map at time 1 with the initial
condition ¢.
Lemma 5.7. There exists a smooth function

AL YLy)—R

such that E(R(A(¢), ¢)) = E(a) for all pc, such that L(¢p) = L(a), with equality only
for pe@,, where O,:=the S* orbit of a.

Proof. Since F is S'-invariant, we have

F(e"-¢) = F(¢).
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Writing ¢ ¢ as M(¢), we have
F(¢) =F(M(¢))
= F(a) + 5> F(a)(M($) — a), M(d) —a) + o | M(¢p) —a|?).  (31)
We shall define A = A(¢) to be the unique solution of the equation
(4, §)=(Po(M(R(4,9)) — a),d’) = (M(R(4, ¢)) — a,a’) = 0. (32)
Here we used the fact that a L ' with respect to ( , ). We have

f(0,a)=(M(R(0,a)) —a,a’)=0
and

af _ 0R A N
5_}{(0’ a)= <DM(a) a 0,a),a ) =(DM(a)(@'),d’).

Here,
DM(a)(a') = a' + i{ds(a),a’ )-a.

Since (a,a’) =0, we have

0f N
a(O,a)-(a,a)#O.

Therefore, by the implicit function theorem and the equivariance of f, A is well
defined and smooth in %, if ¢ is sufficiently small. Now, if we restrict ourselves to
¢’s such that L(¢p) = L(a), then we may rewrite (31) as

F(¢) = F(a) + 3{3*F(a)(P,(M(¢) — a), P.(M(¢) — @) > + o([| Pu(M($) — @) |*). (33)
Into (33), we substitute ¢ = R(A(¢), ¢), and then we have

~

<Pa(M(¢)_a)’a> =0

(P (M(})—a),a’) =0 from (32).

and

Moreover since M(¢) realizes the infimum in Definition 4.1,
(Py(M(§)~a),ia®y =0
from Lemma 4.3. Then from Proposition 5.1,
(S F(@)(P(M(§) — 1)), P,(M() — a)> = C- | M($) —a|?

for some C > 0. Therefore,

~

F@)z Fla)+ 5 I M@B)—al? (34)

if the tubular neighborhood %, is sufficiently small, i.e. ¢ is sufficiently small. Hence
we have

B2 B+ 5 IM@) —al?
as F((E) = E(¢p)— EL(&) and L((Z) = [(a), and so we are done. Q.E.D.
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Lemma 5.8. If ¢ is sufficiently small, we have
E(a) < E(¢) + AP){E, A}(¢)
for ¢ped, with L(¢p) = L(a) and ¢ not in O,, where
{E,A}(¢)=TIm<{VE,VA>(P)

Remark 5.9. This is the standard definition of the cannonical Poisson bracket. In
[GSS], it is denoted as P.

Proof. Note that

J : G _
37 FOE(R(A, $) = (VE((b),;ﬁ HR(A, qS)) = (VE(¢), — iV A(¢))
=Im{VE(9),VA()) = {E,A}(9)
and
0 0 OR 52
52|, ER(¢) = <52F(a)a—§(0, ). (0, a)> + <6F(a),a};(0,a)>
b=a

=<{6?F(a)a’,a’ > < 0.

Here, for the first equality, we used the fact that L is invariant under the flow of
R(4, @) due to the fact that A4 is S'-invariant, and for the last inequality, we applied
Lemma 3.7. By the Taylor expansion, we have

E(R(4, ¢)) < E(¢) + A{E, A} ()

for all sufficiently small 4,¢. By combining this with Lemma 5.7, we have

E(a) < E(R(A(). ¢)) < E() + A(Q{E, A} ()
for all ¢ not in @,,. Q.E.D.

Now choose a smooth curve o:(— d,9) - %, such that «(0) = a, de/ds|;—o =d
and L{e(s)) = L(a) which is certainly possible as L™ !(L,) is a smooth submanifold
and a'eT,(L™"'(L,)). Moreover, if we choose § > 0 sufficiently small, then E((s))
has a strict maximum at s = 0. Indeed,

d d J
sl E(o(s)) = sl F(a(s)) = <6F(a)’21%(0)> ~0,

a d d d2

Us2 . E(x(s)) = <52F(a)d—t(0),d—(:(0)> + <5F(a)’ﬁ(0)>

={6*F(a)a’,d'y <O.

Remark 5.10. We have chosen « so that it drops down into the “mountain pass”
through a(=u,) in the reduced space L™ *(L,)/S".

Lemma 5.1%. {E, A}(a(s)) changes its sign from positive to negative at s = 0.
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Proof. From Lemma 5.8, we have
0 < E(a) — E(a(s)) < Aa(s)) {E, A} (o(s)

for all s #£ 0. Thus, we have only to prove that A(x(s)) changes its sign from positive
to negative. Obviously, A(x(0)) =0 since «(0) = a. Now it is enough to prove that

o Alels) <0,

s=0

Consider the equation
(M(R(A(a(s)), x(s)) — a,a’)) = 0
and differentiate this with respect to s at s =0. We get
dA(a(s))
ds

0——-<DM(a){D¢R(O,a)j—: +D;R(0,q)

=<DM(a){a’+a’d—A—(OLS)~) },a’).
s=0
On the other hand, we have

ds
DM(a)a' = a' +i{ds(a),a ya.

o)

Therefore we have

0= {d/l(oc(s)) 1 }(DM(a)a’, a)= {dA(a(S)) + 1}(a’, a’),
s Js=o ds |-
since (ia,a’)=0. As (a',a’) #0, we have dA(a(s))/ds|;—o = — 1 < 0. Q.E.D.

5.3. Proof of the Instability Theorem. Now we are ready to prove the main theorem
in this section.

Theorem 5.12. The function A is a Lyapunov function and so a is unstable.

Proof. Let (0) = a(s). Then {E, A} (¥(0)) = {E, A} (a(s)) > 0. We will prove that the
flow of (1) eventually goes out of %, for any small s <O.

Suppose that y(t)e#, for all t. Since E(a(s)) has a strict maximum at s =0, we
have

0 < E(a) — E(Yo) = E(a) — E(/(1)) £ AWO){E, 4} (¥ (1))

Here we used the conservation of the energy E for the second equality. By letting
¢ be smaller if necessary, we may assume that A(/(t)) < 1. Therefore,

{E,A}(p(1)) > E(a) — E(fg) =8, >0
for all t. Now

d
SAWO) = (A EY0) = — [E AN ) < 2

for all t. Therefore,

A1) < AW(0)) — g0t
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for all t. Hence A4 is a Lyapunov function. Indeed, we have

AW = M) —all-lla'|| = [d'llpe, ().

Therefore if ¢ is sufficiently large, then (t) eventually goes out of %, if we choose
the initial condition in the arc o however small s is if s % 0 and so «(s) # a.
Q.E.D.
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