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Abstract. We study classical lattice systems, in particular real spin glasses with
Ruderman-Kittel interactions and dipole gases, with interactions of very long
(non-summable) range but variable sign. Using the Kac-Siegert representation
of such systems and Brascamp-Lieb inequalities we are able to establish
detailed properties of the high-temperature phase, such as decay of connected
correlations, for these systems.

0. Introduction

In this paper we study the equilibrium statistical mechanics of classical spin
systems with long-range exchange couplings of variable sign. A typical example of
a system we propose to consider is a real spin glass with exchange couplings of
Ruderman-Kittel (RKKY) type [1]. The Hamiltonian of such a system has the
following structure:

H = - Σ Σ Jflntfnrf - Σ h f a σ f . (0.1)
i,j a,b i

Here / and j are sites of a lattice Γ (typically chosen to be TLd, d = 2,3,...);
σi = (σl, ...,σf), N= 1,2,3,..., is a classical spin variable at site ί; n{ is a random
variable taking the values 0 or 1 which indicates whether site i is occupied by a
magnetic atom or ion (nf = l) or by a non-magnetic one (nf = 0). The exchange
couplings Ja

tj are of long range and can be ferromagnetic or antiferromagnetic. We
assume that they are the Fourier transforms of matrix-valued functions on the first
Brillouin zone that are bounded in norm. As an example, we shall consider

jab_ tab 1 f~kF\ί-j\coskF\ί-j\ + smkF\ί-j\\Jij~δ T^nl k^j? (0 2)

Such models describe alloys of magnetic atoms or ions in a nonmagnetic host
material, e.g. AuFe or CuMn.
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In the study of the statistical properties of such systems one is hampered by the
circumstance that N

Σ Σ \J$\ diverges. (0.3)
jeΓ a=l

This property renders even the analysis of the paramagnetic high-temperature
phase rather difficult. Standard high-temperature series diverge at temperatures
much higher than a true transition temperature because of the presence of Griffiths
singularities [2]. In order to circumvent these difficulties, we shall rewrite spin
systems in the Kac representation [3]. In this representation, spin systems become
lattice field theories which satisfy Brascamp-Lieb inequalities [4]. It turns out that
Brascamp-Lieb inequalities provide a surprisingly powerful tool for the analysis of
lattice field theories in the single phase region. (Another related tool that is
sometimes available and useful is the Fortuin-Kasteleyn-Ginibre inequalities [5].)
We systematically explore these tools and find that they yield detailed information
about thermodynamic and correlation functions in the disordered phase of not
only spin glasses, but other statistical systems with long-range interactions such as
dipole gases.

Unfortunately, our analysis is too soft to provide real insights into properties of
the phase diagram at low temperatures. It has recently been proven rigorously that
the Sherrington-Kirkpatrick mean-field spin glass models exhibit a genuine phase
transition in zero magnetic field, as the temperature is lowered [6,7]. There is
increasing numerical evidence that short-range Ising spin glasses without external
magnetic field exhibit an equilibrium phase transition in dimension three or higher
[8,9], and this is supported by analytical, but heuristic arguments [10]. If the
exchange couplings in a spin system are of finite range and have a strong
ferromagnetic bias, the existence of a phase transition and of spontaneous
magnetization at low temperatures can be proven with the help of a Peierls
argument. Phase transitions and ordered states at low temperatures in dipole
systems with hard-core exclusion have been rigorously exhibited in [12].

But for spin glasses we have no real mathematical understanding of the low-
temperature phase diagram or the system's reaction to a weak external magnetic
field. The methods developed in this paper do not appear to enable us to make
decisive progress in that direction. They do, however, permit us to study the high-
temperature properties in detail and to prove meanfield type upper bounds on
transition temperatures.

Our paper is organized as follows. In Sect. 1 we define the class of lattice
systems analyzed in this paper, introduce our notations and summarize our main
results in a mathematically precise form.

In Sect. 2 we prove that the thermodynamic limit of the pressure of a large class
of spin systems in zero magnetic field exists at arbitrary temperatures and is self-
averaging in the randomness. These results are then extended to systems in a non-
vanishing external field at sufficiently high temperatures.

In Sect. 3 we convert lattice spin systems to lattice field theories, with the help of
the Kac representation. We relate correlation functions of spin systems to
correlation functions of equivalent lattice field theories, using "integration-by-
parts" identities. We then review the Brascamp-Lieb inequalities and show how
they apply to our systems.
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In Sect. 4 we use the tools prepared in Sect. 3 to study the decay of connected
correlation functions. We prove bounds on a variety of quenched susceptibilities.

In Sect. 5 we consider ergodic averages of correlation functions. We show that,
at high temperature, the thermodynamic limits of these quantities exist and are
independent of boundary conditions and of the sample of magnetic impurities
chosen. This implies, in particular, that, in zero magnetic field, the Edwards-
Anderson order parameter vanishes, independent of boundary conditions, if the
temperature is large enough.

In an Appendix, we prove some technical results concerning the class of
exchange interactions studied in this paper.

It is straightforward to extend our methods and results to other lattice systems
with long range interactions such as dipole gases.

1. Notation and Results

Let J^ be the family of bounded sets in TLd. Let ̂ 0 = {Ak e ̂ }ke^ be an increasing
sequence - called a countable base of 3F - satisfying the following property: For
any ΛeJ*7, there is fceN s.t. AcAk, for all fc'^fc. A countable base is called
exponential, and is denoted by ^exp, iff for any k e N

Λ + ι= U 4" (i-i)
1=1,..., Ld

with some LeN, L>1;

ΛS?Ξ{/eZ d : ί-χ ; eΛ k }, /=!,...,!?, (1.2)

where xtGZd are chosen so that

4°n4Γ)=0 if / Φ / ' . (1.3)

The volume, \A\, of some region A e 3F is, by definition the number of elements in A.
By assumptions (l)-(3), the volume oϊ Ak+l e J^exp satisfies

\Λk+1\ = Ld\Λk\. (1.4)

If not stated otherwise, a countable base, ^0, is assumed to be a van-Hove
sequence. We define SN to be equal to the set { — 1, 1}, for N = 1, and to the unit
sphere SN~iClRN, for N^2. A classical spin at site i^TLd is a vector σi = (σa

ί\
a= 1, ...,N)eSN. Our space of spin configurations is Ω = (SN)zd, with elements
σ = (σi)ieZd. Let Σ denote a σ-algebra of subsets in Ώ, generated by the Tychonov
topology. For A e 3F , let ΣΛ C Σ be the σ-algebra generated by the spins in A. The
"free measure," μ0, is a probability measure on (Ώ, Σ) defined as the product of
uniform probability measures on SN. Let μo\Λ = μo\Σ -

Let μ be a probability measure on (Ώ, Σ). For a measurable function F, its
expectation in the measure μ is denoted by μ(F). We set μ(F9F') = μ(FFf)
-μ(F)μ(Ff).

We consider a spin system with a Hamilton function of the following form:

=- ήcή-ΣbW. (1.5)
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The exchange couplings Jij = (J°j,a,b = l, ...,N), i,j<E%d are defined by

JU^nflifnj, (1.6)

with n f6[0, 1], and

^( î̂ ^" '̂ (1 7)

where Gflft(g) is a positive definite N xN matrix. Furthermore, we assume that (in
the sense of quadratic forms)

(1.8)

with a constant 0<C<oo independent of ge( — π, π)d. We denote by \\G\\ the
smallest value of C for which (1.8) holds, i.e.

| |<3| |=min{C: (1.8) holds}. (1.9)

The external magnetic field hi = (ha

ί:a = \,..., N), i e TLά is given by ht = nthb for some

It is assumed that (nb i^TLά\ and (hb ieZd), are independent random variables.
A translation invariant probability measure, £, on EΞ [0, \~\Έd (respectively ρ on
Hi = (JR.N)zd) describes the distribution of the π-variables (the one of the external
magnetic field variables, h, respectively). We restrict our attention to measures ρ
with ρ(hf)< oo.

Note that the class J0 of interactions (Jtj) defined by (1.6)-(1.8) contains all the
classical short range interactions, i.e. interactions for which

Σ |J#<°°> (i.io)
jeZ*

as well as long range interactions which do not satisfy (1.10), but which satisfy

Σ J$ <oo, £-a.e.. (1.11)
jeZd

In particular, the class J0 contains the interactions of RKKY type for which (1.11)
is fulfilled, but (1.10) does not hold, £ — a.e.. In dimension a — 3, these interactions
are given by

ί-j\ COS/CF i-j\ + smkF\i-j\

kp\i-j\*

for some constants 0<fcF, λ<co, and a positive definite matrix gab. (For other
examples see Appendix 1).

Note that if an interaction J = (Jfj ), given by G = (Gab\ is in J0 then also the
interactions J' defined by

(G')ab = (\\G\\ + G)δab-Gab (1.13)

for any 0<C<oo, belong to J0.
An interaction J E J0 is called weakly ferromagnetic iff

Σ J°j>0, (1-14)
J e Z d | i

for all ieZd\ a,b = l,...,N (see Appendix 1 for examples).
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The finite-volume pressure pλ, Λ e J^, is defined by

PΛ(β9nh):=]nμ0e-'H*9 (1.15)

with βeIR + , π el and Λ e f l i
Our first result is the following:

Proposition 1. Let E and ρ be translation invariant probability measures on I, Hi,
respectively, with

ρ(Λ?)<oo. (1.1 6a)

Then, for any interaction JeJ0 and any β^O, the ther mo dynamic limit for the
pressure in zero magnetic field

pGM,0)=limpΛjM,0) (l.lδb)

^0

exists and is independent of nel, E — a.e. The same holds for a nonzero magnetic
field h = (hι), ρ — a.e., if, in addition, one assumes that

1. (1.17)

The limit p(β,n,h) is then also independent of h, ρ — a.e. Π

For A E J ,̂ a finite-volume measure μσ

Λ with boundary condition σ E Ω is
defined by

~βHΛ''
μ*( ):= lim δ, β , (1.18)

Λ'e&o \ μo\Λ\e ) J

where, for Λ' E^Q,

HΛ.ΞE- Σ Jfiσΐtή- Σ bW, (1.19)
a,b=l....,N a=l,...,N

i,jeΛ' ίeΛ'

and δd is the point measure concentrated at σ. We note that the set

Ω= Π { < τ e Ω : V i e Λ | Σ Jfί σJ <ooj (1.20)
Ĵ o μe^lc j

is not empty, E — a.e., and therefore the family

<?ΞΞ(?(jM,Λ) = {μ*:Λe«^,<7eΩ} (1.21)

is well defined (and in fact forms a "local specification"). We also consider finite
volume measures μΛ(Λ e 3?) with adiabatic boundary conditions given by

Let μ° be a limit of {μ^}, i.e.

μ*=limμ*Λ, (1.23)

^0

for a countable base ̂ 0. By weak compactness of the space of probability measures
on (Ω, Σ\ the infinite volume measure // is well defined (however, in general, may



670 J. Frδhlich and B. Zegarlinski

depend on 0̂). Similarly, one can find an infinite volume measure as an
accumulation point of the sequence {μΛ;ΛεέF0}. The set of all infinite volume
measures corresponding to a given $ = S(β, J, h) is denoted by ^(S). For A e g7, let
N(A) be a multiplicity function which, for any IE A, associates a sequence
(Nt ,aE%+,a = 1,..., ΛO different from O = (Nlt0 = 09a = !,...,#) and, for allied, it
is the zero sequence 0.

With a slight abuse of notation we set

σA = σ(N(A))= Π Wf"% (1.24)
ieA

and, for J E Z d ,

°A+J= Π «+/"•• (1-25)
ieA

For μe^((S} we define the following generalized susceptibilities:

χ(l\A, μ) = lim — Σ (μ(σA + i>σA+j))1 (1.26)

with 1=1,2.

Proposition 2. Let J E J0 and he fa. If

Λ (1.27)

, /or any infinite volume measure μ e <&(&) with $ = $(β, J, h), the susceptibilities
χ(l\A, μ) are finite. Π

We define a generalized order parameter by

q(σ, A) Ξ lim ̂  Σ (μ*(σA + 1))2 . (1 .28)
^o \Λ\ ieA

In particular, we are interested in the case where h" = 0 (/ e TLά, a = 1 , . . . , N) and the
set A is odd, i. e. the volume of the set { i e A : Nit a odd} is an odd number. A special
case is the Edwards-Anderson order parameter which, for an Ising spin glass, reads

(1-29)

Let 2F0 be a Fisher sequence.

Proposition 3. Let J E J0 and hεfa. If

then, for all functions σ A ana I =1,2, the limits

<^>(I)=lim-ί- Σ (μA°A + ί)
(l} (1-30)

^o \Λ\ ieA

exist and are independent of nel and HE fa, E®ρ— a.e.. Moreover,

A + i Λ A + ί))l = 0, (1.31)
&o \Λ\ ieΛ
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for μ — a. a. σ e Ώ and any μ E ̂ (S(β, J, h)). In particular, if h = 0 then, for any odd A,

q(σ,A) = 0, μ-a.e.. D (1.32)

Propositions 1-3 provide a complete description of spin glass systems in the
high temperature region.

The case where the measure E is concentrated on the set EOΞΞ{O, l}zd is of
special interest. Then E describes the density of magnetic atoms (e.g. Fe, Ma)
inserted in a host nonmagnetic material (e. g. Au, Cu). The above propositions state
that, above some temperature β$ l determined by the interaction J e J0, a spin
system stays in the disordered phase and its thermodynamic behaviour is
independent of the sample, n, of magnetic atoms chosen. Note that β^1 = \\G\\ is
just the mean field critical temperature, for standard examples of ferromagnetic
spin systems.

The proofs of our propositions are essentially the same for any choice of the
number, N, of spin components. Therefore, to simplify our notation, we shall only
consider the Ising models, i.e. σ t = ± 1 and G, defining an interaction J, is just a
positive, bounded function on ( —π, π)d. Without loss of generality, we can and do
assume that 0<s<G(q\ for some constant ε>0. We also note that

2. The Thermodynamic Limit of the Pressure

In this section we prove Proposition 1. Using the assumption that

1 . . _ . > ,
lj (2π)rf d

with

I I 6 I I < oo, (2.2)

our Hamilton function for a system in a region A e ̂  can be written as follows:

HΛ=~^ Σ GijHinppj- Σ JWi
£ i,jeΛ ieΛ

2 (271) jeΛ I ieΛ

This yields the bound

~ \2 M| ieΛ l J

which implies

= ' ' ~ \A\ = 2 \Λ\ ieΛ

(The lower bound follows from symmetry of the product free measure μ0 and
Jensen's inequality.)
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By assumption, (hb i e Zd) are independent random variables with translation
invariant distribution ρ satisfying

ρ(ft?)<oo. (2.6)

Therefore, by the law of large numbers,

ieΛ
e-a.e., (2.7)

and so the right-hand side of (2.5) is uniformly bounded in A e 3F& (ρ — a. e.). Hence
we can always select a convergent subsequence {pΛ(β,J,h):Λe^Q}.

Now we set h = Q and show that, for any J^exp, the sequence
[pΛ(β, J, 0) : A e ̂ exp j converges £ — a.e. to a nonrandom limit. By Jensen's
inequality, we have, for any Λk+ί e.^exp,

pΛlt+l(β,J,0)^ί Σ PW/U,0). (2.8)
L 1=1, ...,Ld k

The definition of an exponential sequence ^"exp implies that yi^nyl^7) = 05 for /=(=/ ' ,
and since by our assumptions {n^ieE,*} are independent and identically dis-
tributed, so are { J p y l ( I ) :/=l, ...,Ld} independent, identically distributed random
variables. This, together with (2.8), shows that the sequence {EpΛ(β, J, 0) : Λ e ̂ exp}
is increasing and our bound (2.5) assures its convergence. (In particular, we obtain
convergence of the sequence of finite volume pressures for a translation-invariant
interaction Jtj = Gtj and zero external magnetic field, ft.)

By iteration of (2.8) and application of the subadditive ergodic theorem, we
conclude as in [13] that:

p(j8,J,0)= lim EpA(β9J,0), (2.9)
J^exp

exists, and

p(j8,J,0)= lim pA(β,J,0), E-a.e.. (2.10)
^exp

The simple arguments involving Jensen's inequality allow us to extend (2.9) and
(2.10) to more general sequences, 3?0. This completes the proof of the first claim of
Proposition 1.

To include an arbitrary external magnetic field, let us note that, for any A e 2F ,

/ u , (2.11)
0 \Λ\ ieΛ

where the measure μ^, t ̂ s given by (1 .22), with magnetic field (ί ftf), instead of (ftf). It
follows from the arguments in the proof of (1.30) in Proposition 3 (see Sect. 4) that if

1 (2.12)

and ρ(ftf)< oo then, for any ί e [0, 1], the sequence
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converges to a nonrandom limit. This together with (2.9) and (2.10) concludes the
proof of Proposition 1.

Remarks, a) Note that the positivity of the molecular field for spin systems, i.e.

^i\ Σ V + ΛiT) ^0, (2.13)

implies the bound
,h)\{niΞl}. (2.14)

b) We remark that the existence of a nonrandom infinite-volume pressure,
?, J,0), can also be proven for interactions, J, in a class Jl defined by

-^ (2.15)

where G(dq) is an arbitrary finite non-negative measure. Then the minus sign in
(2.15) assures the trivial bound from above,

pΛU,0)^l, (2.16)

whereas the symmetry of μ0 Λ together with Jensen's inequality, yields the lower
bound

β,J,0). (2.17)

The same arguments, based on Jensen's inequality and the subadditive ergodic
theorem, as before, prove our claim. Note that the class J\ contains interactions
which do not decay at infinity, e.g.

For such an interaction, one can expect that thermodynamics is full of pathologies,
therefore we shall only consider interactions from class J0.

c) It is possible to extend our results to quantum spin systems.

3. A Field Picture of Spin Systems

Let φ = (φiE^:ίeZd) be a random field on a probability space (μG,Rzd,&\
where μG is a Gaussian measure with mean zero and covariance

1

and ̂  denotes the Borel σ-algebra in Rzd. It is assumed that

<oo, (3.2)

for some constant ε>0. Therefore G(q)~ * is a well defined (positive and bounded)
function, and its Fourier transform, G"1, belongs to I2(%d\ For any function
/ = (ft G R : i e Zd) e l2(Zd) we define

Φ(fY= Σ Φtfi (3.3)
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By our assumptions, exp (φ(f)) eLp(μG) for 1 <p< oo. In particular this holds for

= GΓj1.
The following identity (due to M. Kac [3]) will play an important role: For

We define a probability measure μ* on (IRzd, 3S) x (Ω, ΣΛ) by

ί/2 ^Λ(Φί + βl/2hl)nlσl "I ^ -,ιeΛ J , (3.5)

where Z^ is a normalization factor and

&ί = Λ i + Σ GijΠjSj^hi + htf). (3.6)
jeyl c

Using (3.4) we see that, for A£Λ9

/ -βHΛ(σ)

^
e~βHΛ(σ)

On the other hand

where

17̂ ) = Σ Inch^^^ + jS1/2^. (3.9)
ieΛ

The measure formally obtained from (3.5) by putting {nj = Q : J E A c } is denoted by
μΛ. The lemma proven below shows that the expectations (3.8), for F( ) an
arbitrary polynomial, uniquely determines the expectations (3.7).

Lemma 3.1. For any A, BζΛ

^)}= Σ μG( Π Φ(G^)}βnxμXσx), (3.10)
JeA J xgA \jeA\x

and

r1), π ΦίG .1)]^ Σ μβ Π Φ(Gΐ ίϊ](μG Π
jeβ y xgA \ i&A\x J \ jeB\y

yQB

+ Σ μG( Π ^GΓ1), Π
^ς^ V^6^^ JeB\y
yCB

\χ\ + \y\
xβ 2 nxnyμ^(σxσy). Π

The proof is a straightforward application of integration by parts in the
Gaussian measure μG. In particular, for \A\, |5| = 1, we get

l) (3.12)
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and

0 Wi(<7i9 σj) = μ*Λ(Φ(Gΐ. 1), φ(Gj . l))-G^ . D (3.13)

Remark. Note that if ni e (0, 1} one can omit nx from the formulas (3.10)-(3.13).
Let m2 ̂  0 be such that

l. (3.14)

Define

Γ1G, (3.15)

and define G~ to be the Fourier transform of G±. Let μG± be the Gaussian measure
on (lRzd, SS] with mean zero and covariance G±. For some measurable real
functions {Ut( )}ίeZd and Λ e 3F define

(3.16)
ieΛ

Lemma 3.2 (Brascamp-Lieb inequalities [4]). // the functions

2y2 + Uί(y) (3.17)

are convex/ concave then, for any f e I2(%d} and any k e N,

. D (3.18)

Proof. By assumption the function

VΛ'(φ)=-l-m2 Σ Φf + UΛ(φ) (3.19)

is concave, for any ΛeJ*7, yi'eJ^, Λ'^A. Introducing a Gaussian measure

+ ̂  Σ φ^
, , μG(^ 2 i e - 1 ' l ' )

^ + '-(>)Ξ - ^ 2 , (3.20)

one can write

μ°^e Li = ^G+>Λ'(e ^__ '_>. (3.21)

Since, by our assumptions, eVA'(φ] is a log concave function, it follows from the
Brascamp-Lieb inequalities [4] that, for any /e/2(Zd) and fceN,

μβe
v^\φ(f)\k /.. IJL^ lt (3>22)

Now, using the fact that μG + ίΛ> converges to μG +, as Λ' | Zd, we arrive at the second
inequality in (3.18). The proof of the lower bound in (3.18) is similar.

Lemma 3.2 is our main technical tool for what follows. As an immediate
consequence it yields the following
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Corollary 3.3. Let f€Ϊ2(Zd) and fcεN.
a) //

(3.23)

and

0^||G|[<1, (3.24)

then, for

G+=(i-βGΓ1G, (3.25)

(3.26)
μGe

b) //

Uj(y) = λ cosβ1/2y (3.27)

and

0^||G||<1, (3.28)

then, for

G±=(\+λβGΓlG, (3.29)

the inequalities (3.18) hold. Π

4. Cluster Properties of Spin Systems at High Temperature

We begin with the following general fact which is model-independent.

Proposition 4.1. Suppose that

Σ fifjμΛ,2β.k = o(<ri,σj)^CΣtf (4.1)
iJeΛ i

for some constant 0 < C < oo independent of A e 3F , σ e Ω, n e I and f e /2(Zd). Then,
for any AeέF,

Σ fifjμ*Λ.β(<rA + i,σA+j)^C(A) Σ f t 2 (4.2)
ί , j : A + icΛ i:A + ίcΛ

A+jcΛ

for some constant 0<C(^)<oo independent of Λe^, σeΩ, neΊL and
). D

Proof. For σb σ,e{- 1, 1}, ίeZd define

9i = i(^ + ̂ ), pz = i(σ,-σz). (4.3)

We note that

P / ΦO iff 9ί = 0. (4.4)

For Ae^, we set ̂ Ξ Π q. and p^Ξ f] p..
ΐ e A ieA
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Then, for any / e I2(%d\ and A e J ,̂ we have that

Σ
A + ίcΛ
A + JCA

Σ fAA + ifflA+jMΛ(pίPj Σq)\ (4.5)
A + ίcA 1
A+JCA J

where μ* =μ* and MΛ( \Σq) denotes the conditional expectation, associated with
the measure μ* ®/ϊ*, with respect to the σ-algebra, Σq, generated by {q^} variables.
This conditional expectation is independent of σ E Ω, and, using (4.4) for any
Be A, one gets:

-

with

HA(σ\q)=- Σ Gtfijώnjώσpj, (4.7)
£ i,jeA

^)={θ oth^wil

where

We note that the measure on the right-hand side of (4.6) is just μΛ,2β,h = o> witn a
given {n^q)}. Therefore, using our assumption (4.1), we have that

Σ (fa A + ») (fflA + j)MA(piPj I Σq)A + icA
A+jcA

^C Σ fι2q2A + t£C Σ f t 2 - (4.9)
A + icA A + icA

The inequality (4.9), together with (4.5), implies that

Σ fifA®μ^A + iqA+jPiPj)^C(A) Σ f t 2 - (4.10)
A + ίcΛ A + icA
A+jCA

Now, (4.2) follows from (4.10) by the same arguments as in [14] (see proof of
Theorem 1).

Returning to the old variables, σb σb on the left-hand side of (4.10) and
observing that the result can be written as a sum of products of the form

i + f, σBz+J)μ*Λ(σB3 + b σB4+j)

or of the form

for some Bί9 . . ., B4 C A, we may use induction in the volume \A\, and (4.2) follows by
an application of the Schwarz inequality for positive definite forms defined as
products of μ*( , ), see [14].

Remark. In our case the measure μσ

Λ is not translation-invariant, so we need a
simple modification of the arguments in [14] which are based on uniform bounds
on spin expectations; see also Lemma 4.4, below.
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Next, we establish a slight generalization of (4.1).

Lemma 4.2. For any ΛeέF, σeΩ and n e I, if

then, for any /e l2(Zd),

As a consequence,

Σ / /w'K σ;) ̂ (i - βιι <5ID~' Σ / 2 π

(4.11)

(4.12)

(4.13)

Proof. We have

where

I.ftfjύ(Φι,Φj) = Σ ftf

)̂, (4.14)

(4.15)

and M* ( | Z1,,) is the conditional expectation, associated with the (field) measure
μΛ®μσ

Λ, with respect to the σ-algebra Σξ generated by the {£J variables.
Since μ9

Λ = μ9 is given by (3.8) and (3.9),

M*(.|Σ») = ̂

Now we observe that the functions

+ lnch

+ lnch | 0i/2 [(_(&-

1

+ lnch

+ inch n

(4.17)
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are concave. Therefore, for Q^β satisfying (4.11), an application of Lemma 3.2
gives

0^ Σ ftfjM^ηfljlΣ^ Σ f f i t f j . (4.18)
ij iJ

From (4.12) we get, using (3.13) and definition (3.15) of G+ with m2 = β,

Σ fiWnwfa^

^ Σί,jeΛ

=β Σ βk Σ
k = 0 ijeΛ

^(l-^IIGIIJ-1 Σ f i 2 - (4.19)
ίeΛ

This ends the proof of (4.13) and hence of the lemma.

Remark. Considering the square terms in (4.17), multiplied by n{ one can see that,
in fact (4.13) remains true without factors ninj on its right-hand side for general
nt e [0, 1]. (This is of course true if nt e {0, 1}.)

For A E 2F and a multiplicity function N(A) we define

φA=U φ»™. (4.20)
ίeA

Using Lemma 4.2 and ideas of [14], one can prove the following analogue of
Proposition 4.1 for the "field" variables, φ.

Proposition 4.3. For any ΛeέF, σeΩ and n e I, if

0^^||G||0 0<1, (4.21)

then, for any AE^ and fel2(Zd),

Σ fifA(ΦA + i, ΦA+J) ^ C(A) Σ fi2 , (4.22)
ι,j i

"where C(A) is a positive, finite constant only depending on β \\ G \\ ̂  and the norm of the

multiplicity function \N(A)\ = Σ Nt(A).
ie%d

Remark. The same result holds for any measure μΛ defined as a perturbation of the
Gaussian measure μG considered in Lemma 3.2 and Corollary 3.3, and it holds for
any infinite volume measure μ = lim μΛ, where ^0 is a countable base.

&0

Since, contrary to [14], we deal with nontranslation-invariant measures, we
have to use, in the proofs of Propositions 4.1 and 4.3, the following lemma which is
of independent interest.

Lemma 4.4. //, for

Σ /J}/4K + p^+;)^Cι Σ ft2 (4.23)
ί , j : i .A + icΛ

A + ίcΛ
A+jcA
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for some constant 0 < C^ < oo independent of A e 2? , σ e Ω, n e I and f e I2(%d), then,
for any BE^,

Σ fJjti(<rA + 1,oA+})A(aB + l>aB+^C2 Σ ft2 (4.24)

and

Σ fifjμ^A^ σA+J)μ9

AσB + iμ
9

ΛσB+j^C3 Σ tf - (4-25)

Here C2 and C3 are constants, with 0<C2, C3<oo, independent of
σeΩ, n e I and /e 72(Z

d), and ί/ze summation in (4.24) and (4.25) is restricted by the
requirement that A + i, A-\-j, B + i, B+jcA. Moreover, the same results hold for
"fields" φ if, in addition, for any f E N

μ*AΦΪl<Cl9 (4.25a)

for a constant 0<Q<oo independent of ieZd and all other parameters. (In this
case we don't need to restrict the summation over i,j.) Π

Remark. Under the assumptions of Lemma 3.2, the condition (4.25a) is fullfilled.

Proof. Since

ij

£Ci - sup μa

Λ®β^(σB+i-σB+ί)
2 £ /;

2 (4.26)
^ i i

and

- ~σ x -*( )2

•̂  i

i

with 0 < C2 < oo independent of A, σ, n and of/ (4.24) follows. The proof of (4.25) is
trivial. The proof in the 0-variables is similar.

Applications of Lemma 4.2, Lemma 4.4 and Proposition 4.1 yield the following
bounds on generalized susceptibilities.

Proposition 4.5. // 0 ^ β \ \ G \ \ < 1 then, for any AQA, AE^, σeΩ and nel,

and

'. (4.29)
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Moreover, if 0^2/?||G|| <1, then for /=!, 2,

0 ̂  y^r Σ (μS(σΛ + , σA+J))1 Z Ct(A) (4.30)
1^1 ij

A + i,A+jcΛ

for some constant 0 < C^A) < oo independent of ΛcΛ, Λε^, σeΏ and neTL. The
same results hold for

μ = l im/4,

^0

where ^Q is a countable base, σ e Ω or σ = 0.

5. The Thermodynamic Limit for Order Parameters

We begin with showing that the thermodynamic limit of correlations of physical
observables is independent of boundary conditions in the high temperature region.
The assumptions on the interaction J are the same as in Sects. 3 and 4. For A e 2F ,
σeΏ, /=1,2, we define

(σ^Ξlim-*- Σ (μ^(σA + i))1 (5.1)
JF0 |Λ| i .A + iCΛ

and

<O /=lim ii r Σ (μ>x + ί))z (5.2)
^o 1^1 i :yl + icyl

Proposition 5.1. Lei J 0̂ be α Fisher countable base. Let

<l, (5.3)

for \A\ = \, and

0^2^||G||00<1, (5.3')

for \A\^2, then

and

/or any

Proof. For î e J ,̂ σ e Ω and t e [0, 1], we define a measure μ^( ) as in (3.5), but,
instead of Ki9 the magnetic field is given by

lim— Σ (μ*(σχ + ί)-μ>A + i)y = 0, μ-a.e., (5.5)

, (5.6)

where

hi(σ)= Σ Gyn/j (5 7)
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Σ (5.8)

we have

Σ Σ μ>^,σ>Λ ( ?)- (5.9)

An application of the Schwarz inequality for the positive definite form μ (̂ ,
yields the bound

v l / 2

Σdr \Λ\
ί,A+jcΛ

1 _ ^ \ l / 2

\ \ Λ \ . . . •* l J J
ι,jeΛ

(5.10)

Since Proposition 4.5 and Lemma 4.2 also hold for the measures μ ,̂ (5.10) can be
bounded by

for some constant 0 < C(A) < GO independent of A e J^? σ e β, π e I and ί e [0, 1].
This implies

777 Σ
\ Λ \ ί :

l-)--r-77 Σ
\Λ\ i:A + ίc

Consider now

—
\Λ\ i

}^ Σ

Σ htf) (5.12)

(5.13)

1
Using Holder's inequality, with respect to —- Σ ( ' ) and the fact that \μt

Λ'σA +1 | ̂  1,
we get \Λ\ ίeΛ

\ l / 21

For the function gΛ(t) we have

Λ 1

/2 . (5.14)

Σ Σ
+ ίcA jeΛ

(5.15)

Hence, applying the Schwarz inequality, Proposition 4.5 and Lemma 4.2 for
the measure μ^f( ), we conclude that

1 \ l / 2
W 2 '^ Σ W

\\A\ ίeA
(5.16)
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for some constant 0 < C < oo independent of A e J ,̂ σ e Ω, n e I and t e [0,1]. This
yields the following integral inequality:

1 Y/2 ft \ l / 2

^Σ hi(oή (ί^(ί')j - (5.17)

Applying the same inequality to gΛ(t'\ and iterating the bound, we find that

V (,,σ *• ,, ~ \2 ̂  r~<2 V L ίZ \2 (ζ. Ί O\Γ7Γ L (μΛ^A + i-μΛ^A + i) ^C — 1 /ιf(σ) . (5.18)
|Λ| i:^ + ic^ |Λ| ie^

Now the proof of our proposition follows from (5.12), (5.14), and (5.18) and
Lemma 5.2 proven below. Π

Lemma 5.2. //0<^j5 | |G] |< l , then, for any measure μe<&(δ\

Km— Σ hί(σ)2 = Q (5.19)

for some Fisher countable base J^0. Π

Proof. It is sufficient to show that, for some Fisher sequence ̂ 0,

1
limμ— Σ Af(σ)2 = 0, (5.20)

where

Λ,<σ)= lim £ Gtjnpj. (5.21)

By definition of μ e <&(β\ we have

μ Ξ l i m μ ^ , (5.22)

for some σεΩ. Therefore application of Lemma 3.1 [see also (3.13)] yields

GijGirβnjnrμ(σjσr)

= Σ G
'

_ Σ GtJG] /Gri. (5.23)

From this identity and the Brascamp-Lieb inequalities for the measures μ (i.e.
Lemma 3.2, supplemented by some limiting arguments), we get

/Γ1 Σ GuG^G
JJ'eΛc

^ Σ β"( Σ GyG
« = 0 V/» / e ̂ lc

1 Σ G g . (5.24)
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Therefore the proof of (5.20), and hence the proof of our lemma, follow from the
fact that

lim— Σ Σ <??. = 0, (5.25)
&o \Λ\ ieΛ jeΛc

for a Fisher countable base ̂ 0.
From Proposition 5.1, we derive the following corollary.

Corollary 5.3. Let 0^β\\0\\ <1 and

μ= l im/4,
&o

for some σeΩ, {h{ = Q, ieTLd] and a countable base ^Q. Then

fe_x=lim— Σ (μ*i)2 = 0. D (5.26)
&Q \Λ\ ieΛ

Proof. One can see that the measures

μ^= lim μ*'-
Λ'e^o

define the conditional expectations associated with μ, for μ-a.a. σeΩ. Using this
fact we conclude that

\Λ\ L^l/ \Λ\ ieΛ

^μ~ Σ fe)2, (5.27)
\A\ ieΛ

and an application of Proposition 5.1 completes the proof. Π

Using the ideas in the proof of Proposition 5.1 we now show the existence of the
thermodynamic limit for the physical quantities (5.1) and (5.2). This will complete
the proof of Proposition 3 in Sect. 1.

Proposition5.4. Let0^β\\G\\<l,for\A\ = l,and0^2β\\G\\<l,for\A\^2. Then,
for 1=1,2 and any Fisher sequence J 0̂,

exists and is independent of neΊL and /zelh, E(x)ρ-a.e.

Proof. Let J^exp be a Fisher exponential base of J^. Then for A<=ϊF and

^o)e^exp> N,JV 0eN, we have that

1 _ 1 _

VA + i))' - (î > K + i))']

4 Σ — Σ
L k=l,...,LdN \ANo\ i:A + indΛ(NQ^0

1 1
5F Σ Σ „ ( μ K + i ) ) ' . (5.28a)
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We argue that the right-hand side of (5.28) consists of a "small" term, in the curly
bracket, and of the sum of uniformly bounded, identically distributed random
variables ^

~\Λ ί , L Λ<W ^ΛN^A + i)) '
KljVol ι:A + ιcANo

(Note that, by definition of t^
Γ

exp, we have that Λ(^0r\Λ(^ = 0, for k φ fc', and by our
assumptions, the measures E and ρ are translation-invariant product probability
measures.)

First, we observe that

JdN
L

V
*->

' \ N°\
T~j ^\ΛN\

V o, (5.29)

for constants 0 < C", C < oo independent of JV0 e N, (and of n e I and h e Ih).
Moreover, for /=!, 2, we use the Schwarz and the Holder inequalities, to

conclude that

1

\ΛNo

/2

(5.30)

where μ*(f>( ) denotes the conditional expectation with respect to ΣuWf associ-
ated with the measure ^A(N+NO)- ^he considerations in the proofs of
Proposition 5.1 and of Lemma 5.2 show that

(5.30)^2
1

Therefore, setting

we get that

Σ Σ Gf
eΛNo je(ANQ)c

Σ

l /2

(5.31)

(5.32)

(5.33)

Since, for a Fisher base J^exp, we have that (5(7V0)->0, as N0-κx), the law of large
numbers permits us to conclude that the limit

Σ

= lim lim Σ
^exp Λ ^oo i? ί:=l,...,λ'lN

0 ί .Λ + ic
(5-34)
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exists and is independent of n e I and h e Ih, E® ρ-a.e. By some simple arguments
one can show that our statement remains true for the more general Fisher
sequences ̂ 0 (and, in fact, that the limit is independent ofέF0). This ends the proof
of Proposition 5.4. Π

Appendix 1: Examples of Interactions

Example i: (d=ί). Let

)= -—z(M = <?o)> with 0<g 0 <π. (A.I)

Then

GfJ = "M*w •" , (A.2)

and application of the Poisson summation formula shows that

sin^o/ 1 1

qj 2q0 2π'
(A.3)

Therefore, the translation-invariant interaction given by G in (A.I) is weakly
ferromagnetic.

Example 2: (d = 3). Let

j(x) = ( -°—- J . (A.4)

By explicit calculations we get

for \q\<\q0\

ϊ I TJ I for l^ol ̂  I f l l = 3l^o (A.5)

π2

4k0

0 for

Formula (A.5) shows that J e J0, since

1 I π2

F-J
2\ 1/3

Σ Joj=(^\^a^-ί\' (A 6>z3\{0) (^πj L z Wol

for 0< |^o| <π, the interaction (A.4) is weakly ferromagnetic if \q0\ < ( —

Example 3. (RKKY, d = 3). First we note that for d = 3 we have that

(lίol
(A.7)
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for small |x|, and ge I^2?2(IR3). Note also that, for /e^2(R),

) - (A.8)

Using (A.7) and (A.8) one can show that the function

-\g0\\x\cos\q0

(kolM)3

belongs to W2t 2(R3) and therefore, for d = 3, its Fourier transform J(q) is in L^R3).
Since

—L_ = j dme~me-mW (A.10)

and

2m , 4 _,

we also see, using (A.7), that J(|x|) is positive definite. We only have to show that the
function

G(q)= Σ J(q + 2πϊ), qe(-π,π) (A.12)

fulfills

| |G| | 0 0 <α).

This follows from the monotonicity of the function J(\q\).
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