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Abstract. An infinite volume Pfafflan formalism is developed for the Ising
model.

Introduction

In this paper we will establish a connection between the Pfaffian formalism for
the Ising model and the transfer matrix formalism. In [H] Hurst makes the
connection between the Pfaffian formalism and the transfer matrix formalism for
the Ising model. The formalism he employs is not suited to a direct infinite volume
analysis. Working with Grassmann integrals Sato, Miwa, and Jimbo [SMJ] have
also worked out such a connection for a class of models they refer to as orthogonal
models. The Grassmann integrals they employ only make sense in finite dimensions.
Our main interest here is in formulating a direct connection in the thermodynamic
limit where the relevant vector spaces are infinite dimensional.

The Pfaffian approach to the Ising model produces a formula for the partition
function on a finite lattice as the Pfaffian (or sum of Pfaffians) of a finite dimensional
skew symmetric matrix (see McCoy and Wu [MW]). In the infinite volume limit
this skew symmetric matrix becomes a finite difference operator on l2(Zl/2,R

4).
The finite volume correlation functions are ratios of Pfaffians of operators with
similar structure except that the numerator has inhomogeneities that depend on
the n sites in the correlation function. It is difficult to rigorously control the infinite
volume limit in the Pfaffian approach and we will not attempt to do so here. There
is another approach to the Ising correlations where the thermodynamic limit has
been rigorously treated [PT]. This is the original transfer matrix formalism of
Onsager and Kaufmann [O,K]. In this paper we will start with the problem of
understanding the Pfaffian for a family of skew symmetric operators on a Hubert
space, and we will then make the connection between this problem and the infinite
volume transfer matrix formalism. We will have then established a Pfaffian
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formalism for the Ising model which applies directly in the infinite volume limit.
Section 1 of this paper provides a definition of the Pfafϊϊan bundle over the

skew Fredholm maps on the complexification of a real Hubert space. The idea for
this definition comes from the definition of relative Pfaffians in Pressley and Segal's
book on loop groups [PS] and Quillen's definition of the determinant bundle over
the Fredholm maps between Hubert spaces [Q]. There has recently been other
work on relative Pfaffians [JLW] technically more refined than what appears in
Sect. 1.

Section 2 of this paper gives a quick description of the spin bundle over
the restricted orthogonal group and the Pfaffian bundle over the isotropic
Grassmannian. Although not usually formulated in these terms this is the natural
setting for the transfer matrix formalism for the Ising model. In this part we follow
mostly [CP], though Pressley and Segal's account of the spin group was also very
helpful.

Section 3 introduces the family of finite difference operators that will be the
object of attention in the rest of the paper. We make the connection with the
transfer matrix formalism by using some ideas in Witten [W]. Apart from the
introduction of the transfer matrix the principal result of this section is the proof
that the family of operators we consider consists of Fredholm operators of index 0.

The final section of this paper introduces truncated versions of the finite
difference operators and uses them to sketch a different proof of the Fredholm
property again following some ideas in Witten [W]. The principal result in this
section is a proof that the Pfaffian bundle over a certain family of finite difference
operators is naturally isomorphic to the spin bundle over the associated transfer
matrices (or equivalently to a sub-bundle of the Pfaffian bundle over an isotropic
Grassmannian). Once again there is clearly some connection with ideas in Witten
[W], but in this case I am not sure how to make them precise. The infinite volume
transfer matrix formalism in [PT] may be reinterpreted as giving formulas for the
infinite volume correlation functions for the Ising model in terms of a distinguished
trivialization of the spin bundle mentioned above. The fact that this spin bundle
is isomorphic to the Pfaffian bundle over a family of finite difference operators
means that it makes good mathematical sense to think of Ising correlations as
relative Pfaffians of the finite difference operators involved. There are a number
of advantages to the Pfaffian formalism that make this connection desirable. Certain
symmetries such as rotation by π/2 (combined with a suitable change in the
Boltzmann weights) are invisible in the transfer matrix formalism but are manifest
in the Pfaffian formalism. Ising correlations are associated with "strings" in Pfaffian
formalism, and the fact that the correlations depend only on the endpoints of the
strings is an expression of Z/2Z gauge invariance in the Pfaffian view of things
but is not easily described in the transfer matrix picture. Finally the study of the
dependence of the theory on Boltzmann parameters (allowed to vary in the complex
plane) is simpler in the Pfaffian picture because the Hubert spaces involved in the
transfer matrix picture change incommensurately with changes in the Boltzmann
variables. The connection between the formalism in [PT] and the trivialization of
the spin bundle is described more fully in some remarks following the proof of the
main theorem of this section.



Pfafiΐan Bundles and the Ising Model 549

The results of this paper are largely preliminary. It is our hope that much of
the structure in integrable models discovered by Baxter and others will translate
into interesting gauge "symmetries" in the Pfaffian formalism described here.

1. The Pfaffian Bundle over Skew Fredholm Maps

It is useful to start with a discussion of the problem of making sense of the Pfaffian
of a skew symmetric operator on a Hubert space. Because of the close relation
between Pfaffians and determinants this is very much like the problem of
understanding infinite determinants, and we begin by reviewing the situation for
determinants. It is well known that if L is a trace class perturbation of the identity
on a Hubert space H, then det(L) may be defined as a continuous extension of
the finite dimensional determinant [S]. In the problem we consider L is not a
compact perturbation of the identity. Instead L is merely a Fredholm operator of
index 0. Such operators are invertible modulo the trace class. One can find an
invertible q so that Lq'1 is a trace class (or even finite rank) perturbation of the
identity. One might then define a "relative" determinant for L as det(Lq~l), For
a single operator L this is not very interesting. It produces a number which is 0
when L fails to be invertible but which could be any non-zero complex number
when L is invertible depending on the choice of q. It becomes a little more interesting
when L is a member of a whole family $ of Fredholm operators with index 0. It
may be necessary to choose q so that it depends on the element L in & which it
is to invert modulo the trace class. The formalism of determinant bundles allows
one to discuss this problem in a precise manner. Let «^0 denote the family of all
Fredholm operators on H with index 0. Living over the base J% there is a line
bundle (the determinant bundle) which captures the ambiguity of regularized
determinants in a useful way (see Quillen [Q] and Segal, Wilson [SW]). An element
in the fiber over L is a pair (q,λ) with q invertible such that Lq"1 is a trace class
perturbation of the identity and λ is a complex number. Two such pairs (q^λ^)
and (^2^2) are equivalent if and only if λ± = λ2det(q2qϊ1). This bundle is
constructed so that L-^(q,dQt(Lq~1)) is well defined and a section as follows
directly from the multiplicative property of determinants. This section of the
determinant bundle over J% is called the canonical section σ. It is clear that σ(L)
vanishes precisely for those L which fail to be invertible. In order to be able to
turn the section σ into a function det(L) with that same property it is clear that
one needs a non-vanishing section δ of the determinant bundle over &. One may
then define a determinant as follows:

σ(L) = δ(L)detδ(L).

A non-vanishing continuous section of the bundle det-> J* is also called a
trivialization. There may be topological obstructions to finding a trivialization
(measured by a Chern class). If there is such an obstruction the search for a relative
determinant for the family £8 is at an end. If the bundle det—>^ does have a
non-vanishing section, then it will have many such and one requires additional
criteria such as gauge invariance, analyticity, or locality to single out a particular
choice. In the example we consider the choice of trivialization will be determined
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for "physically" relevant parameters by the requirement that the determinant is
the square of the infinite volume correlation functions for the Ising model.

Next we consider the problem of defining Pfafϊϊan bundles. Suppose H is a real
Hubert space with inner product ( , •)• The real inner product has a natural complex
bilinear extension to the complexification Hc of H. We will say that a complex
linear map L on Hc is skew symmetric if (Lx, y) = — (x, Ly). We write Lτ for the
transpose of L relative to the bilinear form on Hc. To motivate our definitions in
the complex case it will be useful to recall some results of Atiyah and Singer for real
skew symmetric maps. In [AS] it is shown that the space of real linear skew
symmetric Fredholm maps on a real Hubert space which anti commute with a
fixed complex structure has two components distinguished by the parity of the
dimension of the null space (this is the space they denote by 2F2\ The skew
symmetric maps L with even dimensional kernel fall into one path connected
component and those with odd dimensional kernel fall into the other component.
The space we wish to consider is obtained from the first component of ^2(HC)
by multiplying by the distinguished conjugation on Hc. Let Sk0(Hc) denote the
space of skew symmetric Fredholm maps on Hc that have an even dimensional
null space. We will now define a holomorphic line bundle, P/, over the base
Sk0(Hc) which we refer to as the Pfaffian bundle. We will imitate Quillen's definition
of determinant bundles [Q] in order to exhibit clearly the holomorphic structure
of the Pfaffian bundle (it is not evident in our oversimplified account but the
determinant bundle is a holomorphic line bundle). Let F denote a finite rank skew
symmetric map on Hc. Let L/F = {LeSk0(Hc):L+ F is invertible}. It is clear that
Up is open in Sk0(Hc). We will show that the collection {ί/F} with F ranging
over all finite rank skew symmetric maps on Hc is a covering of Sk0(Hc) and we
will give holomorphic transition functions on the intersection of two such sets to
define the bundle Pf.

Lemma. IfLeSk0(Hc\ then there exists a finite rank skew symmetric map F on Hc

such that L + F is invertible.

Proof. Let P denote the distinguished conjugation on Hc which fixes H. The space
Hc is naturally a Hubert space with respect to the Hermitian inner product
<x,y>:=(Px,j;). Let L* denote the Hermitian conjugate of a linear map L with
respect to the inner product <v> If LεSk0(Hc) then L τ= — L so the Fredholm
index of L and that of Lτ are the same. But the Fredholm index of Lτ and L* are
the same since they differ by conjugation by P. The index of L* is minus the index
of L and this implies then that the index of L must be zero. Let ker(L) denote the
null space of L and write coker(L) for the quotient of Hc by jR(L), the range of L.
Each element x in ker (L) induces a linear functional (x, •) on coker (L) which maps
y + R(L) into (x,y). This is well defined since (x,Ly) = — (Lx,y) = Q if xeker(L).
The map x-»(x, ) is injective since (x, •) = 0 implies that x is complex orthogonal
to all of Hc and hence 0. But since the index of L is 0 the space ker (L) and the
dual of coker (L) have the same dimension and the map x ->(x, ) is an isomorphism
between ker (L) and the dual space coker (L)*. Now choose a complement K to R(L)
in Hc on which the bilinear form ( , ) is non-degenerate. For xGker(L) the linear
functional (x, •) may be identified with a linear functional on K and the map from
ker(L) to the dual space K* is an isomorphism. Because the bilinear form ( , ) is
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non-degenerate on K it follows that the set of vectors in Hc orthogonal to K relative
to the bilinear form, for which we write K1, is a complement to K. The codimension
of KL is thus dim(K) = dim(ker(L)). Since ker^nK1 = {0} it follows that Hc is
the direct sum ker(L) + X1. We now define a finite rank skew symmetric map F
on Hc so that L + F is invertible. Let {eί9e29. . . , e2n} be a basis for ker(L) (which
is even dimensional since LeSk0(Hc)). Let {e*,£*> ••>£*«} denote the dual basis
of K (i.e., (ej,e$) = δjk). Let (/#)/,* = 1,2,. ..,2« denote any invertible skew symmetric
2ft by 2ft matrix and define:

Fej=Σfkje* for j =1,2,.. . , 2ft, Fy = 0 for yeK1.
fc=l

It is a simple matter to check that the linear extension of F to ker(L) + KL is
complex skew symmetric on Hc. It is clear that L + F does not have a null space
and being Fredholm of index 0 it is also invertible. QED

The lemma just proved shows that the open sets UF cover Sk0(Hc). We now
introduce the transition functions for the Pfaffian bundle. Over UF the map
UF3L^L + F is a smooth choice of a skew symmetric map q — L + F which inverts
L up to a finite rank perturbation of the identity. If we attempt to imitate the
description of the determinant bundle and think of the fibers of the Pfaffian bundle
as pairs (q,λ) λeC, then it is natural to define a trivialization of Pf over UF by
Up x Ca(L, λ) -> (L + F, λ)ePf. To define the bundle Pf we must now say how two
such trivializations are related. Suppose F and G are both finite rank complex
skew symmetric maps on Hc. Proceeding informally we would like the transition
function from the UF trivialization to the UG trivialization to incorporate the
notion of equivalence (L + F, λF(L)) ~ (L + G, λG(L)) if and only if:

- P f ( L + F)

The ratio of Pfaffians Pf(L + F)/Pf(L + G) makes sense in finite dimensions
but it does not directly make sense in infinite dimensions (note: the definition of a
Pfaffian for a skew map on a finite dimensional Hc requires a choice of volume
form on Hc; this ambiguity disappears in the ratios of Pfaffians that we are
concerned with here). As a substitute for this undefined ratio of Pfaffians we follow
[PS, Chap. 15] to see that det((L + F)(L+ G)"1) has a canonical square root.

Let us recall some of the results from [PS]. Suppose for the moment that Hc

is finite dimensional and that S and T are skew symmetric maps on Hc. Let
[ev , e2 > . . . , en] denote a self dual basis for Hc relative to the bilinear form on Hc.
The matrices of S and T relative to such a self dual basis are skew symmetric. For
any finite subset σ of the integers from 1 to ft let Sσ denote the skew submatrix of
S made from the rows and columns of S indexed by σ. Define:

where the sum ranges over all finite subsets σ of the integers from 1 to ft. In [PS]
it is shown that:
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Return now to the consideration of infinite dimensional Hc. For S and T in
the Schmidt class the formula given above can be shown to converge absolutely
[PS]. We require a somewhat different infinite dimensional extension to maps S
in the trace class and maps T which are merely bounded. Since we do not know
whether the formula given above converges in this situation we proceed somewhat
differently. Suppose first that S is a finite rank skew symmetric map on Hc and T
is a bound skew symmetric map on Hc. Let W denote a finite dimensional subspace
of Hc which contains the range of S and on which the bilinear form is
non-degenerate. For example, since P2 = 1 such a subspace is given by R(S) + PR(S)
(recall that P is the distinguished conjugation on Hc). Because W is non-degenerate
the orthogonal complement, Wλ, of W with respect to the bilinear form on Hc is
a complement to W in Hc. Since S is skew we have for xeHc and yeWλ:Q =
(Sx,y) = — (x,Sy) which implies that Sy = Q for all yeWλ, and we conclude that
WL c= ker(S). Let π denote the projection on W along WL. Then π satisfies the
following two conditions: (1) π is a complex orthogonal projection whose range is
a non-degenerate subspace which contains the range of S; and (2) the range of
/ — π is contained in ker(S). Suppose π is any projection satisfying the conditions
(1) and (2) above. Let S(π) = πSπ and T(π) = πTπ denote the compression of S and
T to the subspace R(π), Since π is a complex orthogonal projection it follows that
πτ = π. Thus S(π) and T(π) are skew symmetric on K(π). Since R(π) is non-degenerate
it has a self dual basis and we define:

P/(/-S70:=P/(/-S(π)Γ(π)).

On the right the maps /, S(π), and T(π) are all regarded as transformations on the
finite dimensional subspace R(π). To see that this definition makes sense we will
show that it does not depend on the particular choice for π. If π1 and π2 are two
projections which satisfy conditions (1) and (2) above then the complex orthogonal
projection, π, on the sum of their ranges also satisfies these two conditions. Thus
to show that the Pfaffian we have defined for πί is the same as that for π2, it is
enough to show that they each agree with the Pfaffian defined for π. If R(π) is not
equal to R(n^)9 then R(π) is the direct sum of ^(πj and the complex orthogonal
complement of R(π^) in .R(π). Let {eί9e2,. .,en} be a self dual basis of R(π) which
respects this splitting with {eί,e2,...,ek} a basis for R(πί). The vectors ek+ί9...9en

are then null vectors for S(π) and Pf(S(π)σ) vanishes for any σ which contains
indices between fc + 1 and n since S(π)σ is then the matrix of a singular
transformation. The sum defining Pf(I — S(π)T(π)) thus reduces to that for
Pf(I - SfaJTfat)). The Pfaffian we have defined is thus independent of the choice
of projection π. We would like to know that P/(/-ST)2 = det(/-ST). To see
this observe that since ST = πST = πS(I -π + π)T = πSπT we have: det(/ - ST) =
det(7 - πSπT) = det(/ - πSπTπ) - det(/ - S(π)T(π)) = Pf(I - ST)2. We have
constructed a canonical square root, Pf(I — ST), for det(/ — ST) when S is finite
rank and both S and T are skew symmetric on Hc. This is enough to
give us the square root of det((L + F)(L + G)~ *) we desire since (L + F)(L + G)~1 =
I-(G- F)(L+ G)~x. The map S- G-F is finite rank and both S and T - (L + G)~1

are skew symmetric. For F a finite rank skew symmetric map define a section σF

of Pf over UF by £/F9L-»σF(L):=(L + F,l). The bundle Pf^Sk0(Hc) is now
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defined by giving the transition function relating the sections σF and σG:

aG(L) = Pf((L + F)(L+G)-^F(L) for LeUFnUG.

The formula for Pf((L + F)(L + G)"1) makes it quite clear that this is a
holomorphic function of L. To see that one has actually obtained a line bundle
one must check the cocycle conditions for the transition functions. Up to a plus
or minus sign these conditions follow from the usual multiplicative property of
the determinant and the fact that the square of the Pfaίfian is the determinant.
The sign ambiguity may be resolved using the fact [PS] that Pf(I-λST)
is the unique square root of det(/ — λST) which is holomorphic in λ and equal to
1 aU = 0.

To conclude this section we extend Pf(I — ST) so that it is well defined for
trace class skew maps S and bounded skew maps T (what we really use is that
the product ST is trace class). This will be useful when we discuss trivializations
of sub-bundles of the Pfaffian bundle. Suppose S and T are skew symmetric maps
on Hc with S in the trace class and T bounded. Suppose / — ST is invertible. Since
ST is compact the set of AeC for which I — λST fails to be invertible is a discrete
set of points in C. Thus we can find a smooth simple path y in C which joins 0 to
1 and avoids any of the points at which I — λST fails to be invertible. Let Sn denote
a sequence of finite rank skew symmetric maps which tend to S in trace norm.
For n large enough Sn T will be arbitrarily close to ST in trace norm and it follows
that for n sufficiently large / — λSn T will be invertible for all λ on the compact
path y. Along y one may choose a continuous logarithm for Pf(I — λSn T) which
vanishes at λ = 0. One finds:

logP/(/-SBη = if^logdet(/-^

Since (/ - λSnT)~lSnT tends uniformly to (/ - λST)~lST in trace norm for λ on
y it follows that Pf(I — Sn T) converges as n -> oo and we may define:

P/(/ -SΓ):=exp ^ΛΊτ((I-λST)-^ST)dλ .

The right-hand side of this equality is a square root for det(/ — ST) even if ST is
an arbitrary trace class map. What makes the Pfaffian special is that the result
does not depend on the curve y. The formula for the Pfaffian clearly shows that
it depends analytically on S and T as long as (I — ST) is invertible. We clearly
want the Pfaffian to be 0 when (I — ST) fails to be invertible. To see that this
extension is analytic in T suppose that S is skew and in the trace class and that
T(z) is a holomorphic family of bounded skew maps on Hc defined for z in some
connected open subset of the plane. The function z -> det(/ — ST(z)) is holomorphic
and so either vanishes identically or has isolated zeros. In the first case there is
clearly nothing to prove about the analyticity of the Pfaίfian which also vanishes
identically. In the second case Pf(I — ST(z)) is analytic except perhaps at the
isolated zeros of the determinant. Since the square of the Pfaffian is the determinant
the Pfaffian is clearly continuous at these points and hence analytic. Analyticity
in S follows for the same reasons.
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2. The Pfaffian Bundle over the Isotropic Grassmannian

In this section we introduce the Pfaffian bundle over the isotropic Grassmannian
in an infinite dimensional setting. We follow [PS, Chap. 15] and [CP] and the
reader is referred to these references for a more detailed account than we will give
here. Let W:= Hc denote the complexification of a real Hubert space H with the
distinguished bilinear form ( , •) obtained from the real inner product on H. Write
< , > for the natural Hermitian symmetric inner product on W that makes W into
a complex Hubert space (we take the inner product to be conjugate linear in the
first slot). If L is a complex linear map on W we write Lτ for the transpose of L
relative to the bilinear form and L* for the Hermitian transpose of L relative to
the inner product. A subspaces V c W is said to be isotropic if the bilinear form
vanishes identically on V. Suppose W+ and W_ are complementary isotropic
subspaces of W; we will say that W+ + W_ is an isotropic splitting of W. Note
that we do assume that an isotropic splitting is a continuous splitting; the projection
Q+ of W on W+ along W_ is supposed to be continuous. We write g- for the
complementary projection / — Q+. Given a linear transformation L on W and an
isotropic splitting of W we write:

(A(L) B(L)
\C(L) D(L)

for the matrix of L relative to the decomposition W= W+ + W_ (thus A(L):
W+ -> W+, B(L): W- -> W+, etc.). We say that a map on W is complex orthogonal
if it is invertible and preserves the bilinear form on W. Let Ores(W) denote the
group of complex orthogonals on W which have B and C matrix elements in the
Schmidt class. Let SOres(W) denote the connected component of the identity in
Ores W It is known that an element SeOres(W) is in SOns(W) if and only if the
dimension of the null space of D(S) (or of A(S)) is even [CO]. The Pfaffian
bundle we are interested in has the orbit SOTQS(W)W- as its base. We write
Griso — SOTes(W)W_, and we will refer to this orbit space as the isotropic
Grassmannian. This setting is natural for the applications in Sects. 3 and 4, but it
is apparently more general than the situation considered in [CP] where the
subspaces W+ and W_ are assumed to be orthogonal with respect to the Hermitian
inner product. It is however, always possible to introduce a metrically equivalent
inner product on W so that W+ and W_ are Hermitian orthogonal. To see this
we first prove that the map W_ex^(x9-)eW^ (the complex dual of W+) is a
continuous bijection of Hubert spaces. A vector xeW_ in the kernel of this map
is complex orthogonal to W+. Since W_ is isotropic the vector x is complex
orthogonal to all of W and hence must be 0. The map in question is thus injective.
To see that it is surjective suppose that veW*+. Then by the Riesz representation
theorem there exists UG W such that v(y) = <u, y > = (μ, y) where u -> ΰ is the natural
conjugation on Hc. Now write ΰ = v+ +ι?_, where v+eW+ and v_eW^ so that
v(y) = (v+ + v->y) — (v- >y) since W+ is isotropic. This finishes the proof that
x -> (x, ) induces an isomorphism between W_ and W%. We choose an orthonormal
basis ek for W+ and let e% denote the basis of W_ that maps into the basis dual
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to ek under the isomorphism just described. Define a new conjugation P on W by:

b k e f ) = ̂ (άkef + bkek).
k

One may check that W ax, y -> (Px, y) is a positive definite Hermitian inner product
on W metrically equivalent to < , > with the further property that W+ and W,
are now orthogonal subspaces. In the rest of this section we suppose that the inner
product on W has been adjusted so that W+ and W_ are orthogonal. There is a
succinct characterization of Griso in this case. An isotropic subspace U belongs to
Griso if and only if the Hermitian orthogonal projections on U and W- differ by
a Schmidt class operator and the intersection U n W+ is even dimensional.

In order to give a "geometric" realization of the Pfaffian bundle we first
introduce the infinite spin group Spin(VF) [CP]. This group is an extension of
SOres(W) by C*. There is a surjective homomorphism T:Spm(W)-+SOτes(W) with
kernel C*. In finite dimensions the elements of the spin group are naturally
associated to automorphisms of the Clifford algebra over W which extend
orthogonal transformation on W. The homomorphism T assigns to each element
in the spin group the corresponding orthogonal transformation on W. The situation
in the infinite dimensional case is similar but depends more strongly on a
distinguished representation of Spin(FK) that we now describe. If 3) is a linear
space let Hβ) denote the space of linear maps from ^ into @. The group Spin(W)
has a representation in /l(VF+), the complex alternating tensor algebra over W+,
in the following sense. There exists a dense linear domain @aΛ(W+) which
contains the vacuum vector 1 eC c Λ(W+ ) and a strongly continuous representation
Γ :Spin(W) -> L(@). The elements Γ(g) in this representation for which the vacuum
vector is an eigenvector are precisely those whose induced rotation T(g) leaves the
subspace VF_ invariant. Thus the projective orbit of 1 in the spin representation
Γ can be identified with isotropic Grassmannian. The Pfaffian bundle Pf -> Griso

is the line bundle over Griso whose fiber at T(g)W_ is the line through Γ(g)l in
Λ ( W + ) (by analogy with the determinant bundle over the Grassmannian this
might more properly be called the Pfaff * bundle — we will ignore this point in what
follows). We want to be more explicit about this. Our description makes it clear
that the Pfaffian bundle pulls back to the spin bundle Spin(W)-+SOres(W) under
the map SOres(W)^G -> GW_ . Since the maps into Griso which we will be concerned
with later all factor though SOres(W) it will suffice for our purposes to give a more
explicit description of the spin bundle. Suppose that GeSOres(W) and D(G) is
invertible. Then for any #eSpin(FF) with T(g) = G we have [CP]:

Thus for such a G there is a unique element σ0(G)eSpin(W) which maps into G
under T and which is normalized so that <σ0(G)> = 1. We now generalize this to
give trivializations of the spin bundle for an open covering of SOτes(W). Suppose
c : W+ ->> W- is finite rank and skew symmetric (c = — cτ). Then the map yc with

Ί
matrix ( ) is complex orthogonal. In [CP, Lemma 1.3] it is shown that for
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any GεSOres(W) it is possible to find such a complex orthogonal γc with c finite
rank so that the D matrix element D(ycG) = D(G) + cB(G) is invertible. It is not
hard to see that yc:= σ0(yc) leaves the vacuum invariant and indeed that yc->fc is
a homomorphism. For a fixed finite rank skew symmetric map c: W+ -> W_ let
Uc denote the open subset of SOτes(W) which contains those elements G with
D(G) + cB(G) invertible. Over Uc we define a trivialization Uc3G-+σc(G) by
normalizing σc(G) so that <ycσc(G)> = 1. Suppose ί? and c are both finite rank skew
symmetric maps from W+ to W-. We wish to compare σb with σc on UbnUc.
If σfc(G) = r(jc(G), then clearly r = <ίc(7ft(G)> = <^-1^(G)> = <f c_df f cσ f c(G)>.
Using formula 3.2 in [CP] together with <f b _ c > = 1 and <fbσb(G)> = 1 one finds:

= Pf(I ~(b- c)B(D + bB)~l) = Pf((D + cB)(D + bB)~1),
c

where 5 = £(G) and D = D(G). The map £(/) + bB)~1 is skew symmetric because
γbG is complex orthogonal. The Pfaffian in this last formula is understood in much
the same fashion as the Pfaffians in the first section [PS,CP]. The transition
function we have obtained here will suffice for our applications.

3.A Family of Finite Difference Operators

In this section we will introduce a family of finite difference operators acting on
Hc:= /2(Z2

/2,C
4) in terms of which one can formulate Ising model correlations

(and generalizations). We adapt some ideas in Witten [W] by introducing truncated
versions of these finite difference operators obtained by imposing boundary
conditions. The truncated operators are a useful tool in our analysis and they also
provide a natural setting for the introduction of the transfer matrix formalism.

Let H:= /2(Z2

/2,R4) denote the real Hubert space of R4 valued functions on
Z2

/2 with the inner product:

(F,G)= Σ F(s) G(s)9

*εZ?/2

where F(s)- G(s) is the usual inner product in R4. Let Hc denote the complexification
of H which we identify with /2(Z2

/2,C
4). The space Hc is naturally a Hubert space

with Hermitian inner product <F 9 G > := ]Γ F(s) G(s) and distinguished bilinear form
s

(F, G):= ΣF(s)-G(s). Suppose FεHc and define horizontal and vertical translation
s

operators by t1 F(k,/) = F(k- 1,/) and t2F(k,/) = F(k,/- 1). The skew symmetric
(with respect to ( , )) finite difference operators L on Hc that we are interested in
all have the form:

where
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for j = 1,2, and

'J21 "22,

We suppose that the coefficients Uj9vj9 and btj are all bounded functions on Z2

/2

regarded as multiplication operators. Rather interesting families of such operators
arise in what Baxter refers to as Z-invariant Ising models [B, PA]. We will not
attempt to analyse such families here; for simplicity we will immediately confine
our attention to families in which Uj and btj are constants and only the coefficients
Vj vary from site to site on the lattice. To describe the functions Vj it will be very
useful to regard them as functions on "bonds" rather than "sites" in a manner that
we now indicate. Suppose V± is a function which assigns a complex number to
each horizontal bond in Z2

/2. Let j?ι(fc,ί) denote the horizontal bond which joins
(fc-1,/) to (/c,/) and write:

v1(kJ)=V1(β1(kM

In a similar fashion let V2 denote a complex function on vertical bonds and write:

where β2(k, I) is the vertical bond which joins (fc, / — 1) to (fc, /). We will always think
of the "site" functions Vj as arising from "bond" functions Vj in precisely this fashion.

The special choices HJ = 1 ϊorj = 1, 2, b = I 1 and t?7 = tanh (Kj) ϊorj =1,2

are the Ising parameters for the model with horizontal bond strength Ki and
vertical bond strength K2 (see [MW]). Based on what happens on a finite lattice
one would like to identify the free energy per site for this model as the Pfaffian
P/(L). To make sense of this infinite Pfaffian one can pull back the Pfaffian bundle
over Sk0(Hc) by the map (vl9υ2)-+L. A suitable trivialization of the resulting
bundle over the "space of Boltzmann weights" then gives the free energy per site
of this model. This view of the free energy result admittedly makes something
simple seem complicated. For more complicated models such as Baxter's Z-invariant
generalization of the Ising model, the "Pfaffian bundle over the space of Boltzmann
weights" might be the appropriate object in which to frame a direct infinite
dimensional analysis. As previously mentioned we will not pursue this here.

Instead we concentrate on the Pfaffians that appear in the study of spin
correlation functions. To incorporate a spin variable at site (ra, n) on the integer
lattice Z2 one introduces a path Γ on the integer lattice which joins (m,n) to "oo."
A path in Z2 we take to be a sequence of directed bonds such that the "head" of
each bond matches the "tail" of the succeeding bond. We say that a path, JΓ, joins
(m, n) to oo if the bonds in the sequence eventually leave any bounded subset of
the plane. A path Γ will be said to be regular if any bond in the sequence Γ
appears only finitely many times. Suppose now that Γ is a regular path in Z2

which joins (m, n)eZ2 to oo. Let ΌJ = th(Kj) as above and define functions Vf on
the bonds in Z2

/2 by
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where N Γ(β) is the number of times a bond in the sequence Γ crosses the half
integer lattice bond β. Again based on what happens in finite dimensions the
expected value of the spin ought to be the relative Pfaffian PftL^Lj), where L0

is the translation invariant finite difference operator with constant coefficients
Vj(β):= Vj and LΓ is obtained fromL0 by replacing Kjwith V?. The p site correlations
are similar. The single path becomes a union of p different paths, Γ, each of which
joins one of the sites in the correlation to oo. With this alteration in the meaning
of Γ the definition of Vf is otherwise unchanged and one would like to identify
the p site correlation as the relative Pfaffian PftL^Lj). Unfortunately LΓ is not
in general a trace class or even a compact perturbation of L0, and so the relative
Pfaffϊans do not make sense directly. Most of the rest of this paper will be devoted
to understanding an appropriate sense to give to these relative Pfaffians.

The Ising model parameters can be generalized in what we do without
introducing essential complications. We begin by regarding uj9 Vj φ 0 and b^ as
arbitrary complex parameters and we will introduce restrictions on them as they are
needed. Suppose that (mj9 w/)eZ2 (j = 1, . . .,/?) are sites on the integer lattice labeled
so that H! ̂  n2 ^ ^ np. Let Γj denote a regular path on Z2 which joins (mj9 HJ) to
oo and write Γ = {Γ1,Γ2,...,ΓP}. We are interested in the family of finite difference
operators LΓ which have constant parameters uj9 btj and Vj(k, I) = Vf(βj(k, I)). We
will analyse the family LΓ by making a connection with the horizontal transfer
matrix formalism. For this purpose it is convenient to normalize the choice of the
paths Γj to be the horizontal paths which emerge to the right of the sites (mj? «,-).
That is:

We have thus supressed the freedom one has in choosing the paths Γj which
is one of the most interesting features of the Pfaffian formalism; we hope to return
to this matter in another place. For the present we fix the choice of paths Γj given
above.

Following Witten [W] we introduce truncated versions of LΓthat remain skew
symmetric (this is also clearly related to the idea behind WeyPs analysis of
differential operators on infinite intervals which proceeds by analysing approxi-
mations on finite intervals obtained by introducing suitable boundary conditions).
Let N denote an arbitrary integer and for F, GeHc define:

To unburden the notation write L:= Lr. Then a simple calculation shows that:

keZι/2

Based on this formula it is natural to introduce boundary values
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for FeHc and the bilinear form

(f,9)N= Σ f(k)'v(k)g(k)9
keZι/2

( 0 v (k N 4- -)\
where t;(fc):=( (J KJ ^ 1 and / and g are in /2(Z1/2,C2). Recall

that we suppose Vj φ 0 so this bilinear form is non-degenerate.
We may then write the equation which determines the deviation from skew

symmetry in a restriction of L as follows:

(LF, G)l>N + (F, LG)l>N = (dNF, dNG)N.

Thus to obtain skew symmetric restrictions of L requires boundary conditions
on the domain of L that cause the right-hand side of this last equation to vanish,
Let WN denote the vector space /2(Z1/2,C2) with Hermitian inner product <%•>#
defined by:

(f,gyN= Σ \V2(k,N + ±)\f(k) g(k).
feeZι/2

The distinguished bilinear form ( , -)N on WN is given by:

where

The map PN is conjugate linear and has square equal to /. Thus the distinguished
bilinear form on WN is obtained from the Hermitian inner product by a conjugation.
When N / HJ (j = 1, . . . , p) we lighten the notation by observing that all the vector
spaces WN are isomorphic to W:= /2(Z1/2,C2) with the Hermitian inner product

< f , g > : = \ V 2 \ Σ f ( k ) 9(Q and the bilinear form (f>9)'.= <Pf,θ> with Pf(k):=

With appropriate restrictions on the coefficients uj9Vj and btj the relation
LΓF = G implies and is implied by a linear inhomogeneous relation between dnF
and dn-1F for all neZ. This relation defines the transfer matrix and is at the heart
of our analysis. To obtain this relation we begin by writing the functions

F9GE/2(Z2

/2,C
4) in two component form F = l * j, and G = l M where

/7 ,^fJ 6/2(Z2

/2,C2). The equation LΓF = G becomes in component form:

aιfι + bf2 = 0ι, - bτ/ι + α2/2 = g2.

From which one finds α2/2 = blf± 4- g2 and fί = a^1(g1 — bf2). Combining these
two equations:
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Now define:

and

-

J. Palmer

Then the last equation may be rewritten:

0 v2t2

v2t2

l 0

where ϋ2(k, /):= υ2(k, I + 1). Let V:= ( __ί

\V2

last displayed equation by F One finds:

tΓΛ2 1 and multiply both sides of the

Now write σ+ =

and

0
and σ_ =

σ_

O 0
. Then:

= dl_±F-σ_Vh( ,

r_ + σ ,

Solving for dt-±F in terms of dι+±F one finds:

where

and

(T)

σ_ σ_ + σ

F =

The equation (T) will be the principal tool in our analysis. We will call Tl the
transfer matrix at level /. This usage is not consistent with the terminology in
statistical mechanics where the lift of Tl into a spin group is called the transfer
matrix. However, this abuse of terminology will allow us to avoid always referring
to Tz as the "induced rotation of the transfer matrix" before we've introduced the
element in the spin group which has this induced rotation.

To allow the reader to compare what is happening at this point with more
familiar treatments of the Ising model we record the result for the transfer matrix
in the translation invariant case of the Ising model (no spin inhomogeneities):

T =J Ising

"ϋ 2(l+Mι)(l + Mι ^
1-t f

Ϊ5 ^ t~1}
ί \ ί 1 /

1-t)?
MΓ1)
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In this last result make the substitution ΌJ = tanh (Kj) and transform the result

by the similarity X(-)X~1 with X = ( . 1. Thinking of the translation tί acting

in a Fourier series representation replace tί by eiθ. One finds:

C\ C2 — Sl S* COS (0) Sl Sm (θ) — ί(ClS* — Sl C2 COS (θT =
Ismg \5ι sin (0) + i(cιs* ~ Si cf cos (0)) cx cf -- Si sf cos (θ)

where c, := ch(2X_/), s7 := sh(2Ky)5 cj := Cj/sj9 and sf := l/Sj. This should look familiar
to Ising model devotees.

We will next discuss some restrictions on the parameters uj9 Vj and b that have

important consequences for the transfer matrix. Let L0 = I \ I with the
\-h a2)

constant coefficients uj9Vj and b. Consider the Fourier transform:

^π MeZι/2

where z = elθί, w = elθ2 and Θ7 is restricted to the interval — π < θj ^ π in order to
give a definite sense to fractional powers of z and w. The map L0 becomes a
multiplication operator after Fourier transform since tl becomes multiplication
by z and t2 becomes multiplication by w. Let L0(z, w) denote the matrix obtained
from LO by replacing ί^1 with z±l and ίj1 with w± l . The criterion for L0 to
be invertible on I2 is then:

detL0(z,w)^0 for (z9w)eS1xS1. (A)

This is our first restriction on the parameters uj9 Vj and b. Let Cj(u):= (HJ + VjU)

and b:=\ , I, then one finds:

- αδ(c1(z)c2(w-1) + C1(z-1)c2(w)) + (det b)2.

The one observation we have to make concerning this formula is that it is clearly
invariant under the substitutions z<-z- 1 and w<-w - 1 .

It is interesting to consider what effect (A) has on the transfer matrix. Let T
denote the transfer matrix for L0. Because L0 has constant coefficients T=Ttis
independent of / in an obvious sense. We may identify WN with W as was done
above and introduce the Fourier transform:

for feW. After Fourier transform the map T becomes a 2 x 2 matrix valued
multiplication operator T(z) with entries that are rational functions of z. The
characteristic equation det(w/ — T(z)) = 0 determines the spectral values w for T(z)
when zeS1. It is not too surprising that there is a relation between det(w/ — Γ(z))
and detL0(z, w). One may check that:
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Our second condition on the parameters in L0 is:

z-1)^0 for zeS1. (B)

Condition (B) implies that the roots w to det(w/ — Γ(z)) = 0 for zeS1 are the same
as the roots of w det L0(z, w) = 0 for zeS1 . For each fixed zeS1 condition (B) implies
that the function wdetL0(z, w) is a non-trivial quadratic polynomial in w and so
has two complex roots. Since det L0(z, w) = det L0(z, w~ *) and det L0(z, w) φ 0 for
(z^eS1 x S1, it follows that one root lies strictly inside the unit circle and the
other lies strictly outside the unit circle. Conditions (A) and (B) together imply
that the transfer matrix T is a bounded linear map and that no point on the unit
circle is in the spectrum of T.

We return now to the consideration of the inhomogeneous operators LΓ. It is
clear that when l<nί — l or / > np + 1 the transfer matrix Ύl for LΓ may be
identified with the transfer matrix for L0. We will now calculate the change in the
transfer matrix which is produced by one of the lines in 7". The two transfer matrices
that are effected by the line of "discontinuities" Γj={(m9nj):m'^mj} are Tn.+±
and Tnj-±. In the formula for Ύl the change occurs only in the factor V. Let
εm(fc):= sgn(m — fc) for meZ and fceZ1/2. Then:

and

Incorporating these changes in the appropriate TJ one easily sees that:

τ
and

εm. 0

Conditions (A) and (B) above are thus adequate for the existence of the transfer
matrix for LΓas well as L0. It might help the reader to know that in the Ising
case conditions (A) and (B) are satisfied for all values of the parameters Kj except
the critical values. At the critical parameters 1 is in the spectrum of the transfer
matrix.

We next turn to an important property of the transfer matrix Ύl\Wl+^Wl^^.
The map Tf is a complex orthogonal map; one has (Ttf, Ttf)^^ = (/, g)ι+±- Observe
that this is equivalent to:

o t>2( ,/Λ τ = / o ι>2( ,/ +
v2('J) 0 ) l \v2(',l+l) 0

To check this make use of the fact that Sτ = — S to calculate T}. Multiply on the
left by (σ_ — SVτσ + ) and on the right by (σ_ + σ+ VS) to clear the inverse maps
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from the resulting equation. Make some obvious algebraic simplifications and
subtract the right-hand side of the equation from both sides to obtain:

o v2( j)\ ( o -M , / +
ra( , / + l ) 0 )VS SV(v2(;l) 0

Now consult the definition of V to see that the left-hand side is simply S — S. We
have confirmed that Tt is a complex orthogonal. No doubt a more fundamental
understanding of Tt would make this property manifest.

Since our restrictions (A) and (B) on the coefficients in L0 guarantee that L0

is invertible it is natural to compare LΓ with L0. We will now calculate L^xLr.
The calculation is an instructive use of the transfer matrix idea and will also provide
a proof that the operators LΓ are Fredholm with index 0 (incidently this Fredholm
property fails for the Ising model at the critical point). We begin with an observation
concerning the transfer matrix T. Recall that the spectrum of T does not contain
any points on the unit circle S1. Let W+ denote the spectral subspace for T on
which T has spectrum strictly inside the unit circle and W_ the spectral subspace
for T on which T has spectrum strictly outside the unit circle. The projections Q±

on W± are multiplication operators in the Fourier transform variable z given by:

Our assumptions (A) and (B) imply that Q± are bounded, hence that W = W+ + W_
is a continuous direct sum decomposition of W. Each of the subspaces W± is
isotropic with respect to the bilinear form on W. To see this suppose that x, ye W+ .
Then since T is complex orthogonal:

\(x9y)\ = \(Tnx9ry)\^\\T"x\\ \\Tny\\.

But because x, ye W+ , we have Tnx -» 0 and Tny -> 0 as n -» oo. Thus we must have
(x,j;) = 0 for x,yeW+. If we replace T with T~l the same argument works for
W_. We are thus in the setting of Sect. 2.

In order to calculate L$1LΓ we begin with the relation:

where OeC2 and:

and θj(k):=θ(k-mj) with 0(fc)=l for /c>0 and 0(fc) = 0 for fc<0. Next we
wish to compute LQI(LΓ — LQ)F using the transfer relation (T). Write L0G =
(LΓ — L0)F. Then for each nj there are two places where the transfer relation (T)
for G is inhomogeneous:
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and

For clarity we've written T, for the transfer matrix for L0 which can of course be
identified with T. We can combine the last two relations to obtain:

*K"' -»,
where we've introduced, T(α, b), the transfer matrix which takes one from level b
to level a defined by:

Γ(α,/?):=Tfl + 1/2Γ f l + 3/2 7;_1/2 for α<6,

ΓfaίO^TXMΓ1 for a>b,

T(a,ά):=I

for α,foeZ. Suppose now that rc and N are integers chosen so that n<nί and
ftp < N. The transfer relation (T) shows that dnG is obtained from dNG by repeated
application of the transfer matrix with the inhomogeneous modifications just
described as one passes through level rij. One finds:

dnG = T(n,N)dNG +

We now come to a crucial element in our calculation. The boundary values dsG
for s > N are all obtained from dNG by repeated application of T"1. For G to be
in Hc it is necessary and sufficient that dNG should lie in the subspace on which
T~1 acts as a contraction. That is we must have dNGe W_. For precisely analogous
reasons we must have dnG&W+. Thus β_d n G = 0 and it follows that:

dNG=-£T(N9nj)Q-θjdnjF,

since Q _ commutes with the transfer matrix T and Q _ dN G = dN G. For reasons
we will soon make plain we are especially interested in dnjG for which one has:

8njG = T(nj, N)8NG + T(nj, nk)ΘkdnkF - 2θjσ. dnF.
k = j+l

Substituting the result for dNG into the expression for δnjG one finds:

dnG= -2(Q+θjσ_ +Q-θJσ+)dlljF-ίΣ T(nj,nk)Q^ΘkdnkF
k= 1

+ X T(nj,nk)Q+ΘkdnkF.
k = j+ί

This is nearly the result we desire. We obtain a value for dnj(LulLrF) by adding
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dΠjF to the result just exhibited:

565

fc=l k=j+l

P

Now let d#c denote the subspace £ Sn.Hc, where 3ΠjJfc denotes the orthogonal

complement in ffc of the kernel of the map dnj. Let dH^ denote the orthogonal
complement of dHc. Then relative to the splitting Hc = dHc + dH^ the matrix

of LO 1LΓ is lower triangular

Recall that a linear map on a Hubert space is Fredholm of index 0 if and only
if some finite rank perturbation of it is invertible. Thus L^1LΓ (and hence also
LΓ) will be Fredholm with index 0 if and only if M is Fredholm with index 0. The
calculation of dnj(LβlLΓF) given above gives us the matrix representation of M

= dnjHc:

1 0

0 -β,
β-

-£j 0

0 1

Mjk=T(nj,nk)Q+Θk for

Mjk=-T(npnk)Q_Θk for j>fe .

We will now show that M is Fredholm with index 0. We will do this by
multiplying M by manifestly invertible maps until we reduce the problem of showing
that M is Fredholm to the problem of showing that a certain map on W is
Fredholm. To begin first multiply M on the right by the p x p diagonal matrix

with (fc,/c) entry I ]. Then transform the result by a similarity with the
\0 -εΛ/

p x p diagonal matrix that has T(n,nk) as its (/c,/c) entry. Introduce the notation:
Sj= — T(n,nj)SjT(nj9n). Then the result, which we illustrate in the typical case
p = 3, is:

β_(s2-l)

Now multiply this matrix on the left first by:

" l -1 0"

0 1 -1

0 0 1
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and then in succession by:

and

1

0

0

1

0 0

1 0

0 1_

0~

0

_o -ρ_(5 ls2-i) ι_
One finds the upper triangular matrix:

" l -s1 0

0 1 -52

0 0 Q-(sιS2s3) +

Thus M will be Fredholm with index 0 if and only if Q _ (s1 s2 s3) + Q + is Fredholm
with index 0. The precisely analogous calculation for general p shows that one
must consider Q _ (sx s2 sp) + Q +. Recall that in Sect. 2 we introduced the notation

5 = 1 I for the matrix of a linear map S on W relative to an isotropic
\C(S) D(S)/

splitting W+ + W_ of W. The matrix of Q _ (sx s2 sp) + Q + relative to the isotropic
splitting W+ + W_ is:

1 0

C(Sl .Sp) D(Sl . sp)

Our problem then is to show that D(sί'"Sp) is Fredholm with index 0. The matrix
of s1 - - - Sp relative to the isotropic splitting of W is obtained by multiplying together
the matrices for each of the factors s7 . Thus D(s1s2 sp) = D(sί)D(s2) 'D(sp) +
terms each of which contains at least one factor B(SJ) or C(s7 ) for 7'= 1,2,...,p.
We will now show that each D(SJ) is Fredholm with index 0 and each B(SJ) and
C(Sj) is in the Schmidt class. From this it follows directly that D(s1)D(s2) D(sp)
is Fredholm with index 0 and thus so is D(sίs2 sp) since it is a compact
perturbation of this product.

It is easy to see that BJ (and hence also Sj) is a complex orthogonal on W. If
we show that the commutator of ε7 and Q is in the Schmidt class, then e,- (and
hence also s7 ) is in Oτes(W). It follows that D(ε7 ) (and hence also D(SJ)) is Fredholm
with index 0 (see [CP] or [PS]). In the Fourier transform variable z, the map ε7

is a singular convolution operator with a principal value singularity (zf — z)"1 on
the diagonal. The behavior of the kernel for SjQ — QSj on the diagonal is thus the
same as (Q(z') — Q(z))/(z' — z'). The formula above for the multiplication operators
Q±(z) shows that β(z) is a smooth function of ze S1. Thus the commutator of ε,-
and Q has a continuous square integrable kernel in the Fourier transform variable
and consequently is in the Schmidt class. This finishes the proof that LΓ is Fredholm
with index 0 when (A) and (B) are satisfied. This is certainly not the simplest
derivation of this result, but the calculations we've done are of interest for other
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reasons as well. At the level of determinant bundles we've shown that the problem
of defining a determinant for LΓ can be "reduced" to the problem of defining a
determinant for D(s1s2'-sp). In [PT] and [P] it is shown that the correct choice
of a determinant for D(sίs2- sp) (the choice that gives the square of the correlation
function) has an elegant characterization in terms of a Z/2Z homomorphic lift
Sj->σj€Spm(W). The calculations we've just done might be of some help in trying
to give a more direct characterization of the appropriate trivialization for the
determinant bundle over Γ-+LΓ. We hope to pursue this in another place. For
the present we turn to the final topic of this paper: the identification of the Pfaffian
bundle over Γ^LΓ with a sub-bundle of the Pfaffian bundle over the iso tropic
Grassmannian, Griso.

4. Two Pfaffian Bundles

Recall that n and N are integers chosen so that n < nί and np < N. We will now
introduce truncated versions of LΓ defined by boundary conditions at n and N.
We first define L+(W-) which we also denote by L+ for brevity. The domain @+

of L+ consists of functions FeHc with dNFeW_ and with Fj(kJ) = 0 for 1>N
unless / = N — \ and j = 4. Let P+ denote the projection on the subspace of Hc

defined by the condition F(k, I) = 0 for / < N. We define:

L+=P+LΓ\@+.

In a similar fashion we define L_ as follows. Let ^_ consist of those functions
FeHc with dnFeW+ and F//c,/) = 0 if l<n unless l = n + % and j = 3. Let P_
denote the orthogonal projection on the subspace of Hc defined by the condition
F(k9 /) = 0 for / > n. We define:

Finally we introduce an operator L(W+9W-) obtained from LΓ by imposing
boundary conditions at n and N. Let P0:=/ — P+— P_ and define ^0

 =

{FeHc:dnFε W+ , dNFε W. , and Fj(k, I) = 0 if / > N or / < n unless / = ΛΓ - \ and
j = 4orl = n + % and j = 3}. We define:

Our main interest is in L(W+, W-). The kernel and cokernel of LΓ can be
identified with the kernel and cokernel of L(W+9 WL) as we demonstrate in the
following proposition:

Proposition. The map ker(LΓ)eF-»F|^0 is an isomorphism of the kernel of LΓ

with the kernel ofL(W+, W-). The natural inclusion R(P0)^HC of the range ofP0

in Hc induces an isomorphism coker(L(W+) VF_))->coker(LΓ).

Proof. Suppose Feker(LΓ). Then the transfer matrix equation (T) shows that
TmdnF = dn_mF, and it follows that dnF must be in W+ if F is to be square
summable on Zf/2. For similar reasons we must have dNFe W_ . Thus if Feker(LΓ)
then F has a natural restriction, F|^0, to the domain ®0. Furthermore, one can
easily check that LΓF and L(W+9 W-)(F\@0) have the same values in the range
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of PQ. Thus:

and it follows that F\@0 is in ker(L(W+, W_)). To see that ker(LΓ)<=F->F\@0ε
ker(L(W+ , W. )) is injective suppose that F\@0 = 0. Then equation (T) for LΓF = 0
implies that F = 0 since dnF = dNF — 0. To see that the map in question is surjective
observe that (T) shows one how to extend any element /e^0 in the kernel of
L(W+, W-) to an element Feker(LΓ). The observation is again simply that since
dnfεW+ and dNfeW^ one may apply appropriate powers of the transfer matrix
T to those boundary values to produce square summable functions on Z\ /2 .

Next we turn to the cokernel result. Recall that for a map A on Hc, coker(X)
is the vector space quotient of Hc by R(A), the range of A. We first show that if
GeR0:= range of L(W+, W_\ then G is also in the range of LΓ. Suppose then that
there is a vector Fe^0 such that:

P0LΓF = G.

Because dnFe W+ and dNFe FF_ , we may use (T) to extend F to a square summable
solution, F', to:

LΓF' = G.

The natural inclusion jR(P0)9G->Ge//c thus induces a map from cokeτ(L(W+ , W_ ))
to coker(LΓ). We wish to show that this induced map is bijective. Suppose that
GeR(P0) maps into 0 in coker(LΓ) (i.e., G is in the range of Lr). Then there is
FeHc such that LΓF = G. But (T) implies that for F to be in Hc we must have
SnFe W+ and dNFe W_ . Thus we can restrict F to ̂ 0 and as may be easily checked:
L(W+,W-)(F\®Q) = P0LΓF = P0G = G. Thus GeR0:= range of L(W+ , W.). This
shows the inclusion is injective. To see that it is surjective we make use of the fact
that our assumptions (A) and (B) imply that both L+ and L_ are invertible. To
see this suppose that GeP+Hc and F eHc is the solution to L0F = G. Then the
transfer relation (T) for L0F = G shows that we must have dNFeW+. But
then as above: L + (F\9 + ] = P + LΓ(F\@ + ) = P + LΓF = P+G - G. In a similar
fashion one can show L_ is invertible. Now suppose that GeHc. To show that
the inclusion above is surjective we must find an element G' in the range of P0 so
that G — G' is in the range of LΓ. Here is one way to do this. Let F± denote the
solutions in @+ to L+F± = P±G. One may also regard F± as elements in Hc in
a natural way (i.e., so that the projection of F± on the orthogonal complement of
S>± is 0). Regarding F+ as an element of Hc in this fashion one finds:

The terms Δ± are both in the range of P0. Thus we find that G and G':=P0G —
Δ+-Δ_eR(P0) differ by P + G + P_G + Λ + +Δ_ which is LΓ(F++F_). This
finishes the proof of the proposition. QED.

This proposition suggests an alternative proof that the maps Lr are Fredholm
with index 0 that we now sketch. Without much difficulty one may use the
techniques in the proof of the proposition to show that if L(W+ , W- ) can be made
invertible by a finite rank perturbation then the same is true for LΓ.
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Consider now the transfer matrix, TΓ(n, JV), for L(W+, W-) which takes one
from level N to level n. This was calculated in Sect. 3. One has:

ΓΓ(n, N) = ( - l)p Γ(n, n, )cmι T(n, , n2)εm2 - T(np. , , np)εmp T(np9 N),

where T(a,b)\= Tb~a. If we now introduce (as we did in Sect. 3):

then we can rewrite this as:

Tr(n,N) = s1s2-spT(n,N).

The calculations at the end of Sect. 3 show that TΓ(n,N)eOres(W) relative to the
isotropic splitting W = W+ + VF_ .

Suppose now that GeR(P0) and that one attempts to solve L(W+9 W,)F = G
for F by using the transfer relation (T). One is confronted with:

dnF = TΓ(n,N)dNF + inhomogeneous terms.

For this equation to uniquely determine the boundary values dnF and dNF it is
necessary and sufficient that the subspace TΓ(n,N)W_ be transverse to W+. This
may not be true but because TΓ(n, N)εOres(W) it can fail only by a finite dimensional
amount in the following sense. There exists a finite rank perturbation of the identity
7e^res(^) such tnat the subspace γTfJ(n9N)W- is transverse to W+. Note that
when the dimension of 7γ(tt, N)W_ n W+ is odd 7 will include a complex orthogonal
reflection as well as a map yc from Sect. 2. Thus 7γ(rc, N)W- is transverse to
U:=γ~lW+. It is natural then to introduce the operator L(U, W-) which is the
same as L(W+, W_) except that the condition that defines the domain at level N
is dNFεU rather than dNFεW+. It is not hard to use the transfer relation (T) to
see that this alteration in the boundary conditions produces an invertible operator.
To obtain a finite rank perturbation of L(W+, W_) which is invertible, one may
adjust the domain of L(L7, W_) to agree with that of L(W+, W_) by composing
on the right with the map which multiplies dNF by y"1 but acts as the identity
on dNHς. This finishes our sketch of an alternative proof that LΓ is Fredholm
with index 0. This proof is a translation of an idea in Witten [W].

In order to state that principal result of this paper we now make our final
assumption regarding the parameters in LΓ. It is:

TΓ(n,N)eSOres(W). (C)

To orient the reader we note that (C) will always be true for the Ising model below
the critical temperature. Above the critical temperature (C) is true when p is even
but false when p is odd. Our assumption (C) is equivalent to supposing that:

LΓeSk0(Hc). (C)

We know that LΓ is Fredholm with index 0. To see that it is in Sk0(Hc) we need
to know that ker(LΓ) is even dimensional. To see that this follows from (C) suppose
that Fe^0 is in the kernel of L(W v , W. ). The transfer relation (T) for L(W+ , W. )
F = 0 shows that:

TΓ(n,N)dNF = dnF.
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Multiplying both sides of this equation by Q_ one sees that dNFekeτ(DΓ\ where
DΓ is the D matrix element of TΓ(n,N) relative to the isotropic splitting
W=W+ + W-. Simple arguments like those used in the proof of the proposition
in this section show that the map ker(L(PF+, W-))eF^>dNFekQτ(DΓ) is an
isomorphism. The dimension of ker(DΓ) is even if and only if (C) is true [CP].
Thus when (C) is true the dimension of ker(L(W+, W_)) is even. The proposition
of this section then implies that (C') is true as well.

We are now prepared to state the main result of this paper. Before we do this
we recall the significance of the assumptions (A), (B), and (C). The first assumption
guarantees that the translation invariant version of the difference operators we
consider is invertible. The second assumption guarantees that the relation between
the difference operator and its associated transfer matrix is non-critical. The final
assumption is that the "parity" index for the family of operators we consider is 0.

Theorem. Suppose (A), (B) and (C) are true. Then the Pfaffian bundle over
Γ-+LΓeSkQ(Hc) and the Pfaffian bundle over Γ^ΓΓ(n,N)PF_eGriso are
isomorphic.

Proof. We will show that the fibers over these two bundles can be naturally
identified. For dramatic effect we have stated this result in terms of the Pfaffian
bundle over the isotropic Grassmannian. Recall however that this pulls back to
the spin bundle over the restricted orthogonal group under the map T->TVF_.
We will deal with the spin bundle over Γ -> TΓ(n, N) rather than the Pfaffian bundle.

We begin by explaining a slightly different way of looking at the trivializations
for the Pfaffian bundle over Sk0(Hc) and the spin bundle over SOτes(W) that were
constructed in Sects. 1 and 2. Suppose L = LΓ is a fixed element in Sk0(Hc). One
may define a trivialization of the Pfaffian bundle in a neighborhood of L by
choosing a skew symmetric map F:ker(L)-»Cok(L), where Cok(L) is a subspace
of Hc transverse to R(L) and which is non-degenerate with respect to the bilinear
form on Hc. The map F induces a map F:ker(L)-»coker(L), where coker(L) is
Hc mod R(L). In fact one can reconstruct F from F and the choice of the subspace
Cok(L) as we now demonstrate. Recall from Sect. 1 that coker(L) is naturally
identified with the dual space ker(L)*. Choose an isomorphism F:ker(L)-»ker(L)*
which is skew symmetric in the sense that the natural dual map Fτ:ker(L) -» ker(L)*
is equal to — F. Now choose a subspace Cok(L) transverse to R(L) and
non-degenerate with respect to the bilinear form. There is a natural map from
coker(L) to Cok(L) given by x-h R(L)^>xf, where x'+ R(L) is the unique
representative for x + R(L) with x'eCok(L). If we now extend F to a map F from
ker(L) to Cok(L) through the identifications ker(L)* ~ coker(L) ~ Cok(L) then it
is not hard to check that F is skew symmetric with respect to the bilinear form
on Hc. Thus F is suitable to define a trivialization of the Pfaffian bundle in a
neighborhood of L.

Something similar works for the spin group. Suppose that ( 1 is the matrix
\C D J

of the complex orthogonal T:= TΓ(n, N) with respect to the isotropic splitting
W+ + W-. We claim that the space Bkeτ(D) is naturally isomorphic to the dual
of the space coker(D). We first observe that £ker(D) = ker(Dτ). To see this note
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that BτD + DτB = 0 since T is complex orthogonal. Thus £ker(Z)) c ker(Dτ). But
again since T is complex orthogonal AτD + CτB = I so that B is non-singular when
restricted to ker(D). However D has index 0 so that dim(ker(D)) = dim(ker(D*)) =
dim(ker(Dτ)). Thus £:ker(D)->ker(Dτ) is an isomorphism. Now let ( , ) denote the
distinguished bilinear form on W and consider the map ker(Dτ)3x -»(x, •)• The linear
functional (x, ) is well define on coker(D) if xeker(Dτ). To see this suppose that
xeker(Dτ) and yeW_ then: (x9Dy) = (Dτx,y) = Q. The map ker(Dτ)9x->(x, )e
coker(D)* is injective since any x which maps to zero is complex orthogonal to all
of W. But we've seen that the dimension of ker(Dτ) and the dimension of coker(D)*
are the same so the map in question must be an isomorphism.

We may recast the data needed for the trivialization of the spin bundle in a
neighborhood of T as follows. First choose an isomorphism c:ker(Dτ)-»ker(Dτ)*
which is skew symmetric in the sense that the natural dual map cτ is equal to — c.
Second choose a subspace Cok(D) which is transverse to R(D). The bilinear form
on W gives a non-degenerate pairing between W+ and W_. The direct sum
decomposition R(D) + Cok(D) of VF_ is reflected in the direct sum decomposition
R(D)λ + Cok(D)1 of W+, where XL is the annihilator of X <Ξ W. in W+ ~ W*_.
We have seen that R(D)λ = ker(Dτ). Thus ker(Dτ) + Cok(D)1 is a direct sum
decomposition of W+. Extend c to a map c from ker(Dτ) to Cok(D) via the
identifications ker(Dτ)* ~coker(D)~Cok(D). Then extend c to a map from W+

to W- by setting c(x) = 0 for xeCok(D)1. One may check that the resulting map
(which we continue to denote by c) is skew symmetric and that D + cB is invertible
(it is Fredholm, has index 0, and no kernel). Thus c is suitable to define a
trivialization of the spin bundle Spm(W)^>SOres(W) in a neighborhood of
TeSOres(W).

Suppose that L:=LΓ for some Γ and that F:ker(L)->ker(L)* is a skew
symmetric isomorphism and that Cok (L) is a subspace transverse to R(L) which is
non-degenerate with respect to the bilinear form on Hc. One then has a trivialization
UF x C*3(L9λ)-*λσF(L) for Pf at L. Suppose /eker(L) and consider the map
f^dj. Since dnfεW+,dNfεW_ and TdNf = dnf, it follows that DdNf = 0 and
dnf = BdNf. It is easy to check that the map ker(L)e/-»<3n/ extends to an
isomorphism, z, of ker(L) with #ker(D) = ker(Dτ). Now define t = i~TFi~1

9 where
i~τ is the map dual to i~1. The map t is then a skew symmetric isomorphism from
ker(Dτ) to ker(Dτ)*. As above the choice of a subspace Cok(D) transverse to R(D)
in W, is all the additional information needed to define a map c: W+ -> W_ suitable
to determine a trivialization σc of the spin bundle in a neighborhood of T (see Sect. 2).

We now identify the fiber of the Pfaίfian bundle at L with the fiber of the spin
bundle at T by mapping λσF(L) to λσc(T\ We will now verify that this identification
does not depend on which map F is initially chosen nor does it depend on the
choice of the subspaces Cok(L) and Cok(D). To begin suppose that Cok(L) and
Cok(D) are fixed and that Fx and F2 are two skew isomorphisms from ker(L) to
ker(L)*. To see that the isomorphism we've defined does not depend on Fj we
must show that:

σF2(L) = σC2(T)

σFl(L) σCί(T)9
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where Cj is derived from Fj as above. In Sects 1 and 2 we saw that:

(7p2 (L)

σFί(L)
and

We first consider the relative Pfafϊΐan Pf((L + Fl)(L + F2)~l\ The space Hc is
the direct sum ker(L) + Cok(L)1. Since Fj\Cok(L)L = 0 it is easy to see that

F1)(L + F2)~1 =FίF2

1ξ&I relative to this direct sum decomposition. Thus

In a similar fashion consider the direct sum decomposition R(D) + Cok(D) for
W-. Suppose x^eR(D) and x2eCok(D). Then: (D + c^B)(D + c2£)~1(x1 + x2) =
(D + c1B)(D + c2B)~ίx1 +(c1B)(c2B)~1x2, where CjB is regarded as an isomor-
phism of ker(D) with Cok(D) in the last term. But (c15)(c25)~1x2eCok(D) and
(D + clB)(D + c 2B)~ 1Xi = xl+ (<?! - c2)£(D -f c2β)~1x1. The second term in this
sum is in Cok(D). Thus we find the matrix of (D + c^B)(D + c2B)~l relative to the
direct sum R(D) + Cok(D) is:

Ί 0 \

S (ClB)(c2BΓ1)'

We have confirmed the square of the equality we desire. To obtain equality at the
level of Pfaffians observe that the set of skew symmetric isomorphisms from ker(L)
to ker(L)* is path connected. Thus we can find a continuous path [0, l]e£->F(ί)such
that F(0) = F2 and F(l) = F1. Let F(t) and c(ί) denote the maps derived from F(t)
as above. The Pfaffians Pf((L+F(t)}(L+F2Γ

l) and Pf((D + c(t)B)(D + c2BΓl)
are continuous non-zero functions of t which are both equal to 1 at t = 0 and have
equal squares for ίe[0,1]. Thus they must be equal for all ί, in particular for t = 1.
This finishes the proof that the isomorphism of fibers does not depend on the
choice of F.

Next suppose that F and Cok(D) are fixed and that Cok^L) and Cok2(L) are
two non-degenerate subspaces transverse to R(L). The extensions c^ and c2 are
equal so that the relative Pfaffian Pf((D + c1B)(D + c2B)~l) is equal to 1. The
maps F! and F2 are not necessarily equal but we do have Ft(x) — F2(x)eR(L) for
xeker(L). Since Cok^L) and Cok2(L) are both transverse to R(L) it follows that
the projection, pr, of Cok^L) on Cok2(L) along R(L) is an isomorphism. Suppose
x = x1 + x2 with x1eCok1(L) and x2eR(L). Define MX = pr(x^ + x2. Observe that
M(x1 + x2) = xί + (PΓ(XI) — Xi) + x2, where pr(x^ — x1eR(L). Thus the matrix of

M relative to the splitting Co^ (L) -f R(L) is ( ) and it follows that det(M) = 1.
I,

Now we suppose x = x± + x2 with x1eCok2(L) and x2e.R(L) and calculate:
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Observe that when restricted to ker(L) we have MF1 = F2, since for yeker(L) the
difference F1 (y) - F2(y)eR(L) it follows that pr(F^ (y)) = F2(y). Thus MF± F2

1xί =
F2F2

1x1 = x1. We have then:

where MFί(L+F2)~1x2eCok2(L). It follows that the matrix of M(L +

(L + F2}~1 relative to the splitting Cok2(L) + R(L) is ί * J so that the de

minant of this operator is clearly 1. Since det(M) = 1 we also have:

To show that the Pfaffian is also 1 we may argue as above since the collection of
subspaces transverse to the fixed subspace R(L) is path connected (they are all
graphs over some fixed transverse subspace). We have finished the proof that the
identification of fibers does not depend on the choice of Cok(L). The proof that
this identification does not depend on the choice of Cok(D) is precisely analogous
to the proof just given for Cok(L) and so we omit this. QED

One consequence of this result is that it is possible to rigorously identify the
correlations functions of the Ising model as infinite Pfaίfians. To do this it is useful
to reinterpret the formulas for the correlations derived in [PT] in terms of a
trivialization of the spin bundle over the transfer matrices. It is proved in [PT]
that below the critical temperature the p-point spin correlations are given by the
vacuum expectation of a lift of TΓ(n, N) into the spin group. This lift is, of course,
a trivialization of the spin bundle, and one may think of the vacuum expectation
as the value of the canonical section relative to this trivialization. It would be
interesting to characterize the appropriate trivialization directly in the Pfaffian
formalism without reference to the transfer matrix formalism. This is connected
with Z/2Z gauge invariance in a way that we hope to explain in another place.
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