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Erratum

Convergence of Diffusion Waves of Solutions
for Viscous Conservation Laws

L-Liang Chern and Tai-Ping Liu
Commun. Math. Phys. 110, 503-517 (1987)

In our paper the convergence rate should be lower due to a nonlinear interaction
term we omitted. The nonlinear term (1.22) when rewritten on the last two lines of
p. 511, its i component should be
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The first term on the right-hand side was missing in the original expression. It
creates the interaction of ™ characteristic mode with other modes. This
contributes to a lower rate of convergence of the solution to the diffusion waves.
For instance the rate of L;-convergence is around ¢~ '/* instead of ¢~ /2. The
correct expression of (1.24) of the main result, Theorem 1.2 in [1] should be
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This rate of convergence is in general optimal. We will present a simple
1

example later to illustrate this. The rate of t 4 for L,-convergence is consistent
with the inviscid theory. The same rate was obtained in [4] for convergence of
solutions of hyperbolic conservation laws to N-waves. The L,-result has also been
obtained independently by Kawashima in [2]. The L,-result for physical systems
which are hyperbolic-parabolic has not been obtained.

To obtain this we follow the same technique as before and use the integration
form of (1.19) through parametric methods. The missing term yields
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¢, satisfied the inhomogeneous heat equation
1
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This can be estimated by the technique of hyperbolic waves in [3] as follows.
According to Proposition 2.1 of [1],
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With this we may decompose &; into #;+ {; with
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The hyperbolic wave {; was estimated in Sect. 7 of [3] by the characteristic method.
We have
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#; is estimated by parametric method
t
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From estimates of {;, e;, and » the second term on the right-hand side has the same
decay rate as that for {;. Since &, {;, and 5, all satisfy conservation laws, we have
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and from the hypothesis in [1] and pointwise estimate of { in [3], we have
n{-,0)eLynL,
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With these, a lemma of Kawashima, [2] and Lemma 3.4 of [1], yields
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This establishes (1.24).
We now present a simple example to show that (1.24)" would be optimal if 6 =0.
Consider

Ut (V)=3Us, Vit Ve=Vo, UX0)=V(x,0)=0(x).
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The solution V is the heat kernel with speed one and U differs from the heat kernel
by
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Direct calculations yield
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for some positive constant C.
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