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Abstract. A new perturbative renormalization scheme is introduced for
massless QED4. The method rests on the renormalized tree expansion rather
than dimensional renormalization, and so does not rely on any detailed
analyticity arguments. The infrared convergence of the gauge invariant
prescription is seen to be a consequence of the Ward identity satisfied by the
theory.

1. Introduction

Perturbative QED 4 with a massless electron requires a renormalization scheme
which eliminates ultraviolet (UV) and infrared (IR) divergences while preserving a
Ward identity such as that satisfied formally by the unrenormalized theory

Z=$dAdψdιpexp-$[}F2-±(d>A)2 + ψ(-W + m + \e\A)ψl. (1.1)

The general method of dimensional renormalization pioneered by 't Hooft and
Veltman ['tHV] and refined by Becchi, Rouet, and Stora [BRS] and Breitenlohner
and Maison [BM] apparently provides us with just such a scheme. Here, we
present a direct alternative proof of the perturbative gauge invariance and
renormalizability of massless QED 4 (using the Pauli-Villars loop/photon regu-
larization). It is based on the tree expansion renormalization method introduced
by Gallavotti and Nicolo [GN], as developed and applied to massive QED 4 by
Feldman, Hurd, Rosen, and Wright [FHRW]. The proof of the ra->0 limit, not
considered in [FHRW], follows the lines anticipated in [BM]: "A proof of the
Ward identities expressing the symmetry at the level of Green's (or vertex)
functions can be given to all orders of perturbation theory inductively hand in
hand with a proof of the absence of IR-counterterms in the Lagrangian."
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The Feynman graph

illustrates the general point: in the presence of a fixed UV cutoff A, this graph is
finite as the electron mass me->0, although logarithmically divergent by power
counting. This fact follows directly from the identity

Tr [2kyμkγμkyvkγv + kyμkyvkyμkyv~\ = 0 for all k e R*.

This type of cancellation of logarithmic IR divergence occurs to all orders in
perturbation theory.

Why might the present method be of interest? Firstly, dimensional regulariza-
tion requires analyticity arguments which are disturbingly abstract, and for QED
can be replaced by the simpler Pauli-Villars regularization. Secondly, the tree
expansion method of [GN] and [FHRW] constitutes a very general and very
concrete proof of UV and IR regular bounds on perturbation theory. The
treatment of QED4 with me>0 shows how abelian gauge invariance can also be
handled, but the limiting me = 0 case is not an immediate consequence of the
method of [FHRW]. Thirdly, the present method is an illustration of how Ward
identities can be used to control quantities which are IR divergent by power
counting, a fact which will be of interest in non-abelian models. Fourthly, the
renormalization conditions of dimensional renormalization are based on "mini-
mal subtraction" while the IR method of [FHRW] imposes BPHZ-type re-
normalization conditions. The explicit relation between the perturbation expan-
sions defined by these two methods is not clear. Finally, the simplicity and
naturalness of the massless QED Lagrangian make a simple and natural
renormalization method desirable.

In outline, Sect. 2 consists of a summary of relevant facts about massive QED4

proved in [FHRW], leading to a statement of the main convergence result for
massless QED4 (Theorem 2.1). The proof of this result contained in Sect. 3 requires
a Ward identity (Lemma 3.2) whose proof is given in Sect. 4. The method presented
here rests heavily on the notation and results of [FHRW]. The reader is urged to
consult this reference for proofs of some of the facts stated here.
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2. A Renormalization Prescription for Massless QED4

Massless euclidean quantum electrodynamics consists of a vector field Aμ and
spinor fields ψ, ψ and lagrangian density

Here

where the 4 x 4 antihermitian euclidean Dirac matrices satisfy

γY + yY=-2δμv,

and Fμv = δμAv-dvAμ and e is the bare electric charge. The free field photon

covariance is Dμv(x,y) = δμv( — d2)~y

ι and the free field electron covariance S(x,y)

We consider the gauge invariant IR regularization of massless QED obtained
by giving the free photon and electron propagators a small mass M7, — oo < / < 0,

Df(x,y) = δμv(-82 + M 2 V S7(x,y) = (-i$ + M%1. (2.1)

We choose a smooth scale decomposition

i>i= Σ ^ k ) ; s / = Σ s? } , (2.2)
k=I k=I

subject to bounds [FHRW, Eq. (1.15)] which imply that Dp and Sfk are
exponentially decaying on the length scale M~2k, that Dfk {Sfk) is bounded by
O(\)M2k (O(1)M3/C) at short distance, and further such conditions.

The renormalized perturbation theory consists of the effective potentials
{F/(Φ); r = e, /, /+1, . . . } , Φ = (A,ip,ψ). In particular, the external effective poten-
tial Vj is the generating functional for connected, amputated, euclidean Green's
functions. Each V/ is defined by its renormalized tree expansion, which is
completely determined by (2.1), (2.2), and a set of renormalization conditions.
Renormalization conditions are specified in terms of the localization operators Lr,
which are specific projection operators from functions of Φ onto the span of the
following local functions (of nonnegative scaling dimension):

V1 = $:ψψ:, V2 — \\AμA
μ\ (positive dimension),

V3 = S:FμvF
μv:, 7 4 = J: φ( - / % : , V5 = \\ψAψ: (marginal and

gauge invariant), (2.3)

F 6 = f: (AμA
μ)2:, VΊ = J: (dμA

μ)2: (marginal and non

gauge invariant).

We write L = L++ L 0 ' i n v + L 0 ' n i n v .
The renormalization conditions

LVj=-eV5
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lead to a consistent UV renormalization, by [FRHW, Theorem 2.6] [the notation
"lim (1—L)F/ = 0" is used as short-hand for renormalization schemes achieved

r->oo

from the N-^oo limit of UV regularized effective potentials V/^ satisfying
(1 -L)V£'N = O]. Also, since (2.4) gives L0 ' n i n v F / = 0, the argument which leads to
[FHRW, Theorem 5.3] works, and shows that the resulting perturbation theory is
of gauge invariant type with physical charge given by the parameter e.

Conditions (2.4) lead to a divergent /-> — oo limit. In general, when marginal
terms in the external effective potential are specified, elementary power counting
indicates a divergent limit. By the general IR analysis of [FHRW, Sect. 6],
renormalization conditions which specify marginal terms of an intermediate
effective potential, such as

(2.5)

do yield an IR limit. But such prescriptions are dependent on the form of the scale
decomposition (2.2), and in particular will not usually yield a theory with the
required gauge invariance.

We adopt the renormalization condition

(L + +L° ' n i n v )F/ = (

(2.6)

and claim that it yields a gauge invariant theory with a well-defined IR limit. Since
L0 ' l n v F / = 0 for (2.6) as for (2.4), gauge invariance can be expected. What is not so
obvious is the existence of the /-> — oo limit, since (2.6) specifies marginal terms of F/.

We can write

LVI = LO,™VI= -a(I)V4-ec(I)V5-d(I)V3, (2.7)

where the coefficients α, c, d are certain formal power series (fps) in the parameter e,

a(I)= Σ an{I)<?9 c(/)=l+ Σ cB(/y, d(I)= Σ W , (2.8)
n = 2 π = 2 n=2

calculable via the renormalized tree expansion.
The techniques of [FHRW, Sects. 3-5] make use of the gauge invariant form of

LVj to show that Vj satisfies the Ward identity

χ, ψeie\\

+ f wie*(X0 + XoSjX^e ~ ieχψ (2.9)

for any function χ(x), where Xo = e$χ and ε(I) = c(l) ~ ι(\ + a{I)). This means that for
each I the theory is gauge invariant with gauge parameter

e(I) = eε(IΓι. (2.10)
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We can also write

L°Vt=-eV5-f{I)VΊ-g(l)V69 (2.11)

where /(/) = Σ fn(I)e" a n d g(I) = Σ gn(I)e" Elementary IR power counting
n = 2, oo n = 4 , oo

indicates that both / and g are logarithmically divergent as /-> — oo. This
observation notwithstanding, we shall see in Sect. 3 that / = lim /(/) and
g = lim g(7) do exist, and since (2.6) is equivalent to

L°V{=-eV5-f(I)V6-g(I)VΊ
(2.12)

the existence of these limits is necessary and sufficient for the IR convergence of the
theory (by [FHRW, Theorem 6.7]).

Theorem 2.1. For fixed /, — oo < / < 0, let {V/} be the family of effective potentials
for the theory defined by the renormalization conditions (2.6). Then

exist in perturbation

V —

theory.

lim V;
/-•-oo

Moreover

e —

and

lim

κ=

e(I)

lim
r-» — oo

K (2.13)

(2.14)

exists, and Ve satisfies the Ward identity with this gauge parameter:

Ve(A9 ψ, ψ) = Ve(A + dχ, ψeΓeχ(l + XS), (1 + SX)e ~ Γeχψ)

+ J ψereχ(X + XSX)e ~ Γeχψ, (2.15)

for all Schwartz functions χ, where X = e$χ.

3. Proof of IR Convergence

The proof of Theorem 2.1 is inductive on the order of perturbation theory. We
assume that

C j . _ ! = lim εj-άl), fj= lim / / / ) , gj= lim gj(I) (3.1)
/—• — oo I—*• — o o /—• — oo

exist for each 2-^j^n and use a Ward identity for Fo

7 to deduce the existence of the
limits εn,fn+ugn + ι Note that e exists to order en if and only if ε exists to order en~ι.

The propagators Dr and Sj are decomposed into hard and soft terms:

0 oo

D = V D^-\- V D^ = Ds-\-Dh

fc=/ fc=l

0 oo

S/= Σ
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We suppose that Ss can be obtained from S by convolution against a smooth
exponentially decaying monotone function η:

[take for example η(x,y) = (2π)~2e~ix~y)2/2]. The hard propagators are exponenti-
ally damped on the scale 1 while the soft propagators are smooth and 0(1) at short
distances. Recall the relation between VQ and Vj:

F/(Φe) - log f dPs(Φ) exp V0\Φ + Φe), (3.3)

where dPs(Φ) is the free field (gaussian) functional "measure" with covariance

Let us express VQ as a sum over Wick monomials

F o '= Σ SdxdydzV*q(x;y;z)

x ly^Xi)... ψixJAiyJ ... A{yp)ψ(zί... )ψ{zq): (3.4)

(this is a finite sum order by order in perturbation theory). Since, under the
inductive hypothesis (3.1), the renormalization conditions (2.12) are finite as
/-> — oo, up to order en, it follows that the kernels up to order en, V{<n)pq, obey the
standard /-uniform power counting bounds of [FHRW, Theorem 6.7]. In
particular,

Lemma 3.1. // the limits (3.1) exist for 2-^j^n, then the limits V{<^pq(x) exist as
distributions in the difference variables xt — x t integrable against polynomially
bounded smooth test functions.

The following identity is proved in Sect. 4.

Lemma 3.2. For any polynomially bounded smooth function χ:

+ e$ψe(x)[$χ](x)ψe(x)dx

ie ί: [δψ V} (Φe, x) [η(x, y) + M'S^x, y)]χ(y)ψe{y): dxdy

ie\: ψ{x)χ{x) ίη(x, y) + M'Sfrx, yft [δφ F] (Φ\ y): dxdy

x ί(Ss, + SΊ)(y, z)η(z, x) - η(y, z)(Ssj + Sj)(z, x)

+ MιSs,(y, z)S){z, x) + M'SΪ(y, z)Ss,(z, x)]}dxdydz

x (S*C, z ¥ z . x) - Φ, z)SΪ(z, x))}χ(z)dxdydz. (3.5)

Here

χ
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We extract the dimension zero part of identity (3.5), where for power counting
purposes the field χ is taken with scaling dimension zero. The only monomials in
(A, ψ, ψ, χ) which arise are

= I: ίSμΛ^ (x) Id^χ] (x): dx, (3.6)

[other possible monomials drop out by Furry's theorem and the fact that (3.5)
depends only on dμχ].

The first term T 1 of (3.5) yields the objects of interest:

L°Γ 1 = c(I)l-e^-2f(I)J?2-4g(/)^3] . (3.7)

The second term is

L°T2 = e&ί. (3.8)

The last four terms of (3.5) require more manipulation. Let us write:

T = e X $ dxdydzdwWiJtx; y\ z; w)

x :ψ(xί)...ψ(xq)A(y1)...A(yp)ψ(z1)...ψ(zq)χ(w):, i = 3,4,5,6. (3.9)

Then

L°r = eα\(/)^i + eaι

2{I)^2 + e*i(I)&3, i = 3,4,5,6, (3.10)

with coefficients given by the integrals

oc\(I)yμ= J Wΐ[(x; z\ w)(w-xfdzdw,

xW)=-iSWtt(y;w)(w-y)μ(w-yy(w-y)vdw, (3.11)

The L° part of (3.5) becomes

0=-eε(I) + e Σ oΐt{I),
i = 3,6

0=-2/(/)ε(/) + e Σ α'2(/), (3.12)
i=3,6

0=-4g(i)ε(I) + e Σ 4W
i = 3 , 6

We shall now show that the limits

lim α' (J), z = 3,4,5,6; J = l , 2 , 3 , (3.13)
/-> - oo ~

exist as a consequence of Lemma 3.1. This being true, (3.12) implies (3.1) for
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We have formulas for the kernels W,

Wp

3

q\x; y; z; w) = ί\ dsV*q(x; y; z 1 ? . . . , zq_ 1 ; s)

x ίη(s9 zq) + M7Sj(s, zj]δ{zφ w) + (sym on z),

W£'(x; /; z; w) = i\ dsδ(w, Xί)lη(xu s) + M ' S ^ , s)]

xF/β(s,x2, ...,xβ; jΓ;z) + (sym on x), (3.14)

^ V ; / ; ί w ) = - i ί dsds'ds"Vpq+1{x, s y z, s')

x {S,(s', s'^ίs", w)ι/(s", 5) - f,(s', s'Oδίs", w)Sj(s", 5)

+ MJS;(s',s")<5(s", w)iSj(5//, 5) + M7Sj(s', s")^^", w)S}(s", 5)}

+ (sym on x and z)

(each W is given by a symmetric sum of which only one term is shown explicitly).
The kernel W6 involves some substantial Wick ordering, and has the general form

W£ϊ(x; y;z;w)=-i Σ ί dx'df dz'dx"dy"dz"dsds'ds"
p',p",q',q",ί, j,k^O

p' +p" -2ί = p
q'+q"-j-k-ί=q

[ i j k

1 1 l\J l~ J l / 1 1 i \ w m/ 1 1 i V ft 5 M>

1= 1 m = l π = l

x [S;(s', s W , w)ι/(5", 5) - η(s', s")δ(s", w)SΪ(s", 5

+ (sym in x, y, and z). (3.15)

It is now possible to see the finiteness of the limits (3.13) as a consequence of the
integrability properties of the kernels V~q^n) (Lemma 3.1). For example, consider

s" -xfη{s\ s)- η(s\ s")(s" - x)μSj{s", s)

?(5', s")(s" -xfSϊ(s"9 5

A moment's thought tells us that the quantity in braces is smooth and
polynomially bounded in the limit /-> — 00, by the smoothness of the functions
5S_ oo and η and the exponential decay of Sh- ̂  and η. Hence the overall integral is
finite up to order en. By the same reason, the limits α(

3<M)J, α ^ n ) J , ocf<n)J, J= 1,2,3,
all exist.

The α(

6^n)J limits are just slightly more difficult. Here we note that a product of
any two kernels V~q^n) connected by a single line with exponential decay is
certainly integrable against smooth polynomially bounded test functions. For
each term contributing to α(

6<π)1(— 00), the connecting line with exponential decay
is provided by

J ds'lS"- Js', s")(s" -xfηis", s)-η(s', s")(s" -xfSh. Js", s)] ,
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and the product of soft propagators is a smooth bounded function of the difference
variables, and so the quantity is finite. The limits oί^n)2(— oo), α(

6<π)3(— oo) follow in
the same way.

To complete the proof of Theorem 2.1, we merely note that the Ward identity
(2.15) is the 7-> - oo limit of (2.9). Π

4. Proof of Lemma 3.1

In the following argument, we have implicitly applied the gauge invariant
loop/photon regularization used in [FHRW, Sects. 3-5]. Then V^ is finite and has
gauge invariant form

Vi(Φ)= - e c W 5 - ^ m - α ( / ) F 4 - d ( / ) F 3 , (4.1)

and satisfies the "Z 1 = Z 2 " condition:

c(I) ~\l + 3(7)) = c(ί) - ι(l + α(7)) = ε(7). (4.2)

We make a change of variables ψ(x) = eιeχ{x)ψf(x), ψ(x) = ψ'(x)e~ιeχ{x\ A —A! in
the functional integral

F0

7(Φe) = log J dP\Φ) exp Vi(Φ + Φe). (4.3)

We calculate

Vi{A + Ae,ψ + ψe, ψ + ψe)= V^A' + A\ ψ + ψeeieχ, xp' + e~ ίeχ-e)

- ea(I) V5(dχ, ψ' + \peeie\ xp' + e" ieχ^e),

and

dP\Φ) = dP\Φf) exp - {f xp'\_e ~ ieχRjeieχ - R{\\p' + j

= dP\Φ') exp - {J ψ\_e ~ iexRjeiex - Rj]ψ

H- e V5(dχ, ψ + ψeie\ \p' + e~ ίeχψe)}
x exp e j [i/j'ίχβ ~ ieχψe

where Rj(x5y) = [S1}"1 — Sf ^(x,y). Since the F3 term in (4.3) is gauge-invariant, the
V5 terms can be combined with F^, and the change of variables yields the identity

V^(Φe) = log J dP\Φ') {exp - J φ;[e " i e ^ ^ ί e χ - R^ψ1

x exp β j [φ'^χβ ~ ί e ^ e + ψeeieχ$χψ' + ψeeieχ$χe " ί e V ]

^ ^ V ^ ^ + ̂ '^V)}- (4.4)

The key feature of this formula is the appearance of c, a only in the combination
c~ι(\ +ά) = ε. The term linear in χ is extracted by application of the operator

0 = [exp V£{Φe)~] ~1 [ j dP\Φ') exp V^(Φ' + Φe)

(4.5)ί Z h - K)V + e(/)δχ, ψeie\ e
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With the notation introduced in Lemma 3.2, and the integration by parts formulas,

[exp F0'(Φe)] " ! J dPh(Φ)ψ(y) exp V&Φ + Φe)

[exp F0'(Φe) ~' J dP\Φ)ψ{x) exp Vl(Φ + Φe)

= jSh

I(x,y)[dipV^Φe,y)dy, (4.6)

[exp F0'(Φe)] - 1 J dPh(Φ)ψ(x)ψ(y) exp ϊ£(Φ + Φe)

= S*(x, y) + J Si(x, x') { [d^F] (Φe, x', / )

+ [ ^ F] (Φe, x1) ldψ F] (Φe, /)} S)(y', y)dx'dy',

Eq. (4.5) becomes

V V] (Φe, x) [5j(x, y)h(y) - i φ ,

+ e J φe(x) [ ί χ(x)SΪ(x, y) + iχ(x)δ(x, y)] [δ,, F] (Φ

F] (Φe, x)δχ(x)dx = 0. (4.7)

Next, we note the convolution formula

RI*SΪ = Sh

I*RI = ηl

and the identities

Their insertion into (4.7) yields

0 = - ie(Ύr 1) J [χ(y) - χίx

x [Sίίy, zMz, x) - η(y, 2)81(2, x)] }dxdydz

-ie$χ(z)[dψVl(Φe,y)

x [Sj(j;, z>ί(z, x) - η(y, z)S%z, x)] [ ^ F ] (Φ

+ ie J ψe(x)χ(x) [»/(x, y) + M'Sftx, 3;)] [S^F] (Φe,
e, x) ίη(x, y) + M'Sftx, y)~]χ(y)ψe(y)dxdy
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The first term vanishes and the fourth and fifth terms can be Wick ordered
using the identities:

ldψr\(x)ψe(y)= :[δ v ^

and so formula (3.5) is obtained. •
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