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Abstract. The system describing the interaction of a long wave with a short
wave packet on the x, y plane is considered. The solutions are found to describe
a soliton that comes from infinity and then is captured into a conditionally
periodical oscillatory regime. The solutions are also found that describe a
soliton coming from infinity and then decaying into two solitons: one goes to
infinity and the other is captured into a conditionally periodical oscillatory
regime. The obtained results are relevant to some problems of hydrodynamics,
plasma physics, solid state physics, etc.

Introduction

The present paper is devoted to the problems of capture and confinement of
solitons in nonlinear integrable systems. More exactly, the case in point is the
following phenomenon. Nonlinear integrable systems considered below have been
found to have solutions describing a soliton that comes from infinity, then is
captured into a conditionally periodical oscillatory regime and remains in this
state in all subsequent times. These systems also have solutions describing a soliton
that executed a conditionally periodical oscillatory motion, then came off and
went to infinity. Further, we have found solutions describing the soliton that
comes from infinity, then decays into two solitons: one being captured into the
conditionally periodical oscillatory regime and the other going to infinity. Making
a time inversion in these solutions, we get new solutions describing the soliton
coming from infinity which collides with the other soliton that has been in the
regime of conditionally periodical oscillatory motion; as a result of the collision
these two solitons fuse into one soliton that goes to infinity.

We proceed from the following system of equations:

δψ t _._ dψ , :dΨ d2

Ψ r _ d2

Ψ , _ L 2

(i)

+ c3\ψ\2ψ
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describing the interaction of a long wave with a short wave packet propagating on
the x', y' plane at an angle to each other. Here v is the long wave amplitude, ψ is the
complex short wave envelope, the parameters c 0 Φθ, cu c2, and c 3 take arbitrary
real values and κ2 = 1. We shall search for a solution of this system in the following
form:

υ(x'9 / , t') = ε2u(εxf, ε2y\ ε3t'),
(2)

ψ(x\y\t/) = ε2φ(εx',ε2y\ε? " " ~

where

Substituting these expressions into the system (1) we immediately get equations of
the form

8φ dφ d2φ Ί d2φ Ί , ιΊ

where x = εx', y = ε2y\ and t = ε3f. It is naturally expected that at small εφO the
system (3) can be studied by applying the ideas of perturbation theory. This
remark accounts for the importance of investigating the solutions of the system

du d / 2 d2u o , Λ Ί Λ

δ δ 2

following from (3) at ε = 0.
As is known, [1,2] the system (4) can be investigated by the inverse scattering

method that was used to detect a great variety of dynamics of soliton solutions of
this system [3]. New results obtained along this direction will be given below.

At first, the system (4) has soliton solutions of the form

u =
cosh2 [μ(x + 2vy - τί)] '

i ( 2 2 ) ]
Aφ = Λ

where the real parameters μ, v, and τ and the complex quantity A satisfy the only
condition

τ = 4(μ2-3v2 + κμ-2\Λ\2), (6)

and the parameter σ takes arbitrary real values. At A = 0 the soliton (5) degenerates
into the well known one-soliton solution [4]

2μ2

cosh2 O x + 2μvy - 4(μ2 - 3v2)μQ

2μ
U = cosh2 O x + 2μvy 4(μ2 - 3v2)μQ ' Ψ = ° ( 7 )



Capture and Confinement of Solitons 453

of the Kadomtsev-Petviashvili equation [5]. Then, at Aή=0 and (μ2 — 3v2)τc>0
according to (6), we have κ% > 0, i.e., in this case the solitons (5) can propagate only
in one direction at any value of the quantity A and fixed values of the parameters μ
and v. However, if A φ 0 and (μ2 — 3v2)κ < 0, the phase velocity τ of the soliton (5)
can take values of both the signs. Thus, in this case depending on the value of the
quantity A the solitons (5) can propagate in two opposite directions. Moreover, at
\A\ = [ — κμ2(μ2 — 3v 2)] 1 / 2 we have τ = 0, i.e., the soliton (5) is at rest. Below we shall
consider the interaction of N > 1 solitons (5) whose parameters μ and v are the
same and the parameters τ = τm are all different, m = 1,..., N. It turns out that in this
case the N-soliton solution of the system (4) obtained by the inverse scattering
method describes the evolution of the soliton (5) with the largest value of the
quantity μτm into the soliton with the smallest value of this quantity. In the case
(μ2 — 3v2)κ > 0 the direction of the motion of the initial soliton coincides with that
of the final soliton. However, at (μ2 — 3v2)κ<0 the direction of the motion of the
initial soliton may be opposite to that of the final soliton. Thus, in this case the
above-mentioned solution can describe the reflection of the soliton (5). Then, we
shall show that N > 1 solitons (5) with the same values of the parameters μ, v, and τ
but with different values of the parameters σ = σm, m = 1,..., JV, produce a solitary
wave of the form

cosh2 [μ(x -f Ivy — τt — /)] '
(8)

exp [ivx - i(μ2 - v2)y]

where / and A are 2π-periodical functions of the variables

0m,n = (σm-σ,«)ί> m,n = l,...,ΛΓ,

which satisfy the only condition

f + τ 4 ( μ 3 v + κ μ \ A \ 2 ) , (9)
at

and the frequency σ equals one of the quantities σm. Hence it follows that the
quantity τ in this case satisfies the condition

τ = 4(μ2-3v2 + κμ-2\A0\
2), (10)

where

\A0\
2= lϊm ^]\A(t)\2dt. (11)

Γ->oo 1 o

Thus, the motion of the wave (8) is composed of the uniform motion and
conditionally periodical oscillatory motion. In this case u-wave conserves its form
whereas the amplitude of φ-wave changes in time as a certain conditionally
periodical function t. At (μ2~-3v2)κ<0 the case τ = 0 is possible. In this situation
the solution (8) describes the wave executing as a whole a conditionally periodical
oscillatory motion. According to (9)—(11) in this case the relations \A{t)\ φ \AQ\ and
MW = [ - κμ2(β2 ~ 3v 2)] 1 / 2 should be fulfilled. We have found the solutions of the
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system (4) which describe the evolution of the soliton (5) into the solitary wave (8)
and vice versa - the evolution of the solitary wave (8) into the soliton (5). In a
particular case, these solutions describe either the soliton (5) coming from infinity
and then captured into a conditionally periodical oscillatory motion or the wave (8)
that has executed a conditionally periodical oscillatory motion, then came off and
went to infinity as the soliton (5).

Finally note that at K = 1 the system (4) admits a solution of the form

u = cosh2 [μ(x + 2vy — τί)] '

(12)

. sinh[μ(x + 2v);-τί)] 2 2
(p=A —u2r / , o — ^ e χ p ί ι v x - ^ -v)y+ισt^ >

cosh2 [μ(x + 2vy - τί)]
where the real parameters μ, v, and τ and the complex quantity A satisfy the
conditions

τ = 16μ 2 -12v 2 , \A\ = 3μ2,

and at K = — 1 the system (4) has the solution

6μ2

cosh2 [μ(x + 2vy - τί)] '

. exp [/vx - ί(4μ2 - v2)y] .
φ = ̂  F ^ 2

 v ^ ^ exp ?σί ,
cosh2 [μ(x + 2vj; - τί)]

where the real parameters μ, v, and τ and the complex quantity A satisfy the
conditions

τ = 4(μ 2 -3v 2 ), \A\ = 3μ2.

We have found the solutions of the system (4) which describe the decays of the
waves (12) and (13) into the soliton (7) and the wave (8) and the solutions describing
the fusion of the soliton (7) and the wave (8) into one wave (12) or (13). In the case
(μ2 — 3v2)κ < 0 the wave (8) participating in these processes can have τ = 0, i.e., can
be in a conditionally periodical oscillatory regime.

1. Particular Case of Multi-Soliton Solution of the System (4)

Let N be an arbitrary integer satisfying the condition N > 1. We use a vector-
column λ with N + 1 components λm of the form

where α m Φ0 and ρm are complex parameters and quantities ωλ and ω2 admit the
representation

(1.2)
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with real μ1? μ2, and v. Hereafter, the bar above any quantity means complex
conjugation. Let then P and Q be square matrices of an order of iV + 1 with the
elements

m,n ^

1

2μί

- λmλn

if m,n= 1,...,N,

if

or

and n = l,

= \, ...,N and n =

3+Q3

!mi tin

Assume

if m = n = N + ί9

= det

(1.3)

0 1 - β

λ P 1

(1.4)

where 1 is the unit matrix of an order of N + 1 and e is the vector-column with
N + 1 components em equal to unity. Hereafter the tilde "~" means transposition,
i.e., in particular, the transition from the vector-column to the vector-row.
According to the results of paper [2] the functions

u = 2
ox φ =

Φ

D
(1.5)

satisfy the system (4), i.e., are its solution.
Expressions derived for the multi-soliton solution of the system (4) can be

simplified considerably. By virtue of (1.4) the following equalities are valid:

0 e
Φ = Qt λ i + P β

N o w we take the diagonal matrix A = disLg(λl9 ...,λN+ι). F r o m (1.3) we get

1

(1.6)

Λe = λ9 2μ1

(1.7)

where (7 and R are the square matrices of an order of N +1 with the elements

if m,n=l, ...,N9

if m = ΛΓ + 1 and n = l, ...,iV5

or m = l, ...,iV and n = J V + l ,

if m = n = N + l,



456 V. K. Mel'nikov

Based on (1.6) and (1.7) there follow the equalities

0 I
= det(l+UR), Φ = dot

e t+UR
(1.9)

Let now Ho be the orthogonal matrix of an order of N with the elements Hmn

such that HN^n = N~1/2, n = l, ...,iV. It is obvious that the remaining elements of
this matrix satisfy the condition

Assume

H =

if l ^

Ho 0

0 1

(1.10)

(1.11)

Then, let Vm n and Sm n be the elements of the matrices V=HUH and S = HRH,
respectively. Using (1.8), (1.10), and (1.11) one can easily be convinced that all the
matrix V elements are equal to zero except for the elements

^ι

VN,N = N, VNtN + ί = Vfl + UN =

and analogous elements of the matrix S are equal to

VN+UN + ι = ̂ , (1.12)

~ NΣ
m, n — 1

(1.13)

~N Σ V N + 1, N + 1 •

According to (1.9) we have

Z) = d e t ( i + F S ) ,
0 h

(1.14)

where h = Hλ is the vector-column with the components hu...,hN+1. Here

Σ *m,
1

hN+ ι=λN+ί, (1.15)

and the components of the vector He are respectively equal to 0, ...,0,iV1/2,1.
Hence, according to (1.12)—(1.15) there follow the equalities

Wίt = det

0
Nl/2 WU
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where

N 2/1 N

Wul= Σ Rm,n+~~~ Σ RN+l.n,
m,n= 1 βγ -T μ2 n= 1

_ Δμγ Λτ-l/2 y β , ίliAT-1/2 y

β μ m,n = i μ2 « = i

1 VL
μi

On their basis we get

N

m,n-l

,
μ2 m,n-l

2μ ( N N

Σ ^m,JV+l + Σ RN+1,Π

(μι-μ2)
2μ1 »

1

Σ
m = l

Now assume

), if m=ί,...,N,

), if m = i

where σm and τ w are the real parameters. As a result, the components Λ,m of the
vector-column λ admit the representation

fCmexp[μ1(x + 2 v y τ m ί ) ] , if m=l,. . . , iV,
Lm l c e x p [ μ ( x + 2vj;-τ m 0], if m = JV+l l * j

where according to (1.1), (1.2), and (1.18) the components ζmoί the vector-column ζ
have the form

iσmQ, if m=ί,...,N,

fσ m ί ] , if m = ΛΓ+l l " j
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Then, on the basis of (1.8), (1.18), and (1.19) we get that at m,n = l,...,JV the
following equalities are valid:

2 κ C X exp [2μi(x + 2vj;) - (τm + τ J μ 1 ί ]

2κςΓ J V + 1 exp[(μ 1 +μ 2 )(x + 2v};)-(μ1τ + μ 2 τ i V + 1 ^]

where

ym=(σm-σN+i)μι + iΆμ2i-μ22)μiv, m = i , . . . , j v , (1.23)

and a t m = rc = Λf-fl we have

( τ Λ Γ + 1 - 4 μ 2 + 12v 2 )μ 1 μ 2

2. Capture and Confinement of Solitons in the System (4)

First, let us consider the case with μι=μ2 = μ. By virtue of (1.16) and (1.17) we get
that in this case the following equalities hold:

N+ί N+1

o = i + Σ *».„> Φ = - Σ Λ»> (2.1)
m,n = 1 m= 1

where according to (1.19)—(1.24) at m,n=l,...,iV+1, we have

= 2κ:̂ m/7n exp [2μ(x + 2vy) - (τm + τ n)μt]
mn ( 8

;,m = ηm exp [μ(x + Ivy - τjj\ exp [ivx - f(μ2 - v2)j] ,

Let us elucidate the behaviour of the solution (1.5) of the system (4) under such
a choice of the functions D and Φ. For this purpose we assume that the quantities
am = μτm + iσm are all different, m = 1,..., N. Then assume that atm = l,...,JV+l the
inequality

( τ m - 4 μ 2 + 12v2)/c>0 (2.3)

holds. Obviously, the functions D and Φ admit the representation

D = 1 + K exp [2μ(x
(2.4)

Φ = L exp [μ(x + 2vy)] exp [zvx — /(μ2 — v2)j;] ,
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where according to (2.1) and (2.2) we have

κ = 2κ "y1 aman exp C - (μτm + iσjt] exp [ - (μτn - iσn)t]
Km,ki (τm + τn-8μ2 + 24v2)μ2 + i(σm-σn)μ '

(2.5)
N+I

 v }

and consequently, the functions K and L depend only on t. With the afore-
mentioned assumptions taken into account the quadratic form K is positive
definite. This means that K>0 at any real value of t. Using (1.5) and (2.4) we get
that the solution we are interested in has the form

2μ2

u =

(2.6)
exp[ivx-f(μ 2-v 2)y]

φ — A —

where

f=-^]nK, A^-LK-"2. (2.7)

Based on (2.5) one can easily be convinced that the relation

μ— +8(μ2-3v2)μ2K + 2κ\L\2 = 0
at

is valid. Hence it follows that the functions / and A determined by (2.7) satisfy the
relation

4(μ3v + κμ2\A\2). (2.8)

It is to be mentioned that the functions u and φ of the form (2.6) always satisfy
the system (4) if the functions / and A entering into (2.6) satisfy the relation (2.8).
Thus, using an arbitrary complex function A(t) and assuming

we always get a solution of the system (4) in the form (2.6). However, not under any
choice of the function A(i) this solution can be derived from the multi-soliton
solution of the system (4).

Now let us elucidate the dynamics of the solution (2.6) under the above choice
of the functions / and A. For this purpose we use integers N_ and N+ such that
1 ^iV_ <N + ̂ N + l and assume that τγ = ...=τN_ and τ^+ = ...=τN+1. Further
we assume that at m = iV_ + l,...,iV r+l, the inequality

( τ 1 - τ J μ > 0 , m = N_ + 1, ...,iV+ 1, (2.9)
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is valid and at m=ί, ...,N + — 1 the inequality

(τ _ τ )μ>0 m = l N — 1 (210)

is valid. Now assume

*-= Σ r ~ <r
m,n = 1 ^T m ~Γ T n — O/,

N + l

κ+ = x _ ^ ™ 2 , •, — > P 1 1 )

N - N + 1

Γ — — V w Γ — — V M
i^u I in ' ~r z_j / ra 7

m = 1 m = N +

Using (2.9) and (2.10) one can easily be convinced that in this situation our solution
(2.6) of the system (4) as t-+ — oo has the asymptotics

- ' - ' - » • (2.12)
exp[ivx-f(/i2-v2)j;]

φ~-4- τ7Γ^—Γ^> 1 ^Γ'
cosh [μ(x + 2v_y — τγl — q _)J

where
-̂  1«- Tζ A r rζ — 1/2 /Λ -1 o\

2μ 2

and as f—XX) this solution has the asymptotics

where

q+ = -—-mK+, A+ = -L + K+ . I^ I J )
2μ 2

Thus, our solution of the system (4) describes the evolution of the wave (2.12)
into the wave (2.14). In the general picture of this phenomenon we should like to
emphasize several important particular cases. First, at N _ > 1 and N + < N + 1 the
solution (2.6) according to (2.11)—(2.15) describes the evolution of the wave of the
form (8) into the wave of the same form. Then at iV_ = 1 and N + <N+1 our
solution describes the evolution of the soliton (5) into the wave of the form (8), and
at iV_ > 1 and N + = N + 1 this solution describes the evolution of the wave of the
form (8) into the soliton (5). Finally, at JV_ = 1 and N+=N+1 our solution
describes the evolution of the soliton (5) with the largest value of the phase velocity
into the soliton with the smallest value of the phase velocity. Moreover, it is to be
mentioned that at (μ2 — 3v 2)κ<0 according to (2.3) both the cases τ 1 = 0 and
xN + 1 = 0 are possible. In this situation at iV_ = 1, JV + <JV + 1 5 and τN+1=0 our
solution of the system (4) describes the capture of the soliton (5) into the oscillatory
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regime. On the contrary, if τx =0, then at JV_ > 1 and N + =N+1 our solution
describes the wave of the form (8) which has executed the oscillatory motion, then
came off and went to infinity in the form of the soliton (5).

3. Decay and Fusion of Solitons in the System (4)

Now we are able to get the solutions of the system (4) describing the decays of the
waves (12) and (13) into the soliton (7) and the wave (8), and the solutions
describing the fusion of the soliton (7) and the wave (8) into one wave (12) or (13).
For this purpose we put in the equalities (1.18)—(1.24) that

aN+ι=εa, τN = τN+1=4μ2

ι — 12v2 + ε2κc (3.1)

and pass to the limit as ε ^ O . As a result, we get that at m,n = \, ...,N — 1 the
following equalities are valid:

2κηmi
Ryu M —

-Sμ2

1 + ί2v2)μ2

1+i(σm-σN)μ1 '

ί22)^

where at m— 1,..., JV we have

ηm = amQxp(ίσmt). (3.4)

Then the equalities

κ\aN\2 Qxp[2μ1(x-\-2vy) — 2μ1(4μ2

ι — 12v2)ί]

4{μ\ — μ\)μ\
2 (3.5)

RN+ι,N+ί = —a— exp [2μ2(x + 2vy) - 2μ2(4μ?, -12v 2)ί]
cμ1μ2

hold. Finally, by virtue of (3.1) we have λN+1=0, and consequently, at any
m,n = 1,..., N we get

Rfn, N+l= RN + 1, n = ^

With these equalities taken into account expressions (1.16) and (1.17) acquire the
form

n - 1 - u v i? - L ^ I I ?
m,n— 1 /^2

ίίί,-«,)2ίt l j? £ B <3 6 )

N

x Σ ^mexp[μ1(x + 2v);-τmί)]. (3.7)
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Let us now analyse the behaviour of the solution (1.5) of the system (4) under
the above-mentioned choice of the functions D and Φ. For this purpose we assume
that at m = l, ...,JV the inequalities

( τ m - 4 μ 2 + 12v2)/c>0, τN = τN+i=4μ2

2-l2v2, (3.8)

are valid. Assume then that the conditions

μ1μ2>09 o O (3.9)

hold. Based on these inequalities according to (3.2)-(3.6) we get that at any real
values of the coordinates x, y, and t the inequality D ̂  1 is valid. Hence, it follows
that the solution of the system (4) determined by (1.5) has no singularities at any
real values of independent variables x, y, and t. Assume finally that at
m=l, ...,N — 1 the inequality

(4μ2

2-12v2-τm)μί>0 (3.10)

is valid.
Now we use arbitrary τe(— oo, oo) and assume z = x + 2vy — τt. According to

(3.2), (3.3), and (3.5) expressions for nonzero elements Rm n of the matrix R become

R 2κfjmηn exp [(2τ - τm - τn)μ, t] exp (2μ ί z)
K 2 + ί ( ) ' [X }

_ 2 / c ^ ^ e x p C ( 2 τ - τ - 4 μ 2 + 12v2)μ^]
N ' " " ^ + 4

if m,n = l, ...,N — l and

M 2

Assume first that the quantity τ is chosen so that the inequality

( τ - 4 μ 2 + 12v2)μ 1>0 (3.14)

holds. It results, on the basis of (3.10), in the inequality (τ — τm)μί >0, m= 1, ...,N.
By virtue of (3.6), (3.7), and (3.11)—(3.13) it follows that at any fixed z and ί-> - oo
the asymptotics D->1 and Φ->0 are valid. With (1.5) taken into account this means
that at any fixed z and ί ^ - o o w e have t/->0 and φ-+0. Thus, our solution of the
system (4) as t —• — oo contains no moving waves with the phase velocity τ satisfying
the condition (3.14). Then assume that the quantity τ is chosen so as to fulfil the
inequality

( τ - 4 μ 2 + 12v 2)μ 1<0. (3.15)
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Then, according to (3.6), (3.7), and (3.9)—(3.13) at any fixed z and ί-^-oo, the
following asymptotics are valid:

μλ — μ2
2 2 ( 1 , 3Acμ\μ2

2 (μι+μ2)
3

Based on (1.5) it follows that at any fixed z and ί -» — 00 the relations w ->0 and φ ->0
hold. Thus, according to (3.14) and (3.15) we get that our solution of the system (4)
as t-> — 00 has no moving waves with the phase velocity τ + 4μ2 — 12v2. Assume
finally that τ = 4μ 2 -12v 2 . In this case, on the basis of (3.6), (3.7), and (3.1O)-(3.13)
we find that at any fixed z and ί-» — 00, the following asymptotics are valid:

D ~ 1 + RNt N-\ R N + 1 , JV + 1

{μ1-μ2)
2μι

+ ( 2 2 N'N N+1'N + 19 (3.16)

x exp [ίvx — i(μj — v2)y~\ .

In this case

/c|%|2exp(2μ1z)

(3.Π)

Let K = 1. Assume μχ=μ and μ2 = 2μ. Then, by virtue of (3.16) and (3.17), we get
that at any fixed z and t-» — oo the asymptotics

D ~ 1 + α, exp(2μz) + α2 exp(4μz) + α3 exp(6μz),
(3.18)

φ [1 - | α 2 exp(4μz)]^N exp(μz) exp [ivx - i(μ2 - v2)y]

are fulfilled, where
1 / 7 . . I 2 \n\2 1

a3=n«!«2. (3.19)

Assume now

^ μ 6 , (3.20)
|

i.e., we choose c so as to fulfill the condition 3α2 = α2. According to (3.18) and (3.19)
in this case at any fixed z and ί-> — 00 the asymptotics

D ~ [ l + i α i e χ p ( 2 μ z ) ] 3 ,

Φ- - [1 - ^ α 2 exp(4μz)]^ iVexp(μz)exp[ivx- f(μ2 - v2)y]
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hold. With (1.5) taken into consideration it follows that at κ = 1 and ί-» — GO our
solution contains the only moving wave

6μ2

cosh2 [μ(x + Ivy - τί) + δ _] '

sinh[μ(x + 2vy — τf)-f<5_] _ ,99
φ = A , 9 _ . z— exp [ίvx — ί(μ — v )y + ίσί j ,

cosh [μ(x + 2vy — τί) + 0 _J

where

2 2 ^1 f^Λ aN

With (3.19) it follows

\A\ = 3μ2. (3.22)

Consider now the case κ= — 1 . Let μ1 = 2μ and μ2

 = μ- Using (3.16) and (3.17)
we get that in this case at any fixed z and ί-> — 00, the following asymptotics are
valid:

D ~ 1 + αx exp(2μz) + α2 exp(4μz) -f α3 exp(όμz),
(3.23)

Φ - - [ 1 H-^! exp(2μz)]^exp(2μz)exp[ϊvx-/(4μ 2-v 2)y],

where
lαl2 lαJ 2 1

3--.^2. (3.24)

Assume

c = 4 p L , (3.25)

i.e., we choose c so as to satisfy the condition oc1 =(3α 2 ) 1 / 2 . According to (3.23) and
(3.24), in this case at any fixed z and ί-> — 00, the following asymptotics hold:

Φ ~ - [ 1 +(iα 2 ) 1 / 2 exp(2μz)]^exp(2μz)exp[ivx-i(4μ 2 -v 2 )};].

With (1.5) it follows that at κ= — 1 and ί—> — oo our solution has the only moving
wave

cosh2 [μ(x H- Ivy — τί) + δ _] '

exp[z'vx-/(4μ2-v2)y] , (3 2 6 )
4 e X P ( ί f f 0

where

τ = 4μ2 — 12v2, δ_ = τln( ~γ I, ^ 4 = — τ " e χ p ( ~ 2 ^

By virtue of (3.24) it follows that the relation (3.22) is valid.
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Let us elucidate now the dynamics of the solution considered here as t -> oo. We
shall assume for definiteness that the integer No satisfying the condition
0<No<N is such that τί = ...=τNo and at m = iV0 + l,. . .,N the inequality

( τ i - τ J μ ^ O , m = N0 + ί9...,N, (3.27)

is valid. Let the quantity τ be first chosen so that the inequality

(τ-τJμ^O (3.28)

is fulfilled. From this inequality, according to (3.27), there follows the inequality
( τ - τ j μ ! <0, m= 1, ...,iV. Hence, using (3.6), (3.7), and (3.11)—(3.13) we get that at
any fixed z and £->oo the asymptotics D->1 and Φ—>0 hold. Taking allowance of
(1.5) it means that at any fixed z and ί-> oo the asymptotics w->0 and φ-»0 are valid,
i.e., our solution of the system (4) as f—•oo has no moving waves with the phase
velocity τ satisfying the inequality (3.28). Then, we assume that the quantity τ is
chosen so as to fulfill the condition (3.14) again. According to (3.6), (3.7),
(3.9)—(3.13), and (3.27) we get that in this case at any fixed z and f->oo the following
asymptotics hold:

(μ1-μ2)
2\a

where

0

 m.ki 2(τ 1 -4μ 2 +

From these asymptotics and equalities (1.5) we easily find that at any fixed z and
£-•00 the relations M->0 and φ->0 are fulfilled. This means that our solution of the
system (4) as £—>oo has no moving waves with the phase velocity τ satisfying the
inequality (3.14). Assume finally that the quantity τ is chosen so that the
inequalities

(τ-4μ 2 + 12v2)μ1<0, (τ-τJμ^O (3.30)

are fulfilled simultaneously. Then, by virtue of (3.6), (3.7), (3.11)—(3.13), and (3.27)
we get that at any fixed z and ί-^00 we have

Dexp[-2(τ-τ 1 )μ 1 ί ]-K o exp(2μ 1 z) ,

Φexp[-2(τ-τ 1 )μ 1 f]->0,

where the quantity Ko is determined by the equality (3.29). Hence, according to
(1.5), it follows that at any fixed z and f-*oo the relations u^O and φ^O are valid.
Thus, based on (3.14), (3.28), and (3.30), we can verify that our solution of the
system (4) as ί->oo has no moving waves with the phase velocity τ satisfying the
condition

( τ - τ 1 ) ( τ - 4 μ 2 + 12v2) + 0. (3.31)
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On the other hand, at τ = 4μ% — 12v2 with the equalities (3.11 )-(3.13), we get the
representation

where the quantity i£ depends only on t and according to (3.10) we have K->oo as
f->oo. Hence, on the basis of (3.6) and (3.7), it follows that at any fixed z and ί->oo
we have

DK-1exp(-2μ1z)~\ + (J±H^

ΦX" 1 exp(-2μ 1 z)->0.

Thus, assuming K = 1, μx = μ, μ2 = 2μ and taking account of (3.13), (3.19), and (3.20)
we easily get that as £->oo our solution has a moving wave of the form

Q 2

where

Then, assuming K— —\,μx =2μ, andμ 2 = μ, by virtue of (3.13), (3.24), and (3.25) we
get that as ί->oo our solution has a moving wave of the form

where

; = 4μ 2 -12v 2 , . + 2η

Consider finally the case τ = τί. On the basis of equalities (3.6), (3.7),
(3.11)—(3.13), and inequality (3.27) we get that at any fixed z and t-• oo the following
asymptotics are valid:

No

LJ r>^/ 1 I" / XV

m,n= 1

No

Φ~ — exp[/vx — i{μ\ — v2)j;] Σ ^m e xP(/^i z)'
m= 1

i.e.

D-1+Xoexp(2μ1z),

Φ-L0exp(μ1z)exp[ίvx-ί(μ2-v2)j;],

where the quantity Ko is determined by the equality (3.29) and

No

L o = - Σ Άm- (3.34)
m = 1
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It follows from the equalities (3.29) and (3.34) that the functions Ko and L o depends
only on t. Letting κ—\ and μι = μ and using (1.5) we easily get that as ί—>oo our
solution has a second moving wave of the form

2μ2

cosh2 [μ(x + 2vy - τ 11 - qoy\'

_ exp[fvx-/(μ2-v2)3;]
0 cosh [μ(x + 2vy - τx t — qoj] '

where

^ ^oKo112. (3.36)

According to (3.29), (3.34), and (3.36) the relation

d ^ 2\Ao\2) (3-37)

holds. Then, assuming K— — 1 and μx =2μ, according to (1.5) we get that as £->oo
our solution has the second moving wave

cosh2 [2μ(x + 2vy — τ1t — q0)']'
(3.38)

exp [ΪVX — i(4μ2 — v2)y]
φ ° cosh [2μ(x + Ivy - τ 11 - qo)~\ ''

where

^ Ao=^LoKo1/2. (3.39)

By virtue of (3.29), (3.34), and (3.39) we have

^ + τ 1 = 16μ 2 -12v 2 + κμ~ 2 | ,4 0 | 2 . (3.40)

at
Taking account of (3.31) we become convinced that we have obtained all moving
waves entering into our solution of the system (4) as ί->oo.

Thus, at κ = \ our solution describes the decay of the wave (3.21) into the
soliton (3.32) and the wave (3.35). According to (3.8) we have τN = \βμ2 — 12v2 and
by virtue of (3.10) the inequality (16μ2 — 12v2 — τ 1 )μ>0 holds. Finally, using (3.37)
we get that τ 1 > 4 μ 2 —12v2. It follows from these inequalities that at μ > 0 the
condition 4μ2 — \2v2<τγ <16μ 2 — 12v2 must hold and at μ < 0 the condition
τ1>l 6μ2 — 12v2 is fulfilled. If one changes in this solution t by — t and x by — x, the
new solution of the system (4) obviously describes the fusion of the soliton (3.32)
and the wave (3.35) into one wave (3.21). Analogously, at κ= — 1 our solution
describes the decay of the wave (3.26) into the soliton (3.33) and the wave (3.38).
Accoring to (3.8) we have in this case τN = 4μ2 — 12v2, and by virtue of (3.10) the
inequality (4μ2 — 12v2 — τ1)μ>0 should hold. Finally, based on (3.40) we get the
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inequality τ1 <16μ 2 —12v2. Hence it follows that at μ>0 the condition τ1 <4μ2

-12v2 is fulfilled and at μ < 0 the condition 4μ2 -12v 2 < τ ί < 16μ2 -12v2 should
hold. If now in this solution ί is changed by — t and x by — x, the new solution of
the system (4) describes the fusion of the soliton (3.33) and the wave (3.38) into one
wave (3.26). It is to be mentioned that at K = 1 and μ2 — 3v2 < 0 the equality τί ~ 0 is
possible. Consequently, the wave (3.35) executes in this case an oscillatory motion
in the finite limits. An analogous phenomenon may appear at K = — 1 as well if 4μ2

- 3 v 2 > 0 .
In conclusion, we should like to note that assuming v = 0 in all the formulas of

this paper, we get such solutions of the system (4) that the function u is independent
of y and the function φ admits the representation φ = wexp( — iEy), where the
function w is also independent of y and £ is a certain constant. Hence it follows that
the functions u and w satisfy the system of equations [6]

du ^ du d3u o d ,
+6 + —-3- + 8 κ —

dxό dx

dx1

Thus, the above assertions concerning the solutions of the system (4) obtained here
can be made, with certain provisoes, also for the solutions of the system (*).
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