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Abstract. The relationship of local ordering and long-range order is studied for
quasicrystalline tilings of plane and space. Two versions of the concept of local
rules are introduced: strong and weak. Necessary conditions of the existence of
strong local rules are found. They are mainly reduced to the constraints for
irrational numbers related to incommensurabilities of the quasicrystals. For
planar quasicrystals the quadratic irrationalities a + byΊ5 (a, b eQ, D eΈ) play
an important role. For three-dimensional quasicrystals not only quadratic but
also cubic irrationalities a + b\/D + c\/D^ (a, b, c e Q, D e Έ) are allowed. The
existence of weak local rules is established for almost all two-dimensional
quasicrystals based on quadratic irrationalities and for the three-dimensional
quasicrystal having icosahedral symmetry.

1. Introduction

Quasicrystals discovered by Schechtman, Blech, Gratias, and Cahn [1] are
materials with the long-range order of a new type. They exhibit scattering
properties of ideal crystals but have a point symmetry group incompatible with
periodicity. Unusual diffraction properties of quasicrystals were explained with
the help of periodic structures in high-dimensional spaces by Kalugin et al. [2]
Elser [3] Duneau and Katz [4] (see also Mackay [5] Levine and Steinhardt [6]
Kramer and Neri [7]). All the models of the atomic structure of quasicrystals
discussed so far include some periodic structures in high-dimensional spaces (for
the icosahedron symmetry group the dimension of the space is six and for the
pentagon symmetry group it is five). The physical space is embedded into the high-
dimensional space as an incommensurate subspace and the positions of atoms in it
are found by projection. In another version the positions of atoms are given by the
common points of the periodic structure and the physical subspace. The models of
this type explain successfully sharp peaks in the diffraction patterns obtained by
scattering of electrons, X-rays and neutrons.



628 L. S. Levitov

However, there is some problem with all these models: they describe the long-
range order without showing how it emerges from the local ordering of atoms. It is
well known that the interaction of atoms has an effectively short radius, i.e. it
decreases very rapidly at large distances. The short-range interaction specifies the
short-range order which includes the interspacing of neighboring atoms, the
angles between the segments connecting neighbors and so on. The relation of the
short-range order and the long-range order in quasicrystals is not understood well
enough. In this work an attempt is made to study this problem for some particular
class of quasiperiodic structures (see below).

To give a heuristic introduction into the problem let us discuss first how the
long-range order in an ordinary periodic crystal is supported by the short-range
interaction. Consider for example the growth of a crystalline solid from the melt.
When atoms get attached to the solid-liquid interface they are governed by the
interaction with neighboring atoms and the place occupied by every next atom is
determined by the positions of its neighbors in the solid phase. If the local
arrangement of the atoms which is favoured by the growth process can be extended
periodically to the whole space, then a crystal grows. It does not seem very
surprising that periodic crystals can be formed by this process, since one can
stabilize a periodic structure with an arbitrarily large but finite until cell by a
choice of the short-range part of the interaction between atoms. To make this clear
one should note that the whole structure of a crystal is completely defined by the
correlation functions of atoms in the volume containing several neighboring unit
cells which includes a finite number of atoms. This set of atoms gives a finite set of
stability conditions, i.e. a finite set of equations for the interaction potential. These
equations can undoubtedly be satisfied by a proper choice of the interaction. It is
clear that the principal property of periodic structures which is responsible for the
stability of the long-range order is the existence of local rules. We say that local
rules exist for some structure if it is defined completely by the set of configurations
of atoms having limited size, which participate in this structure.

An analogous problem for quasicrystals becomes much less trivial because the
structure of quasicrystals is not periodic. Consider a quasicrystal growing from the
melt. The place occupied by every atom attached to the surface of the
quasicrystalline solid is again determined by some local laws based on the short-
range interatomic forces. An attached atom does not know anything about how
the structure grows in the high-dimensional space. The attached atom has some
information about its local environment only. Roughly speaking, one can say that
atoms know only what is the set of local configurations they are allowed to form
but nothing about the long-range order that will ultimately result from the growth
process. In this work we do not touch upon the problem of growth of quasicrystals.
The question considered here is associated with the growth problem but is
somewhat easier. Rough formulation of this question is: "Is it possible to define the
structure of a quasicrystal by the description of all allowed local configurations?"

For periodic crystalline structures the answer to this question is obviously
affirmative. To describe unambiguously the structure of a crystal one has to give
positions of the atoms occupying the unit cell and say that the structure of
neighboring unit cells is the same (in other words, the unit cell is repeated
periodically throughout the space). As for quasicrystals, there is no full answer to
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Fig. la and b. a Tiling of the plane associated with 3 vectors el9 e2i e3. b Tiling of the line associated
with 2 vectors eί, e2

the above question. All that is known concerns some special class of structures
called "Penrose patterns" in honour of their inventor R. Penrose [8]. The Penrose
pattern is a tiling of the plane with rhombi having pentagonal symmetry.

We consider a more general class of tilings of the plane with parallelograms
defined as follows. Take n nonparallel vectors et (z = 1,..., n) in the plane R 2 . Every
pair <eί9 e7 > of these vectors such that i <j defines the parallelogram with the sides ef

and Cj. Consider the set of n(n—ί)/2 parallelograms generated in such a way.
Suppose that the plane is divided into parallelograms so that every two adjacent
parallelograms have an edge or a vertex in common (see Fig. la). We say that this
tiling of the plane is associated with the chosen set of n vectors et (i = 1,..., ή) if each
of the parallelograms participating in the tiling can be obtained by a shift of one of
the parallelograms <e, , e7) (ί <j). One can define a tiling of the 3-dimensional space
1R3 by a similar procedure using n nonparallel vectors et (ΐ = l, ...,n) in IR3 and
dividing IR3 into parallelotops <et-,ey,efc> (i<j,j<k). The generalization to the
higher dimensions is straightforward. A tiling of a line associated with a finite set of
segments et (z = 1,..., n) is defined if the line is divided into segments so that each of
them is identical to one of the segments ef (z = 1,..., n) (see Fig. lb). We shall denote
the constituents of any tiling (parallelograms, parallelotops, segments, etc.) by the
common word "tiles."

We define the lifting function w: IR2 ->R" for an arbitrary tiling of the plane R 2

associated with n vectors ef (i = 1,..., ή). Choose an arbitrary vertex x of one of the
parallelograms of the tiling as the origin and put w(x) = (0, ...,0). For any other
vertex y of a parallelogram of this tiling we find a chain of the edges of the
parallelograms connecting x and y. Since every edge in such a chain is parallel to
one of the vectors et (z = 1,..., n) we can express the vector x — y as an integer linear
combination of the vectors ê :

y - x = z 1e 1 + . . .+z π e n (1.1)

(zt is equal to the number of times taken with a proper sign, when the vector ef

enters the chain.) One can immediately make sure that the integers zt (i = 1,..., n) do
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not depend on the choice of the chain connecting the vertices x and y. After we put

(z1,...,z l i) (1.2)

the lifting function w is defined in all vertices of the tiling. To define the function w
everywhere in the plane we introduce the condition of linearity (and continuity) of
w inside every parallelogram including its boundary. Thus obtained the lifting
function w transforms the tiling of R 2 in a two-dimensional continuous surface in
R n consisting of two-dimensional square faces of the ^-dimensional unit cube with
the vertices being the points of the integer lattice Έn. The definition of the lifting of a
two-dimensional tiling can be generalized easily for other dimensions. The image
of the lifting of a d-dimensional tiling associated with n nonparallel vectors in R d is
a d-dimensional continuous surface in R", consisting of d-dimensional facets of the
n-dimensional unit cubes.

Now we introduce a special class of tilings which are known as quasicrystalline
tilings or, simply, quasicrystals. Consider a two-dimensional linear subspace υ in
the n-dimensional space R" given by a linear function

u : R 2 - > R π ,

(xl9 χ2)-*(yι(χi, χ2\ - ->yn(χi> χi)),

(1.3)

where i>f(x1? x2) = aix1 + bix2 ε (R2)', ι = 1,..., w. We shall often denote the subspace
Im [v] defined by (1.3) simply the letter v. Take an arbitrary point x = (xu ..., xn) of
the space R n and attribute to it a unit cube C[x] with the vertices

(x1±h..,Xn±t), (1.4)

where the signs in (1.4) alternate independently. The point x is the center of the
cube C[x]. We define the standard tube T[υ~] associated with the subspace v as the
union of all the cubes C[x] such that x belongs to v:

T[v]= U C[x] . (1.5)
xet)

Consider all the points of the lattice ΊLn which belong to T[v]. We call the subspace
v "singular" if there are some integer points on the boundary of T[f], otherwise v is
a "regular" subspace. To construct a quasicrystalline tiling of the plane we take a
regular two-dimensional subspace v and consider the set of integer points of T\v].
One can prove that there exists a tiling of the plane such that the lifting of this tiling
is a two-dimensional surface included in the tube T[v]. Moreover, this tiling is
unique if possible shifts are not taken into account (for the proof and discussion see
Gahler and Rhyner [9]). We call this tiling "the quasicrystal associated with the
subspace v" or simply "v-quasicrystal" One should mention that the tiling
produced by this method can be either periodic or quasiperiodic depending on
whether the subspace v is commensurate with the lattice Έn or not. A quasicrystal
in the space of an arbitrary dimension d is defined by a procedure analogous to that
presented above with v being a d-dimensional subspace of R". Both two-
and three-dimensional quasicrystalline tilings are of great interest for the physics
of quasicrystals, since they are used to describe positions of atoms in real
materials (see Henley and Elser [10]).
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Fig. 2. Configurations of tiles 1, 2, 3,4 inside the circles belong to the r-atlas (r is the radius of the
circles). Configurations 1 and 2 correspond to one and the same map of the atlas

Now we introduce maps and atlases of maps for an arbitrary tiling of the plane.
Define (r, x)-map as the maximal configuration of parallelograms (or tiles) lying
inside the circle with the center x and the radius r. Those tiles which have common
points with the boundary of the circle do not enter the map configuration (Fig. 2).
Define an r-atlas of the tiling as the collection of all different (5, x)-maps of this
tiling, such that 5 < r. If the configurations of tiles in two circles are identical they
correspond to one and the same map in the atlas (Fig. 2). Since there is only a finite
number of different configurations of tiles with limited size, the r-atlas of any tiling
is a finite set of maps.

After these definitions are given we can formulate more precisely the question
which is studied in this work. Suppose that after the r-atlas is determined for a
tiling of the plane and some positive r, the tiling is erased and we are left with its
r-atlas only. Is it possible to recover the original tiling in any sense? If this is
possible for some finite r we say that the tiling is restorable or that local rules exist
for this tiling. It is clear from the consideration presented above that only the
restorable tilings are of interest for physics since the non-restorable ones can
hardly be stabilized by a short-range interaction. On the other hand if the tiling is
restorable one can hope to find a short-range interaction of the tiles which favours
this tiling.

In this work we study the problem of the existence of local rules for
quasicrystalline tilings. This problem of restorability was studied by different
authors for some particular examples of quasicrystals. First we mention the
remarkable work by deBruijn [11], where the existence of local rules for the
Penrose tiling was proven. In the de Bruijn work the tilings of the plane with
rhombi of two types (thin and thick) having angles 36° and 72°, respectively, and
supplied with arrows (see Fig. 3) were considered. It was shown that if the tiling of
plane with these rhombi satisfies the "arrow condition" (the arrows on the
common sides of the adjacent rhombi are identical) then it coincides exactly with
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7 2 ° ^ 36k^>
Fig. 3. Thick (72°) and thin (36°) rhombi supplied with arrows provide strong local rules for the
Penrose tiling

the Penrose tiling which was originally constructed by Penrose by an entirely
different algorithm (inflation-deflation procedure). In our terminology this means
that local rules exist for the Penrose tiling or that it is restorable. The "arrow
conditions" for the Penrose tiling were studied further by Pavlovitch and Kleman
[12]. Another important contribution was made by Beenker [13], who considered
the quasicrystalline tiling of the plane having eight-fold symmetry. He managed to
show that there exists an arbitrarily large but finite piece of tiling for which one
cannot decide using local inspection whether it participates in the quasicrys-
talline tiling or not. This gives strong evidence for the absence of local rules for this
case.

The problem we are interested in can be formulated as: "What is the set of
restorable quasicrystals?" Since the set of all atlases is countable, the set of the
restorable quasicrystals is countable too. But the set of all quasicrystals is non-
countable because all d-dimensional subspaces of an ^-dimensional space form the
Grassmann continuum and the subspaces having different slopes generate
different tilings. So we conclude that most of the quasicrystals are not restorable.
These arguments are strong but not constructive. A constructive description of the
set of restorable quasicrystals is given below.

The contents of the paper is as follows. In Sect. 2 two different variants of the
definition of the restorability property are presented: strong and weak. In
accordance with these two definitions two classes of restorable quasicrystals are
introduced: quasicrystals with strong local rules and quasicrystals with weak
local rules. In Sect. 3 the quasicrystals having codimension one (n = d+\) are
considered. It is shown that they are restorable in the strong sense of Sect. 2 only
if they are periodic, i.e. there are no nontrivial examples of restorable quasicrys-
tals of codimension one. In Sect. 4 some useful properties of dual graphs of
tilings are discussed. In Sect. 5 two-dimensional quasicrystals are studied. It is
proven that they are restorable in the strong sense of Sect. 2 only when the
coordinates xu x2 in the plane R2 can be chosen so that all the coefficients ab bt

(i = l, ...,ri) of the linear embedding (1.3) become quadratic irrationalities:

(1.6)
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for some integer D (for a more rigorous formulation see Theorem 2 and
Propositions 5,6). On the other hand, it is found in Sect. 6 that almost all two-
dimensional quasicrystals based on quadratic irrationalities (1.6) are restorable in
the weak sense of Sect. 2. Three-dimensional quasicrystals are studied in Sect. 7.
The necessary condition for their restorability (in the strong sense of Sect. 2)
obtained in Sect. 7 is quite analogous to the condition (1.6) for the two-dimensional
tilings. The main difference is that not only quadratic irrationalities, but also cubic
irrationalities of the fields (S)[\/D) are allowed. The quasicrystalline tiling of the
three-dimensional space having icosahedral symmetry is studied at the end of
Sect. 7. This tiling is shown to be restorable in the weak sense of Sect. 2. The
preliminary version of this work containing no rigorous proofs of the assertions
but only formulations of basic definitions and statements was published in [14].

Notation. The letters 1R, TL, Q have the usual meaning of real line, set of integers
and set of rational numbers.

If x e IR then [x] is the integer part of x.
IR" is the linear space of (x1?..., xj, where xt e R (i= 1,..., n), with the standard

scalar product and metrics:

( x j ) ^ i l i + . . + U , ||x||2 = x2 + . . . + x 2 , (1.7)

where x = (x1?...,xn), y = (yl9...,yn)eW.
Zn is the integer lattice (z1? ...5zπ), where zteZ (Ϊ = 1, ...,n).
The letter i always represents an element of the set {1,2,..., n}. "For all Γ will

mean for ί=l, ...,n.
R"' = (R")' denotes the space of linear functions

/ : R " - R , (x 1 , . . . ,x n H/ 1 x 1 + . . . + / Λ , (1.8)

where / f e R and xt are the standard coordinates in IR". Q"' = (Q")' is the space of
linear functions (1.8) with rational coefficients f e Q. Elements of Q"' form a linear
space over the field Q.

For the dimension of a linear space v the standard notation dinφ) is used.

For every integer D we use the notation Q(|/D) for the field of all a + b]/D

(a, bed)) and the notation QUI/D) for the field of all a + b\/D + c^/D1 (a, b,ce Q).
For two functions /, g we use "f * g" to denote their composition.

2. Basic Definitions

Consider n nonparallel vectors ef in the plane IR2 and closed parallelograms (or
tiles) associated with the pairs of vectors <ef, e;> (i <j). We define a configuration of
tiles as a finite set of parallelograms in the plane satisfying the tiling conditions:

a) every tile of the configuration is produced by a proper shift of one of the
parallelograms <ei? e,-) (ί<j);

b) if two tiles of the configuration intersect, then the intersection set is either a
vertex or an edge;

c) the configuration is a connected set.
Some examples of configurations are shown in Fig. 4. The radius of a

configuration is defined as the minimal radius of the circle containing this
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Fig. 4a-c. Examples of configurations to tiles: a and b are configurations, while c is not

configuration. We say that two configurations are identical if there exists a shift
transforming one configuration onto another.

We define r-rules as an arbitrary set of nonidentical configurations having
radius less than r. It is clear that there exist only a finite number of different r-rules
for every fixed r.

When a positive r is given and some r-rules are specified we say that a tiling of
the plane satisfies these r-rules if for every positive s, s < r, the s-atlas of this tiling is
a subset of the r-rules.

Now we introduce local rules (LR) for planar quasicrystalline tilings. Let some
r-rules, r > 0, be specified. We call them strong local rules if they have the following
properties.

a) every tiling satisfying these r-rules is a quasicrystal;
b) at least one quasicrystal satisfies the rules;
c) Let two subspaces v and v' define quasicrystals according to (1.3), (1.4), (1.5).

If both i -quasicrystal and ι/-quasicrystal satisfy the r-rules then the subspaces v
and v' are parallel (i.e. they are identical up to a shift).

Remark. If the embedding functions v, v' define parallel subspaces according to
(1.3) (the parameters being ab bb cb and α , b'b c respectively) then one can find a
coordinate transformation x\ = axι + βx2, x'2 = y^ιJrδx2 such that a' = (xa + βb,
b' = ya + δb.

In other words, strong LR fix the slope of the embedding (1.3). When strong LR
exist they specify the structure almost entirely with the only freedom left related to
shifts of the subspace (i.e. to the changes of constants c{ in (1.3)]. The importance of
such shifts becomes clear from the following proposition.

Proposition 1. For every linear embedding v: 1R2 ->IRW given by (13) consider a linear
subspace Q"'[t;] C (Qn)' consisting of all functions f e (Q")' such that the composition
f*visa constant function on R 2 : f(υ(x)) = const for all x e 1R2. Let two embeddings
v' and v" be defined by (1.3) with the coefficients a'b b'b c\ and a", b'{, c'( respectively.

If a'—a'l, V~b" for all i9 and /(c') = /(c") for all linear functions feφ[v],
where d = {c'u ...,cj,), c" = (c"u ...,cj,')3 then for every positive r the r-atlas of the v'-
quasicrystal coincides with the r-atlas of the V"-quasicrystal.

We shall prove this proposition in Sect. 4 after dual graphs of tilings will be
introduced. Some comments should be made on the definition of the subspace
QΛ'IX|. The dimension of Q"'|V| is equal to the "number of commensurabilities" of
the linear embedding v. If ai e Q and bt e Q in (1.3) for all i, then dim((ζΓ|>]) = n - 2.
If v is completely incommensurate then dim(Qn/[ι;]) = 0. To finish with strong LR
we formulate without proof a simple assertion on periodic tilings (a planar tiling is
periodic if it has two noncollinear periods).
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Proposition 2. For any periodic tiling one can find r > 0 and r-rules such that
a) this tiling satisfies the rules;
b) every two tilings satisfying the rules are related by a shift of the plane R 2 .

This proposition means simply that a periodic tiling is completely described by
its r-atlas for sufficiently large r. As a consequence, we obtain that periodic
quasicrystals satisfy strong LR.

In addition to strong LR we introduce weak LR. If v is a linear imbedding given
by (1.3) we say that the ί -quasicrystal satisfies weak local rules if there exist positive
r and r-rules such that

a) the i -quasicrystal satisfies these r-rules;
b) for any tiling satisfying the r-rules and every lifting of this tiling there exists a

positive constant C such that the distance from any point of the lifting to the
subspace Im[ι;] is not larger than C (the distance is measured in the standard
metric of R").

In other words, the lifting of every tiling satisfying weak LR is almost parallel to
the subspace Im[ι;] and the distance between the points of the lifting and
corresponding points of the subspace Im [v] is uniformly bounded by a constant.
In the physical language weak LR allow some structural disorder without
destroying the long-range quasicrystalline order.

The extension of all the constructions and definitions introduced above to
arbitrary dimensions is straightforward.

In order to have an example of using these definitions we consider one-
dimensional quasicrystals which are generated by linear embeddings of R in R"
(by analogy with (1.3)]:

(2.1)

A fairly simple assertion is valid:

Proposition 3. A one-dimensional quasicrystal (2.1) satisfies weak LR only if it is
periodic: aJajEQ for all i and j in (2.1).

Proof Suppose that some weak LR for the quasicrystal (2.1) do exist. Let r denote
the maximal radius of the configurations included in the rules.

Suppose that a tiling of the line R satisfying these LR is given. Find two
nonintersecting pieces in this tiling with the configurations of tiles in the pieces
being identical and having radius larger than r. Let g be the shift of the line R
(x->x + g) which transforms one of the pieces onto another.

Consider a new periodic tiling with the period equal to g which is generated by
a repetition of the region between the two pieces of the original tiling. One checks
immediately that so obtained periodic tiling satisfies the LR. By the definition of
weak LR the lifting of the tiling we started with does not go far from the lifting of
the constructed periodic tiling. Since the lifting of the periodic tiling goes along a
commensurate subspace, the linear embedding (2.1) for the original tiling is
commensurate. Hence the original tiling is periodic. Proposition 3 is proven.

In conclusion I would like to comment on the definition of local rules. The
existence of strong LR implies the existence of weak LR and the absence of weak
LR implies the absence of strong LR.
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3. Quasicrystals of Codimension One

In this section we study quasicrystalline tilings of R" ~ i generated by linear
embeddings of R"~ i in Rn. The most interesting cases for physics are n = 3,4. The
n = 3-case corresponds to the plane in the three-dimensional space, i.e. describes a
surface of a periodic crystal (see [15]). Every linear embedding R" ~1 -»Rn gives a
hyperplane in R" and, on the other hand, after the vectors et in R"~ ί are specified
(that we always have in mind) every hyperplane defines a quasicrystalline tiling of

Now we characterize the hyperplanes which yield periodic tilings of R " " 1 .
Consider a linear embedding

Any hyperplane in R" parallel to the hyperplane Im [u] is given by an equation

g(y) = const (yeR",ge(R")% (3.2)

where g is connected with v by

g*v = const. (3.3)

Consider the set Z[g] of vectors of ΊLn which are parallel to the hyperplane g:

O}. (3.4)

Z[g] is a sublattice of Έn. We say that the hyperplane g is rational if
dim(Z[g]) = n — 1, i.e. if this hyperplane is spanned by n — 1 independent vectors of
Έn. When Im[ι;] is a rational hyperplane the corresponding t -quasicrystal is
periodic. One should mention the duality of the subspace Q"'[ι;] defined in
Proposition 1 and the lattice TL\υ\. Thus introduced objects g and Z[g] will be
useful for the proof of the principal statement of this section formulated as

Theorem 1. // an embedding v: R"~* ->R" generates a quasicrystal satisfying some
strong LR, then the quasicrystal periodic.

This statement means that nonperiodic quasicrystals of codimension one
cannot satisfy strong LR. Let us explain briefly the idea of the proof. We take an
incommensurate embedding v and for an arbitrarily large positive r find a new
embedding u such that the slopes of the subspaces Im [u] and Im [v] are different
but close to each other and the r-atlases of the two quasicrystals are identical. Since
the obtained subspaces with different slopes are not parallel, an incommensurate
quasicrystal with strong LR cannot exist.

In the proof of Theorem 1 we use the following notations. If a hyperplane g is an
image of an embedding v we write "g-quasicrystal" instead of "u-quasicrystal,"
since we assume the set of vectors et in R" ~x to be specified (see above). We also
write "(r, u)-atlas" instead of "r-atlas of the v quasicrystal."

Proof of Theorem 1. Consider two regular (see Sect. 1) parallel hyperplanes g\ g"
in R" and find r-atlases of the corresponding quasicrystals for some r > 0 .
According to Proposition 1 we obtain that these r-atlases coincide. This means
that the r-atlas depends on the linear part of the embedding (1.3) only and does not
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depend on the constants ct. This remark shows that an atlas is well defined on the
Grassmann space G[rc, n — 1] of hyperplanes in R".

Definition. Consider an arbitrary configuration k of tiles in R"~1 and attribute a
subset Γ[fc] e G[n, n — 1] to it. Γ[fc] is defined as the set of all hyperplanes g such
that g-quasicrystal contains the configuration k infinitely many times.

Note that whatever the configuration k is the set Γ[/c] is open in the topology of
G[rc, n — 1] since no integer points can lie on the boundary of a standard tube (see
Sect. 1).

Consider an arbitrary configuration k of tiles and a hyperplane g. There are
three possibilities for g:

a) the point g of G[n9 n— 1] lies inside the open set Γ[fc];
b) the point g of G[rc,rc — 1] lies on the boundary of the set Γ[fc];
c) the point g of G[π, n — 1] belongs to the exterior of the set Γ[k].
In the case a) of configuration k belongs to the (r, g)-atlas for r large enough. In

the case b) we say that "the configuration k is dangerous for the hyperplane g."
Let us give a geometrical description of dangerous configurations. Consider a

hyperplane g and write (3.2) in the standard coordinates (j/l5 ...,yn) of R n :

•.• +gnyn = c. (3.5)

(3.6)

(3.7)

Let a configuration fc be dangerous for the hyperplane g. Consider its lifting vv(fc).
From the definition of a dangerous configuration we obtain that w(k) can be
immersed in the closure of the tube (3.6) by a proper shift. After this shifting is
performed the lifting vv(fe) is positioned so that both boundaries (3.7a) and (3.7b)
contain corner points of w(fc) (see Fig. 5). Consider the set A of the corner points of
w(fc) which belong to the hyperplane (3.7a) and the set B of the corner points

The points of the tube T\_g] are given by

where g' = (

The boundary of T[g] consists of two hyperplanes

a)

b)

Fig. 5. Dangerous configuration immersed in the tube is shown [the boundary hyperplanes (3.7)
are represented by the lines a and b~\. Dangerous corner points Cu C2, C3 form two sets A, B.
VectorC2C2 represents the shift (3.8)



638 L. S. Levitov

belonging to the hyperplane (3.7b). Since the shift

y^y + ίsignfei), ...,sign(gj) (yeR") (3.8)

transforms the hyperplane (3.7b) onto the hyperplane (3.7a), the set B' produced by
the shift (3.8) of the set B belongs to the hyperplane (3.7a) (Fig. 5). Consider the set
S of all vectors connecting the points of the union AvB'. Since the set A contains at
least one point and the set B also contains at least one point, the set S is not empty.
Two properties of the set S are important for us:

a) all the vectors belonging to S are parallel to the hyperplane g;
b) each vector of S belongs to ΊLn.
The property a) is true because the hyperplane (3.7a) is parallel to g. The

property b) is true because every vector connecting corner points of a configu-
ration belongs to Έn and the shift vector in (3.8) also belongs to TLn. Consider the
sublattice H[k~\ of ΈΓ formed by all integer linear combinations of the vectors
belonging to S. The sublattice H\K] is parallel to the hyperplane g and has the
dimension not less than one. Thus we conclude that every configuration k
dangerous for a hyperplane yields a nonzero sublattice H[/c] cΈn parallel to this
hyperplane.

To obtain the proof of Theorem 1 we first show that if a configuration k is of the
type a) or c) for a hyperplane g (see above), then k is of the type a) or c) for every
hyperplane close to g in the topology of G[n, n — 1]. Consider a configuration k of
the type a). The point g of the space G[rc, n— 1] of hyperplanes lies inside the set
Γ[/c] since this set is open. This means that every hyperplane u close enough to g
lies inside Γ[/c] or, in other words, that the configuration k is of the type a) for the
hyperplane u. Since the exterior of a set is an open set, the same arguments are
applicable for the configurations of the type c).

Let us take a nonrational hyperplane g (dim(Z[g])<n —1). Choose some
positive r and consider all configurations {kj} (/=1, ...,iV) dangerous for g and
having radii less than r. Let H[f] be the sum of all the sublattices H[kj]. H[r] is the
minimal sublattice of Έn which includes all H[kj] (/=1,..., JV). From the other
hand H[r] is included in the maximal sublattice Z[g] defined above. It is clear that
H[r] =Z[g] if r is large enough. Take a hyperplane u such that

(i) Z[«]=Z[g],
(ii) u is close but not equal to g.
This is possible only if the hyperplane g is nonrational, i.e. if dim(Z[g]) < n — 1.

If u is close enough to g, then all the configurations kj dangerous for g are
dangerous for u also.

We have shown that for a nonrational hyperplane g and sufficiently large r a
hyperplane u exists such that every configuration with the radius less than r, which
is of the type a), b), or c) for g, is of the same type for u. This means that the
(r, g)-atlas and the (r, w)-atlas are identical. Theorem 1 is proven.

Our final remark is that the method of this proof is not applicable for the case of
codimension larger than one. The key point of the proof is that the boundary of the
tube T[g\ consists of two parallel hyperplanes (3.7) connected by an integer vector.
This makes it possible to gather all the critical corner points of a dangerous
configuration on one of the two boundary hyperplanes. If the codimension is larger
than one, this method fails since different parts of the tube boundary are not
parallel.
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4. Dual Graphs and Grids

In this section we introduce dual graphs of tilings and study their properties with
the purpose of application in Sects. 5-7.

We consider the tilings of 1R2 as graphs and introduce their dual graphs by the
standard definition used in the graph theory [16] (see Fig. 6). The dual graph of a
tiling consists of n arrays of curves in one-to-one correspondence with the vectors
et . The important properties of the dual graph are:

a) no two curves of one array intersect;
b) every two curves of different arrays intersect and have one point in

common;
c) no three curves have a common point;
d) the intersection points of pairs of curves are in one-to-one correspondence

with the tiles and, moreover, the intersections of the curves belonging to the ith and
j t h arrays correspond to the parallelograms (e^e,-) for all i,j=ί,...,n.

The dual graph of a tiling defines it completely up to the shift, after the
correspondence of the vectors ef and the arrays of lines of the graph is specified
(that we always assume). Dual graphs yielding identical tilings are referred to as
equivalent.

Remark. Any continuous one-to-one transformation R 2 - > R 2 does not destroy
the topology of the graph and, hence, transforms it to an equivalent one.

Now we discuss the properties of dual graphs of quasicrystalline tilings first
studied by de Bruijn. In the work [11] de Bruijn shows that the dual graph of the
Penrose tiling is equivalent to that consisting of five arrays of straight equidistant
lines with the angles between the lines of different arrays being multiples of 36°. It
was shown later that an analogous assertion is valid for an arbitrary quasicrystal
[9]. One should note that for a dual graph of an arbitrary tiling of R 2 it is possible
to find a continuous transformation R2—>R2 such that it transforms two of the
arrays of the curves of the graph onto two arrays of straight parallel equidistant
lines. The characteristic property of dual graphs of quasicrystals is that a
continuous transformation can be found such that not only two but all the arrays
of curves are simultaneously transformed onto arrays of straight parallel
equidistant lines (Fig. 6.b).

An array of straight parallel and equidistant lines is called "grid." Every grid is
given by a linear function / e R 2 / and equations

f{x) = ( x e R 2 ) , (4.1)

Fig. 6a and b. a A piece of a quasicrystalline tiling and its dual graph; b The lines of the dual graph a
transformed into grids by a continuous transformation
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where k takes all integer values and c is some real constant. The dual graph of a
quasicrystal is given by a set of functions {/J, a set of constants {cf} and equations

Remark. Consider i -quasicrystal corresponding to the embedding (1.3). Let its
dual graph be given by (4.2). One can prove that a linear transformation R 2 - » R 2

exists such that it transforms v^x) in /)(x) for all i (see [9]).
Another important remark is that it is possible to reformulate all the

constructions introduced in Sects. 1,2 in terms of dual graphs. One can take a
graph with the properties a), b), c) (see above) as the fundamental object instead of
tilings and define liftings, maps, atlases, strong LR and weak LR for graphs. We
briefly show below how to do this.

Let us begin with the lifting of a dual graph. The lifting of a graph having
properties a), b), c) is defined as a function

w:R2->R2, y^>(wM...,wn(y)), (yeR2), (4.3)

where the component functions w are defined as follows. Remove all the curves of
the graph except those from the iih array. Choose a point x which does not belong
to the graph and set wf(x) = 0. For any other point y of the plane, the value wf(y) is
given by the number of curves from the ιth array separating the points x and y,
taken with a proper sign (Fig. 7). The function wt is defined everywhere except the
lines of the ίth array. Hence, the lifting w(y) is defined for all points y of R 2 not
belonging to the graph.

The relation of the lifting of a graph to the lifting of the corresponding tiling is
quite clear. Every region surrounded by the lines of the graph corresponds to some
vertex of the tiling. Since all the components wt of (4.3) take constant integer values
in such a region, the function with integer values is defined on the vertices of the
tiling. After adding the condition of linearity inside the tiles (see Sect. 1) one gets the
lifting of the tiling. On the other hand, the lifting of a tiling defines unambiguously
the lifting of its dual graph. We denote both liftings by the letter w since it will be
clear everywhere below which of the two is used. Finally we give the expression for
the lifting w of the dual graph (4.2) of a quasicrystal:

wi(y) = [/<y)-c ί] ( y e R 2 ) . (4.4)

Maps of a dual graph are defined as the maps of the corresponding tiling. After
maps are defined so the definitions of r-atlases, rules, strong RL, and weak RL are
straightforward.

-3

Fig. 7.
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Now we apply the introduced concepts to prove Proposition 1.

Proof of Proposition 1. For the proof we make use of a theorem proven by
Kronecker (see [20]).

Kronecker Theorem. Let k linear functions Lj e (R m ) ' (j=\,...,k) and an arbitrary
vector g e R k (g = (g l 5 ...,gfc)) be given. The following two statements are equivalent.

(i) For every ε > 0 one can find an integer vector a e Έm such that the inequalities

«L»- g j.»<ε (4.5)

are satisfied simultaneously for allj= 1,..., k. (Here <«x)> means min({x}, {— x}), i.e.
the distance from x to the nearest integer; {x} = x — [x] is the fractional part of x.)

(ii) For every integer vector zeΈk (z = (z l5 ...,zfc)) such that the linear function

.+zkLk{κ) (4.6)

has integer coefficients, the quantity

Zigi + .~+z*g* ( 4 7 )
takes an integer value.

In order to apply this theorem we first find two independent functions among vt

in (1.3). Let them be v1 and v2. Since the equations

t1=v1{xux2), t2 = v1{xl9x2) (4.8)

can be solved for all tu t2 two independent linear functions

X1(t1,t2), X2(tiJ2)

are defined. We denote

and choose the functions ξ, η given by

ξ = t1+c1=v1(xux2) + c1,

as new coordinates in R 2 . Consider all yt [see (1.3)] as functions of these new
variables:

) = r,, (4.10)

for ί>2:

y,{ξ9 η) = υix^ξ, η\ x2(ξ, η)) + vfaϊ, x°2) + ct,

where x?5 x2 satisfy the equations

v1(x°ι,x°2)= -cγ, v2(x°u x°2)= -c2.

It is easy to see that the functions

LJ(ξ,η) = υj + 2(x1(ξ,η),x2(ξ,η)) (j=l,...,n-

and the vector
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satisfy Condition (ii) of the Kronecker theorem (m = 2, k = n — 2). The theorem
states that for every ε>0, one can find ξ, ηeΈ such that

φtfaiξ, r\\ x2(ξ, η)) ~ Vj(

and hence

(4.11)

for all7 = 3, ...,n.
We see that for every pair of vectors c\ c" with the properties claimed in

Proposition 1 and an arbitrary point x' = (x\, xf

2) eIR2, one can find another point
x" = (xf[,x2)eΈί2 such that

^ x ' ) + c\ - υx{x!') - c'/» < ε (4.12)

for all Ϊ = 1,..., n [according to (4.11) x'[ = x\ + xJ — xx(ξ, 77), x'2 = x 2 + X2 ~X2(ζ> ^)]
After the inequalities (4.12) are viewed as conditions for the lifting functions

and combined with the properties of the dual graphs discussed above, we obtain
that one can find r > 0 depending on ε such that

a) (r,x')-map of the iZ-quasicrystal coincides with (r,x")-map of the
i/'-quasicrystal.

b) r->oo, when ε->0.

Properties a) and b) together mean that the r-atlas of the ι/-quasicrystal
coincides with the r-atlas of the t/'-quasicrystal. Proposition 1 is proven.

A useful assertion concerning the relation of distances between the intersection
points of a dual graph and the corresponding parallelograms of the tiling should be
finally mentioned.

Proposition 4. Consider a quasίcrystalline tiling and its dual graph formed by grids.
One can find four constants c, c\ C,C'eIR (C > 0, C > 0) such that for any two
intersection points x,yelR2 of the lines of the graph and corresponding parallel-
ograms of the tiling with centers x', y ' e R 2 , the following inequalities are satisfied:

C||y-x|| + c < Hy'-x'll <C / | |y-x | | +c' , (4.13)

where | |... || is the standard metrics in IRA

This proposition (which we leave without proof) means that the metrics in the
"dual graph representation" of a quasicrystal is equivalent to the metrics in the
"tiling representation." Proposition 4 will be used in Sect. 6.

5. Two-Dimensional Quasicrystals

In this section we prove the absence of strong LR for a wide class of
quasicrystalline tilings of the plane. First introduce an important definition.
Consider three linear functions f,g,he (R2)'.

Definition. We say that the Sl-condition is satisfied for the triplet (/, g, h) if there
exist k,l,meZ such that |fc| + \l\ + \m\>0 and the system of equations

f(x) = k, g(x) = l, h(x) = m, ( x e R 2 ) (5.1)

has a solution (the abbreviation SI = "second intersection" will become clear later).
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It is useful to write the Si-condition (5.1) explicitly in the coordinate
representation. If the functions /, g, ft have the form

/(x)=/lXl+/2X2> g(X)

h[x) = h1xί+h2x2,

the Si-condition means that there exist integers k, I, m such that \k\ +1/| + \m\ > 0 and

(5.2)

det

/i h k

g l g2 I

hί h2 m

=0. (5.3)

After the functions f9g,h are chosen the Si-condition (5.3) is no more than a
linear equation for k,l,me%. The set of the integer solutions of Eq.(5.3) is a
sublattice of the integer lattice Z 3. The dimension d of this sublattice is an
important characteristic of the triplet (/, g, ft). If d = 3, then /, g and ft are collinear in
R 2 ' :

/(x) = const g(x), g(x) = const ft(x) (5.4)

for all x e R2. If d = 2, then the functions /, g, ft are linearly dependent over the field
(Q, i.e. there exist rational numbers a,b,ce(Q such that |α| + |6| + |c|>0 and

α/(x) = bg(x) + cft(x) = O (5.5)

for all xeR 2 . If d = 0 then the Si-condition is not satisfied. The most interesting
d=l-case has a simple geometric meaning. Consider three grids

/(x) = g(x) = c2
ft(x) - c3 + m, (5.6)

where fc, ί, m take integer values and c l 9 c2, c3 are some constants. Suppose that the
Si-condition is satisfied for the triplet /, g, ft and the constants cl9 c2, c3 in (5.6) are
chosen so that three of the grid lines have an intersection point. The condition (5.1)
means that there is a second intersection point common for other three lines of
these grids. If d = 1, these triple intersection points form a row (Fig. 8). A pattern of
three grids satisfying the Si-condition has at least one period.

Fig. 8. When three grids satisfying Si-condition intersect, the intersection points form a row
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The principal assertion of this section is:

Theorem 2. Let a quasicrystalline tiling of the plane be generated by grids (4.2). / /
this quasicrystal has strong LR, then the Sl-condition is satisfied for every triplet of
the grids (4.2).

We begin the proof of Theorem 2 with several auxiliary lemmas.

Lemma 1. Suppose the plane is decomposed onto two half-planes. If two quasicrys-
tals are identical in one of the half-planes, they are identical everywhere.

The assertion of Lemma 1 is a trivial consequence of the quasiperiodicity of
quasicrystalline tilings.

Lemma 2. Let a two-dimensional quasicrystal satisfy some strong LR. Let r be the
maximal radius of the configurations included in these LR. / / two positive numbers
s, q e IR and two points x, y of the plane IR2 exist for which

a) the restrictions of the tiling to two rings

s<\\z-x\\<s + 2q,

s<\\z-y\\<s + 2q, (zeR 2)
are identical;

b) the (s, x)-map is different from the (s, y)-map, then the radius r is bigger than
q:r>q.

Proof of Lemma 2. Suppose the maximal radius r of the strong LR is not larger
than q:r<q. Make a new tiling by the replacement of the (s + 2q,x)-map by the
(s + 2q, y)-map. Since the new tiling satisfies the same LR, it is a quasicrystal. Thus
obtained two quasicrystals contradict Lemma 1. This proves Lemma 2.

Remark. One can easily reformulate Lemma 2 for grids, since there is a simple
relation for distances between points of the dual graph and distances between
corresponding parallelograms of the tiling (see Proposition 4).

We also need some results on the triangles formed by grids. Consider three
grids (5.6) and the triangles formed by the lines of these grids. All such triangles are
similar. We say that a triangle has diameter d if the largest of the distances between
the vertices of the triangle is equal to d.

Choose a small positive d and consider the triangles having diameter less
than d. We are interested in the distribution of such triangles over the plane.

Suppose first that the functions /, g, h are linearly dependent over Q [see (5.5)].
In this case there exists a positive d such that the diameter of any triangle is larger
than d. So the triangles with sufficiently small diameters are absent.

If the functions /, g, h are linearly independent over Q, the triangles with small
diameters do exist. Their distribution is characterized by the following lemmas.

Lemma 3. Define the distribution density n(d) of the triangles as

n(d)= lim N/S,
S^oo

where N is the number of triangles having diameters less than d and lying in a large
circle of the area S. Thus defined the function n(d) is linear, i.e. n = constd.
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Fig. 9a and b. Distribution of small triangles formed by three grids over the plane, a Si-condition is
satisfied; b Si-condition is not satisfied

Lemma 4. // the Sl-condition is satisfied for f g, h and the number d is small enough,
then the triangles having diameter less than d form parallel rows (Fig. 9a) such that

a) the distance between every two neighboring triangles in a row is a constant not
depending on d and the row;

b) the minimal separation of every two neighboring rows, as a function of d,
tends to infinity when d goes to zero.

Lemma 5. Define the function dist(rf) as the minimal distance between the triangles
having diameters less than d. If the Sl-condition is not satisfied for the functions
f g, h, then

dim dist(d)=oo. (5.8)
d->0

The assertion of Lemma 5 means that small triangles are far from each
other, if the Sl-condition is not satisfied (Fig. 9b).

One easily obtains the proof of Lemmas 3,4, 5 by making use of the expression
for the area S of a triangle formed by three lines ajxί + bjX2 = cj (/ = 1,2,3):

s= '1231 where Zl 1 9α=det a2 b2

(5.9)

Consider a u-quasicrystal for some embedding υ and its dual graph given by the
grids (4.2). The subspace Qn/[ί;] defined in Proposition 1 characterizes the shifts of
the grids which do not change the atlases of the tiling.

Definition. We define an equivalence transformation for a quasicrystal (4.2) as
a transformation

cί = cf + ftf (5.10)

of the parameters ct in (4.2) such that

) = 0 for all / e Q - ' M ; h = (hι,...,hn). (5.11)
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b)
a)

Fig. 10a and b. Rearrangements produced in the tiling a and in the grid pattern b by an equivalence
transformation (5.10), (5.11)

The transformation (5.10), (5.11) changes the tiling but preserves its r-atlases for all
r (see Proposition 1).

We are interested now in what the grids pattern changes are that are produced
by the equivalence transformations (5.10), (5.11). Since there are

N = C3
n=n(n-l)(n-2)/6 (5.13)

subsets of cardinality three in a set of cardinality n, the triplets of the grids (4.2)
form triangles of N types. When an equivalence transformation is performed, some
of the triangles are rearranged (Fig. 10). It is clear that equivalence transformations
(5.10) with small ht yield rearrangements of small triangles only. Several properties
of the rearranging triangles will be useful for the proof of Theorem 2. By making
use of (5.9) one proves easily the following assertions.

Lemma 6. Let the absolute values of all h{ in (5.10) be smaller than some positive d:

M<d. (5.14)

A constant C exists such that all the triangles rearranged by the equivalence
transformation (5.10), (5.11) have diameters less than Cd.

Lemma 7. Let three grid functions f, fj} fk (i,j,k = l, ...,n) from (4.2) be linearly
dependent over Q. There is no equivalence transformation that yields rearrangements
of the triangles formed by the lines of the zth, thefh and the kih grids. The only result
of an equivalence transformation is a shift of such triangles without any change of
their size.

Lemma 8. Let three grid functions fi9 fp fk (i,j,k = i, ...,n) from (4.2) be linearly
independent over Q. There exists a positive constant C such that for every
sufficiently small positive d one can choose the parameters h{ of the transformation
(5.10), (5.11)50 that

a) \ht\<Cd for all i;
b) every triangle with the diameter less than d formed by the lines of the zth, thejth,

and the kth grids is rearranged by one of the two equivalence transformations

cfi = Ci + hi9 c'^Ci-hi. (5.15)

Everything is ready now for the proof of Theorem 2. The general plan of this
proof is the following. For a quasicrystal having at least one triplet of grids not
satisfying the Si-condition we find an equivalence transformation (5.10), (5.11)
with sufficiently small ht such that

a) there exists a triangle which is rearranged by this transformation;
b) the piece of the tiling in a thick ring surrounding this triangle is not

rearranged.
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Since equivalence transformations do not change the atlases of tilings, the
rearranged piece of the tiling inside the ring can be found in the original tiling. After
this we apply Lemma 2 which states that if strong LR exist, then there is a
configuration included in these rules with the radius larger than half of the
thickness of the ring. Since one can make the thickness of the ring arbitrarily large
by a proper choice of small h, we conclude that strong LR do not exist.

Proof of Theorem 2. Let r be the maximal radius of the configurations from the
LR of a quasicrystal. Divide the triplets of grids (4.2) forming the dual graph of the
quasicrystal into three sets: A, B, and C. The set A contains the triplets which do
not satisfy the Si-condition. The set C contains the triplets of functions which are
linearly dependent over Q. The set B contains the triplets which satisfy the SI-
condition but are not included in the set C. We call a triangle formed by a triplet of
grids belonging to the set A (B, C) "^4-triangle" ("^-triangle," "C-triangle"). For
every triplet of grids of the set A the function dist: R-*R is defined according to
Lemma 5. We define the function Dist:R->R by

Dist(d) = mindist(d). (5.16)

The minimum in (5.16) is taken over all triplets belonging to A.
Suppose that Theorem 2 is not valid, i.e. the set A is not empty but contains at

least one triplet, say fu / 2, / 3 . Let d be some small positive number (we will choose
the exact value of d at the end of the proof). Choose the parameters ht in the
equivalence transformation (5.10), (5.11) according to Lemma 8. Consider the
triangles which are rearranged by the transformations (5.15).

The triangles which are rearranged by any of two transformations (5.15) have
diameters less than const d (Lemma 6). No C-triangles are rearranged (Lemma 7).
The β-triangles which are rearranged by the transformations (5.15) form rows
separated by large distances and, hence, rarely distributed over the plane
(Lemma 4).

For every rearranged ^-triangle we find its separation from the nearest
rearranged B-triangle. The maximum of these distances, taken over all rearranged
y4-triangles, defines the function Dist'(d). Let us prove that

lim Dist'(d)=oo. (5.17)

Suppose that (5.17) is not valid, i.e. a constant D exists such that Dist'(d) <D for
all d. This means that each of the rearranged ^-triangles is separated by a distance
less than D from one of the rearranged 22-triangles. Consider the union of all
D-vicinities of the rearranged β-triangles (D-vicinity of a triangle is the set of all
points separated from it by less than D). One can cover this set with strips of the
width 2D + d centered on the rows (Fig. 11). Since the minimal distance between
parallel rows of ^-triangles becomes arbitrarily large when d gets sufficiently small
(Lemma 4), the parallel strips do not intersect for d small enough. Since the
distance between every two similar rearranged ^-triangles is not less than

Dist (const d) (5.18)

[see (5.16)], one can estimate the density n of these ^-triangles as

n < const' (2D + d)/Ώist (const d) (5.19)
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Fig. 11

for sufficiently small d. The constant in (5.18) is equal to the product of the
constants from Lemma 6 and Lemma 8. Since

lim Dist(x)=oo (5.20)

(see Lemma 9), the inequality (5.19) is in conflict with Lemma 3. This contradiction
proves the assertion (5.17).

Find a rearranged ^-triangle such that all the rearranged 5-triangles are
separated from this triangle by the distances larger than Dist'(d)/2. Let

X = min[Dist (const d),Dist'(d)/2] , (5.21)

where the constant in (5.21) is equal to that in (5.18). Choose a circle having the
radius X/2 with the center y inside the found ,4-triangle. No rearranged 5-triangles
are contained in this circle. There is not more than one rearranged /1-triangle for
each triplet of the set A inside the circle. Therefore, there are not more than N
rearranged triangles in this circle [JV is given by (5.13)]. Divide the circle into
2N +1 concentric rings

_ _ i ^ < ι x _ v | < (/ + 1 ) X

 f 522)
(2ΛΓ+1)2 - 1 n (2AΓ + 1)2? v ' }

where x e 1R2, j = 0,..., 2N. If d is small enough, every rearranged triangle inside the
circle intersects not more than two rings (5.22). Since the number of these triangles
is not more than N, at least one of the rings (5.22) is free of rearranged triangles.

Consider the piece of the grid pattern inside the thus found free ring. This piece
is rearranged by one of the equivalence transformations (5.15). Since the
equivalence transformations do not change atlases, the rearranged piece can be
found somewhere else in the original grid pattern. One can apply Lemma 2 and
conclude that the radius r is not less than the half of the thickness of the ring, i.e.
that

(5'23)

A constant appears in (5.23) because the quantity r mentioned in Lemma 2 is the
radius of configurations of tiles but not of pieces of the grid pattern (see
Proposition 4).

Since the quantity X can be made unlimitedly large by a proper choice of d [see
(5.17) and (5.20)], we obtain the contradiction with finiteness of r.
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Theorem 2 is proven.

Let us apply Theorem 2 to the quasicrystals having rc-fold rotational symmetry.
n vectors ef in this case form a regular star and the grid functions ft from (4.2) are
given by

j)x2, cc = 2π/n, (5.24)

where j = 0,..., n — 1. Let us take the triplet / 0, / l 5 / 3 and check whether it satisfies
the Si-condition or not. The Si-condition yields

det

1

cosα

cos3α

0

sinα

sin3α

= 0, (5.25)

where nu n2, n3 are some integers, or

nί sin2α — n2 sin3α + ft3 sinα = 0. (5.26)

After simplification of (5.26) we obtain

4rc2(cos α)2 - 2n1 cos α - (n2 + n3) = 0. (5.27)

One can satisfy (5.26) only if cos(2π/rc) is a rational number or a quadratic
irrationality. It is well known from Galouis theory that this happens only when

ne{3, 4, 5, 6, 8, 10, 12};

cos(2π/n)eQ if rc = 3,4,6;

cos(2π/n)eQq/2) if n = 8; (5.28)

cos(2π/n) G Q(|/3) if n = 12

if n = 5,10.

All the quasicrystals having w-fold symmetry with n not included in (5.28) do not
satisfy strong LR.

Remark. Since different grids in (4.2) cannot be parallel, no quasicrystals
correspond to n = 6 and n=10 in (5.28). However, 6-fold symmetric and 10-fold
symmetric quasicrystals can be constructed by an appropriate choice of the
parameters ct in (4.2), where the grid functions are given by (5.24) with n = 3 and
n = 5 respectively (the 10-fold symmetric quasicrystal obtained in such a way is the
Penrose tiling).

Periodic quasicrystals having n = 3, 4, 6 obviously satisfy strong LR. The
existence of strong LR for n = 10 was shown by de Bruijn. Evidence for the absence
of strong LR in the n = 8-case was given by Beenker. Nothing is known about the
rc = 12-case.

Let us try to express the restrictions of Theorems 1, 2 to the two-dimensional
quasicrystals in a more explicit form. Suppose that a quasicrystal given by the grids
(4.2) satisfies strong LR.

Consider first the situation, when the number n of grids is equal to three: n = 3.
This is the case of codimension one and hence Theorem 1 is applicable. We
conclude that the quasicrystal is periodic.
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Now we study the case n = 4 when there are four linear functions f in (4.2).
Since different grids are not parallel (by the definition of the dual graph) every two
of the functions f form a basis of (IR2)'. Choose fγ and f2 as such a basis and express
f3 and / 4 as linear combinations of/ l 5/2:

= af1+bf2, (5.29)

We make use of Theorem 2 and apply the Si-conditions to all triplets of functions
fι (ί = l, ...,4). For the four triplets of/J we introduce four triplets of integers

(m^m^mj, (nun2,n3), (p^p^Pi), (tfi^tfa)

which appear in (5.1) and write the Si-conditions in the form (5.3) using the
representation (5.29):

det

det

1
0

a

1
a

c

0
1
b

0

b
d

m
1

m
2

m
3

Pi

P2

p
3

= 0,

=o,

det

det

1

0
n

0
α

c

0 n
x

1 π
2

d n
3

1 q
x

b q
2

d (fa

(5.30)

= 0.

We consider the Si-conditions (5.30) as equations for unknown variables a, b, c,
d. Since the number of equations is equal to the number of variables, Eqs. (5.30) can
be solved (if they are independent). The properties of the solutions of Eqs. (5.30) are
described in the following proposition.

Proposition 5.

1. // Eqs. (5.30) are independent, the solutions a, b, c, d are either rational numbers or
quadratic irrationalities:

a, b, c, de Q(|/D) far some integer D. (5.31)

The number of different solutions of Eqs. (5.30) is equal to
a) one, if a, b, c, J G Q ;

b) two, if a, b, c,de<£(}/D).

In the case b) the solutions are mutually conjugated algebraic numbers (the

numbers x,x'e(Q(|/D) are called conjugated if x = a + bγD, x' = a — bγυ, where

a,be<%).
2. If Eqs. (5.30) are not independent, then after a proper permutation of the

functions fuf2, f3, Λ is made the solutions a, b, c, d are given by

a = a' + a"t,

c' + c"t

h' + h"t'c = d =

= b' + b"t,

d' + d"t
(5.32)

h' + h"t'

where a\ a'\ b\ b'\ c\ c", d\ d'\ h\ h" e Q and t is a real parameter. Only eight of ten
rational constants a\ ...,h" are independent.



Local Rules for Quasicrystals 651

Proof. Since the triplets of integers mp np pp q} (/= 1,2,3) in (5.30) are related to
four grids they have some special properties. Consider the triplet (mu m2, m3). One
checks easily that if two of mj (/ = 1,2,3) are equal to zero then the third m} equals
zero too. The same is valid for np pp q^ (j = 1,2,3). One can use this property and see
that by a proper permutation of the functions fγ, f2, /3, / 4 in (5.29) Eqs. (5.30) are
reduced to equations of the same type with an extra condition,

m 2 φ 0 , n 2 φ θ . (5.33)

after writing (5.30) explicitly we get

(i) m3 — m1a — m2b = 0,

(ii) n3-nΐc-n2d = 0,

(iii) p3b-p2d-\-pί(ad — bc) = 0,

(iv) q2c — q3a + qί{ad — bc) = 0.

By excluding the variables b, d, c successively from Eqs. (5.34) one obtains (5.31)
or (5.32).

Consider the case n > 4.

Proposition 6. Let the Sl-condition be satisfied for every triplet of the grid functions

f,
1. // there exist four functions fp fk, fb fm such that Eqs. (5.20) for them are

independent, then one can express all functions f as linear combinations of two, e.g.
fj and fk, with the coefficients being quadratic irrationalities:

(5.35)
DeZ.

2. If for every four functions fp fk9 fb fm Eqs. (5.30) are not independent, then one
can express all the functions f as linear combinations of two, say fx and f2, as

f(x) = aJάx) + bJ2(x), X E R 2 ,
(5.36)

a'i + a'lt _ b'i + b' t

~ Λί Λ ί ' 'Ui Λί + ΛJ' ί ί

where t is a real parameter, α , a", b\, b'[, h\, h" e Q for all i. Not all of the constants
a'i, ...,h'[ are independent.

The proof of this proposition can be obtained immediately by making use of
Proposition 5.

We see that the limitations for the quasicrystals satisfying strong LR derived in
Theorem 2 are essentially reduced to (5.35) or, in some exceptional cases, to (5.36).
One should note that the set (5.36) of "exceptional" quasicrystals is non-countable,
whereas the "regular" set (5.35) is countable. It was mentioned in Sect. 1 that the set
of restorable quasicrystals is countable. We suspect that the quasicrystals (5.36)
do not have strong LR although we have not proved this.
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6. Quasicrystals Based on Quadratic Irrationalities

In this section we study the quasicrystals generated by quadratic irrationalities.
Let us repeat the definition (1.6) in a slightly different form. For the i -quasicrystal
associated with the embedding (1.3) we consider the orthogonal complement v* to
the subspace I n φ ) of R 2 .

Definition. We say that the u-quasicrystal is based on quadratic irrationalities of

the field Q(j/ί)) if υ* is spanned by a set of vectors {g,-} (g,- e TRTJ = 1,..., n - 2) of the

form
g = ϋΊ,...,) 'J> where ^ e Q ( / D ) . (6.1)

In terms of grid functions f this definition means that every function fj (/ = 3,..., ή)
can be expressed as a linear combination of / l 5 / 2 with the coefficients belonging to

2(x), (6.2)

where j = 3, ...,n,xe R 2 , α,-, b7- E Q ( ] / D ) .
The principal result of this section is that a wide class of quasicrystals (6.2) has

weak LR (see Theorem 3 below). We start with a very simple assertion.

Lemma 9. // a quasicrystal (4.2) is based on quadratic irrationalities, then every
triplet (fj, fk, ft) satisfies the Sl-condition.

One obtains the proof easily by substituting fi(x) = aifι(x)-\-bif2(x) with

ai = a'i + a"]/D, b—fy + b"]/]) (a'h a' , b'b b'leQ) in the Si-conditions (5.3).
We introduce now some constructions which will be used in the proof of

Theorem 3. Consider an arbitrary quasicrystal (1.3) and find its r-atlas for some
positive r. Take this r-atlas as local rules. Let some tiling of the plane R 2 satisfy
these rules. One can expect that when r is sufficiently large this tiling resembles
some properties of the quasicrystal. Particularly we show below that the lifting of
the tiling goes almost in the same direction as the lifting of the quasicrystal.

Consider the dual graph of the tiling and that of the quasicrystal. We perform a
continuous transformation R 2 - > R 2 such that the first and the second array of
curves of the dual graph are transformed onto two grids

χ. = k (7 = 1 2 Jc gZ) (6 3)

Other arrays of curves of the dual graph are not necessarily transformed onto grids
by the transformation. Find a linear transformation R 2 - > R 2 such that the first
two grids of the quasicrystal are transformed onto the grids (6.3). Since the
transformation is linear, the other grids of the dual graph are transformed onto
some grids

fj{x) = k: + C:, (/ = 3,...,n, x e R 2 , L e Z , c e R ) . (6.4)

Take ye {3,...,«} and consider an arbitrary curve of t h e / h array of the dual
graph of the tiling (after the transformation is performed). Although this curve is
not necessarily straight its slope is close to the slope of t h e / h grid. To explain what
we mean let us consider two points x l 5 x 2 on this curve which are contained in a
map of the tiling having radius less than r. Since the r-atlas of the tiling is included
in the r-atlas of the quasicrystal one can find two new points x'1? x'2 such that
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a) the point x'm belongs to the same square of the lattice formed by the grids
(6.3) as the point xm (m=l,2);

b) the segment (x'l5 x2) is parallel to the lines of t h e / h grid of the quasicrystal.
The maximal distance between the points x1 ? x 2 is of order r because they are

included in a map of the r-atlas. We conclude that the slope of the curve differs from
that of the / h grid to not more than const/r. We need this result reformulated in
terms of lifting functions.

Lemma 10. Let a tiling satisfy the r-rules given by the r-atlas of a quasicrystal.
Apply the introduced continuous transformations IR2—>IR2 to the dual graphs of the
tiling and of the quasicrystal as explained above. Consider the lifting of the
transformed dual graph of the tiling

w(x) = ( [ x j , [x 2 ], w3(x),..., wπ(x)), (x e IR2) (6.5)

and that of the grid pattern

w'(x) = ( [ x j , [x 2 ], [/3(x)],..., [/π(x)]), (x e R 2 ) (6.6)

There exist two constants cί>0, c 2 > 0 such that

l(Wi(y)-wf(y'))-(f(y)-f(yf))\ <cγ + (c2/r) || y - y' || (6.7)

for all i and y, y' G I R 2 .

The assertion of Lemma 10 is valid for an arbitrary quasicrystal. We show
below that for a broad class of quasicrystals (6.1), (6.2) the parameter c2 in (6.7) is
equal to zero. This means that the lifting w of the tiling differs from the lifting W of
the quasicrystal to not more than a constant, i.e. the tiling satisfies weak LR.

Theorem 3. Let a two-dimensional quasicrystal with n = 4 be such that
a) every triplet of the grid functions f satisfies the SI-conditions (5.3);
b) four equations (5.30) are independent.
If some auxiliary constraints for the integer numbers nip rip Pp qj (j = 1,2,3) are

satisfied (see (6.19) and (6.34)J, then the quasicrystal satisfies weak LR.

The auxiliary constraints mentioned in Theorem 3 mean nothing more than all
the expressions which will appear in the denominators of different fractions during
the proof are assumed to take nonzero values. Since these constraints are not very
important but rather cumbersome we analyze them at the end of the proof.

First we discuss the idea of the following proof on a nonrigorous level. Choose
some positive r and take the r-atlas of the quasicrystal as LR. If r is sufficiently large
the lifting functions wt (6.5) are close to f (6.6) in the sense of Lemma 10. We neglect
for some time by the discontinuities of the lifting functions wt and consider them as
smooth functions at scales larger than the separations of the lines in the dual graph.
Suppose further that linearizations (linear parts) of wf approximate them well at
sufficiently large scales. These linearizations satisfy the Si-condition (5.3) every-
where the plane. Since Eqs. (5.30) are independent, they have only two solutions.

dw
So, we can use Proposition 5 and conclude that all derivatives r̂—L are constant on

oxk

the whole plane. This means in turn that wt are linear functions corresponding to
one of the solutions of Eqs. (5.30) (see Proposition 5). One can exclude one of these
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solutions by choosing sufficiently large r and making use of Lemma 10: according
to Lemma 10 all functions wf are close to f when r is large. Combining the above
results we obtain that wf are identical to f in (6.6). The reality is that the functions
Wi are not continuous (and non-differentiable as well!). Nevertheless, the rigorous
proof of Theorem 3 is based on the same ideas.

Proof of the Main Theorem 3

Step 1 (Si-Conditions for Dual Graphs). Let us choose LR being identical to the
r-atlas of the quasicrystal for some large r. The exact value of r will be determined
at the end of the proof.

Let a tiling of the plane satisfy these rules. Find a continuous transformation
]R2->IR2 which transforms the first two arrays of curves belonging to the dual
graph of the tiling onto the grids (6.3), and a linear transformation R 2 - > R 2 which
transforms the first two grids of the quasicrystal onto the grids (6.3), as explained
before Lemma 10. The corresponding lifting functions w,w' have the form (6.5),
(6.6). Since Si-conditions are satisfied for the grids of the quasicrystal, the functions
f3 and / 4 are given by

(6.8)
f4(x) = cx1+dx2,

where α, b, c9 d are solutions of (5.30). In order to prove the existence of weak LR we
must show that for sufficiently large r two functions

w/x)-//x) (/ = 3,4) (6.9)

are bounded on the whole plane.
We need to modify the definition of Si-conditions in order to make it

applicable for arbitrary dual graphs [not only for grids as in (5.1)]. Let
w(x) = (w^x),..., wπ(x)) be the lifting function of a dual graph. Let (w/x), wk(x), wz(x))
be a triplet of the component functions of the lifting w(x) (/, /c, Z e {1,2,3,4}).

Definition. The Si-condition is satisfied for the triplet (wj9 wk, wt) and three integers
m l 5 m2, m3 if for any x e R 2 one can find x'elR 2 such that wj(x') = wfiή + ml9 wfc(x')
= wfc(x) + m2, Wj(x') = wz(x) + m3.

It is clear that the definition of Si-condition for grids is a particular case of the
more general definition given above. One proves an easy

Lemma 11. // the radius r of the local rules defined above is sufficiently large then
the tiling satisfies the Sl-conditions identical to that of the quasicrystal (with the
same triplets of integers).

One can write these conditions for the component functions wt of the lifting w.
Consider the triplet (w1?w2, vv3) as an example. The Si-condition for this triplet
states that for every point x of the plane there exists a point xr such that

w2(xf) = w2(x) + m 2 , (6.10a)



Local Rules for Quasicrystals 655

If we use the so-obtained point x' instead of x in the Si-conditions, then we find
another point x" such that

(6.10b)

Since this procedure can be repeated any finite number of times, we conclude that
for any integer k and every point x of the plane there exists a point x' such that

(6.11)

w3(x') = w3(x) + km3.

The Si-conditions for other triplets of wf are quite analogous to (6.11). Recall that
after the transformations R 2 ->R 2 found above are performed, the lifting function
takes the form (6.5). Let us rewrite the Si-conditions (6.11) for this particular case.

Step 2 (Triplets (1,2,3), (1,2,4)j. The Si-condition for the triplet (w1? w2, w3) states
that for any integer k and every point x = (x l 5 x 2 ) of the plane there exists a point
x' = (x' l5x2) such that

x\ =xx +kmι,

(6.12)

We know from Lemma 10 that the functions vv3 and w4 are close to axγ + bx2 and
cx1+dx2 respectively if r is large enough. Bearing this in mind we introduce new
functions F and Φ such that

w3(x) = F(x) + ax1 + bx2,

w4(x) = Φ(x) + cxί + dx2, x = (x1? x2) E R 2 .
(6.13)

F(x) and Φ(x) are exactly the functions (6.9) and we have to prove that both F(x)
and Φ(x) are uniformly bounded on R 2 . Condition (6.12) reads:

= F(x 1,x 2) for all integer k. (6.14)

This means that F(x) mainly depends on the variable

u = m2x γ—mιx2 (6.15)

only, or, more precisely, that a function / :R—>R exists such that the difference
) — f(u(x)) is bounded:

|F(x)-/(κ(x))| < const for all x e R 2 . (6.16)

The function u(x) in (6.16) is given by (6.15).

Remark. Since we wish to prove that F(x) and Φ(x) are bounded, we shall neglect
all bounded functions everywhere below and write A(x) = B(x) instead of
"|,4(x)-£(x)|<const for all x e R 2 . "
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In accordance with this convention we write (6.16) as

F(x) = /Wx)), (6.17)

where u(x) = m2x1—mιx2, X = (X1,X2)G1R2.
The analysis of the Si-condition for the triplet (w1? w2, vv4) can be performed in

a quite similar way. The result is that a function φ:IR->IR exist such that

Φ(x) = φ(v(x)), (6.18)

where v(x) = n2xί—nιx2, x = (xux2)elR2. We obtain that both F(x) and Φ(x)
depend on one variable (the corresponding variables are u and v respectively).

Suppose that two functions u(x) and v(x) are independent, i.e.

m1 ΦO. (6.19)

It is convenient to choose u and υ as new coordinates instead of xux2. The
variables x1 and x2, as functions of u and v, are given by

xί=(m1v — nίu)/A, x2 = (m2v — n2u)/A. (6.20)

Step 3 (Triplets (1,3,4), (2,3,4),). Consider the Si-condition for the triplet
(w1? w3, w4). It states that for any integer k and every point xeIR 2 one can find a
point x 'eIR 2 such that

w1(x/) = w1(x) + /cp1,

(6.21)

Using (6.13), (6.17), (6.18) and taking into account that wί(x) = x1 we rewrite (6.21)
in new variables u, v. Condition (6.21) means that for any integer k and a point (u, v)
of R 2 there exists a point (u + u\υ + v') such that

f(u + u') - f(u) = (p2 -aPι)k- b(m2v' - n2u
f)/A , (6.22)

φ(v + υ') — φ(v) = (p3 — cpt)k — d(m2υ' — n2u')/Δ .

By making use of (5.34) we exclude u' and υ' from the right-hand side of (6.22) and
get

(i) d(f(u + u') - f(u)) = b(φ(v + v') - φ(υ)),

(ii) b{m2υ' - n2u')IΔ =(p2~aPl)k- (f(u + u') - f(u)), (6.23)

(iii) mxv''— ΠγU'' = Δpγk.

Suppose that b + 0. If this is the case, one can use (6.23.ii), (6.23.iii) to express u'
and v' as functions of k and f(u + u') — f(u):

(i) d(f(u + u') - f{u)) = b(φ(v + υ') - φ(υ)),

(ii) v! = Λk + A'(f(u + wr) - /(w)), (6.24)

(iii) υ' =
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where

A = (Pιm3—p2m1)/b, A = mί/b,

B = (pί(nίa + n2b) - p2n1)/b, B' = njb.

The Si-condition for the triplet (wl5 w3, w4) says that for all (w, ι;) e R 2 and
Eqs. (6.24) can be satisfied simultaneously by properly chosen u',v'. The thus-
obtained form (6.24) of the Si-condition for the triplet (wl5W35w4) is the most
convenient one for our analysis.

After similar calculations for the triplet (w2, w3, w4) we obtain the Si-condition
rewritten in new variables u, v. The condition gives for any keΈ and arbitrary
point (M, ι?)eIR2 the existence of a point (u + u\ ι; + ι/)eR 2 such that

(i) C(/(M + K') - f(u)) = a(φ(υ +t/) - φ(υ)),

(ii) M' - Fk + F ( / ( M + u') - f(u)), (6.25)

(iii) υ' = Gk + G'{f{u + uf)-f(u)),

where
F = (q2m2-qίm3)/a, F = -m2/a,

G = {n2q2 — qiL(n1a + n2b))/a, G = —n2/a.

Step 4

Remark. In what follows we show that if the function f(u) is not bounded then SI-
conditions (6.24) and (6.25) contradict each other. There are two difficulties with
Eqs. (6.24), (6.25) which are in the way of establishing the contradiction:

1) u' appears not only in the left-hand side of Eqs. (6.24), (6.25) but also in the
right-hand side as a part of the argument of function / This makes it difficult to
give a good estimate of f(u + u') + f(u).

2) Not only / but also φ takes part in Eqs. (6.24), (6.25). So one has to eliminate
φ.

We prove a useful lemma which shows how one can avoid difficulty 1.

Lemma 12. Let a function /:IR—>IR satisfy the modified Lipshitz condition

u')-f(u)\<c + c'\u'\ (6.26)

with positive c and d for all u, u'. Let two constants A, A' such that \c'A'\ < 1 be
specified. Then there exist positive constants C, C such that

if u' = A + A'(f(u + u') — f{u)) for some u, u' ,

then \f(u + u')-f(u)\<C + C\f(μ + A)-f(u)\. ( 6 * 2 ? )

Proof

\f(u + u')-f(u)\<\f(u

d\u'-A\ + \f(u + A)-f(u)\
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We obtain (6.27) with

C = φ-\c'A'\)9 C = l/(l-\c'A'\).

Consequences of Lemma 12. One can find positive constants C, C such that
1) if for some u, u', v, i/eR and keZ, Eqs. (6.24) are satisfied, then

f(u)\; (6.28)

2) if for some u, u\ υ, i/eIR and keΈ, Eqs. (6.25) are satisfied, then

\f(u + u') - f(u)\ < C + (C/r) \f(u + Ffc) - f(u)\. (6.29)

Proo/ According to Lemma 10 the function f(u) satisfies the modified Lipshitz
condition (6.26) with d = const/r. Therefore, after applying Lemma 12 to (6.24),
(6.25) we get (6.28), (6.29), respectively.

Step 5 (Elimination of ψ)

Remark. Up to now we considered Eqs. (6.24) [and Eqs. (6.25)] as Si-conditions:
whenever u, v, k are given they define u' and υ'. One can try to view Eqs. (6.24) from
another side: for all u, v, υ' they define u' and k. Really, if we know u, v, v', then we
can find f{u + u') — f(u) from (6.24.i) (assuming that d + 0), then obtain k from
Eq. (6.24.iii) (assuming that BΦO), and finally get u' from Eq.(6.24.ii) (the same
concerns Eqs. (6.25) provided cφO, G + 0).

To eliminate φ we have to consider Eqs. (6.24), (6.25) simultaneously. Let us use
u, v, u\ v\ lϊto denote the variables of (6.25) and reserve the old notation u, v, u', v\ k
for the variables of (6.24). Let independent variables in (6.25) be M, V, V' according to
the above Remark [for Eqs. (6.24) we use the standard triplet u, v, k of independent
variables]. Equations (6.24), (6.25) enable one to determine u\ v\ fc, W whenever M, V,
k, M, ϋ, v' are known.

Let us choose some u, v, k, and u, then find u', v' from (6.24) and put

v = v, v' = v'. (6.30)

This means that instead of six independent variables u, v, k, w, v, v' we consider only
four w, v, k, M, while v and v' depend on them according to (6.30). Relations (6.30)
make it possible to exclude v, v, v', ϋ' from (6.24), (6.25) and get

(i) ad(f(u + u') - f(u)) = bc(f(u + ύ') - f(uf),

(ii) u' = f(u)), ί C ^
_ (o.Jl)

( i i i ) U' = F k + F'{f{U + U')f{))
(iv) Bk + B\f{u + u') - f{u)) = Gk + G\f(μ + w') - f(u)).

[A, A\ B, B', F, F , G, G are defined in (6.24), (6.25).] Note that we still have four
independent variables in (6.31), i.e. for all values of M, V, k, ii there exist u\ W, k such
that Eqs. (6.31) are satisfied. More precisely, υ does not participate in (6.31), so the
number of independent variables is reduced to three, they are u, u, k. So we are left
with equations for the function / only.
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Step 6 (Final). By applying consequences (6.28), (6.29) of Lemma 12 to (6.31.i) and
using (6.31.ii), (6.31.iii), (6.31.iv) one can find positive constants c,c', and c", such
that

\S(f(u + Ak)-f(u)) - T(f(ΰ + Hk)~f{u))\ < c

+ - \f(u + Ak)-f{μ)\ + — \f(ΰ + Hk)-f(ΰ)\ for all u,ΰ,k, (6.32)

where S = ad, T=bc, H = F(B/G). Inequality (6.32) enables one to prove that / is
bounded.

Lemma 13. Let function f satisfy the modified Lipshitz condition (6.26) and
inequality (6.32) with nonzero A, H, S, T. If SAΦ TH in (6.32) and r is sufficiently
large, then f is a bounded function.

Proof. Suppose that / is not bounded. Choose a large number M and find x o e R ,
such that \f{xo + Hk)-f{x)\>M. From (6.32) obtain that for all x

(i)

(ϋ)

f(x + Ak)-f(x)

f{y + Ak)-f{y)

f{x + Hk)-f(x)

C C
1 < - + —

r M'

f(y + Hk)-f(y)
- 1 c σ

(6.33)

where C and C are some constants [first one has to prove (6.33.i) and then gets
(6.33.ii) as a consequence of (6.32), (6.33.i)].

Consider two sequences {XJ}, {j/̂  }: Xj = xo + Hkj, yj = xo + Akj. Define

X= inf
jΦm

X'= sup

Y= inf

lϊSA φ TH and both r and M is large enough, then (6.32) and (6.33) imply that the
segments [X,X'~\ and \_Y, Y'] do not intersect. This is in contradiction with (6.26),
since for every meZ one can ϊindjeΈ such that \Xj — ym\ <constk. Lemma 13 is
proven.

Thus we obtain that / is bounded if

αφO, 6 + 0, cφO, dφO, ^ + 0, £ + 0, F φ O , GφO,

adAG + bcBF. (6.34)

Since / is bounded, φ is bounded as well due to (6.24.i).
We established that Theorem 3 is valid provided (6.19) and (6.34).
Let us discuss an interesting example of an application of Theorem 3. Consider

the two-dimensional quasicrystal having pentagonal symmetry. Its grid functions
f are given by

ί ) ί y λ x2, (/ = 0, ...,4;xeR 2). (6.35)
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The dual graph consists of the grids

fj(x) = Zj + Cj (ZJEΈ). (6.3 6)

If Cj are such that y = Σ cj — ^ w e obtain Penrose tiling for which the existence of
j

strong LR was established by deBruijn. What happens when yφO?

Proposition 7 (consequence of Theorem 3). All 5-fold symmetric quasicrystals (6.35),
(6.36) satisfy weak LR.

Proof Let us erase one of the grids (6.36), say /0(x) = z 0 + c0. One can try to apply
Theorem3 to the remaining grids given by (6.35), (6.36) with; = 1,2,3,4. Simple
calculations show that

/3(x) = aMx) + fe/2(x), /4(x) = cMx) + d/2(x), (6.37)

where α = - l , c = d=-b = (l-]/5)/2.
Condition a) of Theorem 3 is satisfied according to Lemma 9. Calculation gives

(m 1,m 2,m 3) = (l,0, - 1 ) , (n1,w2,n3) = (l, - 1 , 0 ) ,
(O.Jΰ)

One easily makes sure that Eqs. (5.30) with the integers given by (6.38) are
independent and have solutions a= — ί,c = d= — b = (l± ]/5)/2. So condition b) of
Theorem 3 is also satisfied. Calculations show that conditions (6.19), (6.34) are
satisfied as well. Hence Theorem 3 is applicable and gives existence of weak LR for
the dual graph formed by the grids.

Since these arguments can be applied to every four of the grids (6.35), (6.36)
Proposition 7 is proven.

The existence of weak LR for pentagonal quasicrystals established in
Proposition 7 will be used in the next section for the study of three-dimensional
quasicrystals having icosahedral symmetry.

7. Three-Dimensional Quasicrystals

In this section we show that many of the results obtained in the previous sections
can be extended (with appropriate modifications) to three-dimensional quasicrys-
tals. For every tiling of space with parallelotops the dual graph is defined in a way
similar to that discussed in Sect. 4. It consists of arrays of two-dimensional
surfaces.

The dual graph of a quasicrystalline tiling is topologically equivalent (in the
sense of Sect. 4) to n arrays of parallel equidistant planes (three-dimensional grids):

/i(x) = c i + fci, (7.1)

where i=l,...,«, /)e(R 3 ) ' , x e R 3 , c^eR, keZ. We assume that these grids are
non-degenerate, i.e. every three of functions f are linearly independent.

In order to formulate an analogue of Theorem 2 we introduce Si-condition
for such grids. Consider four of the grid functions f from (7.1), say / l 5 f2, f3, / 4. We
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say that the grid functions f} (/ = 1,2,3,4) satisfy an Si-condition, if four integer
numbers kj (/=1,2,3,4) exist such that

a) |fcil + |* 2 | + |fc3l + l*4l>0;
b) the equations

fj(x) = kj 0'= 1,2,3,4) (7.2)

have a solution.
It proves useful to have the Si-condition (7.2) written in the coordinate

representation. Let the functions /) be given by

fj(x) = ajx1 + bjx2 + CjX3, (7.3)

where7 = 1, 2, 3, 4, X = ( X 1 , X 2 , X 3 ) G R 3 . The Si-condition (7.2) means that

det = 0 . (7.4)

After this definition is introduced the generalization of Theorem 2 becomes
straightforward.

Theorem 4. // a three-dimensional quasicrystal has strong LR, then for every four
of its grids the Sl-condition (7.2) is satisfied.

The proof of this theorem is almost identical to the proof of Theorem 2.
Now we discuss an analogue of Proposition 5. Consider four grids (7.1) and

suppose that the condition (7.4) is satisfied for some kj (/= 1,2,3,4). The set of all
integer vectors (ku k2, fc3, fc4) satisfying (7.4) form a sublattice of the lattice Z4. One
should distinguish several possibilities corresponding to the dimension d of this
sublattice.

a) If d = 4, then four vectors (αj? bj9 Cj) (/ = 1,..., 4) belong to a two-dimensional
plane (this degenerate case never occurs).

b) If d = 3, then four grid functions fj are dependent over the field Q:

Σ PjfJ*) = 0 (7-5)
7=1, . . . ,4

for all x e R 3 and some P/eQ. In this case the corresponding quasicrystal is
periodic.

c) If d = 2, the "second intersection" points form a two-dimensional lattice in
R 3 .

d) If d= 1, the "second intersection" points form a one-dimensional row.
Consider a three-dimensional quasicrystal produced by n grids. Since every

three of the grid functions are linearly independent (see the nondegeneracy
condition a) mentioned above), we can choose fu /2, f3 as a basis and express other
functions as linear combinations of these three:

fjx) = ajMx) + bjf2(x) + Cjf3(x) (7.6)

(/ = 4, ...,n, xelR 3). Without discussing the whole variety of possibilities we
consider two typical examples.
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a) Suppose that for every four of the grid functions the Si-condition is satisfied
with d=l (see above). These conditions give N = C^ = n(n — l)(n — 2)(n — 3)/24
equations of the type (7.4). Suppose further that all these equations are
independent. The number M of variables ap bp Cj (j = 4,...,ή) is equal to the
dimension of the Grassmann manifold G[n, 3], i.e. M = 3(n~ 3). One checks that
M<N only when n>5. Possible solutions of N equations (7.4) are cubic
irrationalities:

ap bp Cje(QίX/D) for all and some DeZ. (7.7)

b) Suppose that the Si-condition is satisfied for every four grid functions with
d = 2. In this case every Si-condition (7.4) gives two equations for the coefficients ap

bp Cj in (7.6), since there are two essentially different ways of choosing the integers
kj in (7.2). We assume that all these equations are independent, so the total number
of equations is 2JV. The number of variables is M again. One checks that M < IN
when n>4. The solutions of the equations are quadratic irrationalities:

ap bp Cjeq&\/D) for all j and some DeZ. (7.8)

One can think that there exist other possibilities corresponding to the cases
intermediate between a) and b).

Possible generalizations of Theorem 3 for the tilings of R 3 seem to be rather
cumbersome. Instead of making general assertions like Theorem 3 we study a
particular example. The quasicrystal having icosahedral symmetry is the most
important of three-dimensional quasicrystals, since it has applications to really
existing materials (see Sect. 1) and is widely discussed in physical literature. By
making use of Theorem 3 we show that this quasicrystal satisfies weak LR.

Proposition 8. The icosahedrally symmetric quasicrystalline tiling o / R 3 satisfies
weak LR.

Proof. Consider six 5-fold symmetry axes of the icosahedron and the unit vectors
et (i= 1,..., 6) directed along these axes. The grid functions f of the icosahedral
tiling are given by

/.(x) = (eι,x), (7.9)

where x e R 3 , "( . . . , . . . ) " is the standard scalar product in R 3 . The grids are given by
(7.1). Let us choose r > 0 , find the r-atlas of the quasicrystal and take this r-atlas as
local rules.

Consider a tiling of R 3 which satisfies these LR, and determine its dual graph.
Choose three arrays of surfaces from the dual graph of this tiling, say the first, the
second, and the third, and find a continuous transformation R 3 - > R 3 which
transforms these arrays onto three corresponding grids (as in the proof of
Lemma 10). After this transformation is performed the dual graph of the tiling
consists of three grids and of three arrays of surfaces which are not necessarily
grids. The lifting of this tiling is given by

w(x) = (w1(x),...,w6(x)), x e R 3 ,

Wj(x) = l(epx)-Cj] for .7 = 1,2,3.
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To establish the existence of weak LR we must show that the last three arrays
(j = 4,5,6) are almost parallel to the corresponding grids.

Let us choose one of the planes of the first grid, say

(eux) = cί+k (xeR 3 ; fceZ), (7.11)

and consider the intersection lines of this plane and other surfaces of the dual
graph. We obtain five arrays of lines on the plane (7.11). Note that three-
dimensional r-rules induce two-dimensional r'-rules for the so-obtained graph on
the plane (7.11), where r' > const r. These r'-rules coincide with the r'-atlas of one of
the 5-fold symmetric two-dimensional quasicrystals (6.35), (6.36) with properly
chosen constants Cj. According to Proposition 7 there exist weak LR for this
quasicrystal and, moreover, the r'-atlas gives such rules if r' is large enough. This
means that the lifting of the two-dimensional tiling, which is given by restricting
the last five components of (7.10) on the plane (7.11), is close to the lifting of the
quasicrystal:

|(w/x) - w/x')) - ((e, , x) - (e,, x'))| < const (7.12)

for all x, x 'eIR 3 satisfying (7.11) and7 = 2, ...,6. Although the constant in (7.12)
does not depend on k, condition (7.12) does not imply the existence of three-
dimensional weak LR. Nevertheless, condition (7.12) means that one can find
functions s7 :IR->IR (/ = 2, ...,6) such that

|w/x) - (e, , x) - sβ)\ < const (7.13)

for all x e R 3 such that (e l 5 x) = cί+k,j = 2,...96, where the constant in (7.13) does
not depend on k. Now we choose one of the planes of the second grid, say

3 (7.14)

instead of (7.11) and repeat the above considerations. We obtain that one can find
functions s}:IR->IR (/= 1,3, ...,6) such that

I w/x) - (e7, x) - s'β)\ < const, (7.15)

for all x e R 3 such that (e2?x) = c 2 + fc,7 = 1,3, ...,6, where the constant does not
depend on k again. The conditions (7.13), (7.15) together applied to the
components wfj = 3,4,5,6) of the lifting function w give the existence of a constant
C such that the inequalities

(7.16)
(x) - (e,., x) - sfj((e2, x))| < C,

are satisfied simultaneously for all j . Consequently

|s((e1 ?x))-s'((e2,x))|<2C (7.17)

for all xelR 3 and j = 3, 4, 5, 6. This implies that both sfiή and ŝ  (x) is uniformly
bounded on R 3 for all j . We have proven that the functions w7 (x) — (e,-. x) are
bounded on ]R3 for 7 = 3,4,5,6. The proof for 7 = 1,2 is quite analogous.

The existence of the weak LR for icosahedral quasicrystals is established.
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8. Concluding Remarks

The results of this work give strong evidence that strong LR for a planar
quasicrystal exist only if it is generated by some quadratic irrationalities. To prove
this rigorously one has to exclude the "exceptional" case 2 of Propositions 5, 6.
Moreover, one can believe that quasicrystals in an arbitrary dimension d can have
strong LR only when they are generated by irrational numbers which are roots of
polynomials of power not more than d.

It is interesting to note that all the quasicrystals found in experiments are based
on quadratic irrationalities. There are four types of symmetry among the
quasicrystalline materials known so far:

a) icosahedral symmetry based on the field Q(|/5) [1];

b) pentagonal symmetry based on the same field Q(|/5) [17];

c) dodecagonal symmetry based on the field Q(|/3) [18];

d) octagonal symmetry based on the field Q(]/2) [19].
One can speculate that the reason for the absence of quasicrystals with other

irrationalities is that only quadratic irrationalities provide local rules.
Several problems on quasicrystalline tilings not yet studied should be

mentioned. The first of them is the relationship between strong LR and weak LR. It
is more or less clear from Theorems 1,2, 3 which planar quasicrystals cannot have
strong LR and which have weak LR. But which of them have strong LR? The
example by de Bruijn and the counterexample by Beenker show that the problem
is rather difficult. Nevertheless some work should be done to find a generalization
of de Bruijn's method for other quadratic irrationalities.

Another interesting problem concerns the properties of quasicrystals which
have weak LR, but do not have strong LR. Weak LR leave some arbitrariness in
the tiling. How large is this freedom? One can expect that there are of order
exp(αS), α > 0, different tilings of a large region of the area S and the ground state of
such quasicrystals has nonzero entropy per a unit area. Has this any physical
consequences?

It is very interesting also to reach some more understanding of properties of
three-dimensional quasicrystals. The analogues of Theorem 3 and Propositions 5,
6 should be found. Which three-dimensional quasicrystals have strong LR?
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Note added in proof. In a recent paper Burkov shows that weak local rules are absent for a two-
dimensional quasicrystal having 8-fold symmetry (see the next paper in this issue). In this Note I
would like to comment on the relation of Burkov's result and Theorem 3. Grid functions for the
quasicrystal studied by Burkov are given by

* 2 , /4M ^ 2 ^ i ) . , M n

λ=\/]/2, x = ( x 1 , x 2 ) e I R 2 .

One can check that Si-conditions are satisfied for all triplets of functions ft (/= 1,2,3,4). The

corresponding triplets of integer numbers in (5.30) are

(m 1,m 2,m 3) = ( l , 0 , - l ) , ( n l J n 2 , n 3 ) = (0, l , l ) ,

( ) 0 ) te) ( l 0 l )

However Eqs. (5.30) with mp rip pp q3 from (N.2) are not independent, i.e. they correspond to Case 2
of Proposition 5. In accordance with this proposition the solutions of Eqs. (5.30) form a one-
parametric set (N.I), where λ is not l/J/2 but an arbitrary real number. This set of functions is used
in Burkov's work. Absence of local rules does not contradict Theorem 3 since Eqs. (5.30) are not
independent. Moreover, it confirms our expectation (see the note after Proposition 6).

What about other 8-fold symmetric quasicrystals? Let us show that Burkov's result is not
generic, i.e. there exist 8-fold symmetric quasicrystals having local rules. Consider 8 grid functions
/• e (IR2), (z = 1,..., 8) such that fu f2, f3, f4 are given by (N.I) while other functions are defined as

/s = ί*/i+/2. f6 = μfi+f3, fi = Hh + U, fs = μf*-Λ, (N.3)
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where μ = μ' + μ"j/2eQQ/2), (μ',μ"eΈ). Note that the grid pattern generated by the functions
/i, ...,/s has octagonal symmetry. Taking /^ = x 1 ? / 2 = x2 as a basis of (R2)' one can express all f
(z = l,...,8) as

fix) = a fox) + bf2(x), a, be Q(]/2), (N.4)

Choose four functions fu /3, /2, /5 and write Si-conditions for them. Si-conditions are satisfied by
the triplets of integers given as

1) triplet t/i, /3, / 2 ) - ( m l 5 m2, m3) = (l, -1,0);

2) triplet (/1?/3, Λ ) - ^ , n2, n3) = (l, - 1 - μ " , μ')ί ( N 5 )

3) triplet (/1? /2, / 5 ) - ( p 1 ; p2, p3) = (0,l,l);

4) triplet (/3, /2, fs)-(ql9 q2, q3) = (μ', 2μ", 2μ"(\ +μ")-μ'2).

One can check that Eqs. (5.30) with mp np pj, q} (/ = 1,2,3) taken from (N.5) are independent
whenever μ'φO, μ"φθ. This suggests to apply Theorem 3. Simple calculations show that
conditions (6.19), (6.34) are satisfied for the triplets (N.5) when μ'φO, μ"φθ. Thus Theorem3 is
applicable and we find that weak local rules exist for the tiling based on the grids / l 5 /3, /2, f5.

As for functions /4, /6, /7, /8, they can be expressed as rational linear combinations

ft = akA + bJ3 + cJ2 + dJs, (N.6)

where ak, bk, ck, dk eQ, k = 4, 6, 7, 8. So the tiling corresponding to f l f . . . , / 8 can be considered as a
"decoration" of that corresponding to / l 5 /3, /2, /5. By this reason weak LR exist for eight grids

/l. ./8

We see that the example by Burkov is not a typical one. Weak local rules are absent for 8-fold
symmetric quasicrystals only when the grids are very specially chosen. For a generic set of grids
having 8-fold symmetry weak LR do exist.

In conclusion I would like to thank S. E. Burkov for giving me an opportunity to become
aware of his work before publication.




