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Abstract. We show that the Atiyah-Hitchin metric on the space of stable two-
monopoles admits closed geodesies.

1. Introduction

It is important to understand whether or not two monopoles of like magnetic
charge can exist as an orbiting bound pair. In the context of the classical SU(2)
Yang-Mills-Higgs (YMH) equations, this problem was posed by Jaffe and Taubes
in [1].

In 1981 Manton [2] suggested that for certain initial conditions, the YMH
equations in the Bogolmon'yi-Prasad-Sommerfeld (BPS) limit may be appro-
ximated by geodesic flow on a manifold Jί2. The initial conditions are those of a
pair of slow-moving BPS monopoles. The manifold J12 forms a non-compact four-
dimensional manifold. The details may be found in Hurtubrise [3] or Donaldson
[4]. Jί2 has a natural metric induced by the L2 inner-product for fields on RA This
metric (see Eq. (2.1) below) was first written down by Atiyah and Hitchin [5], and
so has been christened the Atiyah-Hitchin metric. Pursuing Manton's idea we have
the following.

Theorem. The Atiyah-Hitchin metric admits closed geodesies.

These geodesies correspond to a static two-monopole rotating with constant
angular velocity M Every static two-monopole has three principal axes, ely e2, e3.
(A good description of these axes can be found at the beginning of Chap. 7 of the
forthcoming book by Atiyah and Hitchin [6]. Warning: the labelling there of the
2-3 axes is switched relative to ours: their 2-axis is our 3-axis and vice-versa.) M
lies in the e1 — e3 plane. Its orientation with respect to these axes is depicted in
•Fig. 1.

* This research was supported in part by the National Science Foundation under grant
DMS-87-02502
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tan2 θ = 013

Fig. 1

The two radiating dots represent the zeros of the Higgs field. The dotted line
connecting them is called the Higgs axis, and is labelled the e3-axis in Fig. 1. The
angle between the Higgs axis and the angular velocity Mis given by Eqs. (3.3) and
(3.4) and is approximately π/9. When the Higgs zeros are far apart they can be
viewed as the monopole locations: the energy density is concentrated near them.
As the distance between the Higgs zeros goes to infinity, rotations about the e3-axis
becomes symmetries of the field. On the other hand, as the Higgs zeros get close,
they can no longer be viewed as the monopole positions, and in fact it is best to give
up trying to view the field configuration as that of two distinct "particles." Our
geodesies are in this latter regime, as evidenced by the fact that n0 of Eqs. (3.1) and
(3.2) is close to π. As the Higgs zeros collide along the e3-axis the fields become
symmetric with respect to rotations about the ^-axis, and their energy density is
concentrated near a solid torus of radius approximately π.

It is still an open problem to decide whether or not these closed geodesies
correspond to periodic solutions of the dynamic YMH equations. Our suspicion is
that they do.

The proof of the theorem is based upon the fact that the rotation group 50(3)
acts on Jt2 isometrically. The geodesic equations are a system of ordinary
differential equations on T*^2. These equations push down to another system of
ordinary differential equations, called the reduced equations, on the quotient space
(T*^2)/50(3). These equations were first written down by Gibbons and Manton
[7]. Wojtkowski [8] used them together with KAM theory to prove that Jί2

admits bounded quasi-periodic geodesies.
A zero of the vector field defining the reduced equations corresponds to an

5O(3) orbit in Ύ*M2 which is invariant under the geodesic flow. Our proof consists
of finding such a critical point and then showing that the trajectories on the
corresponding 50(3) orbit consists of orbits of one-parameter subgroups of 50(3).
The proof of the theorem is then complete since all such subgroups are circles.

2. The Reduced Equations

The orbits for the action of 50(3) on .M2 are all three-dimensional except for one.
This singular orbit consists of the axially symmetric double monopoles (called
"collision states" by Atiyah and Hitchin [5, 6] and is isometric to RP2, the space of
axes in 1R3.
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The tangent space to a regular orbit may be identified with so(3). Let
{σ1, σ2, σ3} be a basis of so(3)* that is orthonormal with respect to the Killing form.
The Atiyah-Hitchin metric on M2 is given by

ds2 = f2dη2
+ b2(σ2)2 + c2(σ3)

3 2 (2.1)

where η is a coordinate transverse to the orbits and the functions α, b, c and / are
functions of η alone. They are given by

a2 = 2K(K -E)(E- Kx'2)/E ,

b2 = 2K(K - E)E/(E - Kx'2) ,

c2 = 2KE(E - Kx'2)/(K - E) ,

where x

and

= l, and

π/2

K(x) = J (l-x2sin2

o
π/2

2dφ,

are the complete elliptic integrals of the first and second kind. In these formulae x is
assumed to be a function of η. We will define this function by

in which case

η — 2K(x), π ̂  η < oo ,

l = (K-E)E/2K(E-x/2K).

The singular orbit IRP2 corresponds to η = π (so x = 0), as we have α(π)2 = 0. This
RP2 is not totally geodesic.

The functions 1/α2, 1/b2, and 1/c2 are graphed as functions of x in Fig. 2. Two
warnings concerning notation are appropriate. First, our b is called c by Atiyah
and Hitchin in [6], and our c is their b. Secondly, the metric Wojtkowski uses in [7]
is twice the one we use, (Atiyah-Hitchin's).

1/2

2/π z

— 0

Fig. 2. x is the elliptic modulus. n0 = 2K(xQ) in Eqs. (4) and (5)
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The metric (2.1) may be viewed as a symmetric two-tensor on SΌ(3) x [π, oo). It
is the pull-back of the metric on Jt2 by a map

where y : [π, oo)->^2 is a curve in Jί2 which is perpendicular to the S0(3) orbits
and has an endpoint on the singular orbit. We may consider (g, η) as a form of polar
coordinates for M2.

The equations for geodesic flow are Hamiltonian on Ύ*M2 with Hamiltonian

1 f p 2 M2 M2, . M;

~ 2

where p, M l 5 M2 and M3 are canonically conjugate to η, σ1, σ2, and σ3 respectively.
A covector α in these coordinates is written as

f 1 σ 1 + M2σ
2 + M3σ

3.

The quotient space T*^2/SO(3) is coordinatized by (f/,p,M), where π^η<ao,
peR, and M = (Ml5 M2, M3)eIR3. We further make the identifications (Ml5 M2,
M3) = (±M l 5 ±M2, ±M3), with all the ±s independent. The quotient space is a
Poisson manifold see [9] away from η = π. (At η = πwQ have the restriction M1 = 0
which corresponds to the fact that the image of σ1 blows up as well as further
identifications.) The identifications are a result of the isotropy representation. The
Poisson brackets are k

{τ/,p} = l, and all other brackets between the coordinates are zero. Hamilton's
equations f = {f9h} are

1 !

p = p2/'//3 + M2α7α3 + M2

2b'/b3 + M2

3c'/c3 , (2.3)

where the "'" means — and the '"" means -— . These reduced equations are found in
at dη

Gibbons and Manton [7, p. 197]. They are also found in Wojtkowski [8].

3. Proof of the Theorem

We begin by finding zeros for the reduced vector field. Set M2 = 0 in the reduced
equations (2.3). Then Mί=M3 = ΰ. If we can find an η0 so that

-7^2-T^2^°' t3'1)
Φo) Φo)
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then we have that M2 = 0. To see that η0 exists we note that on the interval [π, oo)
1 1

the function -y decreases monotonically from oo to 0, and that —^ increases
a2

 2 j 1 c2

monotonically from -j to \. It follows that -y ~ decreases monotonically from
π α c

oo to — ̂  and hence has a unique zero η0. We find that

/?0^4.6. (3.2)

(Alternatively, one calculates that (3.1) is equivalent to the equality K = 2E for the
complete elliptic integrals. This implies that the modulus x satisfies x2~0.82.)

Set p = 0 so that ή = 0. Finally,

1

so we require that

W^~(ttϊJ^y (33)

Note that the monotonicity described in the previous paragraph implies that the
right-hand side is positive. We calculate this ratio to be approximately 0.13. This
quantity is tan20, where θ is the angle between M and the Higgs axis (see Fig. 1).
We find π

β~0.35~~. (3.4)

We have described a one-parameter family of zeros for the reduced vector field.
The parameter is just the length of the co vector, so all these critical points represent
the same S0(3)-orbit of geodesies with a different affine parametrization. Let
zo = (*?o? M0, 0) denote one such critical point.

It remains to show that these geodesies are closed. Let M2 = M2 -f M2 + M2... = - , 2

One calculates that

dh(z0)= -/U/(M2)(z0), where λ= - ry, a nonzero constant,
2

and hence, by pull-back, this same relation holds for any point z0 in T*Jί2

projecting onto z0. M
2 is the square of the moment map J : T*Jf2-*so(3)*ftoi the

S0(3) action on Ύ*M2. (Warning: The Mt are not the components Jt of the moment
map. In fact, since J is equivariant, as opposed to invariant, its components do not
descend to functions on T*JΪ2/SO(3). However, when the components are taken
relative to an orthonormal basis {et} of so(3) then it is true that ΣM? = ΣJf. The
relation between M and J is essentially the same as the relation between right
trivializing and left trivializing T*SO(3).)

Recall that the Hamiltonian vector field Xg of g is defined by df X g = { f , g}.
One calculates

X M2

where we have identified so(3) and so(3)* using the Killing form, and have used the
notation ζτ*^2 to denote the infinitesimal generator of ξ E so(3). Combining these
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results, and recalling that the Hamiltonian vector field Xg at a point z of Ύ*J12

depends only on dg(z), we have

" Λ V ~ υ / ' w ^ V " U / I *<M2 ' / \2 *

Since {/z, Jί} = 0, this relation holds along the entire XH orbit through z0. Thus this
orbit equals the orbit of the one-parameter subgroup generated by J(z0). Since all
such subgroups are circles, this completes the proof of the theorem.

Future prospects. Our geodesic is unstable. One can see this by linearizing the
reduced vector field at an equilibrium z0. The eigenvalues of this linearization
(restrictred to the kernel of ̂ (M2) (z0) = 0) are of the form ± ω, + ώ, where both the
real and imaginary parts of ω are nonzero. It would be interesting to understand
the global behaviour of the corresponding stable and unstable manifolds. (These
represent sub-manifolds of T*Jί2 which are invariant under the geodesic flow and
which spiral into and out of the geodesic(s) corresponding to z0.) In particular are
they unbounded? If so, there would be geodesies coming in from infinity which get
trapped by our geodesic, or, in the language of Atiyah and Hitchin ([6], end of
Chap. 13) the classical geodesic scattering would be incomplete.

It remains to show that near our geodesies there are true solutions to the
hyperbolic YMH equations which are time-periodic.
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