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Abstract. It is shown that expansion waves for the compressible Navier-Stokes
equations are nonlinearly stable. The expansion waves are constructed for the
compressible Euler equations based on the inviscid Burgers equation. Our result
shows that Navier-Stokes equations and Euler equations are time-
asymptotically equivalent on the level of expansion waves. The result is proved
using the energy method, making essential use of the expansion of the
underlining nonlinear waves and the specific form of the constitutive eqution for
a polytropic gas.

1. Introduction

Consider one-dimensional compressible Navier-Stokes equations in the Lagran-
gian Coordinates,

u2\
e + y I + (pu)x = (κθx/v + μuux/υ)x, ( 1 . 1 ) 3

where v, u, p, e and θ are, respectively, the specific volume, velocity, pressure, internal
energy and the temperatures of the gas, and the positive constants μ, K are the
viscosity and heat conductivity coefficients. The gas is assumed to be polytropic:

Rβ
p = RΘ/υ = Aexp(s/cυ)v~7, e = : -, (1.2)

y ~ i

where 5 is the entropy, R > 0 the gas constant, y > 1 the adiabatic constant,
cv = R/(γ — 1) the specific heat, and A a positive constant. We are interested in the
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expansion waves. For this, it is convenient to work with the equation for the entropy

I * , , κ(y-l)fpvx\ Rμu2

x

St= (PSX)X + 2~> U 3

pvcv pv V v x Pv

Equations (1.1)1? (1.1)2, (1.1)3 and (1.1)1? (1.1)2, (1.1)'3 are equivalent.
Our purpose is to show that expansion waves for (1.1) are nonlinearly stable.

For expansion waves the right-hand side of (1.1) decays faster than each term in
the left-hand side. Therefore the compressible Navier-Stokes Eq. (1.1) may be
replaced, time-asymptotically for expansion waves, by the compressible Euler
equations

vt - ux = 0,

ut + Px = 0,
st = 0. (1.3)

There are two families of expansion (rarefaction) waves for (1.3), Courant-
Friedrichs [1]. We will describe only the 1-rarefaction waves, which are character-
ized by

2
s and u H (yvp)1/2 constant in (x, t\ and

λ1(υ9s)(x9t) = — (ypυ~iY12 increasing in x.

Suppose that the end states of the initial data for (1.3) satisfy

s t =s(±oo,0) = so,

U ^ ί / 2 \ ± co90) = AQ,

λ+ =Λ1(ι;,s)(+ oo,0)> λι(v,s){- oo,0) = /_ .

Rarefaction waves for (1.3) with same end states converge to each other. For
definiteness, we choose a particular 1-rarefaction wave of (1.3) (w, υ, s) (x, t) —
(ΰ, ϋ, s)(x, t): with initial value

s(x,0) = 0,
2

u + 7(yvp)1/2(x,0) = AO9(u9v)(± oo,0) = (u+,v+)9υ+ >0,v_ > 0,
y-\ - -

/!(i;,0)(x,0) = (λ+ + /_)/2 + ((/+ - A_)/2)tanhx, (1.4)

where, for simplicity, we have set s0 — 0. O u r main result is the following stability
theorem.

Theorem 1. Suppose that (w, v9 0) is the rarefaction wave of the compressible Euler
equation (1.3), (1.4) and that the initial data (u,v9s)(x,0) = (uθ9vθ9so)(x) of the
compressible Navier-Stokes equations (1.1) satisfy (uθ9vθ9so)(+ oo) = (u+,υ+90)
and that at t = 0,

S \ v - \ + \u+-U-\ + \\vo-u\\l2+ | | W O - W | I L 2 + | | 5 0 | | £ 2

υ0x9u0x9s0x)\\2

L2 (1.5)



Compressible Navier-Stokes Equations 453

is sufficiently small. Then the solution (u,v,s)(x9t) of (1.1) exists for all time and

lim sup {\v - v)(x, t)\ + \(u - ΰ)(x91)\ + |s(x, ί)l} = 0.
t—> oo — oo < Λ: < oo

Analogous results also hold for linear superposition of 1-rarefaction and
3-rarefaction waves by combining our technique here and the characteristic-energy
method of Liu [3]. The stability of expansion waves for the isentropic flow has
been proved by Matzumura and Nishihara [5]; see also [4] and [6] for stability
of expansion waves for other systems. Expansion waves and compression waves
for (1.1) are both stable, but in a markedly different sense. Expansion waves are
stable in the supίL^) norm but not in the integral (Lx) norm, while compression
waves are supposed to be stable in both norms, cf. [3]. As a consequence the
stability analysis for expansion waves differs in some basic way from that for
compression waves. Although we use the energy method as in previous works
[5,4,6], we do not use the smallness of δ, (1.5), to control some of the first order
terms. Instead, we used the entropy equation (1.3)' and the specific form of the
constitutive relation (1.2) for the final, and crucial, energy estimate; see the proof
of Proposition 3.5.

2. Expansion Waves

The characteristics for the Euler equations (1.3) are

It can be shown easily that because the 1-rarefaction waves form (1.3) take value
along the 1-characteristic direction, the characteristic speed λλ satisfies the in viscid
Burgers equation, [2]:

ot ox

The specific choice of the initial data (1.4) yields, by characteristic method for (2.1),

(22),

This can be solved for λx(x, t). λx rarefies in that dλλ/dx decays at the rate ί"1. The
other physical quantities are obtained from

s(x, ί) = 0,

y —
- ( F p - 1 ) 1 / 2 ( x , ί ) = λ1(x,ί). (2.2)2

Thus (ΰ, v) also rarefies. It follows from these identities that their Lp norms decay
algebraically.
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Lemma 2.1. Let δo = \v + — u_ | -f |w + — w_ |, then for bounds 0(1) independent of t

(i) t; t(x,ί)>0,t;_ > υ + > 0 ,

(ϋ) | | (ύ ,%| | L p ( J C ) -θ( i )δέ / p ( i + 0 " * + 1/pII**\\LX(X) = o(\)δ091 ^ p s oo,

(iii)

(iv)

•(v,u) 0 , ( l + ί)" 1), 1 ̂ p < oo, l^ 2,

For the details of the proof, see Matzumura-Nishihara [5] and Xin [6].

3. Energy Estimates

In what follows || ||z, / = 0,1,2,..., denote the usual Sobolev norms for Hι(x),

H = H o , \'\ = \\-\\LJX) and || | | L p the Lp(x) norm, l ^ p ^ o o . Let {u,υ,s){x,t)

be the solution of (1.1) with initial value

and (M,ϋ5s)(x,ί) the solution (2.2) of (1.3) and (1.4). Set

φ = v ~ v, φ = u — ΰ.

Since (u,v,s) satisfies (1.1), (1.1)2 ^ n d (1.1)3 a n < ^ (w, ΰ,s) satisfies (1.3) we have

Φt

v,s)(φ

ϋ, 0)x) =

v9 s)sx)x

v + φ

vx)ίp(φ + ̂  s)(

ΰ)\ φ +

(φ, ιA? s)(x, 0) = (φ 0 , ιAo, «o)W = (uo - ϋ, M0 - M, SO)(X).

From (1.5) we have

For brevity we denote by

(3.1)

(3.2)

(3.3)t

(3 3)2

(3.3)3

(3.4)

(3.5)

N(t)= sup ||(<p,<M( ,τ)

Lemma 3.1. Suppose that N(t) is small Then

δ(t)= sup |(<p,^s,^,^,s
0 ^ ί < I

y exp (s/cv)

(3.6)
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is small and p(x, t)> p0, v + φ(x, t) > v0 for some p0 > 0, v0 > 0 and — oo < x < oo,

0 g τ ^ ί.
The proof of the above lemma following easily from the Sobolev inequality,

and that p_ > 0 and ι;_ > 0. In the estimates below 0(1) denotes functions which
are uniformly bounded for all time. We start with the estimate for the entropy s
in the next lemma followed by the estimate for φ, ψ in the following two lemmas.
These estimates are then put together in Proposition 3.5, whose proof contains
the key new ingredient in our theory. In the following lemma we always assumed
that for some ε, sufficiently small,

N(t) S β. (3.7)

Lemma 3.2.

ff sldxdt-^^] ] sxφxdxdt
ϋ O

oo

I s2(O)dt,

D _ o - o o ϋ - O - o o

t oo \ 1

f 1 (ψ2

x + ψ2

x+sϊ)dxdt + δy6 + - I
0 - 0 0 / -ώ - 0 0

s(ί) = s(x, t) etc. (3.8)

Proof. Multiply (3.3)3 by s(ί) and integrate over R1 x [0, ί] to obtain

ills(ί)H2-ills(0)ll2 } ϊ ^

We first estimate the second term on the right-hand side:

P(φ + V)

£O(l)\\\s\\ll2\\sxV
l2\\ax\\2dxdt \

0 0

2 (t) j J (s2 + ^
O - o o

where we have used Lemma 3.1, Sobolev inequality, (3.6), Young's inequality, and
(ii) of Lemma 2.1. Similarly the other two terms on the right-hand side of (3.8) are
estimated as follows:

1 \
γsdxdt
χ
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t ^ ί CO

*-Ί> 0 — oo

J (s* +

o -oop(φ + v)\ φ + v

ί 00

^(y-i)κf ί

•ί ί
O - o o

ί CO

O - o o

+

' » / (y-l)κ / pvx \ , (v-l)κ
I I I — ___ _ ςj I

o - oo V p(φ + v)

/ P

.2_ /

0(1)(<50 + N(t))(s2

x + ψ2

x))dxdt

ί 00 o sn

-l)κj J - ^
0 - oo ^ -

00

j

\ J
O - o o

Next, from Sobolev, Young inequalities and (iii) of Lemma 2.1,

- \dxdt

J 5 ^
O - o o

The lemma follows from these estimate and (3.9).

Lemma 3.3.

ί ϊ ί-
0 - o o V V

V -

Q.E.D.
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(\φx\
2 + }ψx\

2 + \sx\
2 + vtφ

2)dxdt

(3.10)

Proof. Multiply (3.3)x by p(v + φ, s) and (3.32) by ψ and integrate their sum to get

1 oo r oo

- J \ψ{t)\2dx + j J (p(^,5)-p(ι; + ̂ s))^ + (pfeθ)-p(^5)^x^
^ - oo O - o o

f f ) ^Jfί_Λ ) d x d t (3.n)

We first estimate the right-hand side of (3.11) by parts:

f CO

j j
v + φ

= - ί ί -JL~Φ2Jxdt

\1 (
0 -co \V

and by Lemma 2.1, Sobolev and Young's inequalities:

o + N(ή)]ψ2dxdt,

J

ί 00

O - o o

t

= j O ( l ) ( !| ψ I I 1 / 2 II ̂  II 1 / 2 ( II » „ I I + I)ϋ x II2 + II MXII II φxII ) d t
0

0

ί oo

O - o o

Next we estimate the left-hand side of (3.11). Since p(v,s) is a smooth function we
have from Taylor expansion that

p(ϋ+φ,s) - p(v,s) = p ^ s j φ + Qxφ
2,

for some smooth functions Q,ι = Qι{ϋ,φ,s) and g 2 = β2(ΰ,s). Using integration
by parts, (i) of Lemma 2.1 and that pvv > 0, (1.2), we have

J pUv,j J
O - o o 0 -oo

)

tJ

= ί \Pv(v9s)\ — dx
ί = 0
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0 - o o

} ϊ
O - o o

φ dxdt

°° (D2 °°
J ~(t)dx- J

cc ^ oc

O - o o ^

ί

J
0

0 - o o

φ3 φ3\

3 J J

The above integrals which involve st is estimated by (3.3)3' Lemma 2.1, Sobolev
and Young's inequalities as in previous estimates:

ψ2, Λ <?3λ

= O(l)iV1/2(ί)J J {sl + φl + xj
0 - o o

details are omitted. From (3.3) and the Sobolev inequality,

ί I Qiφφt-^rdxdt
t CO

O - o o

O

= O(l)JV(f)J j (>AΛ

2

O - o o

if we set εx = N(t). The above estimates yield

1 ί
O - o o

— 00 ^

t oo

ί t),

f (s2

Similarly we have



Compressible Navier-Stokes Equations 459

OO ί = ί ί 00

= -(PΓ+O(l)(δ0 + N(ή) J sφdx + J J (ps(ϋ,O)stφ + p^fcO^sφ
— oo ί = 0 O — o o

The lowest order term on the right-hand side is estimated from (3.3)3:

t α KV~ t °°
ί ί (PsfeO)stφ)dxdt = — (1 + 0(l)(iV(ί) + <50))J J sxφxdxdt
O - o o C t ; ^ - O - o o

+ 0{ϊ)(δ0 + N{t))\ f vtφ
2dxdt

O - o o

+ O(l)N1/2(ί)} f (s2 + ̂  + ^
O-oo

Other terms are estimated similarly as above and we have

ί ϊ l(p(v,O)-p{ϋ9s)) ]φtdxdt
O - o o

o))J J sxφxdxdt
O - o o

ί oo

Λ)) ί ί <)

0(l)((50+ JV(ί))j ί tJ^
OO - o o

J \φx(t)\2dx- ] φx(t)ψ{t)dx + \p;\\ ] φ2

xdxdt
O - o o

1 sxφxdxdt-\ ] φ2

xdxdtSO(l)(N2(0)
- o o O - o o

O - o o

+ O(l)N1/2(ί)J J
O - o o

The lemma follows from (3.11) and the above estimates. Q.E.D.

Lemma 3.4.

O(\)δl'6. (3.12)



460 T.-P. Liu and Z. Xin

Proof. Integrate (3.3)2 times φx and make use of (3.3)α to get

t °° (D CD ί oo

J -Jί^Ldxdt-\ j pυ{v + φ,s)φldxdt
O - o o

= ίUψ,9.
O - o o

;s)-pυ(v9ι

i ΰχ \

φ,s)sxφx-μ[ — φ

v>s) - Pv(v>0))vx

* * <Pt<Px )dxdt. (3.13)

We now estimate the terms in (3.13). Integration by parts (3.3)1 and Lemma 3.1 yield

2-xv + φ

I, t

_μ

25o
, = o 25o-L\v+φ)t

2dχdt

V-

1
ί j
O - o o

From integration by parts and (33)u

ΐ CO 00

j J ιj/tφxdxdt = j φφxdx
O - o o - oo

GO

= I

•j j ψψxxdxdt
O - o o

From (ΐi) of Lemma 2.1 and Lemma 3.1

ί oo

J j (py(i; + φ
O - o o

= 0(1)} f
O

f j
O - o o

\φvxφx\dxdt

f φldxdt

Similarly from Lemma 2.1.

t oo ί oo

J j (pv(v,s)-pv(v,0))vxφxdxdt = O(l)$ J
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= 0(1)} j \s\(\vx\
2 + \φx\

2)dxdt
O

461

^r-) φxdxdt=O{\)\ ] (
v + φ J x o-oo

\axx\)\φx\dxdt

t 00

. ί'
O - o o

0 ~ o o

\uxx\
2)dxdt

t uu

if
O - o o

J

The lemma follows from (3.13) and the above estimates. Q.E.D.
In the proof of the following key estimate we make use of the specific form of

the constitutive relation (1.2).

Proposition 3.5. There exists a positive constant ε such that if

then

(3.14)

(3.15)

for some C independent oft,N(0) and δo.

Proof The proof is based on Lemmas 3.2 ~ 3.4. From (1.2)

R

yp
,

v

(3.16)

For simplicity we write p = p_, v = υ^ etc., and set

M=] (φ(ή2 + ψ(t)2 + s(t)2)dx + j J (φ2 + x\ι2

x + s2 + \ϋ,\φι)dxdt. (3.17)
00 — co

For ε sufficiently small we have from Lemma 3.2 ~ 3.4 and (3.16) that

Rv
j J
0 - c o

J Sχφχdxdt

(3.18)
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Ίμ . 9 2(y — l)2kp Ί y(y + \)p _ . Ί 2(y — l)2kp \
-ψχ-\ 2 Ψx "* 2—\ υ t \Ψ 2 5 ^ ^ ^ lαxαί

0) + O(l)εM + 0(l)N 1 / 2(ί)^o / 6 + 0(l)εN2(O> (3 1 9 )

J \ On

= O(l)JV2(0) + 0(l)εM + 0(l)c5έ 6 . (3.20)

The terms on the left-hand side of (3.18) ~ (3.20) which are not necessarily
nonnegative are eliminated through linear combinations and the Cauchy-Schwartz
inequality. Since the double integrals of φ2 appear only in (3.19) and (3.20) they
can be eliminated by adding (3.19) times v/2μ and (3.20),

J (j- Φ2(t) + ~ φ&ή ~ φx(t)Φ(t) + ψ Φ2(t) ~ ̂ — ^ s(t)φ(t)dx

ί ί

φ&ή φx(t)Φ(t) + ψ

(y-l)2κp + yμRp 2 (y - l)2κp + (y - l)μRp

βμv

- O(l)iV2(0) + 0(l)εM + O(l)Nll2{t)δllb + O ( l ) ^ / 6 . (3.21)

Note that the first three terms above are positive definite:

ϊ
by the Cauchy-Schwartz inequality. Thus (3.21) yields

vR

h O(l)βM + O(l)JV1/2(ί)<5έ/6 + 0{\)δyb. (3.22)

Add (3.22) to (3.18) times a variable α,

oc

ί
- CO

t OG

+ ί ί ^ - ι « . iό-co 6D ' " " ' έ Λ V Λ« x ' vR

ί2k(y— l)α (y — l)2/c + (7 -

= O(l)(N2(0) + δj/6) + 0(l)εM + O(l)iV1/2(£)<5j/6. (3.23)

The variable α is chosen so that the left-hand side of (3.23) is positive definite. For
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the single integral to be positive definite we need

α>(lf^ (3.24)

2R γ

For the double integral to be positive definite we need

_ (2κ(y - l)α (γ - l)2κ + (γ- l)μR\2 Sκ(γ - l)α[(y - \)2κ + γμK]Δ = { ? + R2 ) K V
for some α satisfying (3.24).

The expression A assumes minimum Δmin at α = αm i n given by

l) (y- \fκ + {y- \)μR\

v2 *min+~ R2 )

< 0

R2υ2

Jγ\fκ + (\+y)μR
m i n 2κR2(y-l) •

Clearly α = αm i n satisfies (3.24) because y > 1. Direct calculations yield

V 8κ(y - l)αmin[()> - l)2κ +
1

R2 ) R2v2

2 2 2 y - l ) 2

K + yμR)

R4 ' R4

_ - 4(y - ί)2μκR)2 - 4yμ2K2

i?4 < '

This shows that the integrals in (3.23) are positive definite and so:

f (s2(t) + Ψ

2{i))dx + j f |yt|<p2dxcίr + } f (s2 + ψ2)dxdt
~oo O - o o O

- O(l)(/V2(0) + δl16) + 0(l)εM

This and (3.19), (3.20) finally yield

J (s2(t) + φ2(t)-}-ψ2(t) + φ2

x(t))dx + \ J (\ϋt\φ2 + s2

x + φ2

x + φ2

x)dxdt
- oo O-oo

(5O

/6) -f 0(l)εM

In particular, we have from (3.17) that for ε small,

J (s2(t) + φ2(t) + ψ2(t) + φ2

x(t))dx + ] ? (\vt\
- oo O - o o

- O(l)(JV2(0) + <Sέ/6) + O(l)iV1 / 2(0δ1 / 6.

This completes the estimate of the lower order terms on the left-hand side of (3.15).
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The higher order terms are estimated in a similar way using the energy method
applied to the derivatives of (3.3). Since the argument is exactly the same, we omit
the details. Thus we have

\ (3.25)

In particular we have from (3.6) that

N2(ή = O(l)(JV2(0) +

which implies, for N2(0) and δ0 small,

This and (3.25) finally yield (3.15).

4. Existence and Asymptotic Behavior

With proposition 3.5 the proof of our main theorem becomes routine. First, the
hypothesis (3.14) is implied by (3.15) under the assumption that N(0) and <50 are
small. This observation and the usual local existence theorem for the hyperbolic
parabolic system (1.1), or (3.3) yield the global existence theorem.

The asymptotic behavior is the consequence of the Sobolev inequality,
Proposition 3.5 and the equicontinuity of ||sx(£)||, ||φx(ί)ll a n d II^WII m U which
is contained in the estimate of these terms. Since we did not carry out the detail
of the estimate, we now illustrate the equicontinuity of || φx(t) || by integrating
Ψx(3-3)2χ o v e r — °° < x < °°> ti = t = t :

] (Ψ2()ψl())dϊ ί (( v,s)-p(v,O))xxψxdxdt

By carrying out the above derivatives on the right-hand side we have

ϊ W 2 ( ) Ψ 2 { ) ) d

/= 0 ( 1 ) / ϊ (\ψxx\ + \sxx\ + \vx\
2 + \ϋxx\ + \φx\

2 + \sx\
2)dxdt

ί l - 00

I 2t2 00 \χ\j I

-AίJ ί ~-dxdt + O(\)l I (\ΰxx\ + \ΰx\
2 + \φx\

2 + \φx\
2)\φxx\dxdl

which yields, by Lemma 2.1 and the Cauchy-Schwartz inequality

f φ2

x{t2)dx= f φ2

x{h)dx + 0 { \ ) \ ] (\φx\
2 + \sx\

2 + I ^ J 2 + \ψx
— oo — oo ί i — GO

+ \ψxx\
2 + \sxx\

2)dxdt + O(l)δo(l + ί i ) " 1 , ί2 > ίx = 0.

2
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Similar estimates also hold for || φx(ή || and || sx(t) ||:

II (φx, Φx, sx)(t2) || = || (φX9 φχ9 s j ί ί j || + 0(1) f || φx, φX9 sx \\ 2(t)dt

+ O(l)δo(l+hΓ\ ί 2 > t 1 ^ 0 .

By integrating with respect to the variable tx we have

Uφx,φx,sx)(t)\\=O(l) j Uφx,φx,sx)(t)\\dt + O(ί)δ0(ί+tr\ tZl. (4.1)
t- 1

From Proposition 3.5, (3.15), for arbitrary given ε, there exists ί0 > 0 such that

]\\φx9φx,sx\\ldt^ε.
to

For any t > t0 + 1, we have from the Sobolev inequality, (4.1) and (3.15) that

sup \(φ,ψ,s)(x,t)\^\\(φ,ψ,s)(t)\\ \\(φx,ψx,sx)(t)\\
— oo < x < oo

Since ε is arbitrary, we finally conclude

lim sup \(φ,φ,s)(x,t)\=O.
ί->oo -oo</<oo

This proves our main theorem.
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