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Abstract. We rigorously establish the existence of an intermediate ordered
phase in one-dimensional l/|x — y\2 percolation, Ising and Potts models. The
Ising model truncated two-point function has a power law decay exponent θ
which ranges from its low (and high) temperature value of two down to zero as
the inverse temperature and nearest neighbor coupling vary. Similar results are
obtained for percolation and Potts models.
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0. Introduction

J. Z. Imbrie and C. M. Newman

The phase transitions of one dimensional Ising ferromagnets (and related models)
with inverse square law Hamiltonians,

-2 Σ Jy-xSxSy, where 0^x2

x<y
as x—»GO, (0.1)

are distinguished by a number of unusual features. Figure 1 is a schematic phase
diagram which exhibits some of what has been rigorously proved in recent years.
The main contributions of this paper concern the intermediate ordered phase,
region II, in which MΞΞ<SO>+ is nonzero while θ (defined by <S0SX>+— M2

~|x|~θ) varies between 0 and 2.
The intermediate phase of l/|x — y\2 models is of interest for at least two

reasons. First, for the general theory of phase transitions, it provides another
example of a phase with variable exponent power law decay, in the spirit of the
Kosterlitz-Thouless phase of planar spin models in two dimensions [KT]. Second,
within the context of l/|x — y\2 models, its properties are closely related to the
discontinuity in M. For example, Thouless' original argument for the existence of a
discontinuity [T] is inapplicable if θ-»0 as β \ βc, i.e., at the curve BD in Fig. 1 (see
Subsect. l.ii) below for more details). But precisely this phenomenon was predicted
by Bhatacharjee, Chakravarty, Richardson, and Scalapino [BCRS], who used the
renormalization group flow equations of Anderson, Yuval, and Hamann [AYH]
to first argue for the presence of a phase with temperature-dependent power law
exponent.

Although we do not quite prove in this paper that θ vanishes as β \ βc we do
establish the existence of region II, the location of its northeast and northwest
corners (points B and A in Fig. 1) and that θ^ΰ at point B. To explain these results
and their relation to the percolation-theoretic Aizenman-Newman proof [AN 2]

Fig. 1. Schematic phase diagram in the β (inverse temp.)-./ι (nearest neighbor coupling) plane. M
denotes the magnetization (or percolation density) and Θ the power law decay exponent for the
truncated two-point function. It is conjectured that Θ = 2(M2β—l) in region II and θ = 0 on the
curve BD
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of a discontinuity in M (as applied to Ising models by Aizenman, Chayes, Chayes,
and Newman [ACCN]), we briefly discuss the following four items. More details
may be found in Sect. 1 below.

A. The relation between Ising and percolation models.
B. The notion of dissociated intervals.
C. The significance of /?*, the value of β at the point B in Fig. 1.
D. The renormalization of β to M2β and our conjecture that θ — 2(M2β — 1) in

the intermediate phase.
For given β and Jx's the Fortuin-Kasteleyn random cluster models [KF, FK]

are (dependent) bond percolation systems depending on an additional real
parameter q ̂  1, which interpolate between the Ising (q = 2) and Potts (q = 3,4,...)
models. For q = ί, it reduces to independent bond percolation where the bond
{x, y} is occupied with probability 1 — exp( — βjy_x). For any q, the order
parameter M is defined as the percolation density (the probability that the cluster
of the origin is infinite), which for q = 2 is consistent with the usual magnetization.
There is a natural truncated connectivity function, τ'(x, y\ the probability that x
and y belong to the same finite cluster. For q = 2, a crucial fact is that

<SxSyy+-M2Zτ'(x9y). (0.2)

An interval of sites {xi,xl + \,...,x2}, is said to be dissociated if every bond
between an x in the interval and a y outside the interval is vacant. This notion was
introduced in [AN 2] where it was shown that for β < 1, M must vanish (regardless
of the value of JJ because dissociated intervals occur (with probability one) on all
length scales. In other words, if we let ψL denote the probability that an interval of
length L is contained within some larger dissociated interval, then ψL = 1 for all L
as long as β< 1. The result that β<\ implies M = 0 is valid both for q = 1 [AN2]
and q>\ [ACCN]. It may be restated as the inequality /?* ̂  1, where β* = β*(q) is
defined as the largest β such that M = Q for all Jλ < oo.

Now suppose /?>!. The key calculation which leads us to an intermediate
phase is essentially an estimate that as L-»oo, ψL>L~2(β~1}. If there is long range
order of the right sort, then τ'(0, x) > ψ\x\ because the conditional probability that 0
is connected to x given that there is a dissociated interval containing (0,1, ...,x}
will not tend to zero as |x ->oo. Combining all this [and using (0.2)], we conclude
that in the ordered phase θ^2(/?-l).

If/?* < 2, then this inequality for θ implies the existence of an M > 0, θ < 2 region
somewhere in the β, J1-plane. This phase would necessarily be intermediate since
Imbrie proved [I] that θ = 2 for large β (at least for q = 2,3,... - see Theorem 1.8
below) and it is also known that θ = 2 whenever M = 0 (at least for q = \ [AN 2] and
q = 2 [ACCN]). If β*<*l (hence j8* = l), then it would further follow from
Θίg2(/? —1) that θ-^0 at the northeast corner of region II. For q=\, the bound
β* ̂  1 was proved by Newman and Schulman [NS], but for q>\ the best available
result was β* ̂  q [ACCN] which is insufficient to yield an intermediate phase in
the Ising case (or for any q ̂  2). A sizable portion of this paper is consequently
devoted to proving that /?*^1 for all q>\. Our basic approach here is not
percolation-theoretic but rather attacks the integer q spin models directly (see
Sect. 3) with the generalized Peierls arguments invented by Frόhlich and Spencer
to prove β*<oo for q — 2 [FS].
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For both Ising and percolation models, there are natural block variable scaling
transformations which lead to a renormalized model in which β is essentially
replaced by M2β [AYH, NS]. For example, there is a percolation-theoretic
renormalization which replaces the original occupied bonds {x, y} by "anchored"
bonds in which both x and y must have large scale connections (other than {x, y}
itself). This scheme was introduced in [AN 2] and used there to renormalize the
argument that β<\ implies M = 0 (i.e., /?*^1) into an argument that M2β<l
implies M = 0. This yielded the discontinuity of M (for q = ίin [AN 2] and for q > \
in [ACCN]). In this paper, we analogously renormalize the bound θ ̂  2(β — 1) into
θ^2(M2β— 1). This bound has an important consequence if we assume the
validity of the conjecture that M2β = 1 on the critical curve BD - we would have
0 = 0 on BD as predicted in [FMN]. The improved upper bound on θ, together
with some lower bounds valid for large J1? leads to the natural conjecture that in
the intermediate phase, θ = 2(M2β—l). This equality would identify the curve AC
with the equation M2β = 2, and the boundary curve for infinite susceptibility (not
drawn in Fig. 1) with the equation M2β = 3/2.

We conclude this introduction with a list of the main results of this paper
(together with previously proven results), valid for all real q^ί except as noted.
Precise versions of these results are given in Subsect. l.iii) below.

a) /?* = ! (previously proved that l^β*^q).
b) Long range order implies θ^min(2(M2β— 1),2).
c) Let q ̂  2 be an integer. Then θ = 2 for β > 2 and large J1 (previously proved

for large β) and θ->2(0-1) as J^oo for l

1. Main Results

l.i) Setup

Let us briefly define the models we consider and their basic quantities of interest;
for more details, see [ACCN].

The spin variables in Ising (q = 2) or g-state Potts models have two standard
representations, σx or σ^, where σx takes values in the set (1, . . ., q} and σx in the set
{έ1? ...,eq} of unit vectors pointing to the vertices of a fixed (q — \) dimensional
"tetrahedron." (For q = 2,σx reduces to the + 1 valued variable denoted by Sx in
the introduction.) Note that σx σ^ takes on only two values and can be expressed
as

The models are described by a Hamiltonian

«^=- Σ ^,y(^-i)=-[te-i)Az] Σ J*>* *y-i). (i.i)

We will only consider translation invariant one-dimensional ferromagnetic
models in which x,y are in TL and J X f y = Jy_x = Jx_y*^.Q.

The free boundary condition two-point function for the finite interval [ — L, L]
of lattice points is (for |x|,|y|^L)

(1.2)
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where < — >/ = < — >/(/?) denotes expectation with respect to the free b.c. Gibbs
state whose configuration probabilities are proportional to Qxp(-β^f) with the
sum in (1 .1) restricted to x, y e [ — L, L]. We will also consider the 1 or el boundary
condition expectation < — >^ (which reduces to the + b.c. for q — 2) in which only x
is restricted to [ — L, L] while σ^ is set to e1 for each y outside of [ — L, L] /"we will

always have \J\=ΣJy-χ<ao\ B°th free and 1 states have limits as L-»oo whose
y

expectations are denoted < — >H. with * =/ or 1. The infinite volume quantities of
primary interest to us are the magnetization

(1.3)

and the truncated two-point function

G τ(y-x)^<σ ; c.σ v> 1--<σ ; c> 1.<σ y> 1^<σ χ.σ y> 1-M 2. (1.4)

The definition (1.3) is equivalent (see e.g. [ACCN]) to the thermodynamic one,

β~l - ̂ 7 - , in which the free energy /(/z) is defined by adding to the

Hamiltonian a term —hΣxev σx. Consequently, another natural truncated two-
point function G\ may be defined as

Finally, we define yet a third truncated function

For q = 2, Gτ = Gl = Gl; we shall see below (Proposition 1.1) that for any other q,
these three are bounded above and below by multiples of each other and hence
have the same long distance decay properties.

Related to the above models are the Fortuin-Kasteleyn random cluster models
[KF, FK, F] defined with a real (not necessarily integer) parameter q. These are
described by probability measures on the configurations of bond occupation
variables n = {nb} which take the values 1 - meaning the bond b={x,y} is
occupied, or 0 - meaning b is vacant. For a finite volume [ — L, L], the free b.c.
measure μ{ = μ{(j3) (restricted to bonds with x,y in [ — L, L]) has configuration
probabilities proportional to

qc(n} Π d-eβJb) Π e~βJb> (1-6)
b:nb=l b:nb = 0

where c(n) denotes the number of distinct clusters (i.e. connected components of the
sites in [ — L, L]) determined by the occupied bonds of n (and for b = {x,y},
Jb = Jx,y) For q=l, this is just an independent bond percolation model; for
q = 2, 3, . . . one has, for g any function of the spin variables in [ — L, L], the identity

<g(σ)>^ = Σμί(w)£ί(g(σ)), (1-7)
n

where for each configuration n of bond variables, E{( — } is a very simple average
over the spins σ - the spins constrained to be constant on each cluster with the
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values for different clusters being independent and symmetric (i.e. with all q values
equally likely). A special case of (1.7) is

<σΛ σ,>^ = μf

L(x^y] = τ{(x, y) , (1.8)

where x<-»y denotes the event consisting of those configurations in which x and y
belong to the same cluster. The analogue of < — Y{ is the "wired" b.c. measure μ™
(for bonds with x in [ — L, L] and y unrestricted) in which the c(ri) is determined
after setting nb to 1 for all b with both x and y outside of [ — L,L]. In the wired
version of (1.7), E^( — ) is calculated with σ^ set to έλ for every x connected by an
occupied bond to the outside of [ — L, L].

For q^l, infinite volume measures μf and μw exist [F, ACCN] (these are of
course equal for q = l) and for q = 2, 3, ..., the following identities are valid:

M = μw(x^oo), (1.9)

(σ^ σyX = τ'(x,j;)-l-μw(x<->oo andy^-»co), (1.10)

where τ' is the truncated connectivity function, defined as

τ'(x,y) = μw(x<r+y but {x,y}ψoo), (1.1 la)

where x<->oo means that the cluster of x is infinite and {x, y}<+>oo means that
neither x nor y belongs to an infinite cluster. (We note that (1.9) is proved in
Theorem 2.3 of [ACCN] and (1.10) is obtained by similar arguments.) The next
proposition combines the above formulas with some simple facts about the FK
representation; it shows that GT, G[, and Gj are bounded by multiples of each
other and each is bounded below by a multiple of τ'. Our strategy in analyzing the
decay properties of truncated two-point functions will be to obtain lower bounds
for τ' (Sect. 2) and upper bounds for Gj (Sect. 4). In the proposition, an important
role is played by τ(x,y), another percolation-theoretic truncated two point
function, which in certain respects is more analogous to the spin-theoretic G[, G^?

and GT than is τ'. The definition of τ is

and ^^oo)-μw(x^->oo)μw(^^oo). (l . l lb)

Proposition 1.1. For q = 2, 3, . . .

x , y ) 9 (1.1 2a)

For any real q^.1,

τA(x,y)^0. (1.13)

Proof. Equation (1.1 2a) is a direct combination of the formulas given above for GΓ,
M and <(σx σyyι [i.e. (1.4), (1.9), and (1.10)]. Equation (1.1 2b) follows similarly
from the formulas already given for Gf and M along with the identity,

<(έ1 σj(έ1 σy)>1=μw(x*->oo and 3;̂  GO)

r'τ)Ί<
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which is derived from the wired version of (1.7) and an infinite volume limit.
Equation (1.12c) is obtained analogously. Finally, (1.13) follows from the FKG
property of μw [F, ACCN].

Lit) Background and Discussion of Results

In this subsection, we review some previous results and discuss their relevance to
our work. For more background, see [AN 2, ACCN].

For one-dimensional Ising models with Jx « const/xs, it has been known for a
long time that there is no long range order at any temperature if s > 2 [D, R] but
there is at low temperature if s < 2 [Dy]. Based on the analyses of [T, AYH, AY], it
was further believed that long range order does occur for s = 2 but does not if
x2 Jj.-vO; the former was verified in [FS] but until recently the best complementary
result [RT] was that x2(logx)1/2Jx~>0 implies no long range order.

In fact, by separating out the long and short range couplings, the work of
[AYH, AY] yielded a much sharper prediction of the dividing line between long
and short range forces in one dimension. This sharper division will be fairly
significant for our results about the existence of an intermediate phase. Let us

suppose that lim x2Jx= 1 and define β* by the following dichotomy (in which we
χ-> oo

fix J^ for x ̂  2, but note that the resulting β* is actually independent of the specific
choice):

if β>β*, then M(β,Jί)>V for large Jί

if β<β*, then M(β, J1) = 0 for any Jl.

Although, it is not a priori clear that β* should have a nontrivial value, it was in fact
predicted by [AYH, AY] to be β* — 1. In [FS], the long and short range couplings
were not explicitly separated, and hence the only result obtained about β* was
/?*<oo.

For one-dimensional independent percolation models, a proof of the absence
of long range order for s > 2 appears in [S] with the complementary result for s^2
appearing in [NS]. Let us denote by β*(q) the possibly ^-dependent value of β* for
Potts and random cluster models. In [NS] /?*(!) was explicitly investigated and it
was shown that /?*(!) ̂  1. Next, in [AN 2], it was shown that /?*(!)^ 1 (and also
that β*^l for certain dependent percolation models). Thus the [AYH, AY]
prediction was verified, but for q = \ (independent percolation) rather than for
q = 2 (Ising).

It was then shown in [ACCN] that the upper and lower bounds for /?*(!) imply
related bounds for all q^.ί (and certain bounds for 0<g<l as well):

l^β*(q)^q. (1.14)

These bounds are a direct consequence of the q = l results and the following
general comparison principle [F, ACCN]:
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β*(q) ̂  1 can also be obtained without use of the comparison principle by applying
the dependent percolation result of [AN 2] directly to the random cluster models.
We note that the Ising result β*(2) ̂  had been obtained independently by Berbee
[B] (without the use of percolation methods). We also remark that for the Ising
model with Jx exactly equal to \/x2, there existed numerical estimates for βc in the
vicinity of 1.3 [BCRS, Ma] as well as rigorous lower bounds [Mo], the best of
which was 0.882 [V]. This lower bound is improved by the inequality β* (2)^.1
which implies that βc^ί.

One reason for our concern with the value of β* is its relevance to the presence
of an intermediate phase. As will be seen in Theorem 1.4 and Corollary 1.5 below,
to verify the existence, for given q, of an ordered phase with decay of its truncated
two-point function slower than const/]* — _y|2, we will need to know that β*(q) < 2.
From this perspective, the upper bound β*(q)^q is fine for independent
percolation (q=l) but inadequate for Ising models (q = 2) and for higher q Potts
models. Consequently a substantial part of this paper is devoted to improving the
upper bound for β*. In fact our first main result (Theorems 1.2 or 3.1) entirely
removes the gap in (1.14) and shows that β*(q)= 1 for all q^ 1, thus extending the
percolation result of [NS, AN] to q > 1 and verifying the Ising model prediction of
[AY, AYR].

We next turn to background related to the magnetization discontinuity in
\/\x — y\2 models. As we shall see, the mechanisms which lead to the discontinuity
and to the intermediate phase are intimately related. The existence of a
discontinuity in M(β) at the critical point of l/|x — y\2 Ising models was first
proposed by Thouless [T] on the basis of an elegant energy-entropy argument (see
also [SS]). His argument led to the dichotomy that

M(j8) = 0 or M2(j8) j8^imin{θ(]8),l}, (1.16)

where θ is defined by the assumed power law behavior of the truncated two-point
function GΓ(x):

Gτ(x)~\x\~θ as Ix^oo. (1.17)

As noted by Thouless, this argument yields a discontinuity providing θ(β)-\>Q as

β^β,
A different argument for a discontinuity in the ί/\x — y\2 Ising model, which did

not require any assumptions on θ(β\ was given shortly after Thouless by
Anderson, Yuval, and Hamann [AYH, AH] based on renormalization group flow
equations. Strikingly, further renormalization group analysis by Bhattacharjee,
Chakravarty, Richardson, and Scalapino [BCRS] led to the prediction that not
only is there a phase below the critical temperature in which θ is temperature
dependent (rather than say taking the constant value θ = 2 for all β < βc as one
might naively expect), but also that θ does indeed approach zero as β \ βc. [BCRS]
also predicted that in the ordered phase at the critical point, Gτ(x) decays as
(Inx)"1. Earlier renormalization group analysis [K] had led to the related
predictions that the susceptibility χ' is infinite just above βc and that at βc, the
singular part of M as a function of external field h behaves like |ln/ι| ~ 1 as h \ 0.
Much of the analysis of [K] was extended to Potts models (and to more general
g-state spin systems) in [C].
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The fact that the phase studied in [BCRS] must be an intermediate one was
rigorously shown by Imbrie [I], who proved that θ = 2 for very low temperature. In
this paper, we improve that Ising model result and extend it to Potts models (see
Theorem 1.8). We also note (Proposition 1.3) that quite generally, θ^2. Another
relevant fact is that θ = 2 whenever M = 0, at least for q = 1 [AN 2] and for q = 2
[ACCN].

On the basis of the [BCRS] analysis, Thouless' original mechanism seems not
to account for a magnetization discontinuity. A different mechanism, combining
the renormalization group spirit (if not substance) of [AYH, AH] with the focus on
a dichotomy as in [T], was used by Aizenman and Newman [AN 2] to derive
rigorously for independent (and certain dependent) percolation models the
dichotomy

) = 0 or M2(β) β^l, (1.18)

which of course yields a discontinuity. It was then shown by Aizenman, Chayes,
Chayes and Newman [ACCN] that the FK random cluster models (for q^ 1) fall
within the class of dependent percolation models treated in [AN 2] so that (1.18) is
valid for all q^ 1 including Ising (and Potts) models. It is useful to note that (1.18)
may be regarded as a renormalized version of the simpler result of [AN 2]
mentioned above that β*^ 1, or equivalently

β<\ implies M = 0 for any J1 . (1.19)

To obtain (1.18), the β in (1.19) is replaced by its "renormalized value" M2β. The
renormalization involves the replacement of the notion of occupied bonds by that
of occupied "anchor bonds" (see [AN 2] and Subsect. 2.ii). We remark that
because of (1.18) the strict inequality in (1.19) can be weakened to β^l.

The main purpose of this paper is the rigorous verification of the existence of an
intermediate phase with M positive and θ small. Our analysis is closely based on
the approach of [AN 2] and its applicability to the q > 1 random cluster models as
shown in [ACCN]. Roughly speaking, we first apply the arguments which led to
( 1 . 1 9) to obtain an estimate valid when β > 1 (and there is long range order), namely

l), (1.20)

and then apply the renormalized arguments of (1.18) to show

θ^2(M2β~\). (1.21)

In the next subsection we will give precise versions of these two inequalities
(Theorem 1.4) and explain in detail the ideas behind the first, unrenormalized, one.
Meanwhile, we sketch these ideas.

As mentioned in the introduction, the key notion used to derive (1.19) was that
of dissociated interval, i.e. an interval of sites [£_, ς+] such that no bond between
the interval and its complement is occupied. Let us again denote by ψL the
probability that an interval of length L is a subset of some larger dissociated
interval. The basic estimates of [AN] showed that if β < 1, then there are so many
dissociated intervals that ψL = 1 for all L; in this paper we show that when β> 1
similar estimates (see Proposition 1.6) show that ψ L^ const /L2(β~ί} + ε '. This will
yield (1.20) in the form GΓ(x)^τ'(0,x)^const/|x|2(/?~1) + ε' because if there is long
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range order (of a sufficiently strong kind), then the conditional probability of 0 and
x to be connected, given that [0, x] (or [ — Kx, Kx]) is a subset of a larger
dissociated interval, will not tend to zero as x-»oo.

By virtue of our result that β* ̂  1, we conclude the existence of an intermediate
phase from (1.20), since by choosing β close to 1 and then J1 large, θ may be made
arbitrarily small. In fact, by combining (1.20) (and $rg2) with a complementary
upper bound (see Theorem 1.8) obtained from cluster expansion methods, we find
that (at least for g = 2,3,...) 0->min(2(j3-l),2) as J1->oo (with j8>l). This fact
suggests that the renormalized inequality (1.21) may be optimal; i.e. that for all J±
and β (with M>0),

θ = min(2(M2β-l),2). (1.22)

We note that this conjecture is consistent with the predicted behavior as β \ βc (for
fixed JJ of M [AY] and θ [BCRS]:

1/2
θ(β)~(β-βc.

Even as a one sided inequality, (1.21) is of interest - particularly at the critical
point where, coupled with the prediction (see Subsect. l.iv.a) that M2β=l at βc, it
would yield θ(βc) = 0 as conjectured in [FMN]. It would be a first step in
confirming the stronger prediction of [BCRS] that at βc, Gτ(x)~(lnx)~l. In
Subsect. l.iv) we will discuss further these conjectures and related open problems.

l.iii) Precise Statements of Results

We present in this subsection precise versions of our main results and explain some
of the key ideas behind them. We deal throughout with one-dimensional
translation invariant parameter-^ random cluster models whose couplings Jx are
fixed for x^2 and satisfy lim x2Jx = \\ β and Jί vary as indicated. Except as

χ-» oo

noted, q may be any real number in [1, oo). There are three types of results:
a) Sufficient conditions for long range order (β*^l) - Theorem 1.2 and

Sect. 3.

b) Lower bounds for τ' (0^min(2(M2β-l),2)) - Propositions 1.3 and 1.6,
Theorems 1.4 and 1.7, Corollary 1.5, and Sect. 2.

c) Upper bounds for GΓ when # = 2,3,... Mim Θ^min(2(j8-l)52)>) -

Theorem 1.8 and Sect. 4. v71" °° /

We begin by defining long long range order (LLRO), a concept introduced in

[SML], which will be relevant for a) and part of b).

Definition. We shall say that a model has long long range order if there are

positive constants v and ε such that for all L>0, the free b.c. two point function

τ{ in the region [ —L, L], satisfies

τ{(x, y) ̂  v2 for all |x|, |j;| <; εL.

Remark. Since (for q ;> 1), τw ̂  τf ^ τ{, and since M Φ 0 if τw(0, x)-}»0, LLRO implies

a nonzero magnetization, as is well known for q = 2 [G], The converse is
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presumably true at least for q = 1 and 2 (with ε arbitrarily close to 1 and v to M for
large L); it may not be true for larger values ofqatβ = βc, where the infinite volume
free state may be disordered, as is the case for two dimensional Potts models with
large g[KS, M] (see Subsects. l.iv.c) and l.iv.d)). The significance of such a
converse, in light of Theorem 1.4 below, will be discussed in Subsect. l.iv.a). A
weak converse for q = \ and 2 can be obtained from Hammersley-Lieb-Simon type
inequalities [H, Si, Li, AN1, A]; this leads to Theorem 1.7.

Theorem 1.2. ///?>!, then for all large Jί there is long long range order.

Proof. For q = 2, 35 ..., this is the essential part of Theorem 3.4 of Sect. 3. For all
other q, it then immediately follows from Fortuin's comparison principle [related
to(1.15a)] [F, ACCN],

) for q"Zq9q'^ί9 (1.23)

by choosing g'e{2, 3, ...}; here ^ denotes domination in the FKG sense.

Remarks, i) The q=l case of Theorem 1.2 was originally proved in [NS].
ii) Since the inequality (1.23) is valid with 0^g<l, so is the theorem.

iii) The results of Sect. 3 show that the conclusion of the theorem can be
strengthened to:

as J^oo, τί(x,y)^l-e-°(Jl) for all L>0 and x,j>e[-L,L] . (1.24)

We turn now to lower bounds for τ'(x,y) (and by Proposition 1.1 also for GΓ,
Gjf, and G'ζ). For q — \, one very simple estimate is

τf(x,y)^μw({x,y} is occupied, but every other {x, z} and {y,z} is vacant)

'--"-I), (1.25)

which implies that τ'(x,y)^ C/\x — y\2. A similar argument for q>\ yields:

Proposition 1.3. For some C>0,

τ'(x,y)^C/\x-y\2 far all {x,y}. (1.26)

Proof. The first inequality of (1.25) remains valid. We express its right-hand side as
a product of conditional probabilities for single bonds conditioned on succes-
sively more information about the other bonds. It is a consequence of the basic
definition (1.6) of the random cluster measures that (see Eq. (2.10) of [ACCN]) for
any bond ft,

/ .w/ n—\ i ( n \ ,t.\ — 1 _ #~βjb or ι\ jη\
H- Vlb—λ\\nbΊb'*b)—λ ^ υι <[_e-βJ* . ~ ~ - f l J » , ' \λ ^f)

which implies that partially conditioned probabilities satisfy

\-e-βJ*lq^μ™(nb = ̂ {nb}b,eB)^l-e-βJ>>9 (1.28a)
J^ι (1.28b)
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here B is any set of bonds not including b. Thus the remainder of (1.25) is also valid,
providing we change the equality to an inequality and replace the two appearances

Remark. Proposition 1.1 and the proof of Proposition 1.3 together imply that for
general Ising and Potts ferromagnets,

This is valid in any dimension (even without translation invariance) with

The next theorem gives a more interesting lower bound on τ'. We state the
theorem in two parts; the second part is a stronger result which should be regarded
as a renormalized version of the first part.

Theorem 1.4. // a model exhibits long long range order, then for any εf > 0, there is
some C >0 so that

i) τ'(x,y)^C/\x-y\2(β-1} + ε' for all { x , y } , (1.29)

ii) τ'(x,y)^C/\x-y\2(βM2-v + ε' for all {x,y} . (1.30)

The following result is an immediate consequence of Theorem 1.2 and the
unrenormalized part of the last theorem (and Proposition 1.1). It demonstrates the
presence in the (β, J x) plane of an ordered phase with slow decay of GT [and infinite
susceptibility as defined in (1.32)]; we take (1.1 2a) as the definition of GT for q = 1
and noninteger q. After the corollary we discuss the proof (of the unrenormalized
part) of Theorem 1.4 in an important special case; the complete proof is an
immediate consequence of Propositions 2.1-2.3 given in Sect. 2.

Corollary 1.5. // 1 </J<2, then for all large J1?

and Gτ(x,y}^τ'(x,y)^C/\x-y °, (1.31)

for some C > 0 and θ < 2. // 1 < β < 3/2, then for all large J1 , (1 .31 ) is valid with θ < 1
and hence also

/(/U,)= Σ G3'(0,x)=«. (1.32)
x= — oo

For any ε > 0, one may choose β sufficiently close to 1 and then J l sufficiently large so
that (1.31) is valid with θ<ε.

Most of the basic ideas underlying Theorem 1 .4 already are present for the case
of independent percolation (q = \\ where an important role is played by the self-
similar model (introduced in [NS] and used further in [AN 2]), defined by

ΓO, for \x-y\ = l
J = \ x + 1 >> + 1 (1 33)x~y I J J \u-v\~2dvdu9 otherwise. l > ;
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The next proposition, which will be a major ingredient in the proof of
Theorem 1.4, helps explain the significance of the exponent 2(β— 1). Immediately
after we prove the proposition, we will use it to prove (1.29), the unrenormalized
part of Theorem 1.4, (with ε' = 0) for self-similar independent percolation. We
remark that the extension of (1.29) to other independent percolation models and
to q > 1 is not difficult; on the other hand, the derivation of the renormalized part
of Theorem 1.4 (even for q = l) will require some of the heavier machinery of
[AN 2].

Proposition 1.6. Define for k> 1 and positive integer L the event

FLtk = {for some integer ξe[L, fcL), every bond from [0, £]

to [_ξ + 1, oo ) is vacant} .

Let Pβ denote the probability measure ( = μw = μf) for the independent percolation
(<? = !) model with Jx given by (1.33). // /J>1, then for some C,C">0,

1 for all L, (1.34)

Pβ([0,L]+»<x>)^C/L2(β-l) for all L. (1.35)

Proof. We first show that (1.34) implies (1.35). Following [AN 2], we define

F* fc={for some integer ξ'e( — (fe — 1)L,0], every bond from [£', L]

to (—oo,^ — l] is vacant} .

If the four events FL 2, F£ 2, HL = {every bond from ( — L,0) to (L, GO) is vacant}
and H% = {every bond from (L, 2L) to (— oo,0) is vacant} all occur simulta-
neously, then there is a dissociated interval [£', ξ] (i.e. [£', £]<+»[<!;', ζ]c] containing
[0,L] (in fact with ξ<2L and ξ'> ~ L) and hence [0, L]^HOO. Hence

FL2 and F*>2 and HL and Hf]

^ LPβ(FL,2}
 pβ(HJ]2 > (1-36)

where the last inequality is an application of the Harris-FKG inequalities
[Ha, FKG] which uses the fact that all four events are decreasing (in the FKG
sense). Now

Pβ(Hι)= Π Π e-βj»-* = exp\-β J J (v-uΓ2dυdu
x= -(L- 1) y = L+ 1 |__ - ( L - 1 ) L + 1

Γ o oo Ί
= exp -j8 j J (v'-u'Γ dv'du' . (1.37)

L - ( l - l / L ) 1 + 1/L J

Since this last expression is bounded away from zero as L—»oo, it follows that

which shows that (1.34) implies (1.35) as claimed.
There are a number of ways to derive (1.34). One of them uses a renewal type

argument as follows. Let Λ" denote the (random) number oΐξ's in [L, 2L) such that
every bond from [0, ς] to [£ +1, oo) is vacant. FL 2 is the event that yK>0. The
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expected value of J/' (with respect to the measure Pβ) is easily calculated as

2L-1

Eβ(Jf}= X P^ (every bond from [0, ξ] to [£ +1, oo) is vacant)

2L-1 2/,-l I

= Σ expf — jδ j (u — u)~2dvdu\ ^const X —g-
<? = -£' V ^ )̂ / <^ = L ς

^ const U'β, (1.39)

where

3%(ξ) = {Q^u<ξ+ 1, £ + 1 5Ξt;< oo}\{ξ^u<ξ + 1, ξ + l^t;<(^ + 2}. (1.40)

To compare Pβ(FF^ 2) = P/?(^ > 0) to £«G/F), we use

and note that the conditional expectation can be calculated by conditioning
further on the random location X, defined as the first ξ' in [L, 2L) such that every
bond from [0, £'] to [£' + !, oo) is vacant. Thus

ξ' = L

x ( 1 + X P«(every bond from [£' + !, ξ]
\ £=<r + ι

x (1.42)
to [ξ + 1, oo ) is vacant))

g 2 Σ ' PX^ = ̂ 'K > 0) (1 + E^ΛO) = 1 + E^)
^' — L

co j

5^1+ const Σ -« = const.
ξ=L+\ ζP

Combining all these inequalities yields the desired bound (1.34) on Pβ(FL 2).

Proof of Theorem 1.4 (i) for Self-Similar Independent Percolation. Using the ε and v
from the definition of LLRO, we take L = Lx as the least integer greater than ε ~ : |x|
and note that (with Pβ replaced by μw)

τf(0,x) = μ™(0^x, but {0,x}<+»oo)

^μw(x connected to 0 by a path of occupied bonds

within [ — L,L], but [ — L,L]<+>oo)
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The proof is completed by applying the second inequality of Proposition 1.6. We
remark that (1.43) did not use the self-similarity of the model, and except for its
second equality did not use the independent nature of the model; in Sect. 2 (see
Proposition 2.1) this equality will be replaced by an inequality for q>\.

As mentioned above, it is believed that for q — 1 or 2 LLRO occurs whenever
M>0. This would yield a corresponding weakening of the LLRO assumption of
Theorem 1.4 and give a result applicable even at the critical point, where M2β — l
is believed to vanish (see Subsect. l.iv.a) for further discussion of this issue). The
next theorem gives a somewhat weaker result applicable at the critical point. As
explained in Subsect. 2.iii), this result is based on Hammersley-Lieb-Simon type
inequalities [H, Si, Li, AN1, A]. Its proof is an immediate consequence of
Propositions 2.1, 2.3, and 2.4.

Theorem 1.7. Suppose q — \ (independent percolation) or 2 (I sing model). If M > 0,
then there is an infinite sequence 1 < X j <x2< -•• (with xn+1/xn bounded as n-+cc)
such that for any ε' > 0, there is some C > 0 so that

τ'(Q,xn)^C/x2(M2β~l} + ε' for all n. (1.44)

Next, we turn to upper bounds for GT(x, y); these have so far only been derived
for Ising and Potts models.

Theorem 1.8. Suppose q^2 is an integer. If β>\ and ε'>05 then for all large J l 5

there is some C>0 so that

Gτ(x-y)^C/\x-y\m[n(2(β~1}-κ'>2} for all {x,y}. (1.45)

In particular, if β>2, then for all large J1, there is some C>0 so that

Gτ(x-y)^C/\x-y\2 for all {x,y} . (1.46)

Equation (1.46) is also valid for fixed Jl >0 and all large β.

Proof. Equation (1 .45) is an immediate consequence of Theorem 4. 1 which gives an
upper bound on GΎ

2 together with Proposition 1.1 which bounds Gτ by a multiple
of G%. We remark that Jΐ = J^ε') may be chosen large independently of β as long as
β stays away from 1 and similarly in (1 .46) ifβ stays away from 2. The last statement
of the theorem was originally proved for q = 2 by Imbrie [I] its validity for general
Potts models can be shown by minor modifications of the arguments of [I].

Remark. The last statement of the theorem is presumably true without the
assumption that J1 >0, but we have not checked the details.

i.iv) Open Problems

In this subsection we discuss various open problems for l/\x — y\2 models. These
can be loosely grouped according to the following issues: a) saturation of M2β^ 1
at βc; b) validity of θ = min(2(M2β— 1), 2); c) critical exponents; and d) number of
Gibbs states at βc. We will discuss the first issue and related items in some detail,
the other issues only briefly.
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a) Saturation of M2β>l at βc

The prediction (for q = 2) that M2β = l at βc is probably contained in [AY]. (See
their Eqs. (20) and (20'). The situation is somewhat unclear to us because of the
comment that their "Eq. (20) is exactly the same, actually, as the Thouless
inequality" - presumably referring to M2β^ which is Eq. (8) of [T] or (1.16) with
the assumption that 0^1. The saturation of Thouless' inequality is impossible.)
We would like to first explore the consequences of such a saturation result and then
motivate the result by discussing its relation to the renormalization group
approach in [NS] and to various notions of long range order. One point we wish to
bring out in that discussion is that (at least for q=l), the "interesting"
renormalization part of the saturation result has already been solved leaving only
some "technical" questions.

The consequences of saturation coupled with (the renormalized part of)
Theorem 1.4 and Theorem 1.7 would be to improve our current results about an
intermediate phase in the (β,Jι) plane to results about an intermediate phase in β
(for any fixed JJ. tn particular, we would have (with Jx fixed for all x):

i) θ<2 in some nonempty inverse temperature interval, (βc,β).
ii) Θ(j8)->0as β\βc.

in) 0(/?c) = 0.
Statements i) and ii) use the fact that M(β) is right-continuous since it is the

decreasing limit as L->oo of the continuous finite volume quantities
μ£(0<-»[ — L, L]c). These results would be true, in the weak sense of Theorem 1.7 for
q = l and 2 with no further assumptions; they would be true in the stronger sense of
Theorem 1.4 for any g's for which LLRO occurs whenever M>0.

Statement iii) would be a first step in solving the open problem of proving the
prediction of [BCRS] that at βc9 G^x^lnx)"1. We remark that the proof of iii)
would contain, well hidden in its guts (the main gut being the proof of Lemma 5.2
of [AN 2]), a more explicit upper bound on the decay of Gτ(x) at βc, but one which
may be far from the (In XT1 prediction.

We now restrict attention to q = 1 and discuss how the renormalization
methods of [NS] come "close" to proving saturation. The basic rescaling
argument of [NS] considers disjoint blocks of length L as renormalized sites which
are alive (with probability /Γ) if they contain a large cluster (defined using only
bonds within the block) containing a specified fraction M of the sites in the block.
One then defines a renormalized independent site-bond percolation model in
which λ' is the site parameter and the bond parameters β'J'x are defined by (a worst
case estimate of) the probability that two living blocks (separated by x\ — 1
intervening blocks) have an occupied bond between their two large clusters. A key
feature of this definition is that percolation of the renormalized model implies
percolation of the original model. The proof that M>0 for β> 1 and Jί large is
based on an argument which shows that for J t large enough one may prescribe a
sequence of L's and M's (with the M's close to 1) so that the iterated Γs tend to 1,
the jβ's stay above and bounded away from 1, the J^'s for x > 2 essentially approach
the couplings (1.33) of the self-similar model and the J/s are driven to oo.

Although this type of proof that β* :g 1 is fairly complicated because it involves
an infinite sequence of mappings, we point out that a much simpler application of
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this method, involving a single mapping, can be used to reduce the problem of
proving saturation to a technical question about long range order (namely, that
M > 0 implies uniform long range order, as defined below). The idea is as follows.
To prove saturation it suffices to show that if a model has M2(β) •/?>!, then β can
be slightly lowered while leaving M > 0. To do this, it suffices to find some L and M
(with perhaps a stronger requirement for a block to be alive than the one given
above) so that the renormalized model is not only percolating, but is far from
critical; in that case β can be lowered while the renormalized (and hence the
original) model continues to percolate. Because β' is essentially M2β (more
accurately β'J'x is asymptotically βM2/x2 for large x), it will be necessary to

1) choose M arbitrarly close to M in order that /?'>! be guaranteed by

2) define "living blocks" in such a way that J\ is large for large L.
If all this is done properly, then the theorem that β* £j 1 will imply that (for large

L) the renormalized model is percolating and far from critical. The above two
requirements suggest consideration of alternative notions of long range order. For
the sake of concreteness, we choose one such notion and make the following
definition.

Definition. We shall say that a model has uniform long range order if it has a positive
order parameter M and furthermore for any ε'>0 and positive integer X, the
probability /LL, defined as

;OL = μfKL (there is a cluster in [ — XL, XL] whose intersection

with each [/L,(/+1)L) subinterval contains (1.48)

at least (M —ε')L points)

satisfies

l i m λ L = l . (1.49)
L-»oo

The next conclusion can be proved by following the above discussion using
blocks of size 2XL and defining a living block as one with a cluster of the type
described in (1.48). By choosing first ε' small [so that (M — ε')2β> 1], then X large
and then L large one can construct a renormalized model well inside its percolative
regime.

Conclusion. Suppose q = \ and J1 is fixed. If at β = βc, there is uniform long range
order [we already know M(/?c)>0], then M2(βc) βc= 1.

b) Validity of θ = min(2(M2β-1), 2)

The motivation for this conjecture is essentially as follows. We have already
proved (at least for q = 2,3,...) that for β > 1, 0->min(2(jβ-1), 2) as Jγ -» oo. On the
other hand, the renormalization arguments discussed above (for q = \) suggest that
on a large enough scale, the model behaves like a renormalized model with
β1 = M2β and J\ arbitrarily large. Thus the conjecture.

One weakness of this argument (as indicated by the discrepancy between the q
values in its two parts) is that at the moment our upper bounds on Gτ [which give
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θ ̂  min(2(β — 1) — ε', 2)] for large J\ are derived only within the Ising or Potts spin
systems while our best renormalization arguments (which allow a replacement of β
by M2β) are done within the percolation or random cluster systems. An open
problem, whose solution would serve as a first step in remedying this situation, is to
extend our upper bounds on Gτ to the case of independent percolation. While the
Peierls argument has been extended to q = 1 by Schwerer [Sc], it is unclear how to
treat the term τ in the decomposition GT = τ' + τ. The τ' term should be accessible,
however.

c) Critical Exponents

There are various predictions of critical behavior extant. Three of these for the
Ising case, coming respectively from [AY, K] and [BCRS], are (we use τf = τw = τ
forj8<j8 c):

(β-βcyi2 as β\βc9

χ(β)~ £ τ(0,x)~exp(const(&-)5Γ1/2) as βsβc,

-c) as \e.

As pointed out previously, the first and third of these are consistent with the
conjectured identity for θ just discussed. We note that the predicted behavior of χ
has been studied numerically by a high temperature expansion [Ma].

As far as rigorous results are concerned, we can only mention the following.
For q = ί or 2, χ is known to diverge and the divergence is at least as fast as
(βc ~β)~l [Si, AN 1 ] for q = 1 the discontinuity in M at βc implies a divergence at
least as fast as (βc — β)~2 [N]. These results are obviously very weak compared to
the prediction.

An interesting open problem concerns the critical behavior for gφ2. For
example, does χ diverge for all q or is there for q > some q* a first-order transition
as β /* βc like in nearest neighbor models [KS, M] (where q* depends on the spacial
dimension)? The answer according to Cardy [C] should be divergence, since his
extension of Kosterlitz' analysis [K] from q = 2to other Potts models predicted
that the correlation length (and presumably χ as well) behaves as

exp (const (βc-β)~p) as

with

,
P 2

We remark that our results on the intermediate phase show that the transition is
not first-order from the low temperature side.

d) Number of Gibbs States at βc

For independent percolation, it is a general fact [AKN] that when M > 0, there is a
unique infinite cluster - even at βc. The issue of uniqueness is similar to the Ising
model question of proving that there are only two translation invariant pure Gibbs



Intermediate Phase with Slow Decay of Correlations 321

states [L]; in particular nonuniqueness of infinite clusters seems analogous to the
existence of infinitely many such states [BL]. It is an open problem for every q > 1
to resolve either the question of uniqueness of the infinite cluster within the
random cluster system or (for q = 2,2,...) the number of Gibbs states within the
spin system. This is especially of interest at β = βc. For example, related to the issue
of divergence of χ is the issue of a distinction between μf and μw at βc and whether
there are exactly q (or perhaps exactly q + 1 for q > q*) translation invariant pure
Gibbs states of the spin system.

2. Lower Bounds for τ'

As in Subsect. l.iii) above, we will deal throughout this section with one-
dimensional translation invariant parameter-^ random cluster models with q^.1,
β > 0, and lim x2 Jx = 1 . However, we remark that the natural analogues of all our

x-> oo

results are valid for the more general class of (dependent) one-dimensional bond
percolation models considered in Lemma 4.2 of [AN 2] (i.e. those which satisfy the
strong FKG conditions, are regular and have β+ < oo).

2.1) θ^

The next proposition shows why long long range order is useful in obtaining lower
bounds for τ'.

Proposition 2.1. For any L^|x|,

τ'(0,x)^τ{(0,x).μw([-L,L]^TO). (2.1)

Proof. Proceeding as in our previous proof for self-similar independent percolation
[see (1.43)], and defining ΆL to be the set of bonds {x, y} with both \x\, \y\^L, we
have

τ'(0, x) ̂  μw(x connected to 0 by bonds in ΛL\\_ — L,L]<-H>oo)μw([ — L,L]<+»oo).
(2.2)

Note that the event [ — L,L]<+κx) depends only on bonds not in ΛL. Thus, by
conditioning further on the configuration n~A^ of those bonds (i.e. on the σ-algebra
generated by these w^'s), we see that it suffices to show that

μw(x connected to 0 by bonds in ΛL nλ!) ;> τ{(0, x) . (2.3)

As in the proof of Lemma 3.1 of [ACCN], the precise meaning of the left-hand side
of (2.3) is

lim lim μ™,(x connected to 0 by bonds in ΛL\nλ^Λ]).
k—> oo L' —>• GO

Now by the strong FKG property, for an event F (depending only on bonds in ΛL),

ί = 0) = μ[(F) .
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Taking F to be the event that x is connected to 0 by bonds in AL completes the
proof.

Proposition 2.2. ///?>!, then for any ε'>0, there is some C>0 so that

~1 ) + ε/ for all L^ l . (2.4)

Proo/. We wish to compare our original μw with q ̂  1 to the g = 1 measure μ of a
modified self-similar model in which Jx is given by (1.33) for x > R and JX = JX for
x rg JR. This is easily done by first using the monotonicity in q of μw (analogous to
(1.23) - see [F, ACCN]) and then the monotonicity in the J^'s. Given ε', we choose

^>/?S°that 2(/?-l) = 2(/i-l) + s', (2.5)

and then choose R (depending on ε') sufficiently large so that βjx ^ βJx for all
x>R; this is possible because limx2Jx = limx2JJC = l. We then have

(2.6)

Moreover, exactly as in Proposition 1.6,

μ([0, L]woo) ̂  const [μ(FL, 2)]
 2 . (2.7)

Let us define

FL 2 = {for some integer ξ e [L, 2L) every bond of length
(2.8)

longer than R between [0, ξ] and [£ + 1, oo) is vacant} .

Since FL 2 does not involve the short bonds which distinguish between μ and the
self-similar model measure P^ we have

L, 2) =-- Pβ(FL, 2) ̂  Pί(FL, 2) ̂  C/L - 1 , (2.9)

where we use Proposition 1 .6.
On the other hand, by a simple conditioning argument

£ £+ R

Π Π ^"^

= const μ(FL,2). (2.10)

Putting all this together yields (2.4) as desired.

In this subsection, we give the renormalized version of Proposition 2.2. Following
Sect. 4 of [AN 2], we first introduce the notion of //-anchored bonds and then
point out some facts which suggest how this notion leads to a replacement of β by
M2β.

Definitions. We shall say that there is an (occupied) H-anchored bond {x,y} if
a) the bond {x, y} is occupied, and
b) x is doubly connected to [x — //, x + H]c, and y is doubly connected to

[j; — H,y + HJc. (Here we say x is doubly connected to a set S if there are two
disjoint paths of occupied bonds leading from x to S.}
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We also define MH by

MH = supμw(0^[-//,//]X = m& for all b = {x,y} with |x|,|j;|>H). (2.11)
{m}

Two key facts about these definitions are (see Lemma 3.1 of [ACCN] and
Lemma 4.1 of [AN 2]):

i) MH = μ£(Ck->[-//,//]c)-+M as //-+oo, (2.12)

ii) for any ε">0, μw (there is an //-anchored bond {x,y})

+ ε")/\x-y\2, for all large \x-y\. (2.13)

In the next proposition, the role of a dissociated interval is replaced by its
//-anchored bond analogue.

Proposition 2.3. // M > 0, then for any ε' > 0, there is some C'>0 so that

μw([0,L]^oo)^CVL2(M2/J-1) + ε' for all L^ l . (2.14)

Proof. Given ε', we choose β'>M2β by

2(/ϊ /-l) = 2(M2jβ-l) + ε', (2.15)

and then [by (2.12)] choose H so large that

β'>M2

Hβ. (2.16)

Now [0, L] will be disconnected from oo if there is no occupied (ordinary) bond
from [ — H, L + //] to [ — L, 2L]C and there is no path of occupied //-anchored
bonds connecting [ — L, 2L] to oo. The latter will be the case if there is an
"//-dissociated interval" containing [ — L, 2L] - i.e. an interval [ξ', ξ] with ξ'^—L
and ξ ̂  L with no occupied //-anchored bond connecting [£', ξ] to its complement.
Thus, by the FKG inequalities,

μw([0,L]<π-κχ))^μw (there is no occupied bond from

[~//,L + //] to [-L,2L]C)

x μw ([0, 3L] is contained in

some larger //-dissociated interval). (2.17)

We claim that the first factor on the right-hand side of (2.17) is bounded away
from zero as L-» oo this can be seen by combining an argument like that used for
Proposition 1.3 with a calculation like that used in Proposition 1.6 to show that
Pβ(HL] is bounded away from zero. Then, as in Propositions 1.6 and 2.2, the second
factor can be handled by (aging using FKG inequalities)

μw([0, L] is contained in some larger //-dissociated interval)

^ Lμw(HL)μw(FLί 2)]2 ̂  const [μw(FL, 2)]2 ,

where FL 2 is the //-anchored bond analogue of FL 2

It remains to obtain an appropriate lower bond on μw(FL 2). But Lemma 4.2 of
[AN 2] gives precisely the estimate

FL,2) (2.19)
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comparing μw to the self-similar q = ί measure Pβ,. The desired lower bound now
follows from (2.15) and (1.34).

2.ίiί) Use of Hammersley-Lieb-Simon Type Inequalities

Proposition 2.3 gives a good lower bound on the L-+CC behavior of
μw([ —L, L]«4*oo) whenever M>0. The reason it was necessary in our main result,
Theorem 1.4, to make the stronger assumption of LLRO, was in order to control
the other term, τ£(0,x), appearing in Proposition 2.1. Since, at the moment there
does not exist any rigorous result that M>0 implies LLRO, we will give an
estimate on τ£(0, x) which only requires the weaker assumption of M > 0.

Our estimate on τ{ is based on Hammersley-Lieb-Simon type inequalities,
which were originally derived in [H, Li, Si] for nearest neighbor models and
extended in [FS, ANl, A] to general long range models. These inequalities are
only valid for q=l or 2 and hence our estimates only apply to these two cases. For
either q = \ or 2, and Λ any finite subset of sites (e.g. [ —L,L]), the following
inequalities are valid for x e A and yφΛ:

T I V V i <-C >^ Ύ^ I V Mill ϊ TiΠ lA I / /OιL ^-Λ<, _ / / —-̂  / j /i\ ? WjjJU u D ί> \U) _// I Δj.έ-\J I

ueΛ,vφΛ

Here τ^(x, ι/) is the free boundary condition probability that x<->w, while

τw(x,y)= lim μ^(x^-^j ) = τ'(x, y) + /iw(x<-^oo and y<-κx))

/ , , s . ίor ί=ί' ^
l( = \o;cS);>+)5 for ^ = 2.

(As stated, these inequalities involve slight variations and special cases of
Eqs. (5.17) of [AN 1] and (I.I) of [A].) The inequality (2.20) is very similar to the
one analyzed in Sect. 5 of [AN 2] and we will essentially copy some of that analysis
here. The next proposition is our basic conclusion; stronger (but messier)
statements can be given.

Proposition 2.4. Suppose q=l or 2. If M>0, then for some ε>0 and C>0, the
following is true for all large L:

C
τ{(0, x) > -—-— for some x in [εL, L] .

j. ~τ~ in x

Proof. If the conclusion of the proposition fails, it must be the case that for every ε
and C, and then for infinitely many choices of L,

τ£(0, x) ̂  T-T— for all x in [εL, L] . (2.22)

Proceeding as in Lemma 5.4 of [AN 2], we first note that if this is the case, then

liminfαL = 0, (2.23)

where

^L- Σ Σ τ£(0,u). £/„,„. (2.24)
|w |^L M > L
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To see this, we bound αL by

αL^const/L +const Σ Σ τf

L(Q,u)/\v-u\2 + constτ{(0,L)
0<|« |<L \v\>L

Ί as L-^oo, (2.25)

where K does not depend on the choice of C or ε [and the last limit should be taken
through the subsequence of L's for which (2.22) is valid]. Since C and ε may be
chosen arbitrarily small, (2.23) follows.

Next we show (proceeding as in Lemma 5.1 of [AN 2]) that (2.23) would imply
that for some &' > 0,

Στw(0,*)Mε<^ (2.26)
X

But this would contradict M > 0 (and hence complete the proof of Proposition 2.4),
since τw(0, x)^M2 by the last statement of Proposition 1.1. To obtain (2.26), we
first note (as in [AN 2]) that (2.23) implies that for some L, αL < 1 and then for some
small ε' > 0,

/v (p'\=z V V T/fO u\Rl f>ε'd^<: 1 (Ί Ίl\ZΛ / — L—t / 1 k /Λ ' uiuj j. jjtί ^~ JL , i ΛI.Z* i I
\u\^L \v\>L

where d(y — x) = ln(|x — y\ +1) is a metric. For x and y with \y — x > L, (2.20) and the
triangle inequality for d( -} imply

| t ;-αc|>L

We sum this over /s in [ — M, M] and define

χ™= max Σ τw(x9y)eε''d(v~x).
xe(— oo, oo) I

(We remark that the max in (5.10) of [AN 2] should have been over x in (— oo, oo)
and the sums in (5.12)-(5.13) there should have been over |x|^L.) We obtain

or equivalently [where we use (2.27)],

"1 Σ τw(0,x)ee'd(x}. (2.28)

Since this bound is independent of M, (2.26) follows by letting M->oo.

3. Long Range Order for Ising and Potts Models

3.i) Spontaneous Magnetization: β*^ί

In this section we consider Ising or Potts models with integer g^2, at inverse
temperature β>\. We assume limx 2 J x = l and take J± sufficiently large,
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depending on q and β, with J1 -^oo as β \ 1 or as g->oo. Our first result concerns
the spontaneous magnetization in the 1 state in a finite interval Λ = \_ — L,L\. We
then consider the existence of long long range order with free boundary conditions.

Theorem 3.1. For any β>\ and integer q^2, let Jί be sufficiently large. Then the
estimate

- O(Ji) /"} \ \(J.I)

holds uniformly in L. Hence M, as defined in (1.3), is strictly positive.

Proof. The proof is closely related to the proof by Frόhlich and Spencer of
spontaneous magnetization for large β in the Ising case [FS]. It is a generalized
Peierls argument balancing entropy and energy for a carefully defined class of
"connected" contours. Entropy and energy estimates have to be done with great
care since we are working just below the temperature at which entropy begins to
dominate energy.

The reason why β = 1 is the borderline for the possibility of spontaneous
magnetization can be seen already at the level of simple spin flip pairs, or "dipoles."
Suppose there is just one such pair with a separation between L and 2L. The energy
can easily be calculated approximately as 21nL + 0(J1). Hence the Boltzman
weight is approximately L~ 2βe ~ 0(Jl\ To account for entropy, we count the number
of such pairs that could "surround" the origin-approximately (q— 1)L2. Hence for
/J>1 and large J t, energy dominates entropy, and a Peierls-type argument can
succeed.

We begin proving Theorem 3.1 by defining the contours we will be working
with. For the convenience of the proof, we use addition modulo q on spin values,
with q being identified with 0. In the Potts models, a contour is a collection of spin
flips {/Ί, ...,/„}. Each spin flip specifies a bond in Z* (a nearest neighbor pair of
sites in TL) and a charge in TLq associated with that bond. The spin to the right of a
flip is equal to the spin to the left plus the charge. In the Ising case two spin flips
always cancel, so that spins to the right of such a pair equal the spins to the left. In
the Potts case several flips may be necessary. A contour is called neutral if the sum
of the charges of its spin flips is O(modg). If a contour is not neutral it is said to be
charged. For any contour 7 we let |y| denote the number of spin flips in 7.
Geometrically, we think of each flip in 7 as the midpoint of the bond it specifies, and
this leads to notions of the diameter of 7 [denoted by d(y)~\ and the distance between
contours [denoted dist^, yv)].

Following [I], we say a contour y is irreducible if
A) 7 is neutral.
B) There is no decomposition of 7 into subsets, 7 = 7ιU7 2u ... uyπ, such that

each yμ is neutral and such that dist(yμ,yv)^m(min{d(yμ),d(yv)})κ.
Here /c,m are constants to be chosen later; we will require that \<κ<β and

that m-»oo as jβ or κ->l. We will find it convenient to choose a small ε>0 and let
the other constants depend on ε. Thus we make choices in the following order:
jβ, ε, K, m, J1. For example, we require m>D0, where D0 is large enough so that
x2Jx-ί\<ε/3 for \x\^D0.

The following two facts can be proven as in [I].
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Proposition 3.2. There is a unique way of partitioning the spin flips of any
configuration into irreducible contours yμ such that

C) dist (yμ, y v) ̂  m(min {d(yμ\ d(yv}})κ .

Proposition 3.3. // y is an irreducible contour and ρCy, £φy, then
D) dist(ρ,y\ρ)^2m(W(ρ))κ implies that ρ is charged.

The Peierls argument proceeds as follows. By Proposition 3.2 any spin
configuration determines uniquely a collection of irreducible contours y 1 ? . . . , y π

satisfying C. Each y z also satisfies A, B, and D. The observable 1 — δσθί 1 in (3.1) is
nonzero only if at least one of the y/s surrounds the origin. (We say y surrounds a
site if the part of y to the left of the site is charged, so that the spin at the site is
different from what it would have been without y.) When σ0 Φ 1, we can therefore
assume that y 1 ? say, has the largest diameter of the y/s which surround the origin.
We write //(y t) for the energy of y1 ? that is H(yΐ) = 3f(σ\ where the spin
configuration σ has precisely y± as its collection of spin flips. With Γ = y 2 u ... uyw,
we define analogously H(Γ). We can use the proof of [FS] to show that y t interacts
weakly with Γ, in the sense that

lnmfHiy,). (3.2)

This implies that for m large,

(3.3)

where βί=β — ε. We choose ε so that β^ is larger than 1 and we are still able to
control entropy with energy. We estimate

<— 7 , ,x
£\\Λ) < r U , σ 0 Φ l

(3.4)
< y

L
\ surrounding 0 Z^^\yl) r compatible with y i

Dropping the constraints on the sum on Γ, the partition function Z±(A) is
cancelled, and we are reduced to proving the Peierls estimate,

Y e-βιH(yι)<e-0(Jι) ^ β^\

•yi surrounding 0

Alternatively, we consider y t to "start" at its left-most spin flip /, and show that

y g-j»ιH(v)<£-0(Jι)£)-(2j8 2-l) + ε ^ β_gj

y starting at /, d(y) ^ D

with j82 = )81(l — ε)> 1. Since φ^^distφ,/) for yί surrounding 0, we are able to
sum over / and obtain (3.5) from (3.6) (again for small enough ε).

In order to organize this estimate properly, we describe the connectedness of y
on a sequence of length scales. The starting scale d0 must be sufficiently large;
d.Q = m2l(κ~l} is large enough. Then with α — /c2, we define inductively
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A set of spin flips is called fc-connected if the distance between successive spin flips
is ^dk. The contour y decomposes into 0-connected components {y(®}}< Compo-
nents y(®} separated by no more than a distance d1 are united to form the
1 -connected components, {y(μ}}> of y. This continues until at some scale y is a single
component.

We sum over y in (3.6) as follows. We begin by assuming that the first flip of
some y(μ} is fixed in space, as we estimate the sum over |y^0) and over the positions
of the remaining sites in y(®\ We use pairs ij with \ί—j\ <d0 to produce the energy
needed to control these sums. [This portion of H(y) will be denoted H(0\y).~]
Actually, only the nearest neighbor pairs with large coupling J ^ are needed. This is
important because only beyond the scale D0 < d0 do the couplings approximate
their asymptotic behavior sufficiently well. Proceeding to larger scales of structure,
we understand sums over 1 -connected components y(*\ again with the first flip
fixed. Here we sum over the first 0-connected subcomponent, then sum over the
position of the first flip in the next 0-connected subcomponent, and so on through
the sum over the last subcomponent. We use #(1)(y), the energy arising from pairs
with d0^\i—j\<d1, in this part of the estimate. Inductively, the estimates on
fc-connected components use what has already been proven for (fc — l)-connected
components. Since y must be X-connected for some X, these estimates give us
control over (3.6).

Consider a 0-connected component y^0). Each spin flip comes with a weight less
than e~Jίβi<e~Jl from the nearest-neighbor bonds. There are q — ί possible
charges for each spin flip. Summation over \y(^\ is estimated with a combinatoric
factor 2 lvί*0) |. (A combinatoric factor is the factor Cτ in the estimate

_
^ sup Cτf(T\ valid when £ Cτ

 1 ̂  1 Λ There are at most d0 = m2/(κ υ positions for
T T )

each successive spin flip. All these factors are controlled by a small power of the
"bare activity" e~Jl. Gathering the factors in each y(®\ we obtain a bound

Σ 1 l o , - ,, -n
y(μ°), f i rs t f l ip f ixed y{°> (->•<)

Here we define

dk(Q) = dkexp(d(Q)/dk)^d(Q) (3.

for any collection of spin flips ρ. Since \y^\^d(y^)/m we have that

for J1 large. This justifies the final factor in (3.7). At the kih level, we will find
activities dk(y(®)~β2, which essentially give an inverse power of the length scale, dk.
Unusually large components incur an exponential decay on the scale dk.

Let us assume inductively that an estimate like (3.7) has been proven for (k — 1)-
connected components:

Σ
~ D, first f l ip f ixed |_ ; = 0 J (39)

^ s u p - - "
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It is worth noting that in each estimate as in (3.7), (3.9), we use only the part of
H(J\y) that is associated with the component y f ~ 1 } . We use the fact that

which holds because bonds in H^ are shorter than dp while the subcomponents y^
are separated by at least a distance dj.

To obtain (3.9) with k— 1 replaced with fc, we apply (3.9) successively to each
(fc — l)-connected subcomponent of y%\ Once one such subcomponent is fixed,
there are no more than dk choices for the position of the first flip in the next
subcomponent. To fix the number of (k — l)-connected subcomponents of y(£\ we
need a combinatoric factor 2N, where jV is the number of subcomponents. At this
point we must consider several cases.

Case i. Let N^.2. The combinatoric factors are bounded by (4dk)
N~ *. We bound

one of these factors and two factors of <4~- ί from (3.9) by taking α = κ2 sufficiently
close to 1 and then m sufficiently large:

dk^(4dk)dk^^e'^dk

(2β2'^ + ε^e-β2dk

β\ (3.10)

Here on the right we have the correct power of dk as required for (3.9), while the
center term gives a slightly better bound to be used later. The remaining factors can
be paired up, and we use 4dkdkJ*l ^e"β2. It remains only for us to prove the weak
exponential decay. We use the factors of e~β2 to obtain a decrease

When supplemented with the decrease in subcomponent size,

we obtain the desired decay, exp( — β2d(y(a]}/dk).

Case 2. Here JV = 1, and furthermore d(y(^)> dl^. There is a combinatoric factor
of 2, and our bound follows using

2d^i^v(~±β2dt\-^d^\ (3.11)

In both Case 2 and Case 3, the exponential decrease goes through the induction
unchanged, since the decay requirement becomes weaker.

Case 3. With N=ί and d(y(k}) ^ dk

ε^.\ we need to make use of new energy factors in
H(k\y(V). Since y(® is a fc-connected component, it satisfies

Now with α = κ2, d0 = m2l(κ~l\ and m sufficiently large, we have

and so by condition D, such isolated subsets of y must be charged. We extract
energy from pairs of sites ί <j straddling y(k\ but limit ourselves to those with
dΐ-ι ^ I i -j\ < dk. [We could have used bonds down todk-l9 but not if d(y(k}) > 4 - 1 •
We do not use bonds longer than dk because they may interfere with y\y(

σ

fc).] It is
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easy to verify that

Σ

Note that for these bonds \x2Jx — 1| < - so that

Thus we have a Gibbs factor

yVl^^

Γβ2. (3.12)

In the first inequality we use the fact that (1 -αε/2~ l)/(\ -a' l)^ 1 — ε/2 for small
α— 1. The Gibbs factor in (3.12) boosts the inductive estimate from d^-l to d^2.

Altogether, we have in each case an estimate as in the right-hand side of (3.9),
and the induction step is complete. To obtain (3.6), let K be the smallest integer
such that 7 is K-connected. Using (3.9) we can estimate

Σ β-/ΊH(y)^Σ sup e~JM/2dκ(yΓβ2

γ starting at /, d(γ) ^ D K γ : d(γ) ^ D

We can improve this a bit using the fact that in the last step we must have had
TV ̂ 2, so we can use the improved center estimate in (3.10). Thus d%β2 can be
replaced with dχ{2β2~1)+ε. The sum over K with dκ^Dis controlled by this factor,
giving a bound 0(l)e~0(J l)£>~(2/?2~1)+£. The sum over K with dκ+l<D is
controlled by Qxp( — β2D/dκ\ which decreases very rapidly as K decreases. It is
easy to see that the one remaining term is similarly bounded and (3.6) then follows.
This completes the proof of Theorem 3.1.

3.ii) Long Long Range Order

We now consider free boundary conditions, dropping all bonds between
Λ = \_ — L,L] and Λc. We establish the following theorem:

Theorem 3.4. For any β>\ and integer q^2JetJ1 be sufficiently large. Then for all
L and all x,yeΛ,

<ί-δσχtσyytee-°™. (3.13)

Hence τf

L(x,y) = ̂ <sx^<syy
L

f, as given in (1.2), is uniformly strictly positive, and long
long range order holds.

Proof. This result is closely related to Theorem 3.1, and we obtain (3.13) by making
the needed modifications in our arguments above. The new difficulties arise from
the loss of energy from bonds between A and Λc.
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First of all, we fix the first spin in A to be 1, say, so that spin configurations are
again in one-to-one correspondence with collections of spin flips. The numerator
and denominator in <<5σχ>σy>/ acquire factors of q, which cancel. Secondly, before
defining the irreducible contours of each collection of spin flips in A, we append the
two bonds in dA to the collection of spin flips. These bonds are included as
geometrical aids only, and we do not assign any charge to them. Accordingly, when
referring to a contour as neutral or charged, it is implicit that the contour does not
contain boundary bonds. If the contour y contains a bond in dA9 then its diameter
d(y) reflects the presence of that bond. However, since \γ\ should measure the energy
from nearest neighbor pairs in y, we define \γ\ without including bonds in dA.

We must now consider two types of irreducible contours - those containing
bonds in dA and those that do not. If a contour does not contain boundary bonds,
then irreducibility is defined as before using conditions A and B. When boundary
bonds are in a contour 7 we use the following conditions:

B'. A contour y containing bonds in dA is irreducible if there is no neutral
subset y± of y such that

In addition, if y contains both the left and right boundary bonds bL9 bR9 then
there should be no decomposition y = yLvyR with bLeyL, bReyR and such that

dist(yL, γR) ̂  m(max {d(yL\ d(yR}}}κ .

Now any spin configurations can be decomposed uniquely into irreducible
contours yμ satisfying C above, as well as

C. Let yμ contain at least one boundary bond, and let yv be any other
irreducible contour. Then

This is accomplished by successively breaking apart contours until they are
irreducible; conditions 5, B' guarantee that this can always be done. Furthermore,
Proposition 3.3 has to be modified by replacing the conclusion with

D'. dist(ρ,y\ρ)g:2m(d(ρ))κ implies that either ρ is charged or that ρ contains a
bond in dA.

Isolated subcontours not containing boundary bonds must be charged, or else
they would violate B or B'.

Proceeding to the Peierls argument, we need to show that <1 — <5σΛ:,σ >/ is small.
But in order for σx to differ from σy, there must be at least one irreducible contour
that surrounds x or y. We let yl be the longest such contour.

We need to check (3.2) for y± (weak interaction of yl with the other irreducible
contours) in the case of free boundary conditions. We defer this analysis for the
moment. The Peierls argument can be applied as before to reduce the problem to
the following estimate:

y e -0iH(Vi)<£-0(Ji) ^ (314)

y i surrounding* or y

where H(yl) refers to the energy of 7l with free boundary conditions on A.
For contours yί not involving dA, this estimate is the same as (3.5), applied

separately to x and y. Note that in proving (3.5), we used only bonds of length ^ dk9
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where dk is the scale at which y^ becomes /c-connected. None of these bonds cross
dΛ (if one did, then part of dA would have become part of yj. Thus the proof of (3.5)
applies here as well.

We now prove (3.14) for y t containing one or the other bond in dA. Let us take
the left boundary bond, bL\ the other case is identical. For (fc — l)-connected
components containing fcL, we can prove the following inductive estimate, instead
of (3.9):

-»3bL L * J=0 μ Jvik

^ sup [_2 exp( — «^ι|}μ I/2)^(7M ) (3.ij)

Here the exponential decay on the scale <4_ λ is as before, but we find only a small
inverse power of d(yf ~1}). This diameter may in fact be much smaller than dk-l. We
easily obtain (3.15) for 0-connected contours y(®\ [If 7 consists only of i?L, then we
interpret d(y) = l.'] The factor of 2 reflects the combinatoric factor 2'^0)| + 1 needed
for the sum over \y(^\.

To obtain (3.15) with k~ 1 replaced by fc, we consider three cases as before. In
case 1 (N ̂  2) we adjust (3.10) for the loss of one factor of (dk_ i)~β2; the other is still
present because each subcomponent after the first obeys the stronger estimate (3.9).
The exponential decay comes out as before, and we obtain an overall estimate.

(4/4-ι)^2eχp(-2/M(^^
which is sufficiient to obtain (3.15) in this case. Cases 2 and 3 (N = 1) are easier than
before, because the bound (3.15) remains essentially the same. We have allowed for
a combinatoric factor of 2 for the sum over N.

To obtain (3.14) we can now estimate

)< y
— L— t

_k 1

Here we have used (3.15) on the scale where <4-ι <d(y1)^dk, at which point y^ is
certainly k-connected. We may of course assume l y j ^ l .

I ϊ y 1 contains both bonds in dA, then since each of these bonds can be regarded
as fixed, we can work from both ends oϊA using arguments as above. We obtain the
bound (3.14) also in this case.

We return to proving (3.2). First, note that x',/ interaction terms in H(y1)
+ H(Γ) — H(γ1vΓ) arise when y' is flipped relative to x' by both y1 and Γ. The
corresponding term in the Hamiltonian appears at most once in H(yί uΓ), so there
is a nonvanishing contribution to H(y1) + H(Γ} — H(y1(jΓ). The structure here is
the same as in the Ising case, considered in [FS]. There, using the distance
condition C to ensure that contours other than y1 occupy only a small fraction of
space and to keep yί far from contours surrounding it, the interaction energy, was
estimated as

^nmMyJ. (3.16)
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Here L(y<^ is the logarithmic length of yλ it is defined as

2L(yι) = ΛΠ1[2dist(/ί,/;+1)], (3.17)
i= 1

where there are N flips or bonds ft in γ x. This part of the interaction energy estimate
uses the distance condition C (which holds in the present situation also) and
neutrality. While contours containing boundary bonds are not actually neutral,
the absence of interaction terms with x'eΛ, y' φA (free boundary conditions)
makes them behave like neutral contours as far as this estimate is concerned.

The remainder of the anaylsis of [FS] leading to (3.2) uses the energy of isolated
(charged) parts of y± to estimate L(yi) in terms of H(yί). We do not have this energy
available for parts involving dA. However, we notice that the right-hand side of
(3.17) contains precisely the set of combinatoric factors that we used in summing
over yv In fact we used for each flip the length scale dk such that d fc^dist(/ f,/ f + 1)
>dfe_ι . Thus implicit in our entropy-energy estimates is a bound

j81/ί(y1)^On2)L(y1), (3.18)

and the required estimate (3.2) then follows from (3.16).
An additional argument is needed in the case where y1 contains both boundary

bonds, for in this case we started summing from both ends of Λ, leaving one factor
of dist (fi.fi +ί) from (3.17) uncontrolled. However, this last factor cannot be too
large in comparison to the others, or y1 would have been split into two contours.
The gap cannot be larger than the κth power of the diameter of either side of yv.
Thus 3H(y1) will easily control all factors in (3.17), and we must replace (3.18) with

This does not affect (3.2), and so the proof of Theorem 3.4 is complete.

4. Upper Bounds on Truncated Correlations

In this section we prove that truncated correlations in the long-range Potts models
with /?>! and large Jt decay as a small power of the separation. This result
complements our lower bounds on the two-point function. The method of proof is
completely different, however - we use the cluster expansion of [I] rather than
estimates in the percolation language. The two methods nicely cover each other's
weaknesses, and together provide a very precise picture of the variable power law
regime for large J^ We return to the state <•>[ used in the proof of Theorem 3.1,
and derive estimates uniform in L.

We now state our main estimate on

By Proposition 1.1, a similar bound applies as well to G\ and Gτ.
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Theorem 4.1. Let β > 1 be given, and choose any ε > 0. Then for Jl sufficiently large
(depending on q,β,ε) the following bounds holds for all x,y and uniformly in L:

l^^^^δ^^δ^y^e-^^x-yl-^-^1-'^ (4.1)
// 2(β —1)(1 — ε)>2, then the final factor must be replaced with \x-y\~2.

We will be brief, sketching only a few points on how the estimates of [I] need to
be modified. This is possible because the expansion can be used precisely as
described in [I] for q — 2 (the Ising model). For q > 2 the form of the interaction
between irreducible contours is a little more complicated because of the
dependence on how the q states are explored by the contours. However, there is no
essential difference in the structure of the expansion.

It is worth noting that for β close to 1, the correlation function at separation
\x — y\ is dominated by terms involving contours of diameter > \x — y\. The power
2(j8 —1) can naively be understood as arising from the excess of energy over
entropy for simple spin flip pairs, as in the discussion at the start of Sect. 3. For
larger values of β, this decay is faster than the decrease in the couplings, so the
dominant effect comes from the couplings between small contours.

In brief, the expansion is organized as follows. After the Peierls expansion,
there is a Mayer expansion in the interaction bonds <x,y> coupling different
contours. These bonds must be flipped by both of the contours involved. Finally,
the polymer formalism is used to expand in the hard core exclusions associated
with the distance condition C.

These estimates of [I] rely on the possibility of summing over chains of
contours and interaction bonds, with each bond connecting two contours, and
each contour connecting two interaction bonds. When there is a possibility of
several bonds connected to one fixed contour y, we use the fact that the sum of
|x — y\~2 over allowed x,y is bounded by cL(y). Using the activities e"0(Jl} at the
end of each such bond, the combinatorics produce an overall factor of
exp(e~0(Jl)L(y)). By (3.18), this can be absorbed into a small decrease in βί.
Summations over contours surrounding a given point have been estimated already
in (3.5), (3.6).

A subtler case occurs in estimates for chains bridging the gap between sites. In
detail, the organization of these estimates must differ from [I], where the large
inverse power law allows some simplification. What is needed here is a decay as a
small power of the separation between the sites.

We use a slightly different form of (3.6) to control sums over contours:

Y g-/ϊ ιH(y)< e -0(J r ι ) | χ ; _.y |-2( jJ- l)( l-ε/3) ϊ (4^)

γ surrounding x, y

To obtain this, we apply (3.6) (with a smaller ε) to contours with d(y) e [D, 2D). For
these a factor 2D is necessary to sum over /. Of course β — β2 can be made
arbitrarily small for large J t. We obtain

y g-0ιH(y)<g-0(Jι)£)-2(|8-l)(l-ε/4)

γ surrounding x,d(γ)e[D, 2D)

By using a small power of D to sum over D = \x — y\2Q, \x — y\2l,..., we obtain (4.2).
This controls the sum over the first link in a chain of contours and interaction
bonds.
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Now let us assume control over chains of n contours linked with n—ί
interaction bonds from xί to x2n:

Σ l v Y \~2 V I Y Y l ~ 2 V p-βιH(y\)
|X 2 — X3 | ... ^ \X2n-2~X2n-l\ L β

X2<X3 X2n-2<X2n~l ϊ 1 SUΓΓOUΠding Xi , X2

Σ e'βίH(yn}^e'0(Jl}n\x1-x2n\~δ. (4.3)
γn surrounding X2n - i » *2n

Here we use δ = min {2, 2(/f - 1) (1 - e/3)}. The case n = 1 is just (4.2). To obtain (4.3)
for n f l contours, fix X A and perform the following sum:

Σ *ι-*2J~V2«-X2π + ιΓ2^Φι-*2,ι + ιΓ* (4.4)
X2n

This bound is easily obtained by considering separately the terms with x2n closer to
x x . These are bounded by c\xl — x2n+ i l ~ 1 ~δ, while the rest are bounded as in (4.4).
Next we sum over γn + l surrounding x2n + ̂ x2n + 2- By (4-2) this leads to an
additional factor e~0(Jl}\x2n + l —X2n + 2\~δ> an^ together with the decrease in (4.4),
we obtain (4.3).

Finally, we need to understand how to control the full expansion, where chains
as above can be linked together through the expansion of the hard core exclusions
from condition C and other constraints. Here it is necessary to sum over contours y
which violate the distance condition with respect to a fixed contour y0. There are
m(d(y))κ choices for the first flip in y. Therefore our basic estimate (4.2) would be
replaced by one with a slightly smaller power - as always for K close to 1 . However,
we can still proceed as above to obtain decay as |x — y\~δ' for chains covering sites
x, y, with

<5' = min{2,203-l)(l-ε/2)}.

Furthermore, the gaps between chains are no larger than the κih power of the
diameter of a chain, so we have sufficient convergence factors to prove decay as
|x — y |~ m m < 2 ' 2 ( 0~ 1 ) ( 1 ~ ε W for a continuous sequence of links (contours, interaction
bonds, or hard core interactions) bridging the distance from x to y.

When there are several hard-core attachments to a single chain, we note that
there are only 0(|Γ|) places to attach, where Γ is the union of the contours in the
chain. From the above, we see that each attachment sums up to something small,
so the combinatorics of the hard-core expansion produces factors exp(^"0(Jl)|Γ|),
which are easily absorbed by a slight decrease in βl in (4.2).

Of course the full expansion for (δσχ92,δσyί2y[ — (δσχf2y
Iί(δσ ί̂ will involve

only terms bridging between x and y, and so we obtain the decay claimed in
Theorem 4.1.
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