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Abstract. We give an example of a generally covariant quasilocal algebra
associated with the massive free field. Maximal, two-sided ideals of this algebra
are algebraic representatives of external metric fields. In some sense, this
algebra may be regarded as a concrete realization of Ekstein's ideas of
presymmetry in quantum field theory. Using ideas from our example and from
usual algebraic quantum field theory, we discuss a generalized scheme, in
which maximal ideals are viewed as algebraic representatives of dynamical
equations or Lagrangians. The considered frame is no quantum gravity, but
may lead to further insight into the relation between quantum theory and
space-time geometry.

1. Introduction

One of the most fascinating challenges of contemporary physics is the unification
of Einstein's general relativity theory with quantum theory. Many attempts are
made, but the goal seems to be still far off. It even is not clear how much of the
conceptual and technical structures of both theories will survive an unification,
because they seem to be fundamentally different.

By results of [1, 3, 5, 7, and 8], there emerge ideas of a quantum field theory
which incorporates at least one of the basic principles of general relativity theory:
the principle of general covariance. The setting is algebraic quantum field theory
which seems to be especially suitable.

In algebraic quantum field theory (cf. Haag and Kastler [10]) to each region
(open set with compact closure) Θ of Minkowski space M there corresponds one
C*-algebra stf{Θ\ This correspondence is assumed to fullfill the isotony property,
i.e., if Θ1Q(92QM, then ^{Θ1)gs^{Θ2). The self-adjoint elements of sd(β) are
interpreted as observables that detect events within Θ. All stf(Θ) are subalgebras of
a C*-algebra J / which is the inductive limit of all the sd(Θ\ ,$# is also called algebra
of quasilocal observables, and the correspondence Θ->^(Θ) net of local
C*-algebras. Among the (Haag-Kastler) axioms of algebraic quantum field theory
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there is one group which relates the causal structure and symmetry of space-time
with the algebras:

7. Causality

(a) (Sometimes called Einstein causality.) If two regions ΘUΘ2 lie space-like to
each other, then the elements of stf(Θx) commute with those of srf(Θ2\ i.e.

(b) (Sometimes calles primitive causality, which expresses the existence of a
causal dynamical law.) If Θ2 is in the domain of dependence of Θ1 (every endless,
nowhere space-like, smoth curve through Θ2 intersects Gλ\ then s^{G2)Qs^{Θι).

II. Poincarέ Invariance

The orthochronuous Poincare group 2P\ is represented by automorphisms α(β>/1),
acting on s$ by α(α Λ)(srf(G)) = sd(a + ΛΘ), {a, A) e 8P\. Here, a is a translation vector
and A a Lorentz transformation.

In his Gibbs lecture Missed Opportunities Dyson [6] proposed the creation of
a generally covariant formulation of these axioms, including some analog of a
metric tensor in order to give a meaning to space-like separation. It is our opinion
that one can fullfill Dyson's demand. In the next section we will give an example of
a generally covariant net of C*-algebras and generalized causal relations. The
main additional structure we need, is the presence of many maximal, two-sided
ideals in the local algebras s$(6\ by which we can formulate dynamical or causal
structures. In algebraic quantum field theory the algebra of observables is usually
assumed to be simple.

2. Generally Covariant Weyl Algebra

For clarity and simplicity, in the following example the space-time manifold is
taken to be R 4 . The set of all globally hyperbolic metric tensor fields g on IR4 is
denoted by ^. By these prerequisites all of the following has a global character, but
there are no fundamental obstacles to find a local formulation for the derived
result.

In an interesting paper, Dimock [3] constructed to a given manifold with a
globally hyperbolic metric g a Weyl algebra j / g and a net Θ-^^g{&) of
C*-subalgebras. We give a brief description of this net (using a different method
than Dimock), since we shall need it afterwards for our construction of the
generally covariant net. If Φg denotes the quantum field and fe 3) is a test function
(β denotes the class of infinitely often differentiable functions with compact
support in IR4), the Weyl algebra «s/g is generated by elements expιΦg(/), where in
the usual field theoretic notation

Φg(f) = J Φg(x)f(x)dμg(x), dμg(x) = ]/- det g(x)dx,

and Φg satisfies the Klein-Gordon equation

^ ^ , / g v (2.1)
]/—detg
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Due to Eq. (2.1) the map f-*Φg{f) is many to one

where Gg(x, y) = Gg

et(x, y) — Ggdv(x, y) is the causal Green's function of the Klein-
Gordon operator, uniquely determined by the globally hyperbolic metric g (cf.
[9]), and

For Gg(x,y) we have Gg(x, y) = — Gg(y, x), and Ggf is a solution of (2.1).
Furthermore

suppG g /ςj(supp/) V / e ® . (2.2)

Here J(supp/) is the set of all points of R 4 which can be reached by a causal curve
through the support of /

We can define the factor space C g : = ®/Kg? and denote by fg the element of C g

which corresponds to the class of the element feΘ. Then we have the
nondegenerate symplectic form

* B (Λ hη: = j 4 /(x)Gg(x, y)h(y)dμg(x)dμg(y), fef

on Cg.
For the construction of the algebras j / g we assign an abstract element Wg(fg) to

every / g e C g , take all finite linear combinations, and define a star operation
(involution) by W*(fg)\ = Wg(—fg) and a multiplication by the Weyl relation

The set of all these expressions forms a *-algebra <5ίg with H ,̂(0g) as unit element.
On j / g we can define a (unique) C*-norm, most simply by GNS-construction,
starting from the positive linear form ω (cf. [2, p. 79]) defined by

if fg = 0g

(λ

 J . (2.3)
0 otherwise.

The completion of yjg in this norm gives a unique and simple Weyl algebra sdg (cf.
[2, p. 20]). The net structure is obtained by assigning to the region G the subspace
Cg(G) of all classes fg which possess a representative in Q) with support in G. ,tfg(G)
is then defined as the Weyl algebra generated from this subspace.

We now have for every metric field g e & a net G-*srf^(G) of C*-algebras, which
we need in the construction of a generally covariant net of C*-algebras. The
motivation for the construction is given by the following heuristic consideration.

A physical measurement will be performed within three steps:
(1) The measurement will be planned and described.
(2) The detector for the measurement will be put up in the presence of some

boundary conditions (e.g. the existence of a gravitational field).
(3) The measurement will be carried out with a state.
We can take the point of view that, for fixed feSf, the elements Wgl(fgι) and

Wg2(fgl), belonging to different algebras j / g l and jtfg2, represent the same
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description of a measurement or (for non-self-adjoint elements) operation proce-
dure, differing in the circumstances under which they were carried out. Therefore,
for fixed / e ® , the set {Wg(f

g)\g e $} abstracts in a natural way from the metric field
g and can be regarded as the mathematical image of the description of an operation
procedure. Instead of those sets we regard the mappings

W(f):g->Wg(p), fe®, g e ^ , Wg(p)e \J rfg,

with W{f)(&) equal to the mentioned set {Wg{p)\ge <S). The mappings W{f) may
be viewed (without regarding a topology) as special sections of a bundle with base
$ and fibers stfg. They generate a *-algebra J / by pointwise operations. The adjoint
of W(f) is defined by W*(f):g-+Wg(—fg). For a general section Aε$l we write
A:g-+Ag. In srf we have the relation {flexible Weyl relation)

W{f)W{h) = e~Ίσif'h)W(f+h) (2.4)

with

By the norms || | |g of all the stfg we define by

pg(A): = \\Ag\\g

C*-seminorms, and by

\\A\\ := suppg(A)

a C*-norm on Si. With help of (2.4) it is easily verified that the supremum exists.
The completion of Si in this norm is a C*-algebra stf. For a region G ClR4, sd(&) is
the smallest C*-subalgebra of s>ί which contains all those W(f) with suppfQΘ.

Every C*-seminorm pg defines a two-sided ideal in j / by 2Γg: = kerpg which is
closed in norm (cf. [4, p. 24]). We easily conclude that in the sense of isomorphy

stlF% = sf% (2.5)
and

d{Θ)j{^[Θ)cΛ^rg) = {stf(Θ) + 3Γg)l^ = ^g((9). (2.6)

(For the first isomorphy of (2.6) compare [4, p. 22].) As all stfg are simple, the ideals
ZΓg are maximal in ,s/.

We want to mark that by the above process of idealization, the elements Aoistf
abstract from the external conditions, and our scheme is, therefore, closely related
to Ekstein's [7] discussion on presymmetry where he also considered algebras with
many ideals.

For the obtained net Θ-+<$#(&), the causality axiom / generalizes to

Theorem 2.1. Flexible Causality.
(a) // two regions Θi and Θ2 of 1R4 lie space-like to each other with respect to

(b) If &i, (92 ClR4 are two regions and Θ2 is in the domain of dependence of Θ1

with respect to ge$, then



Generally Co variant Quantum Field Theory 167

Proof, a) By virtue of (2.5) and (2.6) we have

If two test functions f1,f2e^ fullfill suppf1QΘ1 and supp/ 2£$ 2, then we
conclude with help of (2.2) σg(/i8, f2) = 0. With this result and the Weyl relation we
get

[W
and hence

b) si?{(92)Qjtf{Θί)-lr3rg is equivalent to ^ ( ^ J + ̂ g ^ f f J + ̂ g and by (2.5)
and (2.6) equivalent to stfg(Θ2) £ ̂ g ( $ i ) If supp/ 2 Q Θ2, then we can find (cf. Dimock
[3, Lemma A.3 and Theorem 4]) a / l 5 s u p p / ^ ^ n J ^ s u p p / ^ , and G g / 2 = G g/ 1.
Hence, G g ( / 2 - / 1 ) = 0 or f2-fxe¥.v and we have /2

B=./y or Wg(/2

8)
and ^ ( f l ^ g ^ x ) . •

The first flexible causality property (a) shows a connection between the metric
tensor fields g on 1R4 and the maximal ideals 2Γ% of s$. This opens a possibility to
use this relation in the definition of general causal structures in the next section.
The primitive causality expresses in algebraic field theory the existence of a
dynamical law. The second flexible causality property (b) shows that in stf the
ideals 2Γ% represent dynamical laws. As we considered only one type of dynamics,
differing by the metrics g, we can say that different maximal ideals ^ are
essentially characterized by the metrics. Only in this sense the maximal, two-sided
ideals 2Γ% can be regarded as the analog of a metric tensor.

Now, we want to proof the general co variance of the net Θ-+<$/(&). Let Diff(lR4)
be the group of all C°°-diffeomorphisms κ:IR4->IR4, κ(x)
= (κ°(x\κι(x\κ2{x\κi{x)). We define the linear transformations

κ*:f~+κ*f,κ*f(x): = f(κ(x))9 and K^ \f-*κj, κ+ : =(κ;- 1 )* = (κ;*)-1,

of Q) onto itself. Let κ(Θ) be the image of Θ, then Θ(κ(Θ)) is the image of S>(Θ) (test
functions with support in Θ) under κ%. Furthermore (we use the same symbol for
different mappings, but the meaning should become clear by the context),

κ:*:g->κ:*g, (κ*g)μv(x):= ^ ^ p - ^ r - g

are one-to-one mappings of ^ onto itself. To each K e Diff(lR4) we want to associate
an automorphism ακ: J Z - K J / which can be extended to all of srf. With the help of

~ n

the flexible Weyl relation, each AeSί can be represented as stf = ^ ZiW(f^} where
_ / = 1

the sections Z{: g-^Zf(g) are elements of the center of Jtf, i.e. Zf(g) is a multiple of the
identity of js/g and can be regarded as a complex number. On J/ we define

*MY=Σ *κ(Zi)*κ(W(fd), (2.7a)

i = 1

*JW(f,)): = m«*/i) : g - ^ ( ( K * / ) 8 ) , (2.7b)

α κ (Z ; ):g-Z ; (;c*g). (2.7c)
To proof that (2.7) defines an automorphism we need two lemmas.
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Lemma 2.2. σ g (/ g , hg) = σκ*g{(κ*f)κ*g, (κ;*/z)κ*g) and κ*(fg) = (κ*f)κ*g.

The proof of the above lemma follows by simple coordinate change technics
which we shall omit.

Lemma 2.3.1

i

and

. = 1

 ι 8 ι J . . i K g,g

defines an isomorphism of sdg onto s$κ*%.

Proof By the state (2.3) we have

/ n

Σ W / g ) Σ λΐω

Hence, from £ ^Wg(/i

8) = 0J all /^different, we conclude ^ = 0 Vi = l,...,«. Thus,

g defined on finite linear combinations. With help of Lemma 2.2 and the
Weyl relation we conclude

As finite linear combinations of the Wg(fg) are dense, in norm, in j / g , we can extend
/(κ*g g ) uniquely to all of sd%. Q

Theorem 2.4 General Covariance. To ez ery diffeomorphism K G Diff(R4), (2.7)
defines an automorphism ΊK\S$-*S$ that fullfills <xκ(jtf(Θ)) = jtf(κ(Θ)).

Proof oίκ is well defined on J / , as by Lemma 2.2 and Lemma 2.3 we conclude

£ z fwχ/3=o
i = 1

Σ Z;(κ*g)Wς,g(/,κ*s) = 0 Vg e » ,

Σ Z^g)W^Kjtf) = 0 Vg G <S,

i= 1

Again, by Lemma 2.2 we can easily show that ακ respects the flexible Weyl relation
and all algebraic operations. Therefore, aκ defines an automorphism on j / , which
can uniquely be extended to all of s4. stf(Θ) is generated by all those W{f) with
supp/ in Θ. With aκ(W(f))=W(κ^f) and κJβ{G)) = 2(κ{G)) we finally get

D

Because of this theorem and the validity of the flexible Weyl relation, we also
call stf the generally covariant Weyl algebra.

1 Compare the related result of Dimock [3, Theorem 4]
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We can interprete the automorphism ακ in two manners:
I) lϊAestf represents a measurement, then ccκ(A) may be a completely different

described measurement, where the description of A is altered by the diffeomor-
phism K. W(f) will be replaced by W(κ*f). The laboratory of the observer stays in
the same state of motion or the observer stays in the same reference frame.

II) K defines a transition to another reference frame (laboratory) of the
observer. Now ocκ(A) represents the same measurement as A. The physical effect is
the alteration of expectation values of states. (With this idea of general covariance,
Fredenhagen and Haag [8] calculated the response of an accelerated detector.)

We want to add some remarks on states oisrf. If a state ω fullfills ω(3~g) = {0},
then all measurements reduce to those of the net given by Θ-^s/(Θ)/3~g which is no
more generally covariant and which has a fixed dynamical and causal structure.
Therefore, a state may break the symmetry. By this effect gravitation comes into
play and ω may be interpreted as a state on a fixed gravitational background. A
state ω which fullfills ω if] 3~Λ = {0} is a mixture of states ωt with ω^^) = {0}

and, therefore, a mixture over different gravitational backgrounds g. These are
states with classical gravitational fluctuations which perhaps may serve as a first
approximation to states of a real quantum gravitational field. By the existence of
these states, which cannot be ruled out at once by physical arguments, the
presented scheme is more general than that given by Dimock [3].

3. Generalizations

In Sect. 2 the inputs were the dynamical laws respectively the metric fields, which
define the causal and dynamical structures. By Theorem 2.1 these could be
expressed by the flexible causality relations. We now want to go the opposite way.
Starting with a net Θ-*stf(Θ) of C*-algebras defined (for simplicity again) on R 4 ,
we shall define causal and dynamical structures2 by special ideals of the algebra s$
which is associated with IRΛ

The first flexible causality property of Theorem 2.1 motivates the definition of
causally independent sets.

Definition 3.ί. \i2Γ is an ideal (in the following, every ideal is two-sided and closed
in norm), then two sets ^ 1 ? ^ 2 g R 4 are defined to be causally independent with
respect to ,T, if there are regions Θu 0 2 £ R 4 > s u c n t n a t * i £ ^ i » ^li®^ a n d

\_s$(Θγ\ ̂ ( $ 2 ) ] S ^ A continuous curve of 1R4 will be called 3" -causal curve, if no
two points of R 4 are causally independent with respect to 3~.

The second flexible causality property of Theorem 2.1 reflects the presence of
dynamical laws. For its general formulation we need a definition for the domain of
dependent of a region.

Definition 3.2. For a region $ c R 4 we define
Dy(Θ)\ = {peR4 |every (non extendible) ^-causal curve through p intersects Θ}
to be the domain of dependence of Θ.

1 The following definitions differ slightly from that given in [1]
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Definition 33. Let 9~ be an ideal in J / . If for each pair of regions Gu G2 of R 4 we

0ς/V(0)

then 3~ is called hyperbolic.

For a net Θ->stf(Θ) to have well defined causal and dynamical structures, ^

should possess hyperbolic ideals. But there is yet no general answer to the

question, which ideals of ,s/ should be hyperbolic.

The hyperbolic ideals seem to be proper candidates for algebraic pendants of

dynamical equations or Lagrangians and commutation relations of usual field

theories. A net with hyperbolic ideals should show many essential properties of a

quantum field theory on a general space-time.

As pointed out, by the presented frame we can get no quantum gravity. We

believe that in an algebraic quantum gravity - if at all possible - there should be no

two-sided ideals, but structures which represent ideals in some approximate sense

to formulate approximate causal and dynamical structures. Therefore, the study of

the above structures (which should be confirmed or corrected by more examples)

by purely algebraic methods may even lead to further insight into real quantum

gravity.
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