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Abstract. The total mass of a gravitational system, the ADM mass, is
considered as a functional of the initial data sets for sources and gravitation.
From the condition that such a functional has a minimum under a restricted
class of variations, tensorial equations for the gravitational initial data are
obtained. The solutions to these equations, whose existence for a large class of
source fields is asserted, represent initial data sets for gravitation satisfying the
constraint equations and may be considered as having no gravitational
radiation.

1. Introduction

An important problem in general relativity is to compute the gravitational
radiation output of isolated systems. In principle this can be done by prescribing in
a hypersurface S initial data for the source and the gravitational fields, evolve them
according to Einstein and source field equations, and finally evaluate the News
function at the J^+ thus generated. Besides the usual problems arising from
evolving for an infinite time non-linear equations, the above program suffers from
another one, namely of determining which are the appropriate data to be given at S
in order that the radiation we register at J>+ is the one generated by the source
motion, for it is intuitively clear that, given any compact source field initial data
one can find different initial data sets for the gravitational field such that:

i) They are consistent with the source data, in the sense that the constraint
equations are satisfied, ii) the resulting source evolution is almost identical during
some finite interval, but iii) the amount of radiation produced at </ + is radically
different.

Due to the interaction between the source and the gravitational fields the
concept of the radiation produced by the source is ambiguous. Thus, there exist
several procedures determining different initial data sets which pretend to capture
this concept [1]. Some intend to compute in successive approximations a solution
to the whole space-time and so, in pushing the problem to </~, where at least we
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have a good candidate, namely prescribing zero null datum for gravity there, but
this has not yet been fully achieved. Even if it were, there would still remain some
ambiguities because of the singularity at /", if massive field sources are considered.
Others consist in taking a kind of Newtonian limit, and thus, again in successive
approximations, obtaining non-radiative data.

Here we propose yet another procedure which is purely local, in the sense that
one has to solve equations at some initial hypersurface, and so it is not sensitive to
the details of the past source evolution, and which is purely relativistic, in the sense
that it does not involve any limit of the theory. This procedure consists of
minimizing the total energy, i.e. the ADM energy, keeping the sources, in a certain
sense, fixed.

The idea is simple: since the ADM energy is positive when sources satisfy a
local energy condition we expect that, at least for small enough fixed source
configurations, there should be gravitational data compatible with the sources and
minimizing the total energy. But then this data should not have any extra
gravitational radiation, for if that were the case, and assuming that extra radiation
contributes positively to the energy, there would be another data with lower
energy. This intuitive argument is reinforced by the fact that if the sources are
taken to be stationary then the minimizing energy data generates a stationary,
radiation free space-time, and also by the results of a similar procedure in
electromagnetism and in linearized gravity given below.

In Sect. II we give, as an example, the procedure for defining minimal energy
initial data sets (MEIDS) for electromagnetism and in Sect. Ill for linearized
gravity. In these sections we handle the equations in great detail. This is important
for realizing later what happens in the full theory, treated in Sect. IV, where the
equations are too cumbersome to allow for a simple description of their properties.

II. MEIDS for Electromagnetism

For definiteness we shall treat electromagnetism coupled minimally to a charged
Klein-Gordon field \p in Minkowski space-time. Equally well we could have taken
electromagnetism coupled to any other field theory which admits a Lagrangian
and Hamiltonian formulation. Following [2], and choosing a flat foliation we find
the energy of the system as a functional on phase space to be,

A|2}ώ, (1)

where Π: = — E is the momentum conjugate to A, the usual 3 vector potential,
Pψ:=ψ + ievφ the momentum conjugate to ip (with v being the usual scalar
potential), and £^φ = Vφ + ieAip. We shall take as phase-space for electromagne-
tism PEM = {(A,Π)e/ί^ + l t _ 1 xH^o} [3] σ^l, and we shall look, for each fixed
(ψ, Pψ) e CQ x CQ for a pair (A, Π) e PEM which minimizes E. Since E is differenti-
able, nonnegative and vanishes only for the trivial solution, it is clear that if we fix
(φ, pψ) nontrivially, E will have a positive infimum E(ψ, pψ) on PEM.

There are two problems with the program above. First since electromagnetism
is a constrained theory, we have

(2)
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and so we must look for a minimum of the energy in the constrained phase-space,
Pc, that is, that subspace of PEM which is compatible with (2). We shall take this into
account by adding to the energy functional a term u(V Π + ρ), a Lagrange
multiplier, and look for a minimum of this new functional

H = E+$v(V Π + ρ)dv, (3)

which is just the Hamiltonian of the theory.
The second problem has to do with the meaning of "keeping fixed (φ, Pφ) while

varying (A, Π)", since ψ and Pψ are gauge dependent quantities. There are several
ways to take this into account, they give equivalent equations. Perhaps the most
direct one, shown to me by J. Ehlers, is to note that since the Hamiltonian is gauge
invariant one can introduce representative fields by imposing a particular gauge
condition, consider only radiations respecting that gauge, but nevertheless obtain
gauge independent equations. We follow this way by imposing the Couloumb
gauge, V A = 0, interpreting now ψ and ρψ as fixed complex functions and adding
to the Hamiltonian a term L(A) : J αV Adv, α e Hσ + 2 ? _ 2>

 a Lagrange multiplier. A
necessary condition then for the existence of an energy minimum is that the
differential of #(A, π) + L(A) vanishes, that is

DH(At Π)(<5 A, δU) + JDL(A§ Π)(SA) = 0 ,

Using Hamiltonian's equations and identifying the linear map DH with its L2

representative we have,

(5a)

(5b)-
oA

— — <i
iβ

where J = — (ψgfiψ — ψ<£iψ), and (4) becomes,

Π-VF-0, (6)

V x V x A — J = Vα for some αe// σ + 2 )-2 (7)

Note that if we now relax the gauge condition and perform a gauge
transformation, then Eqs. (6-7) are gauge invariant.

Physically one would like to be able to specify instead of ψ and pφ the gauge
invariant quantities ρ, and J. Unfortunately this is not possible for J does not only
depend on ψ, but also on the connection A, and so it can only be determined a
posteriori, i.e. when Eqs. (6-7) are solved. To obtain solutions to the above system,
Eqs. (2, 6-7), we must again impose gauge conditions, take fixed representatives
ψ9pψ9 solve for unique (A,Π) and so obtain an array {(ψ9pψ)9(A.9H)}9 (determined
up to gauge transformations) of initial data. It is only from this point on that a
physical description of the system makes sense.

Another way to take into account the fixing of the sources is to use a global
splitting of the tangent phase space into L2 orthogonal subspaces corresponding to



628 O. Reula

radiative, longitudinal and pure gauge modes, and to require that H has a
minimum only along radiative and longitudinal directions, that is dHe gauge
subspace. We follow this way using a splitting of ΓPEM analogous to the one
introduced for gravity in [4]. Since in this splitting the gauge space is just

ΓO-Π
LI oj

that is the image of Hσ + 2 , _ 2 under the L2 dual of the differential of the constraint
map

°φ(A'π) = vπ
we obtain again Eqs. (6) and 7.

A similar splitting holds also for gravitation [4].
We look now for a solution to system (6), (7). Consider first (6). Using the

constraint equation (2) we get,

AV=-Q, (9)

which has a unique solution veHσ+lί_1 and so H = WeH'σ 0.
We consider now Eq. (7). It is easy to see that this equation has an integrability

condition. Taking its divergence we obtain

-V-J = Jα. (10)

which we take as an equation determining α.
Since for the gravitational case the integrability conditions are not so easy to

derive it is of interest to see how we can arrive at (1 0) from a general principle. Since
the constraint is preserved under time evolution we should have,

DΦ(A,rt) = (0,ρ) = (0,-V J), (11)

where we have used the conservation equation which the sources must satisfy if the
Lagrangian is to be gauge invariant. Since Π = Vα we see that (11) is just (10), and
so the integrability condition can be obtained by applying DΦ to both sides of (6),
(7) considered as a pair. We will follow an identical procedure in the gravitational
case.

To obtain a unique A we fix again its gauge freedom in the usual way, namely
requiring that V A = 0. Thus we obtain the coupled elliptic system,

0, (12a)

. (12b)

In our case J is linear in A, and the dependence is such that one can show that given
(tp, Pv) 6 CQ there is a unique pair A, α with A e fί^ + ! > _ 15 V A =• 0, and α e Hσ _ 2,
solving (12a, b).

In the general case, when ρ and J depend smoothly on (A, Π) but in a non-linear
way one can only assert, using the implicit function theorem, the existence of a pair
(A,Π) satisfying the now coupled system (9), (12a,b), for sources in a small
neighborhood of zero.
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Note that since the energy functional is positive definite and the pair (A, Π)
satisfying (4) is unique (up to gauge transformations) it must be the minimum
we are looking for.

III. MEIDS for Linearized Gravity

We consider a Hamiltonian formalism for linearized gravity around a flat metric
and with respect to a flat foliation. We do not take any particular source, we only
require that these sources also admit a Hamiltonian formulation for their
equations of motion. As phase space for linearized gravitation we take the space of
pairs (^αb,ω f lb)eH^+ι,-ιX#σ',oσ^l of linearized 3-metrics and their conjugate
momenta [5].

Using a similar argument to the second one used in the preceding section we
obtain a necessary condition for the existence of a minimum, namely.

(- ώab, hcd) E {gauge space}. (13)

where as before (- ώab, hcd) is obtained using Hamilton's equations. The same
result, namely Eqs. (16a-b) can be obtained using the alternative way of fixing
sources and imposing the following gauge conditions:

Da(aab-yabh) = (Δω-VaVbω
ab) = 0 as Lagrange multipliers.

— δH -( ^ ω _Λ _ _ ^ ^ ., . .
(14a)

ώab : = —— = eabD2a - DaDba + GL(h)ab - Sab , (1 4b)

where eab is the flat metric about which we are linearizing (all indices are raised or
lowered with respect to it), Dc its covariant derivative, and

GL(h)ab = -\D2hab-{DaDbh + {eab(D2h - DcDdh
cd] + D(aDch

b)c.

its linearized Einstein tensor, and (α, βa) are the Lagrange multipliers correspond-
ing to v in electromagnetism, here 1 -f α and βa are interpreted as lapse and shift
respectively. The tensor Sab is the space-space projection of the energy momentum
tensor of the sources fields.

As in electromagnetism we can characterize the gauge space as

^0 -1

Λ 0

That is, since

i^cd

as the set of all pairs (2D(aXb), -eabD2C + DaDbC) with

+ 2, -2
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Thus, from (13), (14a,b), and (15) we obtain

-2(ωab-eab + 2D(aβb}=-eabD2C + DaDbC, (16a)

+ eabD2a - DaDba + Gf - Sab = 2D(aXb} . (1 6b)

Note the approximate symmetry between (16a) and (16b) under interchange of
(α, βa) and (C,Xa). This symmetry, which is much more apparent in the full
gravitational case, is due to the fact that in the 3 + 1 decomposition the gauge
transformations are realized by integrating Eqs. (14a) and (14b) with different
lapse-shift pairs.

The above Eqs. (16a,b) together with the constraint equations,

(17)

where ρ and Ja are the time-time component and the time-space projection of the
energy-momentum tensor respectively, determine unique (up to gauge transfor-
mations) pairs (hab, ω

cd) and (α, βa) satisfying them. As we shall see below, in the
process of solving them we also determine C and Xa, but not uniquely, unless a
mild condition is imposed on the sources.

As in the former case we also encounter here integrability conditions (which are
equations for C and Xa). Again we find them applying to both sides of (16a) and
(16b) the operator DΦ. We obtain,

D4C=-DaJ
a, (18a)

a pair of elliptic equations for C and Xb.
These integrability conditions can also be understood in two other ways. First

note that if we could assume that the energy momentum of the sources is conserved
(something which we do not assume) then from the evolution point of view we
would have.

which are the right-hand sides of the above equations. Second note that from
Eq. (16a) we have

ωab = D(aβb) _ e^Dcβc_λ^DaDbC + ̂ b^Q ^ ^

Taking its divergence and using the constraint we obtain an equation for βc,
namely

DaD
[aβb] =-Jb- DbD2C, (20)

from which the integrability condition is apparent. Taking its divergence we
obtain.

, (21)
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which is just (18a). Note that, once C is known, Eq. (20) determines βa only up to a
gradient, DαΦ, and so Eq. (19) determines ωab only up to its gauge freedom
ωab-+ωab + eabD2Φ-DaDbΦ. Similarly, Eq. (18b) can be seen to be a consequence
of the linearized Bianchi identities, DflG£& = 0. Thus we have obtained a set of
Eqs. (16a,b), (17), and (18a,b) which determine uniquely, up to gauge transfor-
mations, hab, ω

ab, α, βa, C, Xa.
Before proceeding to solve these equations it is convenient to reexpress them

in other variables. To do this we define Φab= -hab + eab( - +αj . This is the

analoge, in the full theory, to conformally transforming the metric to gab = e~2agab

and then defining, choosing a background flat metric eab, wab — eab — j/ggαfe.
Furthermore it is convenient to fix, once for all, the gauge freedom. We do this in
the usual way [7], namely requiring DaΦ

ab = ω= 0.
We thus obtain the following reduced system:

a) eabD2C - DaDbC + 2ωab - 2D(aβb} = 0 ,

b) D2Φab - 2Sab + 4D(aXb) = 0 ,

c) D2oc
(22)

d) D2

e) Z

f) D2 Xb + DbDcXc - DaS
ab = 0 .

If we assume the sources to be independent of (h, ω), as is usually the case for
linearized gravity in contrast to the scalar electrodynamics of the preceding
sections, and that they are of compact support and belong to the following Sobolev
spaces:

l l , and

we obtain the following theorem.

Theorem. // the above assumptions about the sources are made, then there exists a
unique (up to gauge) pair (h,ω)eH'^+ί _^ Hσ 0 satisfying (16a,b) and (17).

Proof. We first show existence of a solution (Φαb, ωab, α, βa, C, Xa) to Eqs. (22a-f)
and then show that it satisfies DaΦ

ab = ω = 0 and so, it produces a unique (/ι,ω)
solution to (16a,b) and (17).

We first show existence of solutions to the decoupled Eqs. (22d-f). From the
general theory of elliptic equations in Sobolev spaces [4] it is easy to show there
exists a unique βaeHσ+lί_1 solution to (22d).

Since the kernel of D4 in Hσ + 2, - 2 is just the subspace of constant functions and
the source in Eq. (22e), namely Da J

α, is orthogonal in the L2 sense to this subspace,
there exists a unique (up to constants) solution ceHσ + 2 1-2 to (22e). Note that in
general c will go asymptotically as a logarithm (although ωab will still go as 1/r2).
This has a space-time interpretation as a boost of the hypersurface. In fact this
logarithmic behaviour can be avoided by considering sources whose total
4-momentum is orthogonal to the foliation, that is whose total 3-momentum
vanishes.
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The kernel of the elliptic operator in (22f) consist only of the zero element and
so there exists a unique Xb e Hσ _ 1 satisfying (22ί). But the source in this equation
is of compact support and is a pure divergence and so Xb e Hσ 0.

Equation (22a) determines ωab in terms of C and βa. Since CεHσ + 2 _ 2 and
βaEHσ+lί_1 we have, ωαbeH^0. Since XbeHσ^ and since the Laplacian is an
isomorphism between Hσ + 1 _ : and Hσ_ί Λ we conclude that there exist unique
Φ f l f ee//^+ι,-ι and αe#σ + 1 _ ! satisfying (22b) and (22c) respectively. Thus we
have shown existence of a solution to the reduced system (22a-f).

Taking the divergence of (22b) using (22f) and the injectivity of the Laplacian
we conclude DaΦ

ab = 0. On the other hand, taking the trace of (22a), and using (22d)
and (22e) we conclude ω = 0. Thus our gauge conditions are consistent and our
solution produces also a solution to (16a, b) and (17). Again, as in the case of
electromagnetism we see that our procedure sets to zero as much as possible of the
time derivatives of hab, and ωab in the evolution equations. In particular, if the
sources are compatible with a stationary solution, namely if DbJ

b = DbS
ba = 0, we

can see that C = cte, Xb = 0, that is the integrability conditions are automatically
satisfied, and so hab = ώab = 0. Thus the gravitational data is also compatible with a
stationary solution. If furthermore we have Jb = 0, then βa = 0 and so we also have
ωab = 0 and the gravitational data are also compatible with a static solution. Note
that we do not assert that the solution will be stationary (or static) since we do not
assume any particular model for the evolution of the sources.

IV. The Gravitational Case

As in the former cases we proceed to deduce the equations using the phase space
splitting. If would be interesting to see whether there are gauge conditions which
when used as Lagrange multipliers give the equations below. Varying the total
Hamiltonian, H = H(gab,Π

ab, matter fields) with respect to Πab and gab we obtain,

Λ , τ _M^trr „,ΛN . Λ _ „ (22a)
*ao' δΠab

Πab: = -̂  = g1/2{ - DaDbN + gabD2N + N(yab - Sab)} + £>Πab, (22b)

where (AT, Na) is a lapse-shift pair (JV, Na appear as Lagrange multipliers in our
variation), Da is the covariant derivative operator associated with gab, and

yab = Gab + g-ι[(2ΠacΠb-ΠabΠ)- ga

4

b(2ΠcdΠcd-772)] ,

where Gab is the Einstein tensor associated to gab.
As before, the splitting condition is

0
(Π *, gje Range

\
which is the gauge space [6], Φ being now the constraint map of gravitation,
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We thus arrive at the equations,

hab' = -<

- Cyab - g "1 /2 (&Πed\ gcagdb = 0, (24a)
V χ β J

ωab:=gll2[-DaDbN + gabD2N + N(γab-Sab)-:

+ 2C (Πab - gab ] + <eπab = 0. (24b)
\ 2/ ΛP

The above equations, together with the constraint equation,

,2Dβ(g-"2JΪ V \2J"

should determine a unique pair (gab, Π
cd\ solution to them and so minimizing the

total mass of the system. The approximate symmetry we noted in the linearized
case is now much more apparent in Eqs. (24a) and (24b). Under the interchange of
(N, Na) with (C, Xa) they go into one another except for the source term Sab.

In this case we also encounter integrability conditions which again can be
found by applying to the above equations the map DΦ(g Π](h, ω). They are a pair of
linear elliptic equations for C and Xa of fourth and second order respectively.

All the equations are tensorial and do not depend on any metric background,
so they are gauge invariant. We proceed now to study their solutions. In contrast
to the linear cases, to "give the sources on the manifold" does not give rise to a
unique solution, and so to a unique initial data set. The reason for that is the
absence of any metric background with respect to which one could fix the sources.
To see this consider the following example (R. Penrose, personal communication):
Let the source be a scalar-wave field with vanishing momentum, pφ = 0, that is a
scalar function φ. Further assume that φ has topologically spherical constant
value surfaces, a unique maximum with value φQ and compact support. Then this
field cannot give rise to a unique solution with minimal energy, for if that were the
case then the value of that energy should depend only on φQ, but since φ0 is
dimensionless it would be zero. In fact there are many physically different
solutions, one for each flat background one chooses to take [8]. We consider this
non-uniqueness a physically desirable fact, for otherwise we would not have
enough physical freedom to distribute the sources. To see this suppose one is
interested in describing the collision of two fluid balls which start at rest some
distance apart. Without a background metric this distance cannot be given a
priori, and so if the solution were unique we would not be able to choose it at will.

An important, and simpler to handle, class of source configurations is that of
momentarily static sources, Ja = 0. For this class we can set, ωab = βa = C = Q, and
obtain a reduced system for gab,Xa,N, which we call the momentarily static
equations. They are,

N(Gab - Sab) + gabD
2N - DaDbN - 2D(a -Xb) = 0 (26a)

2D°D(aXb} + (βDbN + D°(NSabj) = 0, (26b)

2ρ = 0, (26c)
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where (26c) is the integrability condition for (26b). Note that if the source
functional, ρ(g, matter fields), Sab(g, matter fields) are chosen in such a way that
whenever (26a) and (26c) are satisfied the second term of (26b) vanishes. We then
have Xb = 0 and the system reduces further to the static Einstein equations.

We proceed now to establish existence of solutions to the momentarily static
equations for small enough source configurations. We shall make them unique by
fixing a flat background.

Theorem. Fix any flat background metric, eab, which we use to fix the gauge and the
sources, and let (ρ, Sab) e Hσ _ ί x x H'^ ίίl9σ^.2, depend smoothly on gab e H'^+ i , - 2-
Then there exist a ε>0 such that for 0^/l^ε there exists a unique (up to
diffeomorphisms) solution (gab,Xa,N)εH'σ'+ί9_2

χH'χH-2 t° ^ne momentarily
static equations when (ρ, Sab) is replaced by (λρ, λSab).

Proof. We follow standard methods to reduce the above system to an almost
elliptic one, i.e. a system whose linearization about the trivial solution is elliptic,
and then apply the implicit function theorem and the theory of linear elliptic
operators to establish existence.

To render the system elliptic we first follow the usual method for the static
Einstein equations and apply to the above system the following conformal
transformation, gab = N2gab. This transformation gets rid of second derivatives of
N from Eq. (26a). Second we follow [9,10] and define new variables φab: = eab

— ]/Igα6> U : = — In N. Finally we require the equations \pb : = Daφ
ab = 0, where Da is

the covariant derivative associated to eab. Thus we obtain a reduced system of
equations with the following form.

Eab(Φcd, Xc, U,λ):= gcdDcDdΦ
ab + terms , (27a)

Ea(Φc\ X\ U,λ): = 2Dag
abD(bXc} + terms , (27b)

E(Φcd, Xc, U,λ): = gcdDcDdu + terms , (27c)

where the extra terms are such that they do not contribute to the linearized
(around Φab = χa = u = λ = 0) equations. They contain only up to second derivatives
of Φab and M, except for λρ and λSab.

Note that while in the original system (26a-c) Eq. (26b) is redundant, it is just
the integrability condition for (26a), in the reduced system Eq. (27b) is not, and we
must solve the whole system.

We next establish existence of solutions to the reduced system and then show
that they are also solutions to the momentarily static system.

Lemma 1. There exist ε' > 0 such that for Q^λ^ε' there exist a differ entiable
function

(Φab(λ\X\λ\u(λ}Y[_^^^

To show this we use the implicit function theorem for Banach spaces [1 <].
Consider the reduced system as a function from (ip, λ) : = (Φab, Xa, (7, λ) e X x R+

into Y=H'σ'_1 Λ xS' x Hσ_1 (1, where S' is the Hubert space of vectors fields
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laEHσ_2,2 of the form la = Dbm
ab, mabeH'σ'_1Λ,

F(ψ,λ): = Ea(ιp,λ]

This function is continuously differentiable if σ ̂  2, and furthermore F(0,0) = 0.
Thus if its differential with respect to ψ at ψ = λ = Q. D(0F0)(δψ), were an
isomorphism between X and Y, the implicit function theorem would then assert the
existence of an ε' > 0 with the properties required on the lemma. But

ecdDcDdΦ
ab

2e°bDβ(bXc}

ecdDcDdu J

which from the results in [4] is an isomorphic map. We complete the proof of the
theorem using the following lemma.

Lemma 2. There exist ε, 0<ε^ε' such that for O^λ^ε every solution to the reduced
system is also a solution to the momentarily static system.

We prove this by showing that if Φab(λ) is a solution then \pb = DaΦ
a

(

b

} = 0.
Taking the divergence of Eq. (27a) and using (27b) we obtain a linear homo-
geneous equation for ψbeHσt0. This equation depends continuously on λ and for
λ = 0 is the Laplacian, eabDaDbψ

c = 0. Since the Laplacian is injective in Hσ 0 and
since injectivity is a continuous property of elliptic operators we conclude that 3ε,
0<ε^ε', such ψc(λ) = Q.

In the case that the sources admit an equilibrium configuration, [see note
below Eq. (26c)], we obtain existence of solutions to the stationary Einstein
equations, which clearly do not contain radiation. Only for this case our
prescription for picking initial data is equivalent to the non-incoming radiation
condition of J~l.

Existence of solutions to Eqs. (24a, b) and (25) can probably be established for
arbitrary but sufficiently small sources by employing a similar method to the one
used above. We expect this to be the case because the linearized equations (around
Sab= eab> Πab = 0), that is the system treated in the preceding section, are elliptic and
have a unique (up to gauge) solution.

In Sect. Ill we saw that C will in general have a logarithmic behaviour but also
that it can be eliminated by requiring the vanishing of the total 3-momentum of the
source. This can always be achieved by "boosting" the sources. Although in the
linearized case this logarithmic behaviour is not important, in the non-linear one it
can be disastrous. In fact, in this case C couples with gab in such a way that we
would also have a logarithmic behaviour in gab. Perhaps, as in the linear case, this
behaviour can be avoided by a gauge transformation which boosts our system in
an appropriate way or by imposing some condition on the sources which
eliminates this problem altogether.

V. Conclusion

We have presented the equations which arise as necessary conditions for the
existence of a minimum for the total ADM energy of isolated systems along
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asymptotically flat space-like hypersurfaces, and given some arguments for the
existence of solutions to such equations. While for the linear case we obtain a
unique initial data set for each suitable source distribution, for the fully non-linear
case we obtain, for each suitable source distribution as many initial data sets as flat
backgrounds. These are physically different initial data sets corresponding to
physically different final source distributions. This is not a new problem [12], and
it arises from the fact that a source distribution does not acquire a physical
character until a metric is given. From examples one sees that this non-uniqueness
is actually needed for one to be able to account with this formalism for all
physically interesting source distributions, and thus it is not necessary to further
restrict the initial data sets to obtain uniqueness. For small enough sources we
expect to find at least a relative minimum close to the flat data, in this case the final
source configuration will not differ substantially from the one given a priori. For
strong sources one would have to rely on one's own physical insight to guess the
appropriate configuration to be given. Perhaps one could follow an approach
similar to the one of Dixon [13] and try to define new variables by which invariant
information about the matter content can be given.

It should be interesting to derive a similar procedure for the case where instead
of considering initial data sets on a space-like hypersurface one considers null data
in a light cone. One would then minimize the Bondi Energy, and obtain similar
equations to those derived above. Since for the null case there is more geometrical
structure a priori available one expects here to be able to fix the sources in a more
geometrical way and therefore to obtain a smaller set of null data for each source
distribution. Another advantage in this case is that one expects then our procedure
to be roughly equivalent to the one imposing zero gravitational data a t j ~ .

Consider a hydrodynamical system consisting of two fluids, A and B say, whose
individual sound speeds are very different, say VA <ζ VB. If one is only interested in
the long term evolution of fluid A, i.e. evolution on time scales of the order of
(length of the system)/^, and believe that the sound waves of fluid B do not affect
seriously such evolution, then the following numerical approximation is useful: At
each time step use the full equations to determine component A, but use only the
hydrostatic equations to determine component B. This approximation allows for
longer time steps, and thus for a considerable saving in computer time, for the
Courant-Friedrich-Lewy condition involves only component A. Are there systems
gravitation-fluid where a similar approximation is appropriate? Since all propa-
gation velocities are smaller or equal to that of the gravitational field this should be
taken as component B. Do the minimal energy equations play the same role for
these systems as the hydrostatic equations play for the two fluids? In general
relativity there are no static equations unless very restrictive (equilibrium)
conditions are imposed on the sources. The minimal energy equations represent
the closest one can get to staticity without imposing any condition on the sources.

It should also be interesting to see the relation of this approach to those based
on a Newtonian limit. Note that in our approach we do not require small velocities
or stresses. The difference between these approaches can be seen already in
electromagnetism. Consider as source for electromagnetism a charged rotating
ring. The initial data obtained from the Newtonian limit have E = — VΦ such that
AΦ= — ρB — 0, while the MEIDS has both E and B different from zero and just
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correspond to the stationary solution. From the minimal energy point of view the
Newtonian limit initial data set corresponds to the MEIDS plus incoming
radiation chosen in such a way as to make B = 0 in the hypersurface under
consideration.
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