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Abstract. We give a general condition which ensures the existence of constant
mean curvature (CMC) Cauchy surfaces in cosmological spacetimes. However,
there is an example of a spacetime which does not satisfy this condition and
does not admit any CMC Cauchy surfaces. We discuss conditions under which
CMC surfaces may exist.

Introduction

A Lorentzian manifold y is a cosmological spacetime if it is globally hyperbolic
with compact Cauchy surfaces and satisfies the timelike convergence condition

(TCC) Ric(T, Γ) ̂  0, for every timelike vector T.

In this paper we are concerned with the following conjecture:

Conjecture 1. There is a CMC Cauchy surface in y.

We first show the following existence result:

Theorem. Suppose the condition

(G) V — I(p) is compact, for some point pei^,

is satisfied. Then there is a regular CMC Cauchy surface, which passes through p.

By regular surface we mean a strictly spacelike C2'α hypersurface [B2] and we
are assuming throughout that the spacetime metric is C2. The proof of the theorem
depends on some new existence and regularity results for prescribed mean
curvature surfaces [B2].

However, Conjecture 1 is false in general, as we have:

Example 1. There is a cosmological spacetime V which admits no CMC Cauchy
surfaces.
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In fact, Ίf has no Cauchy surface with mean curvature everywhere non-
negative (or everywhere non-positive), so it is also an example of a cosmological
spacetime with singularities which are not crushing [ES]. However, Ίf does admit
non-compact CMC surfaces (without boundary). We give two proofs of the non-
existence of CMC Cauchy surfaces, one based on the topology of the Cauchy
surface (similar to the motivating example of Brill [BD]), and a second using
conjugate points. In the discussion (Sect. 3) we consider this indicated relationship
between the spatial and causal topologies.

The main result towards the conjecture is that of Gerhardt [GC], who showed
the existence of CMC surfaces for cosmological spacetimes admitting past and
future barriers [GC, Bl]; i.e. regular Cauchy surfaces S0, S{ with Sί Cl+(S0) and
mean curvatures #0, ί/\ respectively, satisfying

min/f o = max//! . (1)
So Si

The existence of such barriers is an easy consequence of our theorem, so it follows
that (G) is a stronger condition than (1). This is shown explicitly by Example 2 in
the discussion section. Condition (G) was first introduced by Geroch [GR] and
later used by Galloway [GG 1] (assuming (G) held at every point of the spacetime)
to prove a splitting theorem. In fact, the theorem yields a strengthening of
Galloway's result:

Corollary 2. Suppose (G) is satisfied at p e ̂ , a cosmological spacetime. Then either
i^ is a metric product or 1^ is timelike incomplete.

The corollary is motivated by

Conjecture 2. Suppose i^ is a cosmological spacetime. Then either ̂  is timelike
geodesically incomplete or it splits as a metric product.

This is related to Yau's splitting conjecture [Y], recently proven by Eschen-
burg [E]: a timelike geodesically complete, globally hyperbolic spacetime
satisfying TCC and admitting a line (i.e. a past and future unbounded maximising
timelike geodesic) is a metric product. In fact, the assumption of timelike geodesic
completeness can be removed [GG2]. It is not hard to show that (G) implies the
spacetime is either timelike geodesic incomplete or has a line, so Corollary 2 also
follows from Eschenburg's result. We note that, in contrast to Corollary 2 and
Conjecture 2, Yau's conjecture does not require the Cauchy surfaces be compact.

1. Proof of the Theorem

We first recall the Brill-Flaherty uniqueness result [BF]. If M0, Mί are two regular
surfaces and γ: [0, d~\-+Ίf is a maximising future-timelike geodesic with y(0) eM0

and y(d)eM1? then

d

0^ j Ric^7, y7)rfs + H!(y(l))-H0(y(d)). (2)
o



Cosmological Spacetimes 617

(Note that our conventions give the future unit hyperboloid in Minkowski space
mean curvature + n.) Such a geodesic y occurs in many cases - for example if
M0, Mί are compact Cauchy surfaces, or if <3M0 = dM± and M0, M± are compact
T-homotopic surfaces [B2].

By [B2, Theorem 4.1], for any λ eR there is a Cauchy surface Mλ with p e Mλ

and such that Mλ — {p} is a regular hypersurface with CMC λ. Although we shall
not need it here, we note that Mλ — {p} is either regular or tangent to the upper or
lower light cone at p [B3]. We see that the Mλ are unique as follows: suppose
M, M* are two regular surfaces with common (topological) boundary and with the
same constant mean curvature. We may suppose M*C/ + (M), so the function

φc) = SUp {φc, ) > ) , ) > 6 M*}

[where d(x,y) is the Lorentzian distance] is zero on dM and has a positive
maximum on M. By the implicit function theorem [CB], applied to a subdomain of
M with smooth boundary sufficiently close to dM, there is a CMC surface M' close
to M with lesser mean curvature, such that d(x), xeM', attains an interior
maximum on M'. The resulting maximal geodesic contradicts (2).

From the uniqueness it follows that the surfaces MA, /leR, form a foliation in
i^ — J(p). [In fact, we can show this foliation covers all ofi^ — J(p\ but this isn't
needed here.] Let S be any regular Cauchy surface with p e S and define

Λ = l+sup s |Jϊ0 |, (3)

where H° is the mean curvature of S. Note it also follows from (2) that MΛ C J~(S)
and dually, M_ΛcJ+(S).

Now fix a coordinate system (x, t) centred at p such that the metric gΛβ(x, t) in
the (x, ί) coordinates satisfies

(4)

for a constant C, where ηαβ is the flat Minkowski metric and ||(x, ί)|| 2 = |x|2 + 12. By
[B2, Proposition 5.1 and Theorem 5.2], there is a cylinder neighbourhood

<% = ̂ (ε) = {(Xj t) : \x\ ̂  ε, |ί| ̂  2ε}

for some ε > 0 such that if M is any regular hypersurface with constant mean
curvature HM satisfying |HM| ̂  A and δ(Mn^r) C {(x, ί) : |x| = ε}, then Mn^T is the
unique hypersurface with its boundary and mean curvature, in its T-homotopy
class. For any λelR, we denote by Dλ = graph w^ the regular hypersurface in fy,
solving the Dirichlet problem

HM = λ, 3M = Mλn{(x,ί):W = ε}. (5)

Since the Mλ form a foliation, the boundaries dDλ, /leR, form a continuous
1 -parameter family of C2'α submanifolds. The uniqueness of the Dλ and the
regularity estimates for prescribed mean curvature surfaces with smooth bound-
ary [Bl, Sect. 3] imply the Dλ, —A^λ^Λ, form a continuous family of regular
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hypersurfaces. Since MΛcJ~(S), from the maximum principle we see that
DΛCl~ (S) and in particular, 1̂ (0) < 0. Similarly, u _ ̂ (0) > 0 and by continuity there
is λ* e (— A A] such that p e Dλ*. We claim Dλ* = MA*n^, and thus Mλ* is a regular
CMC Cauchy surface. To see this construct a foliation Qλ, —Λ^λ^Λ, with mean
curvature λ* and boundary values 5(Mλn^). The existence of such a foliation
follows from [B2, Sect. 5]. Now Dλ* = Qλ*, so d((Mλ* - (p})n^) C DA*, and the claim
follows from the maximum principle [or (2)], applied to (Mλ* —{p})n<^ and Qλ,
λ>λ* and λ<λ*. q.e.d.

2. Example 1

The construction is an adaption of an idea of Brill [BD] and starts with the
Tolman-Bondi metric

ds2 = -dt2 + X2 dr2 + Y2 dΩ2 , (6)

where dΩ2 is the standard metric on S2 and X = X(r, t), Y = 7(r, t). With pressure
free perfect fluid matter (i.e. dust) and assuming the marginally unbound condition
Y' = X (' =d/dr), the Einstein equations can be integrated [ES], giving

X(r, t) = (M'(r) (f 0(r) - ί) + 2M(r) iO(r))/(6M(r)2(i0(r) - ί))1/3 ,

for some functions M(r), ί0(r). Two examples of this metric are:
(i) Schwarzschild spacetime,

M(r) = l, t0(r) = r for — oo <r< oo,ί<r,

where the (r, t) coordinates cover one half the maximally extended Schwarzschild
solution, and

(ii) Friedman universe with fc = 0,

M(r)-r3, ί0(r)-0 for 0^r,£<0.

The Oppenheimer-Snyder stellar model [OS] is obtained by attaching these
two solutions along r = l, with r^l the Friedman solution and r>l the
Schwarzschild solution. We do the opposite: define

t0(r) — r, M(r) = 1 for — o o < r ^ l — ε (Schwarzschild region),
(8)

ί0(r) = 1, M(r) = r3 for 1 + ε ̂  r (Friedman region),

where ε > 0 is small and for 1 — ε ̂  r rg 1 + ε we choose M(r), ί0(r) smoothly so that

ί'0(r) ̂  0, ίS(r) ̂  0, M'(r) ̂  0, M"(r) ̂  0,

Then Jί(r, ί) > 0 so the (r, t) coordinates are non-singular (no "shell-crossing"
singularities) and the matter density

4πρ(r, t) — M'(r)X~1Y~2^Q,

so the resulting spacetime satisfies the timelike convergence condition.
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with T3 topology
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Schwarzschi
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In the Friedman region the metric is

- dt2 + (9/2)2/3 (1 - ί)4/3 (dr2 + r2 dΩ2).

Changing to Euclidean spatial coordinates (x, y, z) we see that spatial translations
are isometries and hence the faces of the cube max(|x|, \y\, \z\) = 2 can be identified,
giving a C°° induced metric on the resulting spacetime Ϋ\ (see Fig. 1). Brill's
spacetime is constructed from ^ by attaching the other half of the maximally
extended Schwarzschild solution to the boundary of the Schwarzschild compo-
nent of i^, giving an asymptotically flat spacetime with Cauchy surfaces
topologically T3 — {pt}.

Instead we attach ^ to a time-inverted copy i^u of itself, again along the
boundary of the Schwarzschild region (Fig. 2). The resulting spacetime 1f is clearly
globally hyperbolic with compact Cauchy surfaces diffeomorphic to T3 ΦT3 and
having two disjoint Friedman regions separated by a piece of the interior of the
maximally extended Schwarzschild solution.

Proposition. Ίf has no CMC Cauchy surfaces. However, there is K0 > 0 such that
for any constant K with \K\^ K0, there is a noncompact boundaryless regular surface
with constant mean curvature K and diffeomorphic to T3 —{pi.}.

Proof. Observe that i^ has a time-inverting isometry φ\i^-+i^ which inter-
changes the two components ,̂ i^λl. Suppose S is a regular CMC Cauchy surface
and let S* = φ(S). Then H(S*)= -H(S) and we may assume H(S)>0 [the case

Fig. 2



620 R. Bartnik

Fig. 3

H(S) = 0 will be dealt with later], so by (2), S*C/+(S). Thus S,S* are past, future
barrier surfaces respectively for a maximal surface and by [Bl, GC] there is a
maximal Cauchy surface S** in /+(S)n/~(S*). But π1(S**) = πί(Ύ3φT3) = Z* *Z*
>Z2 = π1(T2), so by [SY] S** cannot admit a metric of non-negative scalar
curvature. But i^ satisfies the weak energy condition, so any maximal surface has
non-negative scalar curvature. This is the contradiction.

To show the existence of non-compact CMC surfaces, we first note that the
surfaces Sk in i^ defined by

t = t0(r)-k, 0</cg/c 0 , (10)

have mean curvature ^ — (2k) ~ 1 for some k0 > 0. This follows from a straightfor-
ward but tedious computation and estimation using (9) (see also [ES]) and is made
plausible by noting that in the separate Schwarzschild and Friedman regions the
surfaces Sk are the well-known crushing surfaces. Note that Sk ̂ T3 — {pt.} with the
metric near the point that of S2 x R.

Now let S be any fixed regular Cauchy surface in -jΓ. Choose k^kQ,R^Q and
— (2k)~1<K<infsH(S) and consider the Dirichlet problem

find a regular surface MR such that H(MR) = K ,

d(Skn{r^R}) and MR is 5t-homotopic to Sk

(see Fig. 3). By [B2] this has a regular solution in the precompact region
I~(Skn{r^R})πI+(S), since Sk is a future barrier surface and S is a past barrier.
Since MΛ*n/~(S fcn{r^JR})n/+(S)Φ0 for all £,#*^0, the sequence {MR}R^0 has
a limiting surface M. From [B2, Theorem 3.8], M is a regular surface with mean
curvature K and 5t-homotopic to Sk, provided we can show there are no endless
null geodesies contained within M. This follows from the global hyperbolicity of I/"
and the fact that MRCl+(S) for all #^0. q.e.d.

There is an interesting alternative argument that the example i^ does not
admit a CMC Cauchy surface, which does not rely on the topology of the surface,
and only uses TCC:

Suppose S is such a surface, with non-zero mean curvature, which we may
assume negative. By the focal point lemma [HE], there is a finite upper bound to
the length of a future timelike curve from S. However, there are future inextendible
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timelike curves in 1^° which follow the boundary of the dust cloud (see Fig. 3) and
have infinite length, which is a contradiction. To show there are no maximal
Cauchy surfaces, we can use the following:

Lemma. Suppose S is a maximal Cauchy surface in a cosmological spacetime. Then
there is a neighbourhood of S foliated by CMC Cauchy surfaces.

Proof. Let y)l(u) denote the mean curvature of graphs(w), WEC°°(5), in Gaussian
normal coordinates. Now 501 has linearisation

gK'(0) = - As + \A\2 + Ric(ΛΓ, AT) ,

where A( , ) is the second fundamental form of S and Ric(N, N) is the Ricci tensor in
the direction normal to S. Clearly SR'(O) is invertible and there are non-zero CMC
surfaces near S unless \A\2 = 0 and Ric(7V, N) = 0 [CB]. In this case we introduce the
operator

9Jί* : C°°(S) x R-+C°°(S) x R, 9Jl*(w, k} = (Wl(u)-k, J i

which has invertible linearisation about (0, 0) since the kernel of 9JΪ'(0) contains
only the constant functions. By the inverse function theorem, for all ε sufficiently
small there is u(έ) such that 9W(w(ε)) = fc = fc(ε) and f w(ε) = ε. Since w'(0)eker9W'(0),

s
this implies w'(0) = const > 0 and thus the graphs of the u(ε) form a foliation in a
neighbourhood of S by CMC surfaces, q.e.d.

If the foliation is by maximal surfaces, then the regularity results imply the
foliation extends, and the metric must be a product. Since ̂  is clearly not static,
this shows there can be no CMC Cauchy surfaces in i^ . q.e.d.

We note the lemma has the immediate

Corollary 1. Suppose i^ is a cosmological spacetime with a regular CMC Cauchy
surface. Then either Y' is timelike geodesίcally incomplete or i^ splits globally as a
metric product (cf. [GG1, GC]).

Combining this with the CMC existence theorem gives the splitting result,
Corollary 2, mentioned in the introduction. The focal point argument can be
modified (see below) to show Brill's original example cannot have any Cauchy
surfaces with non-positive mean curvature (and in particular, has no maximal
Cauchy surface).

Example 1 illustrates the difficulty in applying Eschenburg's result to prove
Conjecture 2: although there is a sequence of pairs of points (pn, qn) tending to (ι~,
ι+) with d(pw #„)— > oo, the limit of the connecting timelike geodesies is null, so there
is no line.

3. Discussion

Now let us consider what these results tell us about the general existence question
for CMC surfaces. Firstly, notice that the two arguments exploit apparently quite
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distinct properties of ̂ , the first relying on the topology of the Cauchy surfaces,
whilst the second uses the global causal structure.

We will say that a hypersurface has bad topology if its fundamental group
contains a surface group (so the hypersurface does not admit a positive scalar
curvature metric). The first argument shows that a cosmological spacetime which
also satisfies the weak energy condition (this does not follow from TCC) and whose
Cauchy surface has bad topology, cannot have positive and negative mean
curvature barriers unless the resulting maximal surface is a totally geodesic T3 with
vanishing energy density along the hypersurface. A simple example shows that this
exceptional case can occur:

Example 2. Consider the globally hyperbolic spacetime i^ with coordinates
{(x,ί)6R3 ϊ l: |ί |<l} and conformal metric g = Ω2(t)η, where η is the standard
Minkowski metric and Ω(t) = Qxp(-t2/(l — t2)) for |ί|<l.

It is easy to check that the timelike convergence condition is strictly satisfied -
for any unit timelike vector N, we have Ric(JV, N)^6 - and the weak energy
condition is also satisfied, T(N, N) ̂  0, with equality exactly for the normal vectors
to the Cauchy surface {(x, t) : ί = 0}. This surface is totally geodesic by symmetry,
and by identifying the sides of a spatial cube of side length L, we obtain a family of
cosmological spacetimes iΓL with maximal Cauchy surfaces having bad topology.

This example has some other interesting properties. Firstly, the dominant
energy condition is not satisfied and cannot be satisfied by any non-trivial choice
of Ω(f). Secondly, although TCC is satisfied strictly and WE holds almost
everywhere, a generic local perturbation about {ί = 0} of the metric g cannot
satisfy WE. This follows from the fact that a generic metric does not admit totally
geodesic hypersurfaces. By the barrier argument, the perturbed spacetime will still
admit a (unique) maximal Cauchy surface, with scalar curvature R = 2T(N,N)
+ \A\2. Since |^4|φO and T3 does not admit a metric of non-negative scalar
curvature, the weak energy condition must fail somewhere along the maximal
surface.

Finally we note that for L > 1, the spacetimes i^L do not satisfy (G) but do have
past and future mean curvature barriers, so (G) is strictly stronger than Gerhardt's
barrier condition.

The second argument relies on the existence of unbounded timelike curves and,
as indicated above, can be adapted to non-compact Cauchy surfaces by assuming
additionally that the (future) unbounded curve γ satisfies

J~(y)nS compact, (11)

where S is any Cauchy surface. Note again that Brill's example satisfies this
condition. The argument then is as follows. As before, there can be no negative
mean curvature Cauchy surface. Furthermore, if there were a maximal Cauchy
surface S, then by solving the Dirichlet problem for negative mean curvature and
boundary 3(J~(y)nS), we would again contradict the focal point lemma.

We can paraphrase (11) by saying there is a hidden (future) infinity. It seems
reasonable to conjecture that
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Conjecture 3. An asymptotically flat, globally hyperbolic spacetime satisfying
TCC has a maximal Cauchy surface if and only if there are no hidden infinities.

The only if part is shown above. The most convincing evidence for the converse
is the "interior condition" in the existence result of [Bl], which postulates a
uniform bound for the "height" of the domain of dependence of the intersection of
any Cauchy surface and the "interior region." This condition immediately
precludes the existence of any hidden infinity.

In [SY2] it is shown that an asymptotically flat spacetime satisfying the
dominant energy condition and with Cauchy surfaces having bad topology must
necessarily have an apparent horizon. Together with Brill's example, this suggests
there may be a relation between the existence of hidden infinities and bad topology.
In any case, we could also assume the dominant energy condition and add "iff the
Cauchy surfaces have good topology" to the conjecture.

With (11) modified to "J~(y)nS compactly contained in S," there is a similar
conjecture for the existence of CMC Cauchy surfaces in cosmological spacetimes.
Although we have seen that (G) is not a necessary condition in this case, if we also
require the spacetime to have past and/or future unbounded timelike curves, then
there is a close connection between the failure of (G) and the existence of hidden
infinities (and hence the non-existence of any CMC Cauchy surfaces).
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