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Abstract. We show that if the one-loop partition function of a modular invariant
conformal field theory can be expressed as a finite sum of holomorphically
factorized terms then c and all values of h are rational.

1. Introduction

There is some evidence for an underlying arithmetic nature of conformal field
theory. If this is so then the fundamental data of the theory might be expected to
have an arithmetic significance. These data include the central extension c and
highest weights {/zj of representations of the Virasoro algebra, together with
operator product expansion coefficients [1]. While the arithmetic nature of these
data is still almost wholly conjectural, it is interesting to note that in all known
conformal field theories the value of c is rational. In this note we prove that in a
certain subclass of conformal theories the values of c (and of ht) must be rational.

The class of conformal theories we will discuss are known as rational conformal
field theories. Conformal field theories are a distinguished class of two-dimensional
quantum field theories that are partially characterized by the requirement that the
Hubert space of the theory H be a representation of a product of commuting
Virasoro algebras: Vir © Vir of the form

H=®atb±0V(ha9c)®V(hb9c)9 (1.1)

where V(h9 c) is the irreducible highest weight representation characterized by the
central extension c (the same for all representations in (1.1)) and highest weight
h, i.e. Lov = hυ for the highest weight vector v. In conformal field theory ha ̂  0,
and the degeneracy of the states with h = h = 0is exactly one. Another distinguish-
ing characteristic of conformal field theory is modular invariance, which, among
other things states that the one loop partition function:

/ 2 4 q L ^ 2 4 = £ Nabχ(ha,c)χ(hb,c) (1.2)

is modular invariant. Here Nab is the degeneracy of representations (ha, hb\ χ{h, c)
is the character of the representation V{h9 c\ and q = e2πί\ where τe Jf, the upper
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half plane. These are other properties a field theory must satisfy to be a conformal
field theory, but we will not use these in this paper.

Conformal field theories are very special objects, yet the space of these objects
is not well known. One might hope that the imposition of various finiteness
conditions can lead to a more manageable class of theories. An example of this is
Cardy's celebrated result that if the number of primary field is finite then c < 1
[2]; conformal field theories with c < 1 have indeed been classified. As part of an
attempt to classify all conformal field theories D. Friedan and S. Shenker [3] have
suggested that an interesting class of theories are those for which the Z + x Z +

matrix Nab has finite rank. These theories are known as rational conformal field
theories.

Let us analyze more closely the condition of finiteness of the rank. By
rearranging rows and columns we can require that if N has rank k then

Thus viewing the columns as vectors we can take the first k columns as a basis
for the image of N. Hence, for j > k,

Naj=ti

DjiNai a =1,2,....

The matrix Djt is rational by Kramers' rule. It follows that the sum (1.2) can be
rewritten as

Σ fιβt>
i = l

where

a-l "_ - (14)
9i = χ(hι,c)+Σ DjiXihpc) = ΣeaΛq

h°->
j>k a

are holomorphic and antiholomorphic functions with g-Puiseux expansions having
rational coefficients. (We will distinguish g-expansions, which have integral powers
of q from g-Puiseux expansions, for which the powers of q are not necessarily
integral.)1

In this note we prove the

Theorem. The constraint of modular inυarίance together with the rationality of

da,i>
ea,i implies that the powers of q in (1.4) are rational

The essential step of the proof is Proposition 2 below, which is a purely
arithmetic statement. To apply this to conformal field theory note that since the
vacuum has h = 0, c and all conformal weights are rational.

The rationality of the coefficients daΛ and eaλ is sufficient for our purposes, but
we note that the truth of a conjecture of E. Martinec [5] would imply that the

1 Comments and conjectures on the nature of theories having a partition function of the form (1.3)
were also made in [4]
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coefficients of fbgt can be taken to be integers. The coefficients of / f are manifestly
integral. Since the denominators of Dβ are no larger than det Nab we can enlarge
the set of vectors Nai to a set with 1 ^ / ̂  K for K ^ k which generate the image
of AT as a Z-module. For this larger set the new matrix Dβ and hence the
corresponding coefficients eai are integers.2

Some examples of known rational conformal field theories are:
1. Rational toroidal compactifications and orbifolds [3,4,6,]. For these c = d,

the dimension of the torus.
2. The unitary discrete series [7], with

c=ί
m(m + 1)

3. N/JVZ parafermion algebras [8,9], with

4. The new discrete series of [5,10] with

(n2 - 1)MN(M
c = -

(M + N + n)(M + n)(N + n)

with n ^ 2M, N ^ 1.
5. The WZW model [11] for a group G at level k with

/cdim G

where cv is the Casimir of the adjoint representation (the dual Coxeter number).
6. Isolated c = 1 models [12].
7. Tensor products of the above.

To begin our proof, we note that the modular invariance of (1.3) implies that
fitCJi form finite dimensional representations of the modular group Γ. Hence we
are naturally led to consider functions /(τ) which are holomorphic in Jf, have an
expansion in (not necessarily integral) powers of q, and for which the span over
C: Span{/°y} y e Γ is finite dimensional. In order to work effectively with these
functions we first must make a mathematical digression.

2. Some Mathematical Tools

A. Differential Equations. In [13] D. Friedan and S. Shenker proposed an approach
to classifying conformal field theories based on the geometry of flat vector bundles
over moduli space. In the case of finite dimensional vector bundles, such structures
have been well studied in the mathematics literature [14-16]. We will draw on

2 We thank D. Friedan for a useful discussion about this
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some of the classical results of the subject in our proof. Therefore, we summarize
here the relevant results.

We begin with a well-known result:

Lemma 1. Let yu. ..,ynbe linear independent meromorphicfunctions in a connected
open subset U <= C, and let V be their span over C. Let E = e(d/dx) be a meromorphic
vector field on U not identically zero. Then there exist unique meromorphic functions
kl9...9kn on U such that the space of solutions of

(2.1)

is precisely V.

Proof. Given the yt we can construct the kt as follows. Any vector y in V can be
written y = Σc^^ Therefore:

det

(y J Ί

Ey Eyί

\E»y Eny,

Eyn

EnyJ

= 0.

On the other hand, by linear independence the yt have a Wronskian which is not
identically zero, so that, expanding the above equation and dividing by the
Wronskian we arrive at Eq. (2.1), with

JΊ ••• yn

det
7i~2Λ

Enyn

det
Eyx . - Eyn

(2.2)

V^ Vi ••• EnyJ

If we apply Lemma 1 with U = Jf, and E = q(d/dq) = (l/2πi)(d/dτ), then it
follows that the following two conditions are equivalent:

(I) The coefficients k1,..., kn of (2.1) are invariant under T:τ->τ+l:J ( f->J ( f .
(II) Span{)>!,...,yn} = Span j j vT, . . . , y n °T} .

The local analysis of singular points of differential equations proceeds by
passing from a neighborhood of a singular point, which is a punctured disk, to
its universal cover, the upper half plane. Thus it is natural to consider the following
growth condition:

Definition. A holomorphic function / on J f is of moderate growth in vertical
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strips if for all real numbers a < b and C > 0 there exist real numbers A > 0 and
B > 0 such that

\f(τ)\^AeBlmτ α^Re(τ)^fr, I m τ ^ C . (2.3)

We can now summarize the main results from the theory of regular singular
points. A singular point of the differential equation (2.1) is said to be a regular
singular point if, denoting by m the order of vanishing of the vector field E at the
singular point, the order of vanishing of k{ is not less than (m — l)i. Equivalently,
if we use a local parameter x near the point and take E = x(d/dx) then the kt are
required to be holomorphic at x = 0. If yl9...,yn are C-linearly independent
holomorphic functions on Jf satisfying the conditions (I) (hence (II)), then the
following are equivalent:

(A) yl9...,yn are of moderate growth in vertical strips.
(B) Each yt is a finite linear combination of functions of the form qθτkg(q\

where ΘGC, fceZ, k Ξ> 0, g is holomorphic on the open unit disk.
(C) The functions kt in (2.1) have a q expansion (i.e. an expansion in integral

powers oϊq) for Im(τ)» 0, and the ^-expansion of each coefficient kt of (2.1) contains
no negative powers of q.

We briefly explain why this is reasonable. The equivalence of (A) and (B) is a
simple consequence of the properties of removable singularities. The equivalence
of (A) and (C) is fairly elementary if the number k in (B) is zero (i.e. if there is only
semisimple monodromy). In this case, for (C)=>(A) one can substitute power series
expansions and require that they satisfy the differential equation (the method of
Frobenius), while for (A)=>(C) one simply substitutes into (2.2). For a careful
discussion see [16] and [15], especially Sect. ILL

We can apply these results to the class of functions described in the introduction.
More precisely we make the following definition:

Definition. A holomorphic function / on J^ is quasi-automorphic if the following

hold:

1. Span{/ o γ} y e Γ is finite dimensional.
2. f°y is of moderate growth in vertical strips for all yeΓ.

In order to avoid complications of ramification points we consider the sub-

group Γ(2) of Mobius transformations defined by SL(2,Z) matrices

a b\ (\ 0

c

We define the Γ(2) modular function

λ is known as Picard's /l-function. A crucial property satisfied by λ is that its q
expansion contains only half-integer powers of q, and has integer coefficients.
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Explicitly:

1 + 4 " - 1

We now apply once more Lemma 1 with U = Jtf* and E = d/dλ = (dλ/dτ)~1d/dτ
to see that the following conditions are equivalent:

(Γ) The coefficients ku...,kn in (2.1) are Γ(2) invariant.
(IΓ) Span{)>!,...,yn} = Span{ j^°y,...,yn°γ} for all yeΓ(2).

Applying the theory of regular singular points in this case we have

Proposition 1. Let yi,...,yn be C-linearly independent holomorphicfunctions on ffl,
and let E = d/dλ. If the yt satisfy either (hence both) of the conditions (Γ), (IΓ) then
the following are equivalent.

(A') All singular points of (2.1) on the λ-plane (including λ = 0,1, oo) are regular.
At each singular point λ0 φ 0,1, oo, (2.1) has n linearly independent solutions in the
form of power series (with integral powers) in λ — λ0. In particular, kt are rational
functions of λ.

(B') yι," ,yn are quasi-automorphic.
We make two remarks. The first remark is that the above theory has a beautiful

interpretation in terms of flat vector bundles over moduli space. We refer to
[15,16] for a discussion of this.

The second remark is that differential equations for the partition function of
the discrete series are known to follow from the existence of null vectors in the
Virasoro algebra [1,17,18]. On the other hand, from Proposition 1 we see that
similar differential equations are a direct consequence of the finite rank of Nab,
even when c> 1. It is natural to conjecture that these differential equations also
follow from a null vector in the larger algebra whose existence is conjectured in [5].

We now describe our second tool.

B. Algebraic Automorphisms. An algebraic automorphism of the field C is a
bijective map φ:C->C which preserves addition and multiplication. Note that
ψ(\) = 1, hence φ(m) = m for any integer m, hence φ(m/n) = m/n, i.e., φ fixes Q.
Note further that φ is not required to be continuous. We will use the following
standard fact about such automorphisms:

Lemma 2. // θ is irrational then there is an algebraic automorphism φ of C such
that φ(θ) Φ θ.

Although this fact is a standard part of the folklore of number theory, we will
indicate why it is true.3 A simple example of the kind of transformation we have
in mind is φ:a + b^j2-*a — b^/2 when a,beQ, which must then be extended to
the entire complex numbers. To show this we assume some familiarity with Galois
theory [19,20]. To begin with, suppose θ is an algebraic number. Denote by Q

3 Actually all we will need is an automorphism of a finitely generated extension of Q, but it is not

much harder to prove the more general statement
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the field of algebraic numbers, which can be decomposed in a tower of Galois
extensions

with KιdKi+1 and KJQ Galois. Suppose βsK^ Then there is an element φ of
Ga\(Ki/Q) for which φ(θ) Φ θ, and, by the fundamental theorem of Galois theory
we can lift φ to all the higher Kj9 hence to Aut(Q). To get to Aut(C) we choose
(using the axiom of choice!) a transcendence basis S for C over Q, i.e. a maximal
algebraically independent set of complex numbers over Q. By requiring that φ fix
this basis we obtain an element of Aut(Q(S)). By the definition of a transcendence
basis, C is algebraic over Q(S) so by using once again Galois theory and (transfinite)
induction we can extend φ to Aut(C). Similarly, if θ is transcendental we can
complete it to a transcendence basis S for C over Q and define φ(θ)= — θ, while
φ fixes the remaining elements of S. As before we can extend φ to Aut(C).

3. Rationality of c, h

The strategy of the proof will be quite simple. Beginning with a quasiautomorphic
function we associate a differential equation as in the previous section. Using any
automorphism φ we conjugate the differential equation. The new differential
equation defines a new quasiautomorphic function which is simply related to the
old one. This relation is impossible unless the functions are in fact the same, which
implies that the exponents of q are fixed by all automorphisms of C and hence
rational. Let us now spell this out in more detail.

First we define the notion of conjugation by an algebraic automorphism. If/
is any function on the upper half plane with a g-Puiseux expansion

we define fφ to be the function (if it exists) whose g-Puiseux expansion is obtained
by acting with φ on the coefficients and exponents of q:

If / is a rational function of λ then it is of the form

{ Lriλι

~ V—Tι

(both sums finite). Since the q( — Puiseux) expansion of λ has integral coefficients,
and since φ is an automorphism, we see that in fact

rφ

J

Thus, the φ-conjugate of a rational function of λ exists and is another rational
function of λ.

We use this observation in the proof of the following.
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Proposition 2. Let φ be an algebraic automorphism of C and let

be quasiautomorphic, then

exists and is quasiautomorphic.

Proof. By Proposition 1, Span{/ o y} y e Γ ( 2 ) is precisely the set of solutions of a
differential equation

enjoying the properties (A'). If we conjugate the coefficients kt of (3.1) we obtain
a differential equation

ί}{)n~ly+-+k»y=0' (3 2)

which again possesses the properties (A'). The solutions of (3.2) may be obtained—
after a certain amount of transformation—by the method of Frobenius. (For
details see [15].) Thus the formal solutions of (3.2) are the same as the true solutions,
and since fφ formally satisfies (3.2) it must be the g-Puiseux expansion of a genuine
solution of (3.2). Therefore, fφ exists and is a quasiautomorphic function by
Proposition 1. This proves Proposition 2.

Let us now reconsider the setting of the introduction. We observe that the
operator T:τ -» τ + 1 in the quasiautomorphic representation Span {/J which arises
in rational conformal field theory is diagonalizable. In order to see this, note first
that any basis / transforms as

Tf=e2πiθf

where θ is a matrix. Then, the vector

-g=e~2πiθτf

is a vector of periodic functions, which therefore have ^-expansions. Assuming, as
we may, that θ is in Jordan canonical form then, by (1.4) / has a g-Puiseux
expansion; since ~g has a ^-expansion the Jordan blocks of θ are one-by-one, hence
θ is diagonal, i.e. T is diagonalizable. Thus we can choose our basis {/J so that

Σ
n = 0

Moreover we can choose dnieZ.
We are finally ready to use Proposition 2 to establish.

Proposition 3. With f{ as above, all the exponents θt are rational.

Proof Let / stand for any of the f above. By Proposition 2, g=fφ is
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quasiautomorphic, but g = eaτf with α = 2πί(φ(θ) — θ). Applying the transformation
τ —• — 1/τ to this equation we have

where g9 f are quasiautomorphic functions in the span of g, /. Since the basis
vectors ft have g-Puiseux expansions, it follows that the elements in the representa-
tion generated by g likewise have g-Puiseux expansions, hence /, g can be written

Suppose that one exponent ξe{εi,ρi} has the property that Re(£) is strictly smaller
than the real parts of all other exponents. Then, write:

-f ( e Λ 7
{ r

As τ -• i oo along the imaginary axis the left-hand side of this equation has a finite
nonzero limit whereas the right-hand side has a limit which is either zero or infinity,
a contradiction.

If there are several ξ which minimize Re(£), then replacing the limit τ-n'oo
along the imaginary axis with the limit τ->e ( π / 2 + ε ) ίoo along a ray at a angle ε to
the imaginary axis, then, one term will again dominate and the above argument
again leads to contradiction. Thus, it must be that φ(θ) = θ for all algebraic
automorphisms of C. This implies θeQ, thus concluding the argument.

From Proposition 3 and the previous remarks we obtain the theorem stated
in the introduction, and hence the rationality of c, h in rational conformal field
theory.

4. Conclusions

There is a conjecture that the value of c in conformal field theory is always rational.
The corresponding statement is certainly not true for h. Unfortunately, the methods
of this paper probably cannot be extended to the general case: the obstruction is
that algebraic automorphisms are highly discontinuous. It is possible that these
ideas can be extended to theories in which the values of h lie in a finite algebraic
extension of Q. Examples of such conformal field theories are known [21].

The fact that the expansion coefficients of the quasiautomorphic functions
appearing in conformal field theories are nonnegative integers is an extremely
strong constraint. It is possible that p-adic analysis can be used to deduce other
constraints on the data h,c following purely from (1.4) and (1.3). For example, it
is conceivable that in rational conformal field theories the denominators of c, h
are related to the dimension of the vector bundle over moduli space. Another
interesting question is whether the quasiautomorphic functions appearing in
rational conformal field theory are always algebraic functions of λ. No examples
of RCFT are known in which this is not the case.
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