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Abstract. Heat kernels of Laplacians on superfields of arbitrary tensor weight
on super Riemann surfaces are constructed, and are used to compute the super
determinants of these operators in terms of the Selberg super zeta function.

1. Introduction

In the perturbation theory of closed superstrings, scattering amplitudes are
formulated in terms of expectation values of products of vertex operators on
compact surfaces, summed over the surfaces and the location of these operators
on these surfaces. The summation is carried out over the distinct topologies (genus)
with a measure for each topology. In the Polyakov formulation of the superstring
amplitudes [1], one sums over the distinct geometries and embeddings of the
surfaces into the target spacetime and divides by the volume of the invariance
group of the measure. Weyl rescalings belong to the invariance group only when
the target spacetime has the critical dimension. We will work with the type II
superstrings in flat spacetime having critical dimension d = 10.

In the superspace approach, the invariances are super reparametrizations, super
Weyl rescalings, local Lorentz rotations and Poincare transformations of the target
spacetime. One finds the measure over supermoduli space to be a product of super-
determinants of Laplacians acting on scalar and vector superfields on the super
Riemann surface [2-5].

In the component formalism, the invariances are reparametrizations, local
supersymmetry transformations, Weyl rescalings, super Weyl transformations, local
Lorentz rotations and spacetime Poincare symmetries. All the odd supermoduli
can be integrated out to obtain the measure as a density on moduli space. In the
Wess-Zumino gauge, the measure reduces to a product of determinants of
Laplacians acting on spin 0, 1/2, 1, 3/2 fields on the Riemann surface and the
Pfaffian of an operator depending on the zero modes of the Dirac operator [6,7].
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The superspace approach has the advantage of treating the local supersymmetry
transformations as a special case of super reparametrizations and also unifies Weyl
and super Weyl rescalings, at the cost of having to deal with super analysis. The
local supersymmetry transformations are complicated when one stays in the
Wess-Zumino gauge and the symmetry not manifest. Therefore, we will work in
the superspace formalism, retaining manifest super reparametrization invariance
throughout this paper.

We first construct the heat kernels for Laplacians on superfields of arbitrary
tensor weight on the super upper half plane with the super Poincare geometry,
which has constant curvature. This generalizes to superspace some of the work of
Fay [11], in which he constructed the heat kernels for Laplacians on tensors
and spinors on the upper half plane. The use of the transformation properties
of the Laplacians under the isometry group of the super upper half plane,
OSp(2\l,R)/{±l}, and the analogue of polar coordinates with simple trans-
formation properties under the above group, considerably simplifies the construc-
tion. We will also make use of the spectral decomposition of the Maass Laplacians
in our construction. We next derive the heat kernel on the compact super Riemann
surface of genus g ^ 2. We represent the super Riemann surface as the quotient
space of the super upper half plane by a super Fuchsian group, thereby para-
metrizing the supermoduli by constant curvature super geometries. The heat kernel
on the super Riemann surface is constructed by the method of images and its
super trace is computed with the help of the Selberg trace formula.

The super determinant is calculated using the zeta function obtained as the
Mellin transform of the trace of the heat kernel. We find the super determinant
of the Laplacian expressed in terms of values of the Selberg super zeta function
at half integer points and a factor depending only on the genus of the surface and
the weight of the superfield. We find that the square of the Laplacian is not positive
semidefinite, contrary to what one would naively expect. The calculation of the
super determinant follows the lines of [8]. The measure for genus g ^ 2 was
calculated in the component formalism in [6,7] and in [2-5] in superspace. The
determinants of Laplacians for tensors and spinors of arbitrary weight on compact
Riemann surfaces of genus g ^ 2 were calculated in [8] with the help of the heat
kernels of these operators derived by Fay [11], parametrizing the moduli by
constant curvature metrics (see also [9,10]).

Our work was motivated by the theory of superstrings. However, the heat
kernel and the super determinant of the Laplacian, and the Selberg super zeta
function of the super Riemann surface generalize the corresponding concepts of
the Riemann surface, and are of interest on its own right.

Section 2 gives a description of the super geometry, super uniformization and
tensors on super Riemann surfaces. The heat kernel for the Laplacian on the super
upper half plane is constructed in Sect. 3. Section 4 contains the Selberg trace
formula and we compute the super determinants in Sect. 5.

After this work was completed, we became aware of the work of Baranov,
Manin, Frolov and Schwarz [12], where the ratios of the super determinants are
calculated in terms of the Selberg super zeta function by somewhat different
methods. Our results are consistent with theirs. The super determinants in the
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superstring measure were also considered by Martinec in [13], where instead,
uniformization by Schottky groups was used to parametrize supermoduli space.

2. Super Geometry, Super Uniformization and Tensors

Super Geometry. Super geometry is specified by the choice of the zweibein (EM

A)
and the connection (ΩM) corresponding to 20 real superfield degrees of freedom
in 2|2 real dimensions1. (We follow [3,14,15].) The connection (ΩM) belongs to
the algebra of the local Lorentz group and we will restrict the super geometry by
taking the local Lorentz group to be U(l). A Lorentz covariant derivative acting
on a superfield of tensor weight n is defined as,

. (2.1)

Torsion (TAB

C) and curvature (RAB) are defined by the following relation:

[DAί DB-] = - TAB

CDP + ίnRAB. (2.2)

Tensor weights are defined by the transformation properties under the local
Lorentz group as follows.

V+,Vζ have weight 1/2, 1 for example.
We impose the following standard torsion constraints [17] up to trivial

reseating:

T+ +

1:= Γ_ _ •:= - 2, Taβ

c = 0 (otherwise),

The torsion constraints are not only super reparametrization invariant and local
Lorentz covariant, but also super Weyl invariant as will be shown below. We note
that the only nonzero constraints are imposed on Lorentz scalars. These give 14
equations leaving 6 real superfield degrees of freedom. This means we cannot even
specify E+

M and £ _ M independently [2].
We can equivalently specify the super geometry by the covariant derivatives

(D^), defining the zweibein and the connection by the relation (2.1). In this paper,
this latter approach will be taken and we will not make use of the explicit expressions
of the zweibein and the connection. As remarked in the preceding paragraph, the
super geometry is uniquely determined by the choice of D(+} and D(°}, which
have to be chosen to comply with the torsion constraints (2.4).

1 We use complex coordinates and A,B,C...(M,N,P...) will denote Lorentz (Einstein) indices,

A = a, a, a = ζ,ζ, α = + , —,

M = m,μ, m = z,z, μ = θ,θ.

Latin(Greek) letters denote vector(spinor) indices
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In flat superspace, covariant derivatives with Lorentz indices are given by,

Using the definition of torsion and curvature (2.2) and the torsion constraints (2.4),
other covariant derivatives in flat super geometry can be worked out as in [18]
to be,

d d
ζ dz ^ dz"

f c = R = Ω = 0, (2.6)

except f + +

ζ = f _ _ c = - 2 .

We will use the notation DA for flat superspace covariant derivatives unless
otherwise stated.

Given one super geometry φA) (not necessarily flat), one can obtain another
super geometry (DA) by a super Weyl rescaling [17]. Namely, we define Da by,

where Φ is an arbitrary real scalar superfield. (To be precise, D{±] in (2.2) acting
on a scalar superfield gives E±

MΩM using torsion constraints (2.4), which in turn
gives (2.7)). This transformation leaves the torsion constraints (2.4) unchanged. As
before, other covariant derivatives, torsion and curvature can be derived by repeated
use of (2.2) and (2.4). For instance,

gives R++ =0 and,

Df = eφ(Dζ-D + ΦD++nDζΦl

Df - e~ Φφζ-D_ΦD_ - nDζΦ).

We also derive,

R+ __ = e~ Φ(R+ _ + 2iD + D_Φ). (2.9)

The super reparametrization invariant volume element transforms as follows under
a super Weyl transformation:

d2θ, (2.10)

where E = sdet(£M^) and sdet denotes the super determinant defined in [19], for
example.

Super Unίformizatίon. Let us recall the uniformization theory of ordinary Riemann
surfaces. The group of conformal automorphisms of the complex projective line
(the Riemann sphere) is SL(2,C)/{± 1} (Mobius transformations). The action on
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the projective line is given by (in inhomogeneous coordinates),

b^

409

c d
SL(2,C)/{±ί},

az + b
1 cz + d'

The subgroup of SL(2, C)/{ ± 1} that fixes the real line is SL(2, R)/{ ± 1}, the group
of conformal automorphisms of the upper half plane H = {ZEC\J>Z >0}. One
defines the Poincare geometry on the upper half plane H by the metric,

ZΪ = fe =
2y2'

Qzz = 9-zϊ =

This geometry has constant negative curvature — 1. The line element

dzdz

and the volume element

dxdy

(2.11)

(2.12)

are invariant under the action of SL(2,R)/{± 1}.
Every compact Riemann surface Mg of genus g Ξ> 2 is isometric to H/Γ with

the Poincare geometry. The Fuchsian group Γ is a subgroup of SL(2, R)/{± 1}
generated by 2g elements {AhBi9i=l,...g} acting properly discontinuously on
the upper half plane H with all its elements hyperbolic (| trace | > 2). The generators
satisfy the condition,

Inequivalent Fuchsian groups span the moduli space, which has 6g — 6 real
dimensions.

The complex super projective line is the set of points (w, v, φ) (u, v even elements
of complex Grassmann algebra, φ odd) not all its body2 of the coordinates
simultaneously zero, and (u, v, φ) is identified with (λu, λv, λφ) for λ even. It has
complex dimension 111. A superconformal automorphism of the complex super
projective line must be a homogeneous map in homogeneous coordinates. Since
it induces a conformal automorphism of its body, the complex projective line, it
must be linear. It can be expressed as,

(2.14)V

[φj

(u)

v\ y =

[Φ

a

c

b

d

ε

a)

β
A

2 We will refer to the non-nilpotent and the nilpotent part of the Grassmann algebra as the body and

the soul respectively
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or using inhomogeneous coordinates (z, θ) = (u/υ9 φ/v),

az + b + ocθ Λ δz + ε -f Λθ
(2.15)

cz + d + βθ' cz + d + βθ'

A map, (z, 0) H> (Z, 0) is called superconformal when z and 0 are functions of z and 0,
analytic in z and not a function of 0 satisfying [14,20],

D+z-ΘD + θ = 0. (2.16)

This condition ensures that the flat superspace derivatives D± transform
homogeneously,

D+=0 + θ)D + . (2.17)

After choosing the normalization sdety = 1, the condition of superconformality is
equivalent to the following condition on the automorphism γ of (2.14),

fγJγ = J9 (2.18)

where

J =

a c δχ

<y= I b d ε
1 - α - β A

This means the group of superconformal automorphisms of the complex super
projective line is OSp(2\l, C)/{ ± 1}. OSp(2\ 1) is the super extension of SL(2) ~ Sp(2)
defined by (2.18) and dimOSp(2\l) = 3|2.

The super upper half plane sH — \Z — (z, θ)\J>z > 0} is a complex supermanifold
of dimension 111 having the upper half plane H as its body. (Positivity is defined
by the positivity of its body.) The subgroup of OSp(2\ 1, C)/{ ±1} which fixes the
super real line {(z,0)|z = z, θ = θ} is OSp(2\l,R)/{±l}, the group of super-
conformal automorphisms of sH that extends to the super real line and the point
at infinity. The behavior at infinity is defined using the superconformal transition
function (z,0) = (— 1/z, — 0/z) in the neighborhood of z = 0.

Super Poincare geometry (DA) on sH is defined by a super Weyl transform of
the flat super geometry (DA), by the following choice of the scalar superfield in (2.7),

(2.19)
z-z-θθ

giving a constant curvature super geometry R+ _ = — 1 using (2.9). The line element

ds2 = EζE^, where

z-z-UV

is invariant under OSp(2\ί9R)/{± 1}. Our choice of the super Weyl rescaling in
(2.19) gives the volume element (2.10) as,

Ed2zd2θ = ^-^dxdyd2θ9 (2.21)
z-z-θθ
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normalized so that it gives the Poincare geometry volume element (2.12) when
integrating a function having no nilpotent parts. The super jacobian of the
OSp(2\l9R)/{± 1} transformation can be calculated to be,

sdet
d(yz9γθ)

d(z,θ)

This shows the volume element (2.21) is invariant under OSp(2\l,R)/{±l}
transformation, also using (2.23) below.

We will restrict ourselves to super Riemann surfaces having contractible soul
(DeWitt topology [16]). Any super Riemann surface sMg of this type having
compact body is isometric to sH/sΓ [14,15]. s^Γis a subgroup of OSp(2\ 1, R)/{ + 1}
called the super Fuchsian group. The body of the first two rows and columns form
the Fuchsian group corresponding to the body Mg underlying sMg. The super
Fuchsian group is isomorphic to this Fuchsian group due to the condition of
having no topology in the soul, so that the super Fuchsian group sΓ is again
generated by 2g elements satisfying the generator condition (2.13). The supermoduli
space, the space of inequivalent super Fuchsian groups, is (6g — 6) | (4g — 4) real
dimensional, taking into account the generator condition (2.13) and the freedom
of one overall conjugation.

Any element of the super Fuchsian group sΓ is diagonalizable in OSp(2| l,R)/
{+ 1} We choose the representatives of sΓ in OSp(2\l,R)/{± 1} to have positive
super-trace (sum of even diagonals minus odd diagonals). The sign is defined by
the sign of its body.

\
a b a

c d β

\δ ε vy(ί-aβ)J

OSp(2\l,R)/{±\}
0

0

I o

o
o
V

(2.22)

where
2 cosh 1/2 = a + d + v α f t

due to the invariance of the super trace under conjugation.
The sign of vγ and (cz + d + βθ) depend on our choice of representatives, but

the product vγ(cz + d + βθ) is well defined for any element in OSp(2\l,R)/{± 1}.
{v} is the multiplier system [11], which incorporates the spin structure naturally
into the definition of a super Riemann surface.

A spin structure on the Riemann surface is defined by a choice of the lifting
of the Fuchsian group ΓaSL(29R)/{± 1} to a group Γcz 5L(2,R). A multiplier
system {χ} is the description of this choice in terms of a homomorphism of Γ
into {± 1} such that χ(— 1) = — 1. Due to our convention of taking positive trace,

V y = χγ sign (tr γ) and v in general is not multiplicative (sign of trace is not). We
note that vγδ = v ^ if yδ = δy.

Tensors and Laplacians on super Riemann Surfaces. To define the space of tensors
on the super Riemann surface, we need the transformation law of the following



412 K.Aoki

combination of two superspace coordinates ZΛ, Z&,

(2.23)

where γ was given in (2.14). The infinitesimal form of (2.23) gives,

= ^ 9 where dZ = dz + θdθ. (2.24)

We define the space of tensors {f(Z)dZm®dzn}. ϊn particular, we define the space
Jf π>v for n half integer as,

JcZ + d + βθ\f^_rl ( 2 2 5 )

/ : function on sH.

Another simple tensor Θabc we will need later is defined as,

Θabc = θaZbc + θbZca + θcZab

Since OSp(2|l,jR)/{± 1} has real dimensions 3|2 and acts effectively on the
super upper half plane sH, from 2 points Zί,Z2 on sH, we can construct 1
Grassmann even and 2 odd invariants. Together with an angular variable φ, zab

and Θabc allow us to define a super hyperbolic coordinate system on sH as follows:

Z1ΪZ22

( 1 2 6 )

coshr is the integrated form of the line element (2.20). We note that φ is not
OSp(2\l,R)/{± 1} invariant whereas r,Δ,Δ and 3/δφ are.

The superspace derivative transforms under OSp(2\l,R)/{± 1} as (cf. (2.17)),

w = (2-27)
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From the definitions in (2.7), (2.8) and (2.19), we derive the covariant derivatives,

^)

Using (2.23), (2.27) and (2.28) we verify,

k ^ -n,v * <**' -n+l/2,v9

Df D(»)
- Λ + 1 , V

From the above equations (2.28) we see that D{r$ and D{ή) are, loosely speaking,
the square roots of the Maass operators, K_n, L_n,

d d
K_n = (z- z)—- n, L_π = (z - z ) ^ + n.

D+D{n) is the Laplacian on the super Riemann surface mapping the space ^ - π > v

into itself.
We define a nondegenerate inner product on ffl-n>v as follows using the measure

in (2.21):

The Laplacian D+D{"] is hermitian with respect to this inner product, but we do
not know whether the operator is diagonalizable. Even if it were, the space Jf-ΛtV

contains isotropic vectors and the eigenvalues for these vectors need not be real.

3. The Heat Kernel

In this section we construct the heat kernel for the operator Δn = 4(D + D{"))2 on
the super upper half plane sH. We use the square of the Laplacian Δn rather than
the Laplacian D+D(") itself, following Martinec [21], who constructed heat kernels
of these operators in flat superspace to calculate the conformal anomalies of the
super determinants in the superstring measure. Δn is roughly the Maass Laplacian,
and we expect it to be better behaved than the Laplacian itself. Due to the remarks
at the end of the previous section, even the square of the Laplacian Δn need not
be positive semidefinite, and will turn out not to be (cf. the end of this section).
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From the definition of the covariant derivatives D{"} in (2.28),

+ {In + l)zrιD_D + - nzj— + — j + 2n2θrι(D. +D+)- n2,

J\\ — u\ ~~ u i (3.1)

with the notation of Sect. 2, and all derivatives act on variables with suffix 1.
The defining relations for the heat kernel Gt

n(Z1,Z2) are,

(dt + ΔJGt

n(Zl9Z2) = 0 (ί>0),

ι

n(Z1,Z2) > E δ(x1 — x2)δ(y1 — y2)δ z(θ1 — θ2),

δ2(θι-θ2) = (θί-θ2)(θ1-θ2). (3.2)

Following [11], we conjugate Δn to make an operator Δn which is OSp(2 \ 1, R)/{ ±1}
invariant due to (2.23), (2.27) and (2.28),

Z 2 1

Using the super hyperbolic coordinate system introduced in (2.26), Δn can be
expressed in terms of OSp(2\ l,R)/{± 1} invariant variables r,Δ,Δ, and operators
d/dr, d/dφ, δ/dΔ, d/dΔ.

Recalling that the volume element (2.21) is OSp(2\l,R)/{±l} invariant, the
superspace delta function and hence the heat kernel for Δn can be expressed in
OiSp(2|l,jR)/{± 1} invariant variables as,

). (3.3)

It satisfies

(d + Δ)σ(zz) = o ( ί>o)

. , VJn\Zsl9 Z^2 r — ——

smh r 2π
where we have taken into account the jacobian,

_Λ Λ /d(coshr,φ,Δ9Δ)\ . t

£ sdet — = — smh r.

V δ(x,j;^,θ) J
The relation between the heat kernels Gι

n{Zx,Z2) and GJ,(Z1,Z2) is

j n (z 1 , z 2 ) . l^ )̂
Z 2 l

Equation (3.2) is now reduced to coupled heat equations involving only r and ί,
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which we will now attempt to solve. Changing variables in the Laplacian (3.1) the
equations now become,

\H~ + f-V--2ntanhΛf
dr2 Isinhr llδr

^ « 0
smh r

d Yd2 ( 1

(3.6)

dt [dr2 \ s m h r

sinh r Γ d2 I d

r\ coshr 2(n + n2) 2 ~ Π I t /

2/ smh 2 r c o s h r + 1 J j

with the condition that

^ ^ ^ ^ i - l ) . (3.8)

Since the equations do not seem to decouple, we will use the following trick.
From Eq. (3.2) in the coordinates on sH, we derive the equation for the body
gt

n(zliz2) of the heat kernel Gt

n(ZuZ2). We then construct this body gn(zuz2)
by spectral methods and hence deduce gι

n{r) in (3.4). Using the heat equation (3.6),
we compute /^(r) and we show that this together with g^r) satisfies the rest of
the equations, (3.7) and (3.8).

The body of Gt

n(Z1,Z2) is coupled via (3.4) to O(Θ1Θ1) term. So we expand
Gi(Z1,Z2) as

θ θ
^^F'(zz) + teτms involving Θ2,θ2.n ( 1 2 ) g n ( 1 2 ) n ( 1 , 2 )
zi — zi

From (3.5), the relation between g'n(r) and g\{zγ,z2) is,

l
) ffn{zϊtz2). (3.9)

\Z2-ZX)

Equation (3.2) reduces to

| - ( £ > _ „ + n2)]g'n(zuz2) + (2n+ l)F'n(zuz2) = 0,

(2n+\)D_ng'n(Zι,z2)

where
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is the Maass laplacian. Together, they yield an equation for ^(z^z^

--(D.n + (n+ l)2)J ξ- (D.n + n2)]-(2n+ l)2DΔg'n(Zl,z2)

= - (2n + l)ylδ(t)δ(Xl - x2)δ(yi - y2). (3.10)

We make use of the following eigenfunctions for the Maass laplacian D_n,

\Ψp,k)p>0,keR'

μ = — sign(fc)n, z = x + iy.

i s t n e Whittacker function and (φPik) is normalized so that,

00 00

dx\% ψp,k(x, y)ψp.χ(x, y) = HP - P')Hk - k).
-oo o y

Using the Laplace transform in ί, the solution to (3.10) is,

ά'( ) (2 u f ds ΐ d

Using partial fractions and integrating over 5,

00 °° dv
At(7 7 \— f Ah f _J__p-tp2 + t(n+1/

re2ip(n+l/2)t _ e-2ip(n + l/2)tn (3.11)

From the work of Fay [11], we know the heat kernel ht

n(z1,z2) for the Maass
Laplacian D _n as,

^ ( z 1 ; z 2 ) = J dk ϊ

/coshb/2\

" V cosh r/2 / 'z2 - z J (4πt)3'2 I y2(coshfc-coshr) 2" V cosh r/2

where Tk(x) denotes the /cίft Chebyshev polynomial. We make use of the following
integral representation of the Whittacker function [26]:

Wμ,ip(2\k\yi)Wμtip(2\k\y2)

(v,v,y+ι/2e~mi+y2) °°

^ V1 ~~ ZH 0

' (JΊ + t){y2 + t)
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and for the hypergeometric function [27],

Integrating over p9k and comparing gt

n(z1,z2) in (3.11) and ht

n(z1,z2) in (3.12) we
deduce gt

n(z1,z2) and use (3.9) to obtain,

- 1 <?dbe-»2>*'smh(n + l/2)b /cosh ft/2

We can now use (3.6) to calculate hι

n(r) as,

ϊ f / , sinhr/2 « dbbe~b2/4tcoshnb /cosh6/2\ r
hntr)=-j-ϊϊ2ψί2\-r==~ J2n + ί — — - L - - κ t a n h - ^ ( r ) .

^ π r r ^//(cosho — coshr) \cosn r/zy 2

(3.14)

Using the definitions (3.3), (3.4), (3.5), we obtain the final expression for the heat
kernel Gt

n(Z1,Z2) on sH as,

r)). (3.15)

Even though we simply have to differentiate g^r) to derive /^(r) as in (3.14), the
calculation is reasonably involved and we give the outline in Appendix A.

We see immediately that the condition (3.8) on the behavior of #ί,(r) and h^r)
as t goes to zero is satisfied from the comparison with the heat kernel h^r) for
the scalar Laplacian Do = y2{(d2/δx2) + {d2/dy2)\

0-t/4 oo Λhho-^l^ Λ 1

Equations (3.13), (3.14) and (3.15) complete the construction of the heat kernel
G^Z^Z^ for the operator Δn on sH.

4. The Selberg Trace Formula

From the heat kernel on the super upper half plane sH, we construct the heat
kernel on the super Riemann surface sH/sΓ by the Poincare sum [11],

KU7 7'Λ V v2n(cϊ + d + βθχ(z~yz-θyθV
Kn(Z,Z)= 2, v, [ , Λ m I I — — : —=-) Gn(Z,yZ).

γesΓ \cz +a + pU J \yz' — z — yθ θ J

(y is given in (2.14)) (4.1)

As explained in Sect. 2, the multiplier system v is necessary for the expression to
be well defined. K\(Z,Z') belongs to ^_ Π > V , ^ > v defined in (2.25) with respect
to Z, Z' respectively.

^ ) = J Ed2zd2ΘKt

n(Z,Z) = Ie

n(t) + IM (4.2)
sH/sΓ
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where Γn{t) and ln(t) are defined as,

I'n(t)= J Ed2zd2ΘG'n(Z,Z),
sH/sΓ

>n(Z,yZ). (4.3)

Repartition the sum in In(t) as follows [22]:

Σ/ω= Σ Σ
γesΓ [γ]fekesΓ/CΓ(γ)
yψe

where CΓ(y) = {kesΓ\ky = yk} is the centralizer of y in sΓ and [7] is the conjugacy
class represented by y in sΓ. This leads to

« « - Σ Σ *.„ ί
[γ]fe/cεsΓ/CΓ(y) sH/sΓ

where

c a p
* * *

Using 05/7(21 l,R)/{ ± 1} invariance of the volume element Ed2zd2θ and the
following formulae:

= (c(kz) + d + ]8(fcθ))(fcz - y(fcz) - (fcθ)y(fcfl)), v,-lyfc = vγ9

t

n(Z,Z') = Gt

n(kZ,kZ') for ΛεOSp(2|l, R)/{ ± 1},

we find

Due to the isomorphism of the super Fuchsian group sΓ with the Fuchsian
group Γ, we can determine the structure of CΓ(y) using Γ, which we will identify
with sΓ in the following discussion. Diagonalizing y in SL(2,R)/{ ± 1} we see that
CΓ(y) is commutative, and since Γ acts properly discontinuously on H, there is
an element δ with minimal geodesic length lδ defined by the relation cosh lδ/2 =
tr <S(cf.(2.22)). CΓ(y) is a cyclic group generated by this primitive element. (A primitive
element in Γ is an element which is a positive power only of itself in the group.)

We diagonalize the element δ in 0Sp(2\l,R)/{± 1} as in (2.22),

0
0
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and use the original argument due to Selberg [22],
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(J k(sH/sΓ) = sH/CΓ(y) =
kesΓ/CΓ(γ)

^y< eιή

to derive

hH)= Σ Σ <> ί
y p r i m p = l - oo

/ I
β p / v Z - Z - VP

γ

(4.4)

where the first sum is over the primitive conjugacy classes, and Gι

n was defined
in (3.3), (3.13), (3.14).

We proceed to compute In(t) explicitly. From (2.26) for (Zl9Z2) = (Z9yZ)9

cosh r = cosh plγ + 2v2 sinh2 ^ + -^— 4(1 + v2) sinh

where
x

υ = —9

y

ίΔΔ = -
(z — z) sinh r

Integrating with respect to θ and θ,

00

W= Σ Σ
ypπmp^l

ί5
1 J

ro) + 4(l

where coshr 0 = cosh ply + 2v2 sinh2plγ/2 is the hyperbolic distance. (We will drop
the subscript 0 in what follows.) Using

Pi
, v cosh —^ + iv sinh —

: - eplyz\ 2 2

eplyz - z
uPlγ . uPlγ

cosh —- — w smn —-
2 2

and integrating over y,

iM= Σ Σv?-% ί
y p r i m p= 1 — oo

cosh —- + iv sinh —-
2 2

cosh—- — iv sinh
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sinh2^2

 n]

glι{r) + 4(l+v2)^^r-gt

n(r) +

sinhr

From (3.13), we calculate,

d -sinhr « dbe~b2/4t (n sinh(n+l/2)&
fr9n(r)-2π3l2tll2 J v / 2 ( c o s h ? ? _ c o s h r ) {2coshr/2coshb/2 ^

cosh (n + 1/2)6 sinh (n + 1/2)6 cosh 6

n sinh(n + 1/2)6 b sinh(rc + 1/2)6 Ί /cosh 6/2

~2 cosh2r/2 2ί sinh 6 J 2n\coshr/2

Using the expressions of ^^(r), Λ̂ (r) in (3.13), (3.14) and changing the order of
integration, we arrive at,

oo / V2np oo

'.(')= Σ Σ L J — $

^ i m P = i 4 π 3 / 2 t i / 2 s i n h

2 n - l)sinh(n ^ ) W 2 n

c o s h ^

• μ P ' ϊ Γ t cosh(n + l/2)fc sinh(«+
2 | sinhί2 | sinhί) sinh2 6

sinh(n+ 1/2)5

27 sinhfe J ( J 2 " + K*> + 2n cosh 5/2

^ J s i n h z P j +

where Jk,Kk,Nk,N'k,Pk, are definite integrals involving the kth Chebyshev poly-
nomial Tk(x). They are defined and calculated in Appendix B. Using the results
of Appendix B and integrating by parts with respect to 6, we derive the final form
of IM

= Σ Σ lγVγ , e->2l>lcosh(n + i)ply-v ;coshnplγl (4.5)
i 1 ^
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For the contribution from the identity of sΓ.h^r) does not contribute and
we derive from (3.13) and (4.3),

Using the Gauss-Bonnet theorem with our choice of constant curvature super
geometry in (2.21) and the measure (2.19) on sH,

vo\(sMg) = vol{Mg) = 2π\χ(Mg)\,

where χ(Mg) = 2 — 2g is the Euler character of the underlying manifold Mg.
T2n(cosh b/2) = cosh nb allows us to find a recursion relation for Γn{t) and derive,

ψ\^^ (46)
* k = 0

As remarked in Sect. 2, we find that the square of the Laplacian Δn is not
positive semidefmite, for,

5. Calculation of the Super Determinants

Since Δn is not positive semidefinite, we will calculate the super determinant of
Δn + c2 for &c>2\n\ and analytically continue in c, following Sarnak [10]. The
super determinant is defined using the ζ function as,

ζn(s; c) = Str((4, + c2Γs) =-^rJdtf-> Str(,-^"+c2)). (5.1)

We divide ζn(s;c) into the contributions from the identity and the rest of sΓ
as follows:

(5.2)

where Γn(t) In(ή are defined in (4.6), (4.5).

ζe

n(s;c) is obviously the contribution from the isolated modes and we derive,

-lz(M,)|/2

• (5-3)

In superstring theory, this factor renormalizes the coupling constant, after setting
c = 0 and removing the zeros.
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To calculate ζr

n(s;c), we follow Ray and Singer [28], Fried [23]. Substituting,

1 f dλ2(λ + c)lλ(λ
or(i-s)έ

in (5.2), and after changing the order of integration, we use

J dt2(λ + φ " ί c V λ { λ + 2c)t β ' = e~ply{λ

o y/4πt

to derive

/ V2npeplγ{-λ-c+lβ)

- y Y

f e P / y _ υ 2[cosh(n + i)p/y - vp

ycoshnplyl (5.4)

The Selberg super zeta function is defined for Ms > 1 as,

Z k( 5) = Π Π (! - v f ̂ " ( s + 9 ) / y) (fc: half integer),
yprim q = 0

and has the Selberg zeta function as its body. The only difference from the Selberg
zeta function lies in the difference between the length spectrum of the super Fuchsian
group with that of the Fuchsian group. Primitive lengths defined in (2.22) grow
by matrix multiplication which is homogeneous, and using the property of the
length spectrum of Γ (see for instance, [24]),

= {number of primitive classes with lengths smaller than /},

we see that Zk(s) is well defined and holomorphic in 5 for Ms > 1. (Holomorphicity
is defined by the holomorphicity of all its coefficients in the expansion in terms
of the nilpotents.)

We calculate the derivative of the super zeta function,

00 / V2kp-(s + q)lγ 00 oo

( i o g z t ( s ) ) ' = Σ Σ n

y y

2 k . { s + q ) l = Σ Σ Σ We-*+*L>
yprim q = 0 (1 — Vy β γ) γpήm q = 0 p=l

oo / 2kp M-s)ply

= Σ Σ y \ , (5.5)
yprim p=l β y — 1

Comparing above with the expression for ζr

n(s; c) in (5.4), we derive,

d

f Γ Zn(n + λ + c+l) Zn(-n
1 g
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For generic values of c, we can integrate by parts to obtain,

This together with (5.1), (5.2), (5.3) gives,

^ ' / 2 Zn(n + c+l) Zn(-n

Zn+1/2(n + c+ 1/2) Zn + 1/2(-n + c + 1/2)

(5.7)

Analytically continuing sdet(zln + c2) in c, and removing the zeros and possibly
the nilpotents, we find,

where Z(m)= l/rm!Z^w)(m) is the leading coefficient of the Selberg super zeta
function at a half integer point m, rm being the order of zero of its body at the
point. We have assumed that the analytic continuation of the Selberg super zeta
function exists for the appropriate half integer points. The order of zero of
sάQi(Λn + c2) at c = 0 in (5.7) does not equal dimKQτΔn. This is either an artifact
of the analytic continuation, or suggests that the operator Δn is not diagonizable.
We will use the notation sdet' instead of sdet when Ker Δn φ 0.

Using the more general form of the Selberg trace formula than was used in
Sect. 4, the ordinary Selberg zeta function can be shown to satisfy [24],

1 Z'k(s) 1 Z'k(β)

2s-lZk(s) 2β-lZk(β)

1[
( 5 -After setting β = 1 - s, the nontrivial zeros s = \ ± irn cancel and we can integrate

with respect to s to obtain the functional relation,

Zk(s) = x(s)Zk(l-s), (5.9)

where

( s~}/2 \
x(s) = expl 4π(g — 1) J dvυtanπv I.

For fixed 5, x(s) depends only on the topology of the Riemann surface, and we will
assume that this functional relation also holds for the super zeta function of the
super Riemann surface, which has the same topology as its underlying Riemann
surface. In particular, this would imply that the Selberg super zeta function has
the same trivial zeros s = — m(m ^ 0, m integer) including its order (2m + 1)2(# — 1)
as its body, the Selberg zeta function (cf. (5.10) below).

We use the functional relation (5.9) to reduce the formula (5.8) for the super
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determinants to a simpler form. Integrating by parts,

s-l/2 1

j ώι;tanπι; = -^[
0 71

where L(y) is the Lobachevsky function defined as in [25],

y

L(y) = — J dx log cos x,
o

and L(sπ) = sπ log 2 for s half integer. This allows us to calculate the leading
behavior of x(s) at half integer points as below. At integer points s = m,

m ( 2 π ( 5 - m ) ) - 2 ( ^ 1 ) ( 2 m - 1 ) , (5.10)

and at half odd integer points s = m + 1/2,

These together with the functional relation (5.9) determine the leading coefficient
of Zk(s) at half integer points Z(ra) in terms of Z(l — m) as follows:

Z ( - m)Z(l + m) = (2π)2(2m + 1)ig-1\Z0(m + I))2,

Z ( - m + l/2)Z(m+ 1/2) = 2 4 m ( ^ 1 ) ( Z 1 / 2 ( m

These reduce the super determinants in (5.8) to the following:
Integer spin

--rai

n = 2,3,4,
Half integer spin
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. - 1 / 2 - ( 1)

11 = 2,3,4,...

Z0(n +

where

The superstring measure for genus g ^ 2 super Riemann surfaces with compact
body is [2,3],

sMg

where sJίg is the supermoduli space for genus g surfaces and d(SWP) is the super
Weil-Petersson measure on sJin.

Appendix A

In this appendix, we outline the calculation of hι

n(r) in (3.14). Define,

sinh(n+l/2)fc /coshfc/2\
f
2
(b,r)= T

2n
\ :—— ,

^/cosh b - cosh r \ cosh rβ J

so that (3.13),

Also define the function F(r, b) say,

sinhr nK } 2π 3 / 2 ί 1 / 2 Jlr

Using

I άbF(r,b).

° - <
t
- υ 2

f Λ
*

and (3.6), we derive



426 K. Aoki

To integrate by parts with respect to b, we introduce a function H(r, b) (yet to be
determined) such that,

so that

where K(r, b) is defined as,

2

The surface term does not contribute to h^r) due to the condition (Al). The choice,

H(rb)=
2n + 1

,/coshfc- coshr coshr/2 2n + 1\coshr/2 )

satisfies (Al) and gives,

2n(2n smh(n+ l/2)b

^cosh^-coshr (coshr+1) 2"Vcoshr/2/

We have made use of the following properties of Chebyshev polynomials.

(x2 - l)T2n(x)» + xT2n(x)' ~ 4n2T2n(x) = 0,

T2n +1W = x T2n (x) +
(x2 - 1)

TT2n (x),

T'2n + 1(x) = (2n + l)T2n(x)

This finally gives h^r) as in (3.14). g^r) and /^(r) can be shown to satisfy (3.7) in
a similar manner.

Appendix B

In this appendix we calculate integrals of the following form,

/

• p JC N N' - 7 dV

,2 _ ,,2
-VOy/V^-V

cosh —- + w smh —^

cosh —- — ft; sinh —-

T.(
\ cosh r/2

where

χ/cosh b — cosh ply
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and the functions F(v) are defined as follows.

Pk iv

For example,

In J

cosh -^-Λ-w sinh -~

Nί
" uPlr - uPlv

cosh —r — iv sinh -~

pi . . p/
cosh —^ + «; sinh —-

, p/y . .PK
cosh —r — iv sinh —-

2n

fcoshb/2\
\coshr/2J

cosh —- + ιυ sinh —J1

\ /

As in [8], we can calculate the generating functions for the above integrals by
making use of the following generating function for the Chebyshev polynomials
and residue calculus:

We define the generating functions for the integrals as,

00

— > 2 T pfc

fc = 0

Defining x0 = coshfo/2/cosh/?/y/2, we derive the following results:

1
J = π

l-λ

c o s h T λ

sinhξz ί 1 " ^

K = :
2 [λ(ί+λ)

L
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cosh
ply xo(l - λx0)

1 1

Ply XQ~ λ'
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