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Abstract. We study the dynamics of molecular systems with Coulomb forces.
We prove that if the nuclear masses are proportional to ε~4, then certain
solutions to the time dependent Schrodinger equation have asymptotic
expansions to arbitrarily high order in powers of ε, as ε \ 0.

1. Introduction

In this paper we consider the quantum dynamics of molecular systems with
Coulomb potentials. We study these systems by exploiting the smallness of the
ratio ε4 of the electron masses to nuclear masses. We prove that certain solutions
to the time dependent Schrodinger equation have arbitrarily high order asymptotic
expansions in powers of ε as ε ^ 0.

The smallness of the mass ratio ε4 was used by Born and Oppenheimer [1] in
1927 to study the energy levels of molecules. They formally showed that these
levels had asymptotic expansions through fourth order in ε, and that the non-zero
terms had direct physical interpretations. Approximately fifty years later, these
results were rigorously proved by Aventini, Combes, Duclos, Grossman, and Seiler
[2-4] (see also [15], where a simple, exactly soluble Harmonic oscillator example
is presented). In [10] the energy level expansions were extended to arbitrarily high
order for the case of smooth potentials. The high order Coulomb case has only
been analyzed [11] for diatomic molecules, and is technically very complicated.

Born and Oppenheimer did not consider time dependent problems in [1], but
in 1928, London [14] had the proper intuition for qualitatively understanding the
dynamics for small ε. The only rigorous time-dependent results of which we are
aware deal exclusively with smooth potentials [8,9]. In [8], a zeroth order
expansion was obtained, and in [9], the expansion was developed to arbitrarily
high order. Thus, the present paper is an extension of [9] to accommodate Coulomb
potentials.
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From our point of view, the validity of Born-Oppenheimer type expansions
depends primarily on the presence of two spatial scales in the nuclear coordinates.
The principal technical tool of [9-11] and the present paper is the method of
multiple scales. Coulomb potentials cause difficulties because of cusps in the
electron wave functions at the positions of the nuclei. In [11] this difficulty was
handled by a global distortion of the electron coordinate system. This global
distortion is not appropriate if there are more than two nuclei. To handle general
polyatomic systems, we will use a local distortion technique. This technique is a
time dependent modification of the local distortion technique of [12] (see also
[16,17] for related techniques). Although we do not yet know how to do it, we
believe that such local distortions can be used to study the time independent
Born-Oppenheimer expansion for polyatomic Coulomb systems.

The paper is organized as follows: In Sect. 2, notation is developed, and the
main theorem is stated. The asymptotic expansion is formally derived in Sect. 3.
In Sect. 4 we sketch a proof of the main theorem that uses the calculations of Sect.
3. We only sketch the proof because it is virtually identical to the proof in [9].
Our main new ideas and techniques are in Sect. 3.

2. Notation and Results

In this section we develop notation and state our theorem. The notation is similar
to that of [9].

The Hamiltonian for a molecular system with Coulomb potentials is

H(ε) = H0(ε) + h

on L2(U3N), where

and
y γ

Λ Σ ί j
]

j=κ + i2πij

Here, Xj elR3 denotes the position of the / h particle; Δj denotes the Laplacian in
Xjl the mass of the / h nucleus is ε~ 4 M 7 (for l^j^K); the mass of the / h

electron is mj (for K + 1 ^ ^ N); and Z 7 is the charge on the / h particle. The
operator H0(ε) represents the nuclear kinetic energy, and h represents the electron
Hamiltonian plus the internuclear potential energy. To simplify some notation, we
will assume that Mj = 1 for 1 ^ j rg K.

W e let R = (xl9...9xκ) = (Rl9...9R3K)9 a n d r = (xκ+l9...9xN) = (R3K + l9...9R3N).

The operator h decomposes under the direct integral decomposition

L2(U3N) = J ®L2(U3iN-K))dR,

and we let h(R) denote the fiber of h; i.e., given any f(R,r)eL2(M3N), we have

Π(R,r) = lh(R)f(R,')Wy
We make two basic assumptions:
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Hypothesis I. The nuclear charges are all positive, i.e., Zj > 0 for 1 ̂  j ^ K.

Hypothesis II. There exists an open set % a U3K, such that ReW implies that h(R)
has a non-degenerate discrete eigenvalue E(R) that depends continuously on R.

Remarks. 1. Hypothesis / is a stronger condition than we actually need, but without
it, we must restrict the classical trajectories a(t) that are defined below. The
restriction is that a(t) cannot describe a nuclear configuration in which two nuclei
have coincident positions in U3.

2. In the physically interesting case, Hypothesis / is satisfied, and Hypothesis
// is frequently satisfied. The electron masses are all equal to 1, and the electron
charges are all equal to — 1.

3. If h(R) has any discrete eigenvalues, then the lowest one is non-degenerate.
Our assumptions guarantee that all discrete eigenvalues of h(R) are analytic in R
as long as R is real and does not describe a nuclear configuration in which two
nuclei coincide [12].

It follows from Hypothesis // that the eigenvalue E(R) has an eigenfunction,
φ(R,-), that is real, normalized, and continuous in R, for ReW. For Rφ°lί, we set
φ(R,r) = 0. We fix this choice permanently, and note that φ(R,') and the
orthogonal projection Pφ(R) onto the subspace generated by φ(R, •) are actually C 2

functions of R for Re°ll (see [4]). We set Pφ(R) equal to zero for Rφ%, and let

V,φ(R) Vx £ ψ(R)r

Our goal is to study certain solutions to the Schrδdinger equation i(d Ψ/ds) =
H(ε) Ψ for times 5 in an interval [0, ε~2 T], and with initial velocities of the nuclei
on the order of ε2. For convenience we replace the variable s by t = ε2s, and study
the equation ίε2(<9 Ψ/δt) = H(ε) Ψ for times t in the fixed interval [0, T], and with
initial velocities (with respect to t) of the nuclei fixed. In this limit, classical
trajectories of the nuclei are fixed, and the initial kinetic energy of the nuclei is fixed.

In the t variables, the ε -> 0 limit is a semiclassical limit for the heavy particles,
so we will use the semiclassical techniques that have been developed for this purpose
[5-7], with h replaced by ε2. In particular, we will make use of the special wave
functions φk(Λ, B, ε2, α, η, x) which are defined in [6,7]. The definition is reproduced
below. It requires a substantial amount of notation, which can also be found in [9].

To simplify some expressions, we set n = 3K. A multi-index k = (fcx, fc2,..., kn)
is an ordered n-tuple of non-negative integers. The order of k is defined to be

n

|fe| = X fci, and the factorial of fc is defined to be k\ = (kί\)(k2\) (knl). The symbol
ΐ = l

Dk denotes the differential operator

pl*l

and the symbol xk denotes the monomial xk = x\ι xk

2

2 xkn. We denote the gradient
of a function / by / ( 1 ) , and we denote the matrix of second partial derivatives of
/ by / ( 2 ) . With a slight abuse of notation, we view Un as a subset of C", and let
e{ denote the ith standard basis vector in Un or Cn. The inner product on Un or C"

is (v,w}= £ ϋiWi.
ΐ = l
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We generalize the zeroth and first order Hermite polynomials by

and

&1(v;x) = 2(υ,x},

where v is an arbitrary non-zero vector in Cn. Our generalizations of the higher
order Hermite polynomials are defined recursively as follows: Let vl9v2, ..9vmbe
m arbitrary non-zero vectors in C . Then,

m-l ^

-2 £ <υm9ϋiyJfrn-2(υί,...9vi-ί9υi+ί9...9υm-1;x).

One can prove inductively that these functions do not depend on the ordering of
the vectors v1,v2,...9vm. Furthermore, if the space dimension is n= 1 and the
vectors vl9υ2,...9vm are all equal to l e C 1 , then &m(vί,v2,...,vm;x) is equal to
the usual Hermite polynomial of order m,Hm(x).

Now suppose A is a complex invertible n x n matrix. We define \A\ = [yl^4*]1/2,
where A* denotes the adjoint of A. By the polar decomposition theorem, there
exists a unique unitary matrix UA so that A = \A\UA. Given a multi-index k9 we
define the polynomial

Jf^;x) = ^lk](UAel9. UAel9UAe29. UAe^...9U

k\ entries /c2 entries kn entries

We are now in a position to define the functions φk(A,B,ε2,a,η,x).

Definition. Let A and B be complex n x n matrices with the following properties:

A and B are invertible; (2.1)

BA~X is symmetric ([real symmetric] + /[real symmetric]); (2.2)

ReBA'1 =^[(BA~1) + (BA~1)*'] is strictly positive definite; (2.3)

( R e β y r 1 ) - 1 ^ ^ * . (2.4)

Let aeUn,ηeUn,ε>0. Then for each multi-index k, we define

exp{ - <(χ - a\BA~\x - a))/2s2 + ί<^(x - a))/ε2}.

The choice of the branch of the square root of [det A] ~x in this definition will
depend on the context, and will always be specified.

Let us now impose Hypotheses / and //. The semiclassical wavefunction of the
nuclei will be localized near a classical trajectory. The potential which determines
this trajectory is the eigenvalue E(R) of h(R). Let a0 be an element of the open set
%9 and let η0 be an arbitrary real 3K dimensional vector. By standard theorems
on ordinary differential equations, there is an interval [0, T] of non-zero length,
such that there exists a unique solution (a(t\η(t)) to the system of ordinary
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differential equations

da

γt® = n®> ( 2 5 )

^{t)=-&1)(a{t))9 (2.6)

subject to the conditions α(0) = ao,η(0) = η0, and a(t)e% for 0 ^ t ^ T. We define
the action S(t) along the classical path (a(t\ η(ή) by

s w i (2.7)

Next, we choose 3K x 3K matrices AΌ and Bo which satisfy conditions (2.1)-(2.4).
Again, standard theorems on ordinary differential equations guarantee the existence
of a solution (A(t),B(ή) to the system

dA
—(t) = iB(t), (2.8)

d^(t) = iE^(a(t))A(t), (2.9)

subject to the initial conditions A(O) = AO and 5(0) = B 0 . As in [5-9], A(t) and
2?(ί) are determined by the relations

For technical reasons and because °U may be a proper subset of U3K, we must
insert some cut-offs. In Sect. 3 we will choose open sets ^ and ^ 2 in U3K with
compact closures %x and 4£2, so that we have a(t)E%x c # 1 c ^r2 c= # 2 cz ̂ , for
all ίe[0, T]. Since ^ 2 ^s open and # x is compact, there exists a C00 function
F:[R3*->[0,l], such that F(Λ) = 0 for Rφ<W2 and F(Λ)= 1 for Λ e ^ .

The main result of this paper is the following:

Theorem 2.1. Let H(ε) satisfy Hypotheses I and II. Assume φ(R, r), a(t), η(t), etc. are
defined as above. Choose T > 0, a positive integer oc, and complex numbers dk

for | /c |^α. Then, for 0 < ε ^ l , 0 ^ ί : g T 5 and arbitrary J, there exist functions
Ψj ε(R, r, t\ 0 ^ 7 ̂  J, with the following properties:

(1) Ψ0te(R,r,t) = eiS™e2F(R)φ{R,r) Σ dkφk(A{t\B{t\z\a{t\η{t\R\

(2) For each j , \\ Ψjtε(R, r, t) \\ is bounded as ε^O for O^t^T.
(3) In the variable R, the function Ψjfε(R, r, t) is localized near the classical path a(t)
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in the sense that there exist constants M, Nj9 bp such that

-M\R-a(t)\2/s2},

for 0 < ε ^ 1 and 0 g ί ^ T.
j

(4) The function Σ Ψjε(R,r,t)εj is a J t h order asymptotic approximation to the
j=o

solution of the Schrόdinger equation in the sense that

e-itH(ε)/ε2 y i

7 = 0

C J + 1

for 0 ^ ε ^

Remarks. 1. The first order term, Ψltε(R,r9t), is only a semiclassical correction
term. It contains no adiabatic corrections in the sense that its r dependence has
no components orthogonal to φ(R,r) in L2(dr) for fixed R and t. In particular,

ΨίtB{R, r, t) = eίS{t)/ε2F(R)φ(R, r) Σ 4(0^(^(ίX ^(ί), ε2, fl(ί), ̂ (0? ^X

where the functions dk(ί) solve a system of differential equations. In Sect. 3 we will
describe how one can derive this system.

2. A procedure for computing the functions ΨjtE(R, r, t) is given in Sect. 3. Since
these computations parallel those of [9], we have not given many details. The
reader who is interested in explicit computation should consult [7,9] and note the
erratum to [9]. For details of the semiclassical techniques in particular, he should
see Theorem 1.1 of [7] and the remarks which follow that theorem.

3. Formal Derivation of the Expansion

In this section we give a formal derivation of the results that were stated in Sect. 2.
The main ideas involved are the same as in the smooth potential case [9]. However,
because φ(R9 r) is only a C2 function of R in the Coulomb case, we must make
significant alterations. The alterations involve complicated nonlinear changes of
variables before the application of the multiple scales and semiclassical ideas of [9].

As described in the previous sections, we wish to study the small ε asymptotics
of the solutions to the equation

dΨ ε4

iε2 — =--AΨ+hΨ, (3.1)
ot 2

where A is the 3K dimensional Laplacian in the variable R, and h decomposes
under the direct integral decomposition with fibers h(R).

Although the eigenfunction φ(R, r) does not have third order partial derivatives
with respect to the R variables in L2(dr), it is analytic in certain directions in the
configuration space of all the particles [12]. We change variables in (R, r, ί)eR 3 J V + x,
so that the electronic wave function is C00 in 3K + 1 of the 3N + 1 new coordinate
directions. We do so in two steps. In the first step we change coordinates
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in a way that solves the difficulty in the R variables, but transfers part of the
non-differentiability into the t variable. The motivation for this step comes
from [12]. In the second step we change variables to fix up the resulting
non-differentiability in t. After the change of coordinates, we mimic the techniques
of [9] to derive the expansion.

3A. The First Change of Variables. Our first change of variables is done by
mimicking [12] for each fixed time t. In the new coordinates, the Coulomb
singularity is at the nuclear configuration a(t) rather than R.

In the case of smooth potentials, the wave functions of interest are highly
concentrated where \R — a(t)\ is small. A posteriori, the same is true in the Coulomb
case. So, we will not change variables on all of U3N x [0, Γ], but instead will work
on a set W a U3N x [0, T]. Outside this set, our wave functions will vanish.

We take W to be the set

W= \J (1V(t) x U3{N~K) x {ί}),
te[O,T]

where HT{t) = {(Rί9...,R3K)eU3K: \Rj-aj(t)\^y for 1^;^3X}. Here y is a
number that will be chosen later. We also choose the sets %1 and °ll2 of Sect. 2 to be

and

V2 = {(Rl9...9R3K):\R-a(t)\<γ}.

We define bj(t)eU3 for 1 g j ^ K by

We permanently fix a choice of <5>0, so that δ <Jmin{ |b ί (ί) — bj(ή\: 1 ^ i < j ^K,
O^t^T], and we restrict y < δ/2. We choose a function /:[0, oo) -» [0,1], so that
/eC°°,/(x) = 0 if x > 2(5, and/(x) = 1 if x < <5. We define a vector field υR t:U

3 -• U3

by

7 = 1

One can easily prove [12] that by shrinking y, the maximum of the norm of the
derivative matrix dvRJdζ can be made arbitrarily small for all Re1V(t\ ίe[0, Γ],
and ζeU3. As a consequence [12], for small enough γ, the mapping MΛ>f:IR3->[R3

given by uRt(ζ) = ζ + vRt(ζ) is a C00 diffeomorphism of U3. It is also a C00 function
of all the variables R, ζ, and ί.

N

We let /i(K, r, ί) = Y\ det(/ + [(δi ̂ ^/δOίXj )]), and define a fibered unitary

operator Ux(t) on L2([R3iV) by the following two conditions: We define Uι(t)Ω = Ω
for functions Ω whose support does not intersect the set W(t) x U3(N~K). For
functions Ω whose supports are contained in the set iΓ(t) x [R3(iV~X), we define

By linearity, this uniquely determines Uί(t\ which unitarily implements our first
change of variables: If (1) y is sufficiently small; (2) *Fis an approximate solution
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to Eq. (3.1) in the sense that

iε2-—- = -~ΛΨ+h Ψ+ 0{εn);
ot 2

and (3) *Fhas support in W, then Ω=U1{t)~1Ψis supported in W, and satisfies
an equation of the form

(3.2)

Here, jtfx is a first order differential operator in r, whose coefficients are C00

functions of compact support in the variables (R,r, ήeW. For fixed (r, ί), the
coefficients are analytic in R, for (R,r9t) in W. 3S1 is a second order differential
operator in R and r, with coefficients that are C00 functions of compact support
in the variables (R,r,t)eW. For fixed (r, ί), its coefficients are analytic in R, for
(R,r,t) in W. The fibered operator hx has the form

Λi = - Σ i ^ + ̂  + ̂

Here <€γ is a second order differential operator in the r variables with C°° coefficients
of compact support in the variables (R, r, t)eW. For fixed (r, ί), its coefficients are
analytic in R, for (R, r, ί) in W. It is relatively bounded with respect to the electronic
kinetic energy, with relative bound less than one. The potential term Vx has three
parts. The nuclear-nuclear repulsion is the same as in the original potential V.
The electron-electron potential is relatively bounded with respect to the electronic
kinetic energy. The electron-nuclear interaction has the form

j=ί i = K+l

where each pUj is C00 for (K,r, ήeW. The function pitj is analytic in R for ReW(t),
and pitj and all of its derivatives vanish in the limit as xt goes to infinity in [R3,
uniformly in R for Reif{t) and ίe[0, T].

All of these facts concerning equation (3.2) follow from direct computation and
simple extensions of the ideas of [12]. One should note that the coefficients of
equation (3.2) have no singularities in the R variables for (R,r,t)eW. In fact, the
fibers h^R, t) on L2(Um~K)) form an analytic family in the R variables for ReiΓ(t)
if γ is sufficiently small. However, the electron-nuclear interaction has time
dependence with moving Coulomb centers in the new variables. So, in the new
variables, the electron wave functions for nondegenerate eigenvalues are only C2

functions of t.
We now permanently fix a choice of the number y9 small enough for all the

above conditions to hold.

SB. The Second Change of Variables. To determine the next change of variables,
we define a vector field X(ζ,s) whose associated flow near a nucleus is parallel to
the motion of that nucleus. The flow will then determine the change of coordinates.
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The goal is to obtain a coordinate system in which the centers of the electron-
nuclear Coulomb potentials do not move in time.

We define the vector field to be

X(ζ,s)= f ^ (5)/(|C-^(5)|),
7 = 1

where ξj(t) = (η3j_2(t), f/3j _1(ί), η3j(t)). Given any fixed £e[0, T], we solve the
differential equation

backwards in time, from time t to time 0. If the initial condition at time t is
ζ(t) = xeU3, then we define w(x,t) = ζ(0). By standard theorems of ordinary
differential equations (see e.g., [13, Satz 4, p. 125]), the mapping that carries x to
w(x, t) exists, is unique, and is C00. It is also a diffeomorphism because one can
construct the smooth inverse by flowing forward in time rather than backwards.

We let
N Γdw Ί

^2(^0= Π det —-(xi5ί) L
iΛ\i Idx J

and define a unitary operator U2(t) by

This operator unitarily implements our second change of variables.
If Ω(R,rj) is a solution to Eq. (3.2) with support in W9 then Ξ= U2(t)~1Ω is

supported in W, and satisfies an equation of the form

=-j(AR + ̂ 2)E+h2E+O(sn). (3.3)

The differential operators sd'2 and &2 have the properties enumerated above for
si γ and 36^ respectively. The fibered operator h2 has the form

* 2 = - Σ ̂ r
jκ+i^m

Since U2(t) has no R dependence, and h1(R, t) is an analytic family in R for
h2(R,t)=U2(t)h1(R,t)U2(t)~1 is also an analytic family in the R variables for
ReW(t). In the t variable, h2(R,t) is a C00 family in the sense that the resolvent
{z-h2{R,t))~1 acting on L2{U3(N~K)) is an infinitely differentiable function of t.
To see this, one computes the derivatives explicitly. For example, the first derivative
is

The operator (dh2/dή(R,ή is a second order differential operator in r. With the
exception of the electron-nuclear interaction terms, the coefficients of (dh2/dt)(R, t)
are C00 functions of (K, r, ί) with compact support in r. Thus, the terms of
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(dh2/dt)(R,t), other than the electron-nuclear terms, are bounded operators from
the range of (z-h 2 (R,t))~ 1 (with the usual Sobolev norm) to L2{U3(N"K)), with
smooth dependence on t. The electron-nuclear interaction terms give rise to
bounded operators on these spaces with smooth time dependence, but this is less
obvious. These terms in the potential V2 have the form

j=i i = κ+i \ *>i ujvJj\

where each qUj is C00 for (R,r, t)eW. The function gt } is analytic in # for ReΨ"(t\
and all of its derivatives vanish in the limit as xt goes to infinity in U3, uniformly
in R for ReiΓ(t) and ίe[0, T]. Since the only ί dependence of the electron-nuclear
terms in V2 is in the gu 's, it follows that the electron-nuclear interaction
terms in (δh2/dt)(R, t) are bounded operators from the range of (z — h2(R, t))'1 to
L2(U3{N~K)), with smooth dependence on t. The higher order derivatives of the
resolvent of h2(R9t) are dealt with in a similar manner.

Thus, the operators h2(R,t) are C00 functions of (R,t) in the resolvent
sense described above for ReW(t) and ίe[0, T]. From this, it follows that the
eigenfunction φ2(R9r9ή = U2(t)~x U 1(ή~xφ(R,r) of h2(R,ή is an analytic function
of Reif(t) and a C°° function of ίe[0, T], with values in L 2 (^ 3 ( i V " X ) ,dr).

3C. 77ie Multiple Scales Expansion. In the remainder of this section of the paper,
we apply the ideas of Sect. 3 of [9] to Eq. (3.3).

Instead of directly seeking a solution Ξ(R,r,t) to (3.3), we will seek a solution
Φ(x, y, r, t) to a higher dimensional problem. We will then recover Ξ(R, r, t) =
Φ(R, (R — a(t))/ε9 r, ί). This is the technique of the "multiple scales." It is useful for
our problem because as ε ->Q9 the variables x = R and y = (R — a(t))/ε behave in a
more or less independent fashion. Moreover, semiclassical effects occur in the
variable y9 and adiabatic effects occur in the variable x. Without the independent
treatments of these variables, the two types of effects become intertwined and much
more difficult to understand.

To obtain the equation that is satisfied by Φ(x, y, r, ί), we make a formal change
of variables in Eq. (3.3) from (R, r, ί) to (x, y, r, ί), with x = R and y = {R- a(ή)/ε. We
also make a careful choice of when to replace the variable R by x or \_a(t) + εy].
In particular, we always replace R by x in the coefficients of the equation, but we
add on [E(a(t) + εy) — E(x)~\Φ(x9y9r,t). The equation satisfied by Φ(x,y,r,t) has
the form:

id \ ε4 ε2

iε2l— + j/)Φ= - — # " Φ - ε3y VyΦ - — ΔyΦ + iεη(t)'VyΦ + E(a(t) + εy)Φ

+ h2{x9 t)Φ-E(x)Φ+ O(εn). (3.4)

Here, srf is a first order differential operator in the r variables; J^ is a second order
differential operator in x and r; and 0 is a first order operator in x and r. The
coefficients of stf9 3F9 and ^ are C00 functions of compact support in (x,r,t)eW.
The operator h2(x, t) is analytic in x and is C00 in t in the resolvent sense described
in Sect. 3B.
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For later reference, we note that ^ = V + (first order operator in r only), and
that & = <0 <g.

If the O(εn) in Eq. (3.4) is understood as an U°{dx dt)-novm estimate of a function
with values in L2(dydr% and the 0{sn) in Eq. (3.3) is understood as an L°°(dί)-norm
estimate of a function with values in L2(dRdr\ then any solution Φ(x9y9r9t) to
Eq. (3.4) gives rise to a solution Ξ{R, r,t) = Φ{R9 (R ~ a(t))/ε, r, t) to Eq. (3.3). Then
Ψ{R,r9t) = U1(t)U2(t)Ξ(R9r9t) is an approximate solution to Eq. (3.1). In Sect. 4
we will rigorously prove this for the solutions Φto Eq. (3.4) that we construct below.

To formally derive our solutions to Eq. (3.4), we begin by making the ansatz
that Eq. (3.4) possesses an approximate solution of the form

Φ(x9y9r9t) = eiSit)lε2eiη{t)'y/εF(x)

'(λo(x9y,r,ή + ελί(x,y9r,t)+ -•), (3.5)

where F is the cutoff function of Sect. 2 which is determined uniquely by the choice
of y at the end of Sect. 3A.

We define ψn(x9y,r,t) = Uί(x, t)U2(ήλn(x,y,r, t). In certain circumstances, it is
pedagogically advantageous to consider the functions φn rather than deal directly
with the functions λn.

Remark. As in [9], the factor F(x) plays an uninteresting role, but it causes an
extra complication in the formal computations. In particular, certain terms which
occur below contain derivatives of F. As in [9], these terms are basically irrelevant.
Whenever we encounter one of these terms in this section, we will make a comment,
drop the term, and refer the reader to Sect. 4 for the explanation of why the term
can be dropped. Heuristically, these terms can be dropped because derivatives of
F(R) are supported in a region of configuration space where the wave function is
exponentially small in ε as ε-»0.

We now need to determine the functions λn. Since F(x) = 0 for xφ°i/2, we can
arbitrarily set λn(x,y,r,t) = 0 for all xφύiί2. To determine these functions for xeΰi/2

we substitute the expression (3.5) into Eq. (3.4) and expand the factor E(a(ή + εy)
in its Taylor series in powers of ε. Then we multiply everything out and equate
coefficients of like powers of ε on the two sides of the equation. Since we are
assuming that Eqs. (2.5)-(2.8) are satisfied, a large amount of cancellation takes
place. After making these cancellations, we find that various conditions are forced
upon us by the terms of different orders in ε. These conditions and the initial
conditions more or less completely determine the functions λn.

After using Eq. (2.7) to make a cancellation, we see that the zeroth order terms
force us to take

Thus, for x e f 2 ί w e a r e forced to take λ0 to be some function go(x,y,t) times
φ2(x,r,t). Without loss of generality, we can choose g0 to be independent of x
because any x dependence can be absorbed into j ; dependence in the higher order
terms. Thus, we have

λo(x9y9r,t) = go(y,t)φ2(x,r,t).
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Equivalently, we can state this in terms of φ0 as

φ0 (x, y, r, t) = g0 (y91) φ (x, r, t).

Similarly, after using both Eqs. (2.6) and (2.7) to make cancellations, we see
that the first order terms force us to take

Thus, for xeύU2^ λγ has the form

λx (x, y, r, t) = gγ (x, y, t)φ2(x, r, t),

for some function gx. Equivalently, ψ1 has the form

^i(x,)>,r, ί) = gγ{x,y, t)φ(x,r, t).

The second order terms impose the following condition:

)l-±Δyλ0ίF(x)(λ0 + s4λ0) = F(x)

- iη 9λ0 + [Λ2(x, 0 - £ ( x ) ] λ 2 l - ^-(VxF)2o, (3.6a)

where the dot ' stands for time derivative and E(2)(a)y2/2 is a shorthand abuse of
notation which stands for

1 _ d2E

δ W W )

As we remarked earlier, arguments from Sect. 4 show that the final term in Eq. (3.6a)
is actually of finite order in ε in an appropriate norm. So, we may drop it to obtain
the following condition for

- iψ<Sλ0 + [h2(x, t) - E{x)~\λ2. (3.6b)

We separate this equation into two parts. The first part involves those components
on the two sides of the equation which are (x, y, and t dependent) multiplies of
φ2(x,r, t). The second part involves those terms which are orthogonal to φ2(x, r, t)
in L2(dr) for each fixed x,y, and t. Thus, Eq. (3.6b) imposes two conditions:

v2

iPφ2(λ0 + ^λ0) = - ±Ayλ0 + E{2){a)y— λ0 - iPφ2η $λ0 (3.7a)

and

[Λ2(x, t) - E{x)-]λ2 = iQφ2ψ«fλ0 + ίQφ2λ0 + ίQφ2^λ0. (3.7b)

Here, Pφ2 = Pφ2(x, t) denotes the orthogonal projection in L2(dr) onto multiples of
φ2(x,r,t) and Qφ2 = Qφ2(x,t) = (l - Pφ2(x,ή) is the complementary orthogonal
projection.
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Because there are cancellations that are not obvious in Eqs. (3.7), it is instructive
to consider the equations in the φ representation that are equivalent to Eqs. (3.7).
They are:

y ^ψo (3.8a)

and

LHx)-E{x)-]ψ2 = iη'Vxψ0. (3.8b)

Equation (3.8a) involves the x9y9 and t dependent multiples of φ(x,r), and Eq.
(3.8b) involves functions that are orthogonal to φ(x,r) in L2(dr). We note that
Eqs. (3.8) are the same as Eqs. (3.5) of [9], and they can be solved as in [9]. To
obtain the solutions in which we are interested, we arbitrarily impose certain initial
conditions. Then φ0 is determined for x e f 2 to be

φ0 = <p(x, r) X dkφk(A(t\ B(ή, β2,0,0, y).

Equivalently, Eq. (3.7a) is solved by

λ0 = φ2(χ,r, t) X dkφk(A(t),B(t\ε2,0,0,3,).

The numbers dk are arbitrary, and the number α is arbitrary, but indicates that
the sum is finite. The functions φk(A,B,ε2,a,η,y) were defined precisely so that
these expressions would satisfy Eq. (3.8a) and (3.7a). In view of the form of our
ansatz (3.5), we see that conclusion (1) of Theorem 2.1 is fulfilled.

Equation (3.8b) does not uniquely determine φ2 because [h(x) — £(x)] has a
non-trivial kernel. However, the restriction of [h(x) — E(x)] to the orthogonal
complement of the multiples of φ(x,r) in L2(dr) has an inverse r(x). As a
consequence, Eq. (3.5b) shows that φ2 = φ2 + Φ^ where φ\ is some function
of x,y, and t times φ(x,ή9 and

ΨΪ = ir(x)η Vxψ0, (3.9a)

for xe°U2. Equivalently, we let r2(x) denote the inverse of the restriction of
[h2(x9r9t) — E(x)'] to the orthogonal complement of φ2(x9r9t) in L2(dr)9 and
decompose λ2 into a component λ2 orthogonal to φ2(x9r9t) and a component
A^in the φ2(R9r9t) direction. Then

φ ). (3.9b)

Thus, the second order terms in ε determine λ0 and λ2.
We now consider the third order terms. They impose the following condition:

iFWiλ, +stfλ1) = F(x)ϊ - \Ayλx
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where we have again made the obvious abuse of notation. In Sect. 4 we will see
that the last two terms in this equation can be dropped because they are of infinite
order in ε. We drop them to obtain the following condition for xeύll2\

- iψVλi - %• V μ 0 + [h2{x,t)- E(x)]λ3. (3.10b)

As with the second order terms, we separate these terms into those which are
multiples of φ2{x9r9t) and those which are orthogonal to φ2(x,r,t) in L2(dr). We
obtain

λ ^

-Pψ2{iη-^λ1 +y-Vyλ0\ (3.11a)

and

[h2(x, t) - E{x)-]λ3 = Qφ2(iη-9λ1 + <S V μ 0 + λ + ^ i ) (3-Hb)

The equivalent, but simpler equations in the ψ representation are

2 3

iφί = — \Δvφx + E{2)(d)—-φλ + Ei3)(a)~—φ0 — iPmη Vxφi, (3.12a)
yr 2Ύ ι 6 ψ

and

Yh(γ\ FίxM)l/ — i Π M V )// -I- V V Ϊ// Π 1 9hΊ

Equations (3.12) are the same as Eqs. (3.8) of [9], as corrected in the erratum [9].
With the initial condition φ x (x, y, r, 0) = 0, Eq. (3.12a) can be fairly explicitly

solved as described in [9] and its erratum [9]. Alternatively, one can use those
techniques to directly solve Eq. (3.11a) with λ1(x,y9 r,0) = 0.

Remarks. 1. The solution to (3.12a) has the form φ1(x,y9r9ή = gί(x9y9ήφ(x9r)9

where gί turns out to have no x dependence. Also, λ1(x,y,r,t) = g1(x,y,ήφ2(x,r,ή.
The function gγ is a time dependent linear combination of the functions φk(A(t)9

B{t\ ε2,0,0, y) with | k \ ̂  α + 3 (see [9]).
2. Since 2X is a y and ί dependent multiple of φ2(x9r9t), λo-\-ελ1 is only a

semiclassical correction to /l0 ε. The corrections to the adiabatic approximation
first show up in λ2.

To solve Eq. (3.12b), we let φ3 = φ3 + φ3, where φι

3= g3(x,y,t) φ{x,r)
and

Φϊ = r{x)[iQφψVxΦι + V/ Vxφol (3.13a)

Equivalently, we have

X^ — r2(x, t)Qφ2\ir] ^ λx + y Vyλo + iλ1 + istf λ{\. (3.13b)
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We now turn to the fourth order terms. They impose

iF(x)(λ2 + ^λ2) = F(x)ϊ - \Ayλ2 + £ ( 2 ) ( α ) y λ2 ^

- ( V ^ H V μ j - $(ΔxF)λ0 - (VXF
(3.14a)

We drop the last four terms on the right-hand side of this equation since they are

of infinite order in ε. Then for xe°U2, we impose

v2 v3

i(λ2 + stλ2) = - \Ayλ2 + Ei2\a)~λ2 + E^\a)y-λ1

+ E^{a)y—λ0 - iη 9λ2 - ^'Vyλ, - \&λ0 + [Λ2(x, t) - £(x)]λ4.

(3.14b)

We solve this equation by splitting it into components that are multiples of φ2(x, r, ί)
and components that are orthogonal to φ2{x,r,t). We can solve the resulting
equations by the techniques of [9] and its erratum [9]. Once again, it is technically
less complicated to work in the ψ representation rather than the λ representation.
The initial condition λι

2(x,y,r,0) = ψι

2(x,y,r,0) — 0 and the fourth order terms
thus determine \j/2 and φ2.

By the obvious induction, one determines the higher order terms. The nth order
terms of the equation and the condition λ2(x,y,r,0) = 0 determine Λ|_2 and
λn. Unfortunately, for n ^ 5, one does not have the luxury of working in the φ
representation because of the lack of existence of third and higher order derivatives
of φ(x,r) with respect to x. Of course, this was the reason for introducing the λ
representation in the first place.

Remark. If one is interested only in the 0th, 1st, or 2n d order expansion for the
solution Ψ to Eq. (3.1), one can get the correct result by calculating in the φ
representation with the formal equations of [9]. However, the proof in [9] does
not apply to the Coulomb case at any order because φ(x, r) is only C2 in x. Without
going to the λ representation, we do not know how to construct arbitrarily high
order terms or prove that the expansion is asymptotic to the solution of the
Schrodinger equation in a norm sense.

Conclusions (1) and (2) of Theorem 2.1 are now clear upon substitution of R
for x and (R — a(ή)/ε for y in the formulas for λn>ε, and then computing
φn = Uι{t)U2(t)λn. A proof of Conclusion (4) will be presented in the next section.
Conclusion (3) follows from the fact that the y dependence of λn exhibits itself
only through the functions φk(A,B,ε2,0,0,y), which are polynomials in y times
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Gaussians in y. The x dependence involves smooth functions which are bounded
for xeύU2.

4. Proof of the Main Theorem

In this section we outline a proof of Theorem 2.2. The proof is virtually identical
to that of [9].

As we observed at the end of the last section, conclusions (1), (2), and (3) of the
theorem are satisfied. Thus, we need only prove conclusion (4).

We begin by computing the functions λn of Sect. 3. By Eq. (3.5), this
gives us a formal asymptotic expansion for Φ(x,y,r, t). This in turn gives
us a formal asymptotic expansion for Ψ(R9r9t)=U1(t)U2(t)Ξ(R9r9t)9 where
Ξ(R,r,t)=Φ(R,(R-a(t))/ε9r9ή.

We let Ψj denote the truncated asymptotic expansion for ΨthaX only contains
the terms that arose from λθ9λί9...9λj9 λj+ί9 and λj+2. We substitute Ψ

3into Eq. (3.1), and add [G[^-E{Ry]Ψj9 where G&J21 is the (J + 2)nd order
Taylor series expansion of E(R) about the point a(t). By virtue of the computations
of Sect. 3, we observe the cancellation of all terms of order ε\ that do not involve
derivatives of F(R\ for t ^ J + 2. Lemma 4.3 of [9] shows that the norm of the
term [ G ^ + 2 ] - £(#)] Ψ3 is bounded by a constant times εJ + 3. Lemma 4.2 of [9]
shows that the terms involving derivatives of F(R) are bounded by constants times
ef for arbitrary /. Theorem 2.1 then follows from Lemma 4.1 of [9].
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