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Abstract We present a general method to construct the sequence of new link
polynomials and its two variable extension from exactly solvable models in
statistical mechanics. First, we find representations of the braid group from the
Boltzmann weights of the exactly solvable models. Second, we give the Markov
traces associated with new braid group representations and using them
construct new link polynomials. Third, we extend the theory into a two-
variable version of the new link polynomials. Throughout the paper, we
emphasize the essential roles played by the exactly solvable models and the
underlying Yang-Baxter relation.

1. Introduction

In physics we often deal with the configuration problem of one-dimensional
objects, for instance, polymers, magnetic fluxes, dislocation lines and trajectories
of particles. We generally call a one-dimensional object a string. A knot is a closed
string which does not cross with itself. As a more generalized object, an assembly of
knots with mutual entanglements is called a link. Classification of knots and links
is known to be a longstanding problem in mathematics [1, 2]. In this paper we
report an unexpected close connection between physics and mathematics. Namely,
we present a general method to construct topological invariants for knots and
links by using the theory of exactly solvable models in statistical mechanics.

We begin with the braid and the braid group. Braids are formed when n points
on a horizontal line are connected by n strings to n points on another horizontal
line directly below the first n points. A trivial H-braid is a configuration where no
intersection between the strings is present. A general n-braid is constructed from
the trivial n-braid by successive applications of the operation bh i = 1,2,..., n — 1.
The operation bt and its inverse b^1 are best understood by the graphs (Fig, 1). A
the set of generators, bl9 b2, . . . ,&„_!, define the braid group Bn [3]. By regarding
the trivial π-braid as the identity operation in Bw we can identify any element in Bn

as an π-braid. To guarantee the topological equivalence between different
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Fig. 1. Operations bt and bj~l
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Fig. 2. Defining relations of the braid group

expressions of a braid in terms of braid group elements, Artin proved that the
following conditions are necessary and sufficient (Fig. 2):

bibi + ιbi = bί + 1bibi+1. (l lb)

We call them the defining relation of Bn. Then, each topologically equivalent class
of the braids is identified with an element in Bn.

Given a braid, one may form a link by tying opposite ends. Conversely,
according to Alexander's theorem [4], any link is represented by a closed braid.
This fact gives the braid group a fundamental role in the knot theory. However, the
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representation of a link as a closed braid is highly non-unique. Therefore, the
following theorem due to Markov [5] is important. The equivalent braids
expressing the same link are mutually transformed by successive applications of
two types of operations, type I and type II Markov moves:

I. AB-*BA(A9BeBn),

II. A-^Abn,A-^Ab~l ,

(AeBΛ9bneBn + J. (1.2)

Hence, to obtain a link polynomial which is a topological invariant, we first
construct a suitable representation B'n of the braid group Bn and then find a
Markov move invariant quantity defined on B'n.

Let us denote the representation of bi by gt and a link polynomial by α( ). The
link polynomial α( ) must satisfy the conditions:

II.

This quantity is readily obtained if we can find a linear functional φ( ) on B'n, called
the Markov trace [6, 7], which have the following properties (the Markov
properties):

II.

with the parameters τ and τ being given by

τ = φ(gi), τ = 0(gΓ1) for a l i i . (1.5)

With the Markov trace φ( ), the link polynomial α( ) is given by

-\e(A)/2

φ(A) (AεB'n}. (1.6)

Here e(A) is the exponent sum of gf's appearing in the braid A. For instance, if
A = g^gΓ 2, then e(,4) = 3 — 2 = 1. The properties (1 .3a) and (1 .3b) are easily verified
from (1.4a), (1.4b) and the definition of e(A).

In the recent discovery of a new polynomial invariant (Jones polynomial) for
knots and links, Jones [7] utilized a C*-algebra AqtΛ generated by {1, eί9 e2, . . ., en}.
The generators {βj} are essentially identical with the Temperley-Lieb operators [8]
and satisfy the relations:

for



246 Ya. Akutsu and M. Wadati

The Temperley-Lieb algebra is known to describe the transfer matrices of the
ferroelectric model (6-vertex model) and the self-dual Potts model (critical Potts
model) in statistical mechanics [9, 10]. An ingenious idea by Jones is to use the
algebra Aq nfor a construction of a representation (Hecke algebra [11] representa-
tion) of the braid group. To observe this, we introduce a parameter ί and a
generator gf by

l + t, (1.8)

g-ίf+lte-l (e^Aq^v). (1.9)

Then the Hecke algebra H(ί, n) is generated by {gj. The generators satisfy both the
defining relation (1.1) of the braid group and the quadratic relation (the reduction
relation):

g? = (ί-l)& + ί. (1.10)

In most cases, the Jones polynomial is more powerful than the classic
Alexander polynomial [12] in the sense that it detects properties of a link which
could not be detected by the latter. The Jones polynomial and the Alexander
polynomial are special cases of the two-variable extension [13] of the Jones
polynomial. It is known that the Jones polynomial and its two-variable extension
are still not complete. There exist infinitely many different links which have the
same polynomial [14, 1 5]. The aim of the present paper is clear. We further pursue
a close relation between the exactly solvable models and the link polynomials, and
present a general method which leads to a sequence of new link polynomials and its
two-variable extension.

The paper is organized as follows. In Sect. 2, we give a general prescription to
have a braid group representation from the Boltzmann weights which satisfy the
Yang-Baxter relation. In Sect. 3, we apply the prescription to the JV-state vertex
model and obtain a sequence of braid group representations. Further, defining the
Markov traces associated with the new braid group representation, we construct a
sequence of new link polynomials. In Sect. 4, we give an alternative method to
obtain the braid group representation by introducing "composite" string with
symmetrizers. In Sect. 5, we use the composite string representation of the braid
group to obtain the two-variable extension of the new link polynomials. The last
section is devoted to a summary of the paper.

2. Construction of Braid Group Representations from Solvable Models

Recent development in the theory of quantum completely integrable systems
provides us a unified treatment of various exactly solvable models in 1 + 1
dimensional field theory and in 2-dimensional classical statistical mechanics
[16-20]. The central idea is that to each solvable model we can associate a family
of commuting transfer matrices which are the generators of an infinite number of
conserved quantities. The commutability condition is called the Yang-Baxter
relation.

The Yang-Baxter relation takes different expressions depending on the types of
models. For the 1 + 1 dimensional field theory, the Yang-Baxter relation is the
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Fig. 3. The factorization equation
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factorization condition [21] for the many-body S-matrices and is known as the
factorization equation. We denote the scattering amplitude for the process (ij)
->(/c, /) by Sft(u\ where u is the rapidity (we also refer to it as the spectral parameter).
Then, the factorization equation reads as (Fig. 3)

a,β,y

(2.1)

In 2-dimensional statistical mechanics, we have two types of models, the vertex
models and the IRF (interaction round a face) models [22]. Some of the IRF
models are equivalent to the vertex models through the Wu-Kadanoff-Wegner
transformation [23]. It is known that any factorized S-matrix can be interpreted as
the Boltzmann weight of a solvable vertex model and that the factorization
equation is the commutability condition of the transfer matrices of the vertex
model [24]. For the IRF models, the Yang-Baxter relation is called the star-
triangle relation which reads as

Σ w(b, d,c,a; u)w(a, c, /, g; c, d, e, /; v)

= Σ vφ, ft, c, g; v) w(ft, d, e,c;u + v)w(c, e, j\ g; u) . (2.2)

Here w(a,b,c,d;u) denotes the Boltzmann weight for the spin configuration
(α, ft, c, d) round a face.

The Boltzmann weights satisfying (2.1) or (2.2) define a set of operators [22],
{Xi(u)}, which satisfy the relations:

, (2.3a)

ιM (2 3b)

(2.4a)

In the vertex model we have the following expression of the operator

klmn

where J0) is the identity acting on the /h position and Enk is a matrix whose
elements are (Enk)pq = δnpδkq. In the IRF model, matrix elements of X^u) are given
by

(2.4b)
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The operator X^u) represents an element of the diagonal to diagonal transfer
matrix [22].

By regarding the Yang-Baxter relation as a functional equation for the
Boltzmann weights, we have a systematic method to find a new solvable model. We
have shown that there exists at least an infinite number of solvable hierarchies
(Grand Hierarchy) in 2-dimensional statistical mechanics [20, 25-29].

Now it is extremely interesting to notice the close similarity between (1.1) and
(2.3). A graphical similarity between Figs. 2 and 3 is also intriguing. The only
difference is that in (2.3) we have spectral parameters as the arguments of the
operators. In other words, the Yang-Baxter relation contains superfluous
information which might be important in future studies. For the present purpose,
to have a braid group representation, we eliminate the spectral parameters. We
have found [30, 31] that an interesting identification is, after suitable normaliza-
tion if necessary, given by

b^g^ limX^u). (2.5)
U~ > 00

Depending on the function of parametrization, all the known solutions to the
Yang-Baxter relations are classified into three cases; (1) elliptic (2) trigonometric or
hyperbolic (3) rational. Any model in the case (1) [respectively the case (2)] at
criticality corresponds to a model in the case (2) [respectively case (3)]. Then, to
obtain an interesting braid group representation as a well-defined limit (2.5), we
should use a model at criticality which is parametrized by the trigonometric or
hyperbolic functions. This explains an observation by Jones that the Temperley-
Lieb algebra for the transfer matrices of the 6-vertex model (8-vertex model at
criticality) and the self-dual (critical) Potts model appear in the construction of the
braid group representation.

In what follows, we consider only the solvable models whose Boltzmann
weights are parametrized by the hyperbolic (or equivalently trigonometric)
functions. We assume that the unitarity condition holds:

Σ S*k( - u)Slfq(u) = δίkδβ , for the vertex model , (2.6a)
p,q

Σ vv(e, c,d, a; —u)w(b,c,e,a',u) = δbd, for the IRF model. (2.6b)
e

Due to the unitarity (2.6) which amounts to

Xl{-u) = Xl{u)'ΐ9 (2.7)

we have the identification

g Γ ^ l i m X . ί-w). (2.8)
— •

3. The W-State Vertex Model and New Link Polynomials

Among many solvable models with hyperbolic (or equivalently trigonometric)
parametrization, we consider a series of vertex models (the JV-state vertex model)
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proposed by Sogo, Akutsu and Abe [32]. This series includes the 6-vertex model as
N = 2 case and the 19-vertex model [33] as N = 3 case.

The edge variables ij, k, and / of the Boltzmann weights {Sβ(u)} for the JV-state
vertex model take the following values:

ij,k,l = — s, — s + 1, ...,s —l , s , (3.1)

where "spin" s is related to the state number N by

N = 2s+ί. (3.2)

The model has the properties:
a) charge conservation condition;

S$(w) = 0 unless i+j = k + l , (3.3)

b) CPT in variances;

S£(M) = Sl}lί(M) = S£(u) = S$u), (3.4)

c) crossing symmetry;

Sfl(u) = F(u)'SJlk-i(λ-u). (3.5)

Here the parameter λ is called the crossing point of the spectral parameter and F(u)
is some function. For instance, parametrization of the weights which satisfy the
unitarity condition (2.8) are shown below, for N = 2, 3, and 4 cases.

1) N = 2 (s =1/2) case

ι/2/ .Λ_ Λ c i/2 1/2 / Λ _
— —1/2V ' sinhμ-w)'

sinh/I
> - l / 2

2) N = 3 (s = l) case

sinhMsinhμ

-u)sinh(2λ-M)'

sinh (/I — u) sinh (2 A — u) '

sinh2/
—DV ; sinh(2λ-M)' o u / sinh(2λ-M)'

0 t sinh21sinhw
0 ~ 1 sinh (A — w) sinh (2λ — u)'

^ 0 0 sinh λ sinh 2/1 — sinh u sinh (A — w)
0 ° sinh (λ — u) sinh (2λ — u)
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3) ΛΓ = 4(s = 3/2)case

c3/2 3/2/.Λ -I
ύ3/2 3/2W— j 5

03/23/2 \ _ sinh w sinh (^ + w) sinh (2/1 +1/)
-3/2 -3/2W = sinh(A -M) sinh(2;,- φinh(3l^^)'

τ/Ί _*,-,, x sinh/i sinh 2/1 sinh 3/I
O O / Z ί>[Lί«/)

3/23/21 ; sinh(λ-«)sinh(2λ-M)sinh(3A-u)'

; sinh(3/l — w ) '

/ 2 3 / 2 sinh u sinh (λ + w)

1 / 2 3 / 2

Sinh(3A-M)

3 / 2 1 / 2 2 |/sinh λ sinh 3 1 cosh λ sinh u
1/2 1/2(M) = sinh(2/l-u)sinh(3A-MΓ" '

„,„,,, , . sinh 3λ sinh w sinh (λ + u)
C ' o / Z l / Z ( 77 I —- 3/2 - ι / 2 V _ - ___

_ M) sinh(3Λ - u) '

M) sinh(3/i — M) '

3 / 2 - 1 / 2 / \ _ sinh 2/1 sinh 3 /I sinh t/
~3 / 2 1/2(")= sinh (A - u) sinh (2/1 - M) sinh(3l^) '

1/2 ι/2/ sinh 2/1 sinh 3 A — sinh M sinh (λ — M)
1/2 ι/2W= sinh(2λ-M)sinh(3λ-MJ '

ci/2 1/2 sinh w [sinh 2/1 sinh 3/1 — sinh w sinh (A — w)]
- 1/2 - 1/2 W = sinh(A-ii)sinh(2A-M)sinh(3A-w) '

1/2 _ 1 / 2 sinh 2/1 [sinh λ sinh 3/1 — 2 cosh λ sinh w sinh (A — M
5~ W "1/2 - M) sinh (2/1 - w) sinh(3^ - u) ( )

The S-matrices for general N have been given in [32].
In order to construct an interesting braid group representation, we further

introduce the symmetry-breaking transformation [32],

S*(u) = exp [(fc - i - 1 +j)u/2] S$(u) . (3.9)

Due to the charge conservation condition (3.3), the resulting asymmetrized
Boltzmann weights {Sf^u}} also satisfy the factorization equation. We note that
the transformation does not spoil the unitarity condition. Substituting Sft(u) into
(2.4a), we obtain the generator gf of the braid group representation. We find that gf

satisfies the reduction relation

(g,-c1)(g,.-c2)...(gί-Cjv) = 0, (3.10)
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where

i)y2 (3 Ha)

The reduction relation (3.10) for TV = 2 case is, by an identification gf-» — gt , that of
the the Hecke algebra (1.10).

A remaining task is to introduce the Markov trace which should satisfy the
property (1.4). We have found that the Markov trace φ(-) associated with our
braid group representation is given in a form [30, 31]

φ(A) = Ύr(HA). (3.12)

Here Tr stands for the ordinary trace, that is, the sum of diagonal elements of the
matrix. And, the matrix H is given by a tensor product of a diagonal matrix h:

(3.13)

with

(3.14)

The denominator in (3.14) gives the proper normalization for the identity /„ in B'n:

φ(In)=l. (3.15)

The Markov trace defined by (3.12)-(3.15) is a generalization of the Powers state
[34, 35]. The parameters τ and τ in (1.5) are given by

τ(t) = l / ( l + t + t2 + ...+ίN-1), (3.16a)

τ(t) = tN-ί/(l + t + t2+... + tN-ί) = τ(\/t). (3.16b)

Thus, we arrive at a conclusion that the link polynomial a(A) for elements A in B'n is
given by

α(4) = [r(*-1)/2(f + ί + ί2 + ...+^ (3.17)

where e(A) is the exponent sum of g£'s appearing in the braid A.
From the reduction relation (3.10), the Alexander-Conway relation for the

Jones polynomial (the N = 2 case) [7, 12, 36] is derived:

α(L+)-(l-ί)ί1/2α(^o) + ί2^-) (3.18)

In the above, by L + , L0, and L_, we have denoted links which have the
configurations of gί5 g°, and gf~ *, respectively, at an intersection. Similarly, we can
show that

(3.19)

for the N — 3 case and

(3.20)
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for the N = 4 case. In the above expressions, the meanings of L2 + and L3 + should
be clear.

Since we have the explicit forms of the braid group representations and the
Markov traces, the evaluation of link polynomials, oc(A) defined by (3.17), is
automatic. In fact, we have given new link polynomials up to closed 3-braids by
applying the N = 3 theory [37].

There exists a link polynomial corresponding to the exactly solvable model
Our theory can be extended into any solvable vertex models and IRF models. The
braid group representation and the Markov trace are readily found for the IRF
models.

4. Composite String Representations

The N-state vertex model can be considered to describe the scattering for spin
(N — 1)/2 particles which has the factorization property. In particular, the 6-vertex
model (N = 2) corresponds to the spin 1/2 factorized S-matrix. We recall that a
multiplet of spin 1/2 particles contains higher spin particles. For example, from a
pair of spin 1/2 particles, we can make two "composite particles"; one with spin 1
and the other with spin 0. Kulish and Sklyanin [18] pointed out that the N = 3
vertex model can be interpreted as the factorized S-matrix for the composite spin 1
particles. The spin 1 factorized S-matrix can be constructed through the following
two steps:

Step 1 : prepare the four-body S-matrix expressing the collision of two pairs of
spin 1/2 particles.

Step 2: multiply projectors (symmetrizers) to extract the spin 1 component for
each pair.

This process of making higher spin S-matrices from lower spin S-matrices is
sometimes termed as the fusion procedure. By applying the formula (2.5) to the
resulting S-matrix, the fusion procedure is directly translated into the braid group
representations.

Let us denote the spin 5 representation of Bn by B[*]. For instance, B[

n

ll2] is
equivalent to H(t, ή) by an identification gj-» — gt . Note that we always regard the
B[*] as a group algebra. For definiteness, let us explain the N = 3 case. To have a
spin 1 representation of Bn, we prepare n pairs of strings (totally In strings). From
the generators (g7 ; 7 = !, 2, ...,2n — 1} of B[

n

lj2\ we define the following operator
0^=1,2,. ..,n-l):

where the symmetrizer Pj + )(DPf + )]2 = ̂ 1 + )) acting the zth pair is explicitly given by

Noting that the projector can be identified as a sum of elements in B2 (or jB[

2

1/2] as a
group algebra), we immediately see that the generators {Gt ; /= 1,2, ...,« — !}
satisfy the defining relations of Bn. We call this representation of Bn the composite
string representation.
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\

Fig. 4. Generator G{ defined in (4.4)

The above procedure is readily extended into higher spin representations. The
general prescription of the composite string representation of Bn for the N-state
case may be summarized as follows. For notational simplicity, we write k for N — 1.
Prepare n sets of k strings (totally kxn strings). Define an operator g(p} (p: positive
integer) by

Π gj-p~l+2n
m= 1

(4.3)

In the above, we are free from the operator ordering problem due to the property
(1.1). Then we have the expression of the generator G{ for the JV-state case (Fig. 4):

with

(7 _
^ —

_ σ U) σ (2)
— σ c - σ c σ c

•••gfci gkίgki rτ(2)«U)

(4.4a)

(4.4b)

where the symmetrizer P + ) acts on the zth set of k strings. We can verify that the
symmetrizer P( + ) is an element in B[1/2\ which guarantees {G f; i = l,2, ...,n} to
satisfy the defining relation of Bn. For example, P\+} for N = 4 case is given by

1 , „

2g 3 ί-ιg3 f-2]. (4-5)

The projector P\+} for general N can be constructed, for instance, recursively. Thus
we have constructed the representation of braid group generator b^ Further, we
have the following identifications of the remaining operators:

(4.6)

:\ . (4.7)

The appearance of P[ + )'s in (4.6) and (4.7) means that we are considering only the
highest spin space for each set of strings. We have confirmed that the expression
(4.4) indeed reproduces the results in previous sections for any N>2. The
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reduction relations can also be derived by using (4.4), (4.6), and (4.7). For instance,
we have a cubic relation for N = 3:

Gf = ( l-/ 2 + ί3)G? + (ί2-ί3 + ί5)G£-ί5Pl + )Plί)

1, (4.8)

which should be compared with (3.10).
Combination of our general formula (2.9) and the fusion procedure known in

the factorized S-matrix theory has naturally led us to the composite string
representation of the braid group. We remark here that the above construction
procedure does not utilize any specific representation of B [ ί / 2 ] we started from. The
only requirement is that the projector P( + ) should be an element (or a sum of
elements) of the starting representation. In this sense, the projector itself should not
necessarily be the symmetrizer. In fact, for the N = 3 case, we can construct a
different braid group representation from that in (4.2) by using the antisymmetrizer

P i " ) = ~ ( l - g 2 i - ι ) (4.9)

5. Two- Variable Extension

In a previous section we have introduced the composite string representation of
the braid group. We use the composite string representation to extend our new link
polynomials to those with two variables. In the case of the Jones polynomial, the
two-variable extension [13] has been made both in a combinatorial way and in a
C*-algebraic way. As the latter, Ocneanu introduced a trace functional ψ ( - )
defined on B[

n

}/2] which has the proper normalization

l > (5-1)

and has the Markov properties

ψ(AB) = ιp(BA) (A, B e B[l /2]) , (5.2)

ψ(Agn) = z . ψ(A) (A e 41/2], gn e 4Ή) , (5.3a)

ψ(Ag~ l ) = ϊ ψ(A) (A 6 W2\ gn E l£/2i]) , (5.3b)

with

z = φ(gπ), (5.4a)

z = ψ(g^). (5.4b)

An important point is that the quantity

z = ιp(gi) for a l i i (5.5)

is independent of the parameter ί and is a free parameter. This contrasts to the
Jones's trace φ(-) [see (3.17), (3.18), and (3.19) with JV = 2s + l =2]. The pair of
variables (t, z) enters into the two-variable Jones polynomial. Hence, we may attain
the two-variable extension of the link polynomials N ̂  3 by generalizing the
Ocneanu's trace. Interpretation of our higher spin representation of Bn in terms of
composite strings presented in the previous section is helpful for this purpose.
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Let us explain the simplest case N = 3. Since the spin 1 representation B[1] can
be interpreted as a sub group-algebra in B[^2\ the Ocneanu's trace ψ( ) naturally
acts on Bl

n

ί]. Then the induced functional ψll\ ) defined by

ψ [ ί ] ( A ) = ιp(A)/tψ(P\ + ϊ)γ (AeBM) (5.6)

is a natural candidate of the generalized Ocneanu's trace. The quantity appearing
in the denominator is given by

} ) = ( t + z), (5.7)

where we have combined (4.2) and (5.3). The denominator in (5.6) is important to
guarantee the proper normalization. A task left for us is to check the Markov
properties

ψ[l\AB) = ψ[l\BA) μ, B e 41]) , (5.8)

^l\AGn}^Z^^\A}(AeB[l\GneB^+l}, (5.9a)

φI1]μGB-1) = Z.φI1]μ)μ6J8^,GIIe41ίι)5 (5.9b)

with

, (5.10a)

Z = ψ ^ ( G Γ 1 ) = Γ . (5.1Gb)

Using (5.2)-(5.4) in the definition (5.6), we can confirm that (5.8) and (5.9) hold.
Hence the functional φ[13( ) is indeed the generalized Ocneanu's trace.

We apply the formula (5.6) to obtain the two-variable link polynomial. Before
doing this, we introduce a variable ω by

- (5.11)

and change variables from (ί, z) to (ί, ω). We then have

7 — /
^ 1 " ' ~Λ 12" 5 I

Z = ω2Z. (5.12b)

Therefore we obtain the two-variable extension α^1]( ) of the JV = 3 polynomial as

(5.13)

It is interesting to compare this expression with that of the N = 2 case,

(5.14)
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The one variable polynomials are reproduced by setting

ω = ί. (5.15)

We know that for general N the projector P\ + } is expressed as sum of elements in
#Jj1/2]. Then the construction of two-variable link polynomials for general N can be
done in a similar fashion [38].

To close this section, we want to mention the relationship between our N — 3
polynomial and the Kauffman polynomial [39]. Kauffman constructed a two-
variable link polynomial which has a combinatorial definition and is different from
the two-variable Jones polynomial. Very recently, Birman and Wenzl [40], and
independently Murakami [41] devised an algebra corresponding to the Kauffman
polynomial, which we call Birman-Wenzl-Murakami (BWM) algebra. The BWM
algebra denoted by Cn(l, m) is generated by two kinds of operators: one is {Gj^Γj1

satisfying the defining relation of the braid group and the other is (EJ^Γ/. They
satisfy the following relations

G i -hGΓ 1 -m(l+E ί ) , (5.16a)

Ef^.E^E^ (5.16b)

Gi±lGiEi±l = £&*& = £&*!, (5.16c)

G^M^Gr^t^Gr1, (5.i6d)

G^E^i^GΓ1^, (5.16e)

^E G^i^iGΓ1, (5.16f)

GiEi = E i G i = Γ i E i 9 (5.log)

EiGi^E—lEi, (5.16h)

if ϊ-;Ί^2, (5.16i)

5 (5.16J)

Gf = m(Gi + ΓίEi)-ί. (5.16k)

Combining (5.16a) and (5.16k) we see that the generator Gt satisfies a cubic relation

ί+]. (5.17)

Associated with the algebra Cn(l, m), Birman and Wenzl defined a Markov trace by
using the Kauffman polynomial. Hence the Kauffman polynomial is a trace type
invariant. Since ours is also a trace type invariant with a braid group generator
having a cubic relation, the Kauffman polynomial should be related to our N = 3
polynomial. In fact, by renormalizing our braid group generator Gj as

S~ι

G,= --~ (5.18)
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and defining the operator Et through the relation

Gf + GΓ 1 = -̂ L (1 + Ed, (5.19)

we can directly verify that the operators {Gj and {Et} indeed satisfy the relation
(5.16) with

m=^J=, (5.20)

Hence we see that our N = 3 braid group representation B[

n

ί] corresponds to a
special case of Cπ(ί, m). But this does not mean that our TV = 3 polynomial is a
special case of the Kauffman polynomial. The reason is the following. Both of the
two variables in the Kauffman polynomial enter into the algebra. In our N — 3 two-
variable polynomial, roles of two variables are different; one for the algebra and
the other for the trace functional. Then our two-variable polynomial is different
from the Kauffman polynomial. It is quite interesting to observe that our two-
variable polynomial at the point ω = ί coincides with the Kauffman polynomial
with (5.20) and (5.21).

We expect that the analog of BWM algebra structure should also exist for
jV^4 polynomials [38]. This will give us combinatorial or "graphical" interpre-
tation of our hierarchy of link polynomials.

6. Summary

In this paper, we have discussed a close relation between the knot theory and the
exactly solvable models in statistical mechanics. We have presented a general
prescription to construct a braid group representation from the Boltzmann
weights of a solvable model satisfying the Yang-Baxter relation (factorization
equation, star-triangle relation). Through the discussion, we have shown that the
starting solvable model must be critical. This gives a natural explanation for the
appearance of the Temperley-Lieb algebra in the Jones polynomial. We have
applied the formula to a sequence of solvable vertex models to have a sequence of
new braid group representations. With the Markov traces associated with these
new representations, we have successfully constructed new link polynomials.
Further, by utilizing the "fusion" method which is known to give higher spin
factorized S-matrices, we have been led to the composite string representation of
our hierarchy of braid group representations. This representation enables us to
construct the two-variable extensions of our new polynomials.

Recently Murakami [42] presented braid group representations also by using
multiple strings. His representation is seemingly similar, but it is different from
ours in that the symmetrizer is not used. At present, we have not found an
interpretation of his result from a viewpoint of the factorized S-matrix theory.
Detailed account on this subject will be given in a separate paper [38].
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In conclusion, we like to emphasize that the sequence of new link polynomials
in this paper is a specialization of our theory. The method of constructing the braid
group representation is quite general and can be used for any vertex model and
IRF model. For example, we can apply our method to an IRF model called the
eight-vertex SOS model [25]. Then, an important question is how many
independent link polynomials can be made from solvable models, This problem
will be the subject of our future study.
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