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J. Stark*

Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom

Abstract. We present a necessary and sufficient condition for the non-existence
of rotational invariant circles for area-preserving twist maps of the cyclinder or
annulus based on the "cone-crossing" and "killends" criteria of MacKay and
Percival (1985). Given a number of technical restrictions on the implement-
ation of these criteria, this condition leads to a proof of MacKay and PercivaΓs
Finite Computation Conjecture.

1. Introduction

Much interest has recently been focused on criteria for the non-existence of
rotational invariant circles for area-preserving twist maps of the cylinder or
annulus [(Chirikov, 1979; Greene, 1979; Mather, 1982, 1984; Newman and
Percival, 1983; Aubry, 1983;Katok, 1 983 Boyland and Hall, 1985), etc.]. MacKay
and Percival (1985) unify a number of related criteria and present a practical
algorithm which can be rigorously implemented on a digital computer. Herman
(1983) uses essentially the same criterion in his construction of C2~ε counter-
examples to the Moser Twist Theorem whilst Mather (1984) and Aubry (1983)
apply this criterion to the standard map:

r' = r-(fc/2π)sin2πθ,

to show that there are no rotational invariant circles for respectively |fc| >4/3 and
\k\>β, where /?~1.23... is the root of some transcendental equation. Aubry and
Mather's work was done analytically, but by implementing the criterion on a
computer MacKay and Percival are able to obtain a considerably better rigorous
bound: there are no rotational invariant circles for \k\^ 63/64 = 0.984375. This is
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probably close to optimal since the numerical work of Greene (1979) (and
MacKay, 1982, 1983) strongly suggests that there exists a fcc~0.971635... such
that there are no rotational invariant circles for |k|>fe c, but there is at least one
such circle for |k|^kc.

This result of MacKay and Percival is considerably better than that obtainable
by any other known non-existence criterion. Thus for instance consider the
simplest such possible criterion: if there is an orbit which "crosses" the annulus
T1 x [α, ft] C T1 x R [i.e. there exists x e TΓ1 x (- oo, a) such that
/''(xJeT1 x ( — oo, b) for some fce2ζ] then there can be no rotational invariant
circle contained in the annulus T1 x [0, b~\. According to MacKay et al. (1985) and
Chirikov (1979) the mean time to cross the "golden cantorus" for the standard map
at k = 1.0 is of the order of 106. To prove non-existence of rotational invariant
circles at this value of k we would have to rigorously find such an orbit which is
hardly feasible. It thus seems that this simple criterion is unlikely to succeed for
even k = 1.0. By comparison, the longest orbit segment considered by MacKay and
Percival had length 96. Their program took less than 90 min of CPU time on a
NAS 9080 computer, which is not a particularly fast machine by today's standards.
If more computer time was available their criterion would undoubtedly give even
sharper results. Similarly Leage and MacKay (1986) conclude that in practice
Boyland and Hall's "badly ordered periodic orbits" criterion (Boyland and Hall,
1985) is not very efficient.

It is then natural to ask whether this criterion is exhaustive, that is, given a
point through which no rotational invariant circles pass, will the criterion succeed
in proving so. This is essentially the same question as the following conjecture
made by MacKay and Percival (1985).

Finite Computation Conjecture given a compact region through which no
rotational invariant circles pass, then the algorithm will prove so using a finite
amount of computation.

The purpose of this paper is to prove a theorem which implies this conjecture as
long as one places a number of natural restrictions on the way in which the
criterion is implemented (e.g. on the accuracy and order of computation etc.).
These restrictions and the detailed proof of MacKay and PercivaΓs conjecture can
be found in Stark (1986). Briefly this theorem can be described as follows: the
MacKay and Percival non-existence criterion is based on Birkhoff s theorem,
which states that every rotational invariant circle of an area-preserving twist map
is the graph of a Lipschitz function. Their algorithm proceeds by obtaining a
sequence Kn of increasingly sharp local Lipschitz constants which any rotational
invariant circle would have to satisfy and then testing whether or not there are any
curves at all (not necessarily invariant) which satisfy these Lipschitz constants. If
not, then clearly there are no rotational invariant circles either. The theorem we
prove (4.4) is the converse of this:

Theorem. Given an area-preserving twist map with zero net flux, then if x is a point
such that for all neN there is a curve through x satisfying Kn, then there is an
invariant circle through x.
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2. The Cone-Crossing Criterion

2.1. Definition. An area-preserving twist map of the cylinder M^T1 xR is an
area, orientation and end preserving C1 diffeomorphism /: M->M which satisfies
dθ'/dy ^ K > 0, where /(θ, y) = ($', /). One often also considers twist maps of the
annulus TΓ1 x [0, 1]. Everything below remains valid in this case as long as
appropriate care is taken at the boundaries of the annulus.

We often prefer to work in the universal cover R2 of T1 x R, and so define a lift
to R2 of/ to be a diffeomorphism F : R2 ->R2 such that π°F = f°π, where π is the
covering map π(ί, y) = ((t mod 1), y). Note that if R : R2 ->R2 is the translation jR(ί, y)
= (ί — 1 , y) then F commutes with R, and if F' is another lift of F, then F' = F o Rk for
some k e TL.

2.2. Definition. An invariant circle for an area-preserving twist map / is a
homeomorphic image of T1 which is invariant under /. A rotational invariant circle
is one which is homotopically non-trivial, i.e. which is homotopic to the generator
of the fundamental group of T1 x R. Intuitively such a circle winds once around
the cylinder.

MacKay and PercivaPs cone crossing criterion is based on the following
theorem which was proved by Birkhoff in the 1920's. See Herman (1983) for a
modern proof.

2.3. Theorem (Birkhoff). Every rotational invariant circle Γ is the graph
of a Lipschitz function y TΓ^R.

Recall that y is Lipschitz if there exist constants C + ,C~eR such that
VΘ0 / 6T 1 , (Fig . 1):

We shall want to generalise this definition to allow C± to vary with position, and
hence define:

2.4. Definition. A cornfield K consists of two functions K~,K+:M-»R (not
necessarily continuous). A function y T1-^ is said to satisfy a conefield K if

Fig.l
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and tan(2πK~) and tan(2πK" f) give local Lipschitz constants for y:

Thus for instance if the graph of y is a C1 curve, then the slope of the tangent vector
to the curve at x has to lie between tan(2πK + (x)) and tan(2πK~(x)). We shall say
that a rotational invariant circle Γ satisfies a conefίeld K if the function whose
graph Γ is satisfies K.

The idea behind the cone-crossing criterion is to obtain a sequence Km of
increasingly sharp conefields which any invariant circle has to satisfy. Then if for
some m ̂  0 and x e M we have K^ (x) < Km (x), there can be no rotational invariant
circle through the point x.

By Birkhoff s theorem the constant conefield K+ = + 1/4, K~ = - 1/4 given by
the upward and downward verticals is satisfied by all rotational invariant circles.
We can then obtain further conefields from this one by using the action of the
derivative Df. To define this action observe that we can think of a K+ and K~ as
two sections of the line bundle M x IR considered as a cover of the unit tangent
bundle MxT 1 [with covering map p MxIR-^MxT 1 given by p(x,t)
= (x, (ίmodl))]. We take coordinates on MxT 1 so that (x, ξ)eMxΎl corre-
sponds to the unit tangent vector (cos2πξ, sin2πξ) at x e M. We then lift these to
M x IR, thus (x, + 1/4) is the upward vertical at x and (x, — 1/4) is the downward
vertical at x. Then define:

2.5. Definition. The action of Df on the tangent bundle of M restricts to an action
on the unit tangent bundle MxT 1 . We can then lift this to an action on M x IR,
and since Df is continuous and / satisfies the twist property, there exists a unique
continuous lift (which we continue to denote Df) such that — 1/4 < Dfx(ί/4) < 1/4,
Vx e M. This action on M x IR then induces an operator on conefields (which we
still denote by Df, Fig. 2) by

Similarly we get an action of Df ~ l by

2.6. Definition. Define the conefields Km, m = 0, 1,2, ... by

K o (x) = + 1 /4 (upward vertical) V x 6 M ,

^ o M = ~" V4 (downward vertical) V x e M ,

and

ι) vm>o,
V m > 0 .

2.7. Lemma. Any rotational invariant circle satisfies Km for all m^O.
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Df

Fig. 2

K"(f(x))

Proof. By induction. By Birkhoffs theorem all rotational invariant circles satisfy
K0. Now suppose that Γ satisfies Km _ ί for some m > 0. If for some xeΓ.K^ (x) is
not a Lipschitz constant for Γ, then by definition K^- ι(f ~1(x)) is not a Lipschitz
constant for f~~lΓ at f~\x). But Γ is /-invariant and hence f~lΓ = Γ. Thus
K m-ι(f~\x)) is not a Lipschitz constant for Γ at f~l(x) which contradicts the
hypothesis that Γ satisfies Km_lt Similarly if K~(x) is not a Lipschitz constant for
Γ at x then Km_ ̂ /(x)) is not a Lipschitz constant for Γ at f(x). Hence Γ satisfies

κm.
2.8. Cone-Crossing Criterion. If for some point xeM and some meN we have
Km(χ)<Km(x\ then there is no rotational invariant circle through x. We shall say
that the "cones have crossed at x" when this occurs.

2.9. Remark. By the twist condition we have K1

+(x)<l/4 and X1~(x)>-l/4,
VxeM. Since the actions of Df and Df~l on slopes are order preserving we get
K+(x) < K+_ i(x) and Km (x) > K~_ ^x), V m e N, V x e M (Fig. 3). Thus the action of
Df and D/"1 gives us a sequence of increasingly sharp conefields.

2.10. Remark. All of the above concepts lift in a straightforward manner to the
universal cover R2. Thus rotational invariant circles lift to graphs of periodic
Lipschitz functions y:!R-»IR, y(t + \) = y(t\ VίeR. Conefields lift to functions
K~,K+ :R2-»IR and we get an action of DF and DF'1 on conefields. Abusing
notation, we shall continue to refer to the lift of the conefields Km as Km.

2.11. Remark. In practice it is not feasible to perform the iteration (2.7) exactly,
especially if one is using a digital computer. However one can obviously replace
(2.7) by

J V m > 0 ,

m^) V m > 0 ,
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Fig. 3

where u.b. is any upper bound and l.b. is any lower bound. If we restrict the Km to
some class of functions which are representable in a finite manner (e.g. piece-wise
constant functions) then we can easily perform (2.12) rigorously on a digital
computer.

3. Supplementary Criteria

3.1. Remark. As MacKay and Percival (1985) show, the cones K* will never cross
on an orbit of minimal action. On the other hand the work of Mather (1982) and
Aubry and LeDaeron (1983) [see also MacKay and Stark (1985) for a survey]
shows that typically there exist many orbits with minimal action which do not lie
on rotational invariant circles. Thus just because the cones do not cross at a point
does not imply that there is a rotational invariant circle through that point. In
other words cone-crossing on its own is not an exhaustive criterion for the non-
existence of invariant circles. MacKay and Percival thus introduce a supplemen-
tary criterion which they call "killends." This is based on the observation that if for
a given x e M all the curves through x that satisfy some Km are forced to pass
through a region where K* <K~, then there can be no rotational invariant circle
through x. The "end" of the curve is "killed" even though at the starting point x of
the curve one might still have K^(x)^K~(x). More precisely define:

3.2. Definition. Given xeM, choose zeR 2 such that π(z) = x, where π is the
covering map π(t}y) = ((tmod\),y). For w>0 define:

L*(KJ = {y:R->R such that z 6 graph 7,7 satisfies Km],

Lz(KJ = {yeL* such that γ ( t + ί ) = γ(t), VίeR}.

Note that y is not required to be /-invariant. The set Lz(Km) thus consists of those
closed curves γ through z that satisfy the conefϊeld Km. Observe that if y e Lz(Km)
then f~\y) and f\y) will satisfy K0 for all l ^ j z ^ m . We can thus characterise
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Lz(Km) as the set of all closed curves γ through z such that for all l^i^m, f ~ l ( y )
and /%) are the graphs of a Lipschitz function. Also note that the definition of
Lz(Km) is independent of the choice of z such that π(z) = x, and the definition of
L*(KJ is independent of z up to translation by R(t9 y) = (t-l, y). Note that Lz(Km)

CLz(Km_t).

3.3. "Killends" If for some m > 0, either L*(£ J - 0 or L2(XJ - 0, then there can
be no rotational invariant circles through x. The MacKay and Percival
implementation of "killends" tests for L*(Km) = 0, however it takes very little extra
work to test for L2(KJ = 0, and one might as well do this instead. In fact by
considering images of the vertical under F", one can show that Lz(Km) — 0, V m > 0,
if and only if L*(XJ = 0, V m > 0 (Stark, 1986), and hence the two versions are
equivalent. In this paper we shall only consider the condition Lz(Km) = 0, since this
makes the mathematical treatment considerably simpler.

3.4. Lemma. Lz(Km) is bounded V m > 0, that is if z = (ί0, yQ) there exists a constant B
such that \γ(t)-y0\£B9 VίeR, VyeLz(XJ.

Proof. Since Lz(Km) C Lz(Km _ J it is enough to show that LZ(K^ is bounded. Let V
be the vertical through F~1(z) = (ί-ι,3>-ι), i.e. F={(ί,y)eIR2 such that ί-ί-J.
Then since F is a twist map, F(V) is the graph of a continuous function Ψ : R-+IR.
By the definition of K ί , if y 6 L2(KJ then, y(ί) ̂  <P(f ), Vί ̂  ί 0

 and 7(0 ̂  ̂ (0, V ί £ ί 0.
So let

β = sup |<nθ-y0|.
fe[ f 0 - l,ίo+ 1]

3.5. Remark. As a consequence of this lemma we only need to evaluate Km on a
bounded region in order to prove the non-existence of a rotational invariant circle
through a given point.

Another test for non-existence is also required:

3.6. Definition. Let ί/cT1 xRbeanopensethomeomorphictoT 1 xIRsuchthat
^xί-oo^jCt/C^xί-oo,^] for some α,fceR. Then the net flux or Cα/αfoi
Invariant of a twist map / is [area(/l/\C7) — area(C/\/ί/)]. Since / is area-
preserving this is independent of the choice of U. It can be thought of as the flux of
area across a circle {y = const}. Clearly i f / has a rotational invariant circle then
this net flux must be zero, and hence we get:

3.7. Net Flux Test. If the net flux of/ is non-zero then / can have no rotational
invariant circles.

3.8. Remark. On the other hand there are twist maps with non-zero flux for which
K+(x)>Km(x\ VxeM, Vw>0, e.g. y' = y + l, θ' = θ + y (example due to R. de la
Llave, private communication). For such a map cone crossing and "killends" will
never prove that there are no rotational invariant circles. We thus need to test for
non-zero flux, this can be done by sufficiently precise rigorous numerical
integration. Note that in pactice it will usually be obvious whether or not a given
twist map has zero net flux (e.g. if / has at least one rotational invariant circle
somewhere then it has zero net flux, thus maps of an annulus T1 x [0, 1] always
have zero net flux). Furthermore in practical examples (e.g. the standard map) the
net flux is usually zero.



184 J. Stark

4. The Finite Computation Conjecture

Note that all of the criteria described in the previous two sections can be applied to
a whole C1 ball of twist maps at a time. Indeed this happens naturally in a
computer implementation since in that case the map is only determined up to a
finite accuracy. MacKay and Percival (1985) then make the following conjecture:

4.1. Finite Computation Conjecture. Let X be a compact subset of MxA(M\
where A(M) is the space of all C1 area-preserving twist maps of M, such that for all
(x, /) e X, the map / has no rotational invariant circle through x e M. Then with a
finite amount of computation the combination of the net flux test, cone-crossing
and killends will prove that for all (x, /) e X, the map / has no rotational invariant
circle through x.

4.2. Remark. If any of the net flux test, cone-crossing or killends succeed for some
x e M, /e A(M\ then they also succeed for some open C1 ball in M x A(M) around
(x, /). Hence the above conjecture is equivalent to the algorithm based on these
criteria being exhaustive.

4.3. Remark. As stated above the conjecture is too vague to admit a mathematical
proof. To have some hope of proving it we have to place some reasonable
restrictions on the way in which the criteria are implemented: there clearly exist
algorithms based on the above criteria which are not exhaustive. A proof of the
conjecture will then have two parts:

1) A proof that if/ has zero net flux and Lz(Km) + 0, V w > 0, i.e. for any m there
is a closed curve through z that satisfies the conefield Km, then there exists a
rotational invariant circle through z. Thus if z has no rotational invariant circles
through it, either / has non-zero net flux or Lz(Km) = 0 for some m > 0. Hence an
idealised criterion which calculates the conefields Km and the net flux exactly will
indeed show that there are no invariant circles through z.

2) A proof that the restrictions imposed on a practical implementation [using
(2.11) rather than (2.7) to calculate the conefields] ensure that it is a sufficiently
good approximation of the idealised criterion to also be exhaustive. This
essentially amounts to showing that we can calculate the conefields and the net flux
to an arbitrarily high precision using rigorous interval arithmetic on a digital
computer.

We shall give a proof of 1) below, 2) is rather technical and the details can be
found in Stark (1986). Note that the proof gives no upper bound on the amount of
computation required, and hence we cannot use this method to prove the existence
of invariant circles (which in general is much harder to do than to prove non-
existence). It seems highly unlikely that an upper bound could be given except in
special cases, since given a point at which the cones will eventually cross, there is no
a priori way of estimating how many iterations of the conefield are required for this
to happen.

4.4. Theorem. /// has zero net flux and Lz(Km)φ0, Vra>0, then there exists a
rotational invariant circle through z.

Observe that the converse is trivially true and hence this theorem gives
necessary and sufficient conditions for the existence of rotational invariant circles.
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4.5. Definition. Let R be the translation R(u,υ) = (u — l,υ). If z = (ί0, y0), then for
ieN define zt = (ίf, yf) = #p(0P(z) with p(i) chosen such that ί0^ίi<ί0 + l

4.6. Definition. Let

m > 0

Ztn = {yεLz such that F7(z)e graph 7, Ogjrg

Clearly if a rotational /-invariant circle through z exists it will belong to Lz 00. Our
proof of (4.4) will proceed in three stages:

ii) V π > 0 , L Z f n _ 1 Φ 0 = > L Z ι n Φ 0 .
iii) If L 2 > ΠΦ0, V f i e N , then there exists a rotational /-invariant circle in Lz > 0 0.
Let Cper(R) be the Banach space of continuous functions φ :R-»R, such that

= φ(ί), VίeR, with the sup norm.

4.7. Lemma. L2(KJ is c/osed in Cper(R), Vm>0.

Proof. If LZ(KJ = 0, then it is closed. So suppose not and take a sequence
7 feLz(Km), with 7^7, uniformly. Note that X^ and Km are continuous as
functions R2^R, so let J+ =sup{K+(t,y(t))9 fe[0,l]} and J~ =in{{K~(t9y(t))9

ίe[0,l]}. Recall from (2.8) that 1/4>J+ and J~>-l/4. Let w0-(ί0,7(ί0))
egraph7. Since the y f satisfy Xm, we have K^(x)^Km(x\ VxEgraph7 ί 5 V i e N .
Since w0 is in the closure of such points and K£ and K~ are continuous, we have
K:(WO)^KW(WO) and hence !/4>J+^X;(w0)^Km(w0)^J-> -1/4. Now given
an ε > 0 sufficiently small (such that ε < 1 /4 — J + and ε < J +1 /4), 3 (5 > 0 such that
VweOo-^, ί0 + ί]x[y(ί0)-^7(ίo) + ̂  we have I^(w)-X±(w0)|<ε. Then on
[ί0 — <5, ί0 + ̂ l tne 7i f°r J'^Nj some Λ^eN, have uniform Lipschitz constants C +

wo) + ε)] and C" -[tan2π(χ-(w0)-ε)]? i.e. C" ^[y^ί)
ί-ί')^C +

 ? Vί, ίr6[ί0-(5, ί0 + ̂ ] Hence so has 7. But this holds for all
sufficiently small ε>0 and hence 7 satisfies Km at w0.

4.8. Lemma. Lz(Km) is uniformly Lipschitz, i.e. there is a constant J = J(z,m),
0 ̂  J < oo such that \γ(t) - y(t'}\ ^ J\t - 1'\9 Vy ε Lz(Km\ M t 9 t ' ε R. In fact since Lz(Km)
CL2(Km_1), we can take J(z,m) independent of m.

Proof. If Lz(Km) = 0, then the lemma is trivially true. Suppose not. By (3.4), let
A=rW1xl-B9B] be such that graph7CΛ VyeL^KJ. Note that K± are
continuous as functions R2 ->R, so let J + = sup [K* (u\ ueA} and J ~ = inf {K ~ (u\
uεA}. By (2.8), J + <l/4 and J">-l/4. If yeL^J, then 1C + (x) ̂  Km (x),
Vxegraph7. Hence J+^ J~. Let J-max{|tan2πJ + |, |tan2πJ~|}. Then O^J< oo
and |y(ί)_?(ί')|<j|ί-ί'|, VyeL2(KJ9 Vί,ί'eR.

4.9. Corollary. LZ(KJΦ0, V m > 0 => LZΦ0.



186 J. Stark

Proof. Let γi7 z>0, be a sequence with y^L^K^. Since Lz(XJcLz(Xm_1),
y^L^Kj), V l^/^i . In particular {yi9 i>Q}cLz(Kl). By (3.4) and (4.8) LZ(KJ is
pointwise bounded and equicontinuous. Thus by Ascoli's Theorem (Rudin, 1973),
ji has a uniformly convergent subsequence. Let y be the limit of this subsequence.
By (4.7), yεLz(Km), Vm>0, as required.

4.10. Definition. Since the action of DF, DF~l on angles is order preserving, if
yeL, then F(graphy) must also satisfy Km, Vra>0, and hence be in L. Thus
F(graphy) is the graph of a Lipschitz function which we denote Fy. In other words
Fy is defined by the graph transform:

graph (Fy) = F(graphy) .

4.11. Remark. If / has zero net flux then y and Fy must intersect. More
specifically, either y = Fy (and so y represents a rotational invariant circle) or
3 ί, ί' e [0, 1 ] such that γ(t) < (Fy) (ή and γ(t') > (Fy) (t'\ If Lz, „ φ 0, we shall use F to
construct a ye(L z > nnLF ( z ) f / I)cL z > / I + 1.

4.12. Definition. If L z > n Φ0, define

ίeR,C(ί)= sup
yeL z , n

Γn-(ί)= inf

4.13. Lemma, ///or some rceN, LZ > MΦ0, ί/zen Γn

+,Γn~εLzn.

Proof. By (4.8), let J be a Lipschitz constant for L^KJ. Since LZ > WCLZ(K1),
MO-'Kί/)l^ J | f - f Ί > VyeL z ? π , Vί,ί'6R. Hence the same holds for Γπ^. For any
i e N, choose AT,- such that Nt > 2iJ. For k = 0, . . . , Nt — 1, choose yi k e Lz „ such that
\Γn

±(k/Ni)-yi,k(k/Nί)\<l/2i, (Fig. 4). Define 7i by yi(ί) = max or min{];ίfk(ί),
fc = 0,...,JV ί-l} respectively. Note that yieLz > π. Then 1/^(0 -y^l^A, VίeR,
VieN, i.e. y/^/^1 uniformly and thus by (4.7), T^1 eLz. But by definition
Fj(z)ε graph J^1, O^/^n, and thus /^± eLz „ as required.

4.14. Lemma. Suppose L z ? n Φ0 /or some neN αnJ z = (tQ,y0). Then:

l/i

Fig. 4 0
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(to+1'V

Fig. 5

Proof. We shall prove y0^(F/^+)(ί0); the other half of the inequality is proved
similarly. So suppose Γn

+(t0} = y0>(FΓn

+)(t0\ (Fig. 5). By zero net flux
3ίΈ[ί0,ί0 + l] such that (FΓn

+)(t')>Γn

+(f). Define ψ by:

ιp(t} = m^{Γn

+(t\(FΓn

+)(t)} V ί e R .

Then ψeL. Since Γn

+(t0)>(FΓn

+)(t0\ ψ(to) = yθ9 so zegraphφ. Also
F'(z)e graph ΓΛ

+, VO^i/^n, and hence Fj(z)egraph(FΓn

+), V l ^ / g w + l. Thus
C (tj) = yj = (FΓn

+) (tj), V 1 rg j ̂  n, and so v(ί; ) - ̂ , V1 ̂  j ̂  n. Hence F^(z) 6 graph φ,
V l ^ ^n. So tpeLz ? / ί. But (FF/)(f')>C(0> and thus φ(ί')>C(0? which
contradicts the definition of Γn

+.

4.15. Lemma. Suppose that Lz n φ 0 /or some n 6 N and z = (ί0, yQ). Then (see Fig. 6,
drawn for the case n = 0):

t) VίeIR,

t) V ί e R .

Proof. We only prove the first inequality the proof of the other is similar. Define φ
by

) = min{Γπ-(t),(FC)(t)} V ί e R .

Fig. 6 t t +1
0
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Then φeL. By Lemma 4. 14, Γn~(ί0) = );0<;(FΓn

+)(ί0), hence φ(tQ) = yQ. So
ze graph φ, i.e. φeLΣ. As in the proof of Lemma 4. 14 we have F7'(z)e graph φ,
V 1 ̂ j ̂  n. So φ e Lz „, which by the definition of Γn~ , gives φ(i) ̂  Γn~ (ί), V t e R. But
(FΓn

+)(ί)^φ(ί), VίeR, and hence (FΓπ

+)(ί)^Γn"(ί), VίeR, as required.

4.16. Lemma. // L Z Φ0 then L Z t Λ Φ0, V n e N .

Proof. By induction LZ j 0 = LzΦ0. So now suppose that for some rceN, Lz > n=|=0.
Define 77 by (see Fig. 6, drawn for the case n = 0)

Then ηeL. By Lemma 4.14, /^+(ί0)g(F/^+)(ί0), hence 77(io) = )V As in the proof of
Lemma 4.14 we have FJ'(z)e graph ̂ , V I ^j^n, and so ??eLz „. By Lemma 4.15,

(ίπ + 1)^Γπ

+(ίπ + 1). But (FΓn

+)(tn + ,) = yn + 1=(FΓ-)(tn + \)9 so (FΓa

+)(tn + 1)
tn + ι) Thus η(tn + ί) = yn+ί, and so F" + 1(z)egraph^. Hence ηeLZtn + ί as

required.

Proo/ of Theorem 4.4. By above Γn

+ exists V n e N . ΓΛ

+ eLz, V n e N , and by (3.4)
and (4.8), Lz is pointwise bounded and equicontinuous. Hence by Ascoli's theorem
(Rudin, 1974) Γn

+ has a uniformly convergent subsequence. Let Γ be the limit of
this subsequence. Then Γ e Lz by (4.7). Since Lz > n + x CLZ>II, we have F"(z) e graph Γ,
V π e N and hence ΓeL2 > 0 0. It remains to show that FΓ = Γ. Note that Γ(t)^γ(t),
VίeR, VyeL z > 0 0 . Now (F~1Γ)eL and F"(x) e graph (F'̂ ), VneN, hence
(F-^eL^^. So Γ(t)^(F'lΓ)(t)9 VίeR. But F"1 has zero net flux, hence if
3 1' eR such that Γ(ί') > (F~ *F) (t1) then 3 1" eR such that Γ(t") <(F~ίΓ) (t"\ Hence
F(ί) = (F~1F)(ί), VίeR, and so FΓ-Γ as required.
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