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Abstract. We establish a canonical isomorphism between the second coho-
mology of the Lie algebra of regular differential operators on (Cx of degree ^ 1,
and the second singular cohomology of the moduli space &g-γ of quintuples
(C, p, z, L, [_φ~\\ where C is a smooth genus g Riemann surface, p a point on C, z a
local parameter at /?, L a degree g— 1 line bundle on C, and [φ] a class of local
trivializations of L at p which differ by a non-zero factor. The construction uses
an interplay between various infinite-dimensional manifolds based on the
topological space H of germs of holomorphic functions in a neighborhood of 0
in (C x and related topological spaces. The basic tool is a canonical map from
# 0 _ ! to the infinite-dimensional Grassmannian of subspaces off/, which is the
orbit of the subspace H_ of holomorphic functions on (Cx vanishing at oo,
under the group AutH. As an application, we give a Lie-algebraic proof of the
Mumford formula: λn = (6n2 — 6n + ί)λu where λn is the determinant line
bundle of the vector bundle on the moduli space of curves of genus g, whose
fiber over C is the space of differentials of degree n on C.

Introduction

Consider the Lie algebra Q)¥ (F for finite) of regular differential operators of degree
less than or equal to 1 on (Cx and its subalgebra dF of vector fields, so that

z\ dj = zj+1 — \ is a basis of Q)¥ and {dj}neZ is a basis of dF. The Lie algebra S)F

dz)jeZ

acts in a natural way on the space Vn of regular differentials of degree n on (Cx with
basis vk = z~kdz", keZ. This gives an inclusion

where a^ is the Lie algebra of matrices ( α ^ j e z s u c n t n a t ^ = 0 for \i—j\^>0. We
also consider the restriction of φn tod F :
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One has the following 2-cocycle on a^ [KP, DJKM]:

{ψiE^Ej^-ψiEj.E^ί if ί^O, j > 0

\ψ(Eip Ers) = 0 otherwise,

whose cohomology class generates //;?ont(a^,(C) = C
Another way of expressing this cocycle is the following. Given (fl^eaζ, write

/(z, w) = Σ aifι ~X w ~j a n d l e t

/- + = Σ at/-1*,'*, /+_= Σ a./^w-K
i ̂  0 i > 0
J>0 j^O

Both /+ _ and /_ + are polynomials, and given

we have

Pulling back the cocycle ψ via φn we get a cocycle φ*(ψ) on ^ F which works out to
be

φ*(ψ)(zUk)=-δj,-k(n-$)j(j-l).

Restricting to dF we get cocycles ρ%(ψ) which satisfy the relation

ρ*(ψ). (0.1)

Recall that the cohomology class oϊρ$(ψ) generates H2(dF, (C) = (C; a less well-
known fact is that #2(^F,(C)^(C3.

On the other hand, let π:%?^>S be a family of genus g compact Riemann
surfaces and let ω^/s be the relative dualizing sheaf of π. Denote by λn the
determinant line bundle of ω^/s on S. Then, as observed by Mumford [Mu], the
Grothendieck-Riemann-Roch theorem for the family π gives the following relation
between Chern classes:

c l μ j = (6n 2 -6n+l)c i μ l ) . (0.2)

One of the main objectives of the present paper is to explain the coincidence of (0.1)
and (0.2). In order to achieve this it is therefore of central importance to us to find a
relationship between extensions of our Lie algebras and line bundles on moduli
spaces.

Let us briefly introduce the moduli spaces involved in our construction. First of
all the moduli space JίQ of smooth curves of genus g, then the moduli space Jί'^ of
triples (C, p, v) when C is a genus g Riemann surface, p a point on C, and v a non-
zero tangent vector to C at p. We also consider the moduli space 3Fζ of quadruples
(C,p,v,L), where L is a degree h line bundle on C and (C,p, v)e Jig.
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Furthermore, we construct an infinite dimensional complex manifold Jίg

which is a moduli space of triples (C, p, z), where z is a local parameter at p. Finally,
we construct another infinite dimensional complex manifold β"h parametrizing
quintuples (C, p, z, L, [_φ~]\ where C, p, z, L are as above, φisa local trivialization of
L at p and [φ] is the class of φ modulo non-zero multiplicative constants. Of
course, we have natural projections

The first projection induces an isomorphism in second cohomology [actually,
Harer, Ann. Math. 121, 215-249 (1985), has proven that Jί'g has the same
cohomology as Jig for g large], the remaining two are homotopy equivalences.

By using the Kodaira-Spencer deformation theory on the infinite dimensional
manifolds Jίg and &g-ι we get natural Lie algebra homomorphisms

d-Vect(^) ,

where d and 3) are suitable analytic analogues of dF and & in which dF and Q)? are
dense. The above homomorphisms have the property that for every xeJίg

(respectively ^ _ i ) the evaluation map

is surjective.
From this one gets that the tangent bundle T(Jkg) (respectively T(βFg-<$) is

canonically a quotient of the trivial bundle Jίg x d (respectively ^ _ ί x &). Similar
results have been obtained in [BMS].

This allows us to define a canonical homomorphism

(the case of Mq is analogous). The definition of μ is as follows. Given a central
extension

0—><£—>3)-^$—>0

we can lift canonically the inclusion

to an inclusion

9X^§.

For this we use the following two facts:

i) ^ = [ ^ , ^ 1 ,

ii) ρ\@χ is the trivial extension.

Using the inclusion Θx c> @) we can construct an extension of the tangent bundle
Ί(β:

g_λ) whose fiber at x is @/@x. Thus dualizing and passing to cohomology
classes we get μ.
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On the other hand, we have a natural homomorphism

associating to each line bundle L the class of the extension

where ΣL is the sheaf of differential operators of degree less than or equal to one on
L. One of our results is that c and μ have the same image.

Once this has been shown we get the following diagram:

H\(9%) - ^ Ext1 ( ^ , 0 * , ) ^ - # 2 ( d )

I I
where the first two vertical arrows are induced by the canonical section JίQ -+&g_γ,
associating to a triple (C,p,z) the quintuple (C,p,z, &((g — l)p), \_z~9+λ~\). Thus we
obtain an explicit connection between the cohomology of S (respectively d) and
line bundles on &Q -1 (respectively Jkg). To see that μ and c have the same image, we
first notice that &g-γ and 3) are acted on by automorphisms τ and t defined by

τ((C, p, z, L, [(/>])) = (C, p, z, L®ωc((2 - 2g)p), [φz2*~ Hz\),

which are related by the commutative diagram

•I., h
Using this diagram and the fact that H2(&)) is a cyclic module over the group
{tk}kez with cyclic element ψ0 = φo( — ψ), we are reduced to show that μ(ψ0) lies in
the image of c. Indeed, we consider the divisor θ on βg_ x consisting of quintuples
(C, p, z, L, [φ]) with L effective, and show that

μ(ψo) = c(θ). (0.4)

To prove this equality we use a global version of a construction due to Krichever
and analyzed in [SW], giving an analytic map

where Gr(H) is a suitably defined infinite dimensional Grassmannian. We then
have that G( — θ) is the pullback, via W, of the determinant line bundle if on Gτ(H).

On the other hand, we have the following commutative diagram

-> a r
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By an argument similar to the one above we associate to the extension of a^ given
by the cocycle ψ an extension of «^Gr(H) by ΘGτ{H) which turns out to be the sheaf Σ#
of differential operators of degree less than or equal to 1 on jSf. We can then pull
back this extension to an extension of ^ V 1? which by functoriality is the sheaf of
differential operators of degree less than or equal to one on Θ{ — θ). The above
diagram then gives (0.4).

Following diagram (0.3) and our analysis of the homomorphisms t and τ we
deduce that

In fact, by use of a result of Harer [H], and a generalization of it for J^"_ t which we
explain in Sect. 5, we can then conclude:

Theorem. There are canonical homomorphisms, which are isomorphisms for g ^ 5,

such that
(i)

(ii) The diagram

H2(d)—+ H2{Jίg,<£),

where the vertical arrows are induced by the obvious projections, commutes.
(iii) The diagram

2 2

i i
commutes.

The paper is organized as follows. In Sect. 11) we recall the basic facts about
moduli spaces of curves; in Sect. Ill) we introduce a locally convex topological
vector space H which we believe gives the right setting for the study of the
Krichever construction. We then introduce the infinite dimensional Grassman-
nian Gr(H) and its determinant line bundle by adapting to our situation the
constructions given in [KP, SW, SP].

In Sect. 2 we compute the second cohomology of 3) and study the action of the
automorphism t on it.

In Sect. 3 we construct the infinite dimensional moduli spaces JtQ and ^ _ l 5

define the global Krichever map and study its infinitesimal behaviour.
In Sect. 4 we give the above mentioned relation between line bundles on moduli

spaces and cohomology of Q>.
In Sect. 5 we compute H2(^L1) = H2{βg.1), using results of [H].
In the Appendix (Sect. 6) we classify the degenerate and the unitary highest

weight representations of the universal central extension of the Lie algebra Q)F.
Some of the results of this paper were quoted in [AGR].
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1. Notation and Preliminaries

I) Curves and Their Moduli

For any family of smooth curves

π:^->S, (1.1)

parametrized by an analytic space S, we shall denote by ω<#/s the relative dualizing
sheaf of π. We shall denote by Cs the fiber π~ 1(s) over a point s in S. Given a line
bundle S£ on #, we recall that one may define a determinant line bundle detπ(JSf)
over S as follows [MK]. One takes an auxiliary line bundle M on ^ of very high
relative degree. A global section σ of M, which does not vanish identically on any
fiber of π, gives an exact sequence

As E and F are locally free one sets

max \ /max

and then checks that this definition does not depend on the choice of M and σ. One
then defines line bundles λn on S by setting

Often, when no confusion will arise, we shall drop the S and the π in the notation
and simply write det, ω, and λn. The line bundle λx is known as the Hodge bundle.
For any integer h we shall also consider the relative Picard variety

?ich(π)->S

whose fiber over 5 6$ is PicΛ(Cs). Finally, associated to the relative Picard variety
Pic9~ι(π) is a relative theta-divisor θπ, or simply θ, which is a line bundle on
Pic^" 1 ^), whose restriction to Picflf~1(Cs) is the theta-divisor Θ(ΘS) (for each 5).

A family of pointed curves

σ

parametrized by S is a family of curves π equipped with a section σ of π. When
dealing with pointed curves we can define a canonical section of p:PicΛ(π)->S:

~ " sZdlcihσ)) (13)

canonical isomorphisms

ic π -> ic π ,

(s,L)^(s,L®ΘCs((k-h)σ(s))),

and, for h — g — 1, a translation isomorphism

τ2g-2. ic π ^ ic π ,

(s,L)ι-(s,L<8>ωc,((2-2g)σ(s))).
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Consider the diagram
Pic"- '(π

Consider the relative theta-divisor θ = θπ on Pic^~ ι(π) and set

θnτ = τ*nθ, neZ.

We have the following

(1.7) Lemma. ξ*θnx^λ~1®ω " ^ ' , where λn = λn(S) and ω = σ*c%/s. \ Note

that (2n — l)2 ί | degω is equal to the number of Weierstrass points for ωn.

To give the straightforward proof of this isomorphism we recall the basic
properties of Poincare bundles.

Given the family of pointed curves (1.6), construct first the fiber product

where nι,σί9pί9ξί are the obvious maps and τ1((q,L)) = (q,τ(L)). A Poincare line
bundle ifπ σ, or simply if is a line bundle on ^ x ^ P i c ^ " 1 ^ ) such that

(i) X\c.«{L) = L>

(ii) σf cSf = p*σ*(ωvίs) = σ*Pι(ω^,s).

It follows from the definition that

d e t π i ( ^ ) = ^ 1 (1.8)

and that

ξίτΓ(i?) = ω&/ s((2n-l)(l -&)*), (1-9)

where Δ is the image in <% of the section σ. To prove the lemma we then notice that

/ (1.10)

On the other hand, one has

λn®ωN" ® . (1.11)

[This formula is proved by induction from the exact sequence
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by noticing that the third term of this sequence is isomorphic to ωn + N~ι.~] The
lemma follows from (1.10) and (1.11). Q.E.D.

As a consequence we get the following relative version of the theorem of the
square.

8(1.-1) if
(1.12) Corollary. Θnt = θ{n-

Proof. By the theorem of the square we have

for some line bundle i f on S. To compute i f apply ξ* to both sides in the above
equality and use Lemma (1.7). Q.E.D.

We end this subsection by recalling some standard notation and introducing
some terminology.

We denote by Jtg the moduli space of curves of genus g. When g > 1 we let
Jί C Jίg be the open set corresponding to automorphism free curves. The open set
M is the parameter space for a family of smooth genus g curves

having the property that the fiber of π over a point x e Jί is a smooth genus g curve
representing x.

A family of pointed curves with (non-zero) cotangent vector is a family of
pointed curves

together with a nowhere vanishing section τ of σ*(<%/s), i.e. a trivialization of
σ*(ω<£/s). Consider the functor

[Analytic

(spaces

I Families of pointed curves

S —> < with a cotangent vector

[parametrized by S

Since there is no non-trivial automorphism of a Riemann surface of genus g > 0
fixing a point and a non-zero (co)-tangent vector, one can see that this functor is
represented by a smooth quasi-projective variety Jt'g' of dimension 3g —1 (here
g > l ) . This variety is equipped with a universal family of pointed curves with
cotangent vector

W ^-+. Jig , τ a nowhere vanishing section of σ * ( c % 7 ^ ) . (1.13)
a"

Clearly, the open set Jί" of Jt'g consisting of triples (C,p,v% where C is
automorphism free, can be identified with the C x -bundle
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II) A Locally Convex Topological Vector Space
and Its Associated Grassmann Manifold

In this subsection we shall introduce an infinite dimensional Grassmann manifold.
This Grassmannian, as well as the infinite dimensional manifolds that we shall
construct in the sequel, will be modelled on the topological vector spaces we
presently describe.

For ε>0 let Dε = {ze<C: \z\ <ε} and Dε = Dε- {0}. Let H be the complex vector
space of all germs at 0 of complex valued holomorphic functions possibly singular
at 0:

H=lϊmΘ(Dε).
ε->0

Let (C denote the Riemann sphere. Let H_ be the space of all holomorphic
functions on <C—{0} which vanish at oo, and let H+ be the space of germs of
holomorphic functions at 0:

H+= \im G{Dε) ( = <£{z}).
ε-*0

We then have a canonical decomposition

H = H+®H_. (1.14)

This follows from the elementary

(1.15) Lemma. There is a canonical decomposition

Proof. Computing the cohomology of Θ& by using the covering {Dε, (E — {0}} gives
the exact sequence

0^H°(fc, O) = <E^H°{fc - {0}, Θ)φH°(Dε, Θ)-+H°(Dε, Θ)-^Hι(fc, Θ) = 0.

We then get the exact sequence

0 —>(L-^H_ ®<ε®Θ(Dε) —• Θφε) —• 0,

where φ(a) = (0, a, a), proving the lemma. Q.E.D.

If a function / is defined and continuous on the circle \z\ = c, we may define

| |/ | | c=max|/(z) | .
\z\=c

This gives us a norm || ||c, for all c>0, on H_ giving H__ the usual Frechet
topology. Given an open subset Y c C", denote by H(Y) the space of all continuous
functions on Ϋ which are holomorphic on Y. With the norm || ||ε, H(Dε) is a Banach
space. We have H+ = lim H(Dε\ and we give H+ the direct limit topology. Thus H

ε-»0

becomes a locally convex topological space (with the product topology). Note also
that H+ and H_ are (topological) dual of each other and that polynomials are
dense in both spaces.

Given topological vector spaces U and V we denote by M(U, V) the space of all
continuous linear maps from U to V. We are now going to describe M(H + ,H_)
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and M(H_,//+). Given a function f(z,w) holomorphic in a neighbourhood of
(0,0), we associate to it the operator

Tf:H_->H+ ,

Similarly, given a function g(z~ι,w~γ) holomorphic on (<C — {0}) x((C—{0}) and
vanishing on ({oo} x (C)u((C x {oo}), we associate to it the operator

It is easy to verify that these operators are continuous and that the space
M(H_,H+) (respectively M(H+,H_)) consist of operators of the form 7}
(respectively Tg) [R]. Setting then

H+_=\ϊmH(DεJ (=:C{z,w})9

H_+={g(z-1,w-1)

we get identifications

We think of H+ _ as equipped with the direct limit topology and H_ + with the
usual Frechet topology. We then observe that, in these topologies, the maps of
finite rank are dense since polynomials in two variables are dense in both spaces.
Finally, we notice that also the spaces M(H^,H_) and M(H+,H + ) may be
explicitly described, namely

H_)^//__ = {/(z~1

J w): / holomorphic in an open set

of ( C - {0}) x (C containing ( C - {0}) x {0}

and vanishing on {oo} x C},

M(H+,H+)^H+ + = {/(z,w"1): / holomorphic in an open set

of C x (<C- {0}) containing {0} x ( C - {0})

and vanishing on (C x {oo}}.

Of course, H+ + is isomorphic to H_ _ by exchanging z and w.
We shall denote by a^ the Lie algebra of all continuous endomorphisms of

H = H_ ®H+. Every element a of a^ can be written in the form

α_

where a + + e M(H + ,H+) and so on. By our previous descriptions every element of
aoo can be interpreted as an operator Tf:H^H, where
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where f++eH++ and so on. Explicitly

(Notice that all terms make perfect sense.)
We now want to make a few remarks about composition and traces. First of

all, given two operators 7} and Tg in a^, we have

where /*g is the convolution

(/*g)

Secondly, notice that given operators

,w)= Res/(z,
ί = 0

7} + _:Jί_-iί + , Tf_+:H+->H_

the compositions 7}+ _ o 7} _ + and 7} _ + o Tf are both of trace class and their
trace is given by the formula

Res /_+(z-1,w-1)/+_(w,z)= Res / ^ ( w ^ ) / ! ^ - 1 , * - 1 ) . (1.16)
z = w = O z=w=O

Using this we immediately get that a^ carries a cocycle

ψ(a, fe) =

Finally, we let ^ be the set of all continuous invertible operators aonH such
that α_ _ and α+ + are Fredholm of index zero. One checks that this is a group
under multiplication which is the identity component of the group M(H, H)x.

We now define the Grassmannian Gr{H) as the set of closed subspaces W
of H such that p_ : W^>H_ is Fredholm of index 0. Here p_:H^>H _ denotes the
projection operator on H_. We shall give Gv(H) the structure of a complex
manifold modelled on the space M(H _,H+)Λn order to do that introduce the set Σ
of sequences of integers S'={51>s2>...} such that sn= —n for n>0, and the
associated subspaces Hs and H£ which are the closure of the linear spans of the
sets {zSj: SjβS (respectively SjφS)} in H. Note that HseGr(H).

(1.18) Lemma (see [PS]). Given WeGτ(H) there exists a sequence SsΣ such that
the projectionps: W-^HS is an isomorphism.

Proof. Choose a basis of Kerp_ \w of the form: z11 + higher order terms, z12 + higher
order terms, ..., zίs + higher order terms, where iι >i2 > .. > i s ^0. Choose a basis
of H_modp_(W) of the form: zj\...,zis such that 0> < / 1 >; 2 >.. .> i / s . Then
S = {i1?Ϊ2, .",is, — 1, .-.j/is ...5Λ,...} is the required sequence. Q.E.D.

For SEΣ set

Gr s(#) - {FΓe Gr(ff) | p s : W->HS is an isomorphism}.

It is clear that we have a canonical identification
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obtained by taking graphs, and by identifying H_ with Hs and H+ with H$ in the
obvious way. One easily checks that this gives Gr(H) the structure of an infinite
dimensional complex manifold. We remark that the group A^ acts transitively on
Gr(if) making it a homogeneous space.

We now turn to the construction of the determinant line bundle j£? on Gr(H).
For WeGτ{H) let Kw = KQrp_\w and Cw = Cokeτp_\w. Set

max
&w= /\KW®/\(CW)*. (1.19)

(1.20) Lemma. Let We Grs(H); then we have a canonical isomorphism between J£w

and <£Hs.

Proof. Notice that Ps(Kw)CKHs. Since ps:W^Hs is an isomorphism, we can
identify KHs with a subspace of W. On the other hand, we can identify CHs with the
subspace of H_ spanned by the elements z\ i <0, iφS. This gives us the following
sequence, whose exactness one easily proves:

0-+Kw^KHs^CHs^Cw-+0,

and the lemma is proved. Q.E.D.

Using this lemma we can canonically identify the restriction of 5£ to Gr s(Ή)
with Grs(H) x ^Hs, getting a trivialization of i f on the charts Grs(H). This gives
S£ the structure of a holomorphic line bundle on Gr(H).

Set now

Gr(

o

m) = {WEGY(H) I

Note that we have a canonical isomorphism

Gr(

o

m) = Gr(2m,m).

Set
G r o = U Gr<o

m)CGr(H).

Remark that G r o n G r s ( i ί ) consists, under the canonical identification of Gr^ with
M(H_ , H+), of operators of the form 7}, where / is a polynomial in z and w. Thus
we obtain the following

(1.21) Lemma. Gr 0 is dense in Gr(H). In particular, every holomorphic function on
Gr(H) is constant.

We are now going to define a central extension Ά^oϊA^ which will act on the
determinant bundle Jίf. First, we consider the subspace Jo of M(H_,H_)
spanned by those continuous maps which factor through H + , i.e. the maps of
the form 7}_ +o Tf+ _. It is clear that J o is an ideal. We then let J be the subgroup of
GL(H_) consisting of the invertible maps of the form 1+j with jeJ0. As we
remarked in (1.16) the elements of J o are of trace class, so that the elements in J
have a determinant. The extension λ^ of A^ is defined as follows. Let $ be the
group

_\ a__-qeJ0}
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[to show that $ is indeed a group, notice that given (a, q) and (a', q') in $, then
( α α ' ) - - = α - - β - - + α_+α'+- and that α__fl'__ + α_+α'+- — gg' = (α__ —q)aL-

_+af

+^ belongs to J o ] . Consider the homomorphism

det:J-»(C*,

let Jx be its kernel, and set

where J x is thought of as the subgroup

Clearly, Λ^ is a central extension of ̂  by (Cx. We leave it to the reader to verify (as
in [PS, p. 89]) that the Lie algebra of A^ is aoo=aQOφ(Cdefined by the cocycle ψ.

We are now going to define an action of Ά^ on JS?. To do this we need some
preparation. Given WeGr(H) let us define an admissible isomorphism to be an
isomorphism

such that p_ w is of the form 1 + j with jeJ0. We remark that given two admissible
isomorphisms for W, say w and w', then w ^ ^ e J . To see that there exists an
admissible isomorphism for any given W, we can use Lemma (1.18) and choose a
sequence SeΣ such that WeGrs(H). We then get, by composition, an
isomorphism

whose inverse w is easily seen to be admissible. In fact, for such a w we can choose
an integer n such that, in the decomposition H_ =H>_nφH<_n> where

—( 7 — j

> b^z
i< -n

the matrix of p_ w is of the form

B

,0 /

In particular, the determinant of /?_w is the determinant of the n x n matrix A.
Furthermore, w gives us a way of identifying Kw with Kerp_w and Cw with
Cokerp_w. We then get the exact sequence

which induces an identification

Suppose now given another admissible basis w' for W. Write W = wq, qeJ, then
hW' = hw detq. We can finally define an action of A^ on if by setting
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for any (Aίq)eS), WeGr(H), λeϊ£w and for any choice of an admissible
isomorphism w. We leave it to the reader to verify that Awq"1 is admissible, that
the action does not depend on the choice of w and that it factors though the
quotient homomorphism $-*Άm.

2. The Lie Algebra of Differential Operators of Order
Less than or Equal to 1 in One Variable

Let H be the topological vector space considered in the preceding section. We let d

be the operator on H defined by df— -— = / ' . It is easy, but important, to check
dz

that d is a continuous operator on H. Consider the Lie algebra 2 = Hd + H and the
subalgebra d C ^ , d = Hd, with obvious Lie bracket. We shall denote by H*(g) the
continuous Lie algebra cohomology of the topological Lie algebra g.

(2.1) Proposition. 1) H1(3)) = H\d) = 0.
2) H2(d) = (C and is generated by the cohomology class of the cocycle

α(/δ,g3)=Res/dg". (2.2)

3) H2(@)= (C3 and is generated by the cohomology classes of the cocycles

(2.3)

= Res gi
0

Proof Let HF = (C[z 1 , z ] c E W e have already noticed that HF is dense in H. So
®F = HFd + HF and άF = HFd are dense in Sf and d, respectively. Let dn = zn+ίd,
en = zn. The dn's form a basis of dF and the dn's and en's a basis for Q)F. We have the
following relations:

ίdn,dm]=(m-n)dn + m9 ίdn,em]=men + m9 len,em~] = 0. (2.4)

From this it is immediate to verify that 9F = [β*\ 9F\ dF = [dF, dF]. Using this and
the fact that @F (respectively dF) is dense in 2 (respectively d), 1) follows. To show
2), we let α be a two-cocycle for Q)F and we set

<*!,.» = °idw dm), αn

w = α(4, ej, α" m = α(^, O . (2.5)

Looking at α([dΛ, e J , en), α([dhJ rfj, eJ , α([dΛ, dπ], d J , using the relations (2.4) and
the cocycle rule, we get the following

m-oth

n

 + m) . (2.6)

The first of these relations immediately implies

(2.7)
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As for the second, setting m = 0we deduce that

αs° = 0, VseZ. (2.8)

On the other hand, setting h = 0, we get

(n + mK = man

0

+m, Vrc,meZ, (2.9)

and setting m = — h — n, we get:

(n-h)a^n=~(n + h)(a;h-^n), \/n,heZ. (2.10)

Finally, the last of our relations gives, setting h = 0,

(m-n)α B + W f O + (rt + m)αΠfM = 0, Vrc,meZ, (2.11)

and setting h = —n — m, we get:

(2.12)

Thus a general cocycle is completely determined by choosing values of oc~lf 1, α[~\
α^ 2 , α l s _ l 5 α2> _ 2 , OCQ, αΛ > 0 5 V/zeZ, /zφO [in fact, α " 1 ' 1 determines α"'m via (2.7), αo
determines αJJ1, π + mφO, via (2.9), αfx and α ^ 2 determine α~" via (2.10), αΛ > 0

determines αM m, rc + mφO via (2.11), αx _j and a2,-2 determine α π ? _ π via (2.12)].
For example:

m — n

n(n2 — 4) ft3 — n

By a straightforward computation one can then see that a general 2-cocycle for
is of the form

2 + s{z)(f1df2-f2df1)

l, (2.13)

where aι,a2,a3e<L and 5(z), t(z) e H. Of course, the a-s and the coefficients of 5 and t
are linked to the constants α " 1 ' 1 , αf1, α^ 2 , α! _ l 5 α2 _ 2 , αj, αΛ > 0. For example,

1 1 1
« 2 = g ( 2 α i , _ i - α 2 > _ 2 ) , s^2=--dlt.i9 s Λ _ 2 = - - α _ Λ > 0 ,

where 5(z) = Σ5πz". Notice also that all cocycles of the form s(z)(fidf2—f2df1),
t(z)(fιdg2—f2dgί) are coboundaries. Using this our claim for 3) follows immedi-
ately. As far as d is concerned the claim in this case follows immediately from the
above. Q.E.D.

Let us now consider the isomorphism
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defined by ,.
J
j (2.14)

We want to compute the action of the induced isomorphism

t*:H2{Θ)->H\9). (2.15)

(2.16) Lemma. For any s and sf, ί? = ί*.

Proof. It clearly suffices to show that the automorphism

defined by σ s(/δ + g)=/<9 + g + s — induces the identity on H2(@). To see this
notice that:

Res [/id ( ^ +g 2 j -

Res(f1dg'2-f2dg'1)+ Res -sz2{f1df2-f2df1)
z=0 z=0

= α2 + Res - sz\fγdf2 -f2dfί) - α2 ,
0

- + g 2

z = υ y z j \ Δ

/ L f fA fΛ ,
= Res

u u \ u
Ress -λ-dg2— —dg1 +s2Res —
z = 0 \Z Z J z = 0 Zsince

z = 0 Z \ Z J z = 0 λ \ Z \ Z

= Res -^(/id/ 2 -/ 2 4/i). Q.E.D.
z = o 2z

We can now prove the following

(2.17) Proposition. Let se(C. Let ts:@^>@ be defined as above, then

ί?(«i) = αi

(2.18)
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Proof. Using the above lemma we can assume s = 0; let ί0 = ί, then it is clear that
ί*(α1) = α1. Let us compute:

ί * ( « 2 ) ( / , θ + g l , / 2 a + g 2 ) =

= α2 + Res {Jxάft -hάf'O = cc2 + 2 α t ,

= a3

= oc3

z = 0

— Res
z = 0

- o c 2 -

f2"-

Q

z =

Rι
2 =

.E.

0

es(
= 0

D.

g^ -f2dg'2)

It will be convenient for what follows to introduce a new basis for H2(β) and
write t* with respect to this basis. Note that Q) acts naturally on H by

So we get a representation

Φo : ^ - + a 0 0 . (2.19)

In the preceding section we defined a canonical 2-cocycle ψ for a^. Let
ψo = φ$( — ψ). It is an easy computation to see that

We now take as a new basis for H2(β) the set {7,φ0, f^o}? where y = — ^ocι. It is
then immediate to verify the following

(2.20) Corollary. With respect to the basis {7,1^05^*^0} the homomorphism
t* \U2{β)-^H2{β) is represented by the matrix:

/I 0 12\

t*= 0 0 - 1 . (2.21)

\0 1 2/

In the sequel we shall also use the following basis of H2(&):

2 (2.22)

Finally, notice that the Lie algebra d acts, by Lie bracket, on the ring of
pseudodifferential operators

Psd={

and that it preserves the canonical filtration of Psd given by

Psd π =
1= ~ 00
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We then get an action of d on the span of differentials of order n:

Ωn = Hdzn = Hδ~n = Psdn/Psdπ + , ,

and hence a representation

ρ π :d-> a o o . (2.23)

It is not hard to verify that ρn = φ0°t
n °ί, where \Ά-*Q) is the inclusion. A

straightforward computation gives

ρ*(ψ) = ρt-n(ψ)- (2-24)

3. The Basic Varieties and the Krichever Construction

We are now going to construct two infinite dimensional varieties Jίg and &g-γ.
The first one will parametrize triples (C, p, z), where C is a smooth curve of genus g,
p a point on C, and z a local coordinate defined near p and vanishing at p. The
second one will parametrize quintuples (C, p, z, L, [</>]), where (C, p, z) are as above,
L is a degree g — 1 line bundle on C, and [</>] is an equivalence class of local
trivializations of L near p, differing from each other by a non-zero multiplicative
constant.

Let us start with a definition. Consider a family

of pointed curves of genus g parametrized by T. We say that $ is a family of pointed
curves with local parameters if there exists a neighbourhood % of the section σ(T)
and a holomorphic function Z on ^ , vanishing on σ(T), such that for every t in T
the function zt = Z\UnSt is a local coordinate around the point σ(ή on the Riemann
surface Sv The notion of isomorphism between families of pointed curves with
local parameter is the obvious one. Notice also that given a smooth curve C a point
p on C and a local parameter z around p, the triple (C, p, z) admits only the trivial
automorphism. Therefore, we may define a deformation of the triple (C, p, z), simply
as a family of pointed curves with local parameters {β, π, T, σ, Z) together with a
point t0 G T and an identification of the "central data"

(®to,σ(ί0),zfo) = (C,p,z), (3.1)

an isomorphism between deformations being simply an isomorphism between
families (of pointed curves with local parameters) which is compatible with the
identification of the central data.

Let us now consider a family of pointed curves

Given a point s e S choose a small neighbourhood V of s over which ^ trivializes in
the C00 sense. Look at a tubular neighbourhood °U of the section σ(V)C^\v, and
think of it as a family discs parametrized by V. As such it must be holomorphically
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trivial. Let
{ }

be a trivialization of °U such that Z(σ(v)) = (0, v), veV. For every υeV the pointed
curve (<&„, σ(v)) is then equipped with the local coordinate

Consider the vector space

) = 0, Jι'(0)Φ0}

and consider the space V x i/'+ with its natural structure of infinite dimensional
variety. Suppose now that V is another neighbourhood of s over which #
trivializes, let °W be a tubular neighbourhood of σ(V) and Z':Ψ-+ΔxVf a
holomorphic trivialization of °U\ vanishing on σ(V). Let Δ' cΔ be a disc such that

^ ' . Consider

we then get an analytic map

( F ' n V) x if'+ -• ( F n F) x JFT+ ,

Via this map we glue VxH'+ to V'nH'+ along ( 7 n F ' ) x f f + . In this way we
construct an infinite dimensional variety S whose points may be interpreted as
pairs (s,zs% where seS and zs is a local coordinate on Cs near σ(s). The variety S is
equipped with a natural projection

f:§->S9

and the fibers of / are isomorphic to H'+. Pulling back % to § yields a family
(^, π, S, σ, Z) of pointed curves with local parameters, parametrized by S.

Using now Kuranishi families of pointed curves as building blocks [ACGH]
we can construct by an obvious patching process a smooth infinite dimensional
complex manifold Jίq modelled on H+ x (C3^"1, whose points represent all the
triples of the form (C, p, z). Such a moduli space is equipped with a universal family
of pointed curves with local parameters

#4±4r (3-2)

We also have a natural projection

and the fibers of /?" are isomorphic to z + z2H+ (i.e. to iί+) so that, in particular, p"
induces an isomorphism

H*(Jl.)*H*(Jt:). (3.3)



20 E. Arbarello, C. De Concini, V. Kac, and C. Procesi

We leave it to the reader to verify that Jίg satisfies the obvious local

(respectively global) universal properties with respect to deformations (respec-

tively families) of pointed curves with local parameters.

Let us now introduce line bundles in our picture. Consider a pointed curve

(C,p). Let L be a line bundle on C, and Θ(L) the corresponding # c -module .

By a local trivialization φ of L at p we mean an isomorphism of Θ(L)C p with ΘCp.

Given two line bundles Lx and L 2 with local trivializations φγ and φ2 at p, we say

that the pairs ( L l 5 φλ) and (L 2, φ2) are equivalent if there exists an isomorphism

a:L1^L2 such that the homomorphism

is the identity. We shall denote by [L, φ] the equivalence class of (L, φ). Clearly,
the set of equivalence classes [L, </>] form a group under multiplication

with the identity given by [Θc, 1]. We denote this group by M(C). We denote by

M°(C) the subgroup of M(C) consisting of pairs [L, φ~\ with degL = 0, and by M\C)

the subset of M(C) of pairs [L, φ ] with degL=/ι . Clearly, forgetting about the

trivialization yields the following commutative diagram of homomorphisms

M(C) - ^ Pic(C)

vt ^ (3-4)

M ° ( C ) — > P i c ° ( C ) ,

where the horizontal maps are surjective. Since C is complete, so that the only

global holomorphic functions on C are constant, we immediately get that the

kernel oϊδ may be identified with the subgroup of invertible elements in ΘCp whose

value at p is 1. Therefore, upon choosing a local parameter z on C at p vanishing at

p, we can identify Θc p with H+ ^ C j z } and Kerό with the multiplicative group in

H+ of elements of the form 1 Jrzf(z\ f(z)eH + , and thus with H+ itself. Starting

from the triple (C, p, z) we want to consider M°(C) as a quotient oϊH. To do this we

define a surjective homomorphism

as follows. Given fe if, let ^ 9 0 be a small enough neighbourhood such that z and

/ are defined on °U. Identify °U with a neighbourhood of p in C via z. Let

L=((C-p)xC)lI(ΦxC)/~,

where, given ((7, α) e (C - p) x (C, (<?', α') e ̂  x <C,

By definition L comes equipped with a canonical local trivialization which we

denote by φ. We set

It is immediate to verify that μ° is a surjective homomorphism whose kernel equals

Θ(C — p) which we may consider as a subspace of H using our trivialization.
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Furthermore, notice that we get a canonical bijection

γh:M°(C)->Mh(C), for any heZ (3.6)

given by yΛ([L, φ~]) = [L(S)Θ{hp\ φz~h\ So we get a surjective map

μh(C,p,z):H^Mh(C). (3.7)

Let now

σ

be a family of pointed curves with local parameters.
Set

βh(π) = SxH/~,

where

(s9 /) ~(s', /') o s = *', /(Cs, σ(s), zj(/) = μ*(Cs, σ(s), zs){f).

#Λ(π) is an infinite dimensional complex analytic space whose points represent
pairs (s, [L, φ]), where s e S and [L, φ] G Mh(Cs). On ^ ( π ) natural projections are
defined:

where PicΛ(π) is the relative Picard variety of π. The fiber of / over seS is
isomorphic to M°(CS) while the fiber of q over (5, L) e PicΛ(π) is isomorphic to H+.
In particular,

(π)) (3.8)

Consider now the universal family (3.2)

and set σ

^-!=^-i(Λ). (3.8)

From (3.8) and (3.3) it follows that [cf. (1.13)]

π")). (3.10)

Given a smooth curve C, a point p e C , a line bundle L on C, and a local
trivialization 0 of L at p, we denote by [0] the set of all trivialization of L at p which
differ from φ by a non-zero (multiplicative) constant. It is then clear that points of
&g-ι represent quintuples (C, p, z, L, [0]) modulo isomorphisms. We leave it to the
reader to define the notion of family (respectively deformation) of quintuples
(C,p,z,L, [</>]), and verify that # g _ ι satisfies the obvious global (local) universal
property.

Pick a point x = (C, p, z, L, [(/>]) in βg _ t . Consider the space of sections of L on
the open set C — p. A trivialization </>oe[</>] and the local parameter z make it
possible to identify Γ(C — p, L) with a linear subspace of H. Set

W(x) = Γ(C-p,L)cH. (3.11)
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Following the argument of [SW], one checks1 that W(x) is a point in the infinite
dimensional Grassmannian Gr(H) defined in Sect. 2 and that the resulting
analytic map

W:^β.1^Gτ(H)
(3.12)

W()

is injective. We call W the Krίchever map.
Consider now the diagram [cf. (1.6)]

(3.13)

where

τ((C, p, z, L, Iφjj) = (C, p, z, L®ωc((2 - 2g)p), [</>z2*" 2dz\) J '

and define, by composition, the injective analytic maps

Wn=Wτnξ:J(g^Gr(H), neΈ. (3.15)

Recall now the definition of the determinant line bundle J§? on Gτ(H) (Sect. 2).
From that definition and the exact sequence

it follows that
W*& = θ*\ (3.16)

Using now Lemma (1.7) and the fact that the relative dualizing sheaf ω is trivial on
Jίg, and hence on Jig, we get

W*Se*L),n, neZ. (3.17)

We are now going to study the diagram

(3.18)

neZ

from the infinitesimal point of view, relating this study to that of the algebras 3)
and d introduced in Sect. 2.

The first step in this analysis consists in describing the tangent bundles to Jίg

and ^g-γ. To do this we are going to imitate the classical Kodaira-Spencer
construction as described, for instance in [ACGH]. Namely, given a local
universal family of curves

1 The fact that p_(W(x)) has index 0 follows from the Riemann-Roch theorem. This is a reason why
we use degree g —1 in the definition of <^_i
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the relative Picard variety

a point [C] eJi and a point (C,L)ePic 9 " γ(π) over [C], the tangent space exact
sequence

0 ^ TL(Pic*~ι (C)H T{Ct L )(Pic*~ ι (π))-> T[C]MT)->0

can be identified with the cohomology sequence,

where ^ is the tangent sheaf to C, and ΣL is the sheaf of differential operators of
order less than or equal to 1 acting on sections of L.

To carry out this analysis in the infinite dimensional case we consider the Lie
algebras d and Θ and points

A local trivialization φ0 e [φ~] and the local parameter z give natural identifications

Θp(ΣL) = H + ®H +

and natural Lie algebra inclusions

We set

With this notation we have the following

(3.19) Proposition. For every x e # r l , there is a commutative diagram

0 > ^ • Q) —?Uτ(Φ Λ >0

, yig) — > 0

such that the horizontal sequences are exact, where σ is the symbol map and i the
natural inclusion. Moreover, there is a commutative diagram

V (3 2 1 )
\

where t = t2g_2 and τ = τlg-2 are a s in (1-5) and (3.14).

Proof. By the universal property of &g-χ we may identify the tangent space

Tx{βg_λ) with the isomorphism classes of deformations of (C,p,z,L, [φj) para-

metrized by Spec(C[ε]/(ε2) = S. Let a(z) + b(z) ~^ε^> Let Uo be a small disc around
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p, where z and φ are defined and such that a(z) and b(z) are holomorphic in
U0~{p} Set U1 = C — p. Define a family of pointed curves with local parameter

Ύ
by setting S

(z, ε) ~ (z + εft(z), ε), zeUonUί9

and p(z, ε) = ε, and where 7 is the natural inclusion. Define then a line bundle i f and
# by setting

J? = (L\UoxS)U(L\u^S)/~,

This line bundle is equipped with the obvious trivialization (</>, ε). The pair (#, if) is

the deformation of (C, p, z, L, [φ]) which we associate to a(z) + fe(z) —-. This defines
dz

a homomorphism P2 from ® to T x(# g_ J. It is a trivial matter to check that this
homomorphism is surjective; let us check that its kernel is 3)x. Suppose first that

a(z) + b(z) — is in the kernel. This means, in particular, that (#, if) as a deformation

of (C,L) is trivial. Thus by the Kodaira-Spencer theory α(z) + b(z)— lies in the
image of the difference map

[in fact, by Mayer-Vietoris, Cokerμ^fl'1(21

L)]. But it also means, by looking at
the local parameter and at the local trivialization, that the isomorphism between
(#, ^£) and the trivial deformation must induce the identity on Uo x S and (a non-
zero constant multiple of) the identity on L\Uo x S. This says that indeed a(z)

+ b(z)—- lies in Q)x. On the other hand, it is easy to check that if a(z) + b(z)—- lies
dz dz

in Q)x the corresponding family is isomorphic to a trivial deformation of
(C, p, z, L, [0]). The statements about the tangent space to Jtg and the commutat-
ivity of the diagrams (3.20) and (3.21) follow in a completely analogous
way. Q.E.D.

Let us now consider the map

and let x = (C,p,z,L,[φ~]) be a point in ^ _ t ; consider

dW: Ίxψg_γ) = @/®x^TW(x)(Gr(H)) = M(W(x\H/W(x)).
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d_

'Jz
Consider a tangent vector v e Tx(βg _ : ) , let A = a(z) + b(z) — be such that P@{A) = v.

Recalling (3.22) and (3.23) we see that for f(z)eW(x) we have:

dh(υ)(f(z)) = ε - coeff. of (1 + εa(z))f(z + εb(z)) mod W(x)

oz

= A{f) modW(x).

We can therefore conclude with the following

(3.24) Proposition. There is a commutative diagram

where Paoo is the natural projection.

We summarize our infinitesimal analysis with the following commutative
diagram of vector bundles:

dt ^ dW

m / _ , T(Gr(/ί))

(3.25)

d x -Λ ίZZZi

and we notice again that this diagram is compatible with the action of t and Θ and

(3.26)

We end this section by making a remark about the Krichever map linking the
geometry of the Schubert varieties on the infinite dimensional Grassmannian
with the gap sequences of Weierstrass points on Riemann surfaces. Given a line
bundle L on a Riemann surface C the Weierstrass gap sequence of a point peC
with respect to L is the sequence of integers sus2,s3,... defined by

dimH°(C,L(-skp)) = k.

Recalling Lemma (1.18) we set

Σs = {WeGτ(H)\S is the minimal index set for which Ps\ W^HS is an iso}

= \WeGτ(H)\imRλW=Hs\,
1 *-° j

where r/ Λ r n ,

Σs should be thought of as a Schubert cell and Hs as its center. If S = (s1,s2, ...)>
sf = — /, i ̂ > 0, then

codiml ' s = ^ (Sj + O
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Consider now the Krichever map

one can then observe that

W~Λ(Σs) = {(C, p, z, L, [φ]): p has Weierstrass sequence S with respect to L}.

Essentially this remark goes back to Mumford (see [Mu], and a letter from
Mumford to G. Segal) and could be of central importance in the understanding of
the cohomology ring of Jί g.

4. Line Bundles on the Basic Varieties

In this section we shall relate the extensions of the Lie algebras d and 3} with the
line bundles Jίg and &g-γ. We start with an easy result of a general nature.

(4.1) Lemma. Let X be a (possibly infinite-dimensional) complex manifold. Denote
by Vect(X) the Lie algebra of analytic vector fields on X, and let g be a subalgebra
such that

i) V x e l the evaluation map φx\g^Tx(X) is surjective,

ϋ) gx=
 K e r 0 ; c is such that [g*,gj = gx.

Then for every Lie algebra continuous central extension

which is trivial on gx, V X G J , we can associate a continuous extension

This defines a homomorphism

Π Kerr^Ext 1 ^,^), (4.2)
xeX

where rx: i/
2(g, (C)^i/2(gJC, (C) is induced by the restriction, and where ?ΓX denotes the

tangent sheaf.

Proof. The evaluation maps and property i) give a surjective homomorphism

whose kernel is the vector bundle V having gx as fiber over x. Consider the diagram

0

I
Ix(C

i

xg-> T(X) -> 0

I
0.
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In order to define the homomorphism φ we need to find for every x e l a canonical
splitting of the preimage gx of gx in g. We know that for any x eX, gx = h®(£ as a
Lie algebra in a possibly non-canonical way, where h is a closed subalgebra
isomorphic to gx. On the other hand, h contains the commutator subalgebra
[gχ>gχ] a s a dense subspace. Thus the above splitting is canonically
defined. Q.E.D.

In order to apply this lemma to the case of Riemann surfaces we need the
following result:

(4.3) Lemma. Let C be an affine Riemann surface, and L a holomorphic line bundle
on C. Denote by x the pair (C,L\ set dx = Vect(C) and let Θx denote the algebra of
global differential operators of order ^ 1 acting on sections of L. Then: [dx, d j = dχi

Proof. We shall prove the lemma only for @x, the proof for dx being similar and
easier. Since every line bundle on C is analytically trivial we can assume that
L = C x (C, so that Θx is the algebra of global differential operators of order less or
equal than one acting on functions. Choose a nowhere vanishing vector field d on
C, so that any element of <3)x can be written uniquely as fd + g, /, g e Θc. We first
notice that \βw3)^\ is an $c-module:

s[fd + g,hδ + k~] = [s/S, \hd + k] + β / δ + g, shd~] . (4.4)

Then it suffices to show that the elements d and 1 lie in \βx,&^\. In case C is an

open set in A 1 and d = — , this is clear since d = [<3, z3], 1 = [δ, z]. In general choose
oz

two projections pup2:C-^A1 with disjoint ramification divisors. Then

- j , Ϊ = 1,2, are rational vector fields with poles along the ramification

divisors, and no zeroes. Thus there exist regular functions f,ί = l,2 such that fdi

are regular vector fields having zeroes at most along the ramification divisors. Set
then

We then have a^z^f, hence

Since f and f2 are relatively prime the lemma is proved. Q.E.D.

Putting together the results of our previous section we get

(4.5) Theorem. There exist canonical homomorphisms

v: H ^ d H ( ^ g , ^ ) i^)

Proof In order to apply Lemma (4.1) and more precisely the homomorphism (4.2),
we have to show that given any extension of 2 (respectively d) its restriction to <3)x

(respectively dx) is trivial for every x e # r l (respectively xeJtX Now we have
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seen that a basis of H2(@) is given by ψ0, t*ψ0, ί*φ 0 [cf. (2.22)] and that these are all
pullback of the extension ψ of a^. Since @tx = (dτ)@x, it then suffices to show that
the extension ψ is trivial on φo{@x) for every x [recall (2.19)]. On the other hand,
Φo(@x) is contained in the Lie algebra a^ = a ί f ( x ) Ca 0 0 , which is the Lie algebra of
the stabilizer of W— W(x). Denote by aw the preimage of aw in a^ it then suffices to
show that 2LW is a trivial extension of 2ίw. NOW the adjoint action of A^ on a^
factors through i ^ so that if W=gH_, then adg(aH_) = a^ and adg(aH ) = aw.
Since aH is a trivial extension of aH also &w is a trivial extension of aw. Q.E.D.

(4.6) Lemma, [a^, a^] = a^, V We Gv(H).

Proof. It suffices to show this for aH_. Assume there is a continuous Lie algebra
homomorphism

Restrict μ to the elements in a/7_ of type

[ ) th {
Then by the finite dimensional result μ restricts to a multiple of the trace. By
varying the size of A we see that this multiple is independent of the size of A. On the
other hand, a general element a++ has no trace (e.g. a+ + =/). Reasoning in the
same way for the lower right block we conclude that μ must vanish on the elements
of the form

,+ 0

Since the Lie algebra consisting of elements of the form

'0

is contained in [aH_,aH_] the lemma follows. Q.E.D.

Applying the general Lemma (4.1) we can associate to the extension a^ an
extension Σ of 3~Gτ{H) by ΘGr{H).

(4.7) Lemma. Σ is the sheaf Σ^ of differential operators of order less then or equal
to 1 acting on sections of the determinant bundle ££.

Proof Consider

It is easy to see that the canonical action of a^ on Jδf is given by differential
operators of order less than or equal to 1. From this, and from the fact that the
global sections of Σ in a^ generate Σ, we get a homomorphism of sheaves
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such that the diagram

commutes. It is then easy to see that σγ is non-zero. Since the only global
holomorphic functions on Gτ(H) are constants, σγ must be an isomorphism.
Thus σ too is an isomorphism. Q.E.D.

Of course we have a canonical homomorphism

iΓ# ,Θβ _ ), (4.8)

which associates to the isomorphism class of a line bundle Lonβr

g-ί the extension
class given by the sheaf ΣL of differential operators of order less than or equal to 1
acting on L. Similarly we have

c: H\Θ%) —> Ext1 ( ^ g , GA). (4.9)

Notice that the homomorphism (4.8) commutes with the action of the automor-
phism τ\^g_ι-^βr

g_1.

(4.10) Theorem. Consider the canonical homomorphisms

v: H2(d) —> Ext1 (Pjig_

Then, (cf. the definition of φ 0 in Sect. 2)

ii) μί* = τ*μ,
iii) lmμ = Linear span of Imc,
iv) vρ*(ψo)

Proof. Consider the diagram (3.25)

ι) >T(Gτ(H))

I--
®x^g-i >ΆocxGr(H).

Recall that w*(i?~ ι) = θ. Then, by functoriality, the pullback via W of Σ#-1 is Σθ.
On the other hand φ*(~ ψ)=zΨo> s o t n a t by Lemma (4.7) μ(ip0) = c(0). The second
statement follows immediately from the commutativity of diagram (3.26). Since
H2(β) considered as a Z-module via the action of f *, is cyclic with generator φ 0 , iii)
follows from i) and ii). Finally iv) follows from i), ii) and the commutativity of the
diagram

From iv) of the preceding theorem and (2.24) we get Q.E.D.
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(4.11) Corollary. c(λn) = (6n2-6n + l)c(λ1).

As is well known, using the Grothendieck-Riemann-Roch theorem, Mumford
[M], shows that there is an equality of Chern classes

c1(λn) = (6n2-6n+l)cι(λί). (4.12)

It is then natural to ask whether the preceding corollary implies this relation. This
is indeed so. Consider first the diagram

where the vertical arrows are induced by the natural projection and where, as
usual, given a line bundle L, defined by transition functions gaβ, we have y([L])
= d \oggaβ. Observe that p* is injective on Imy. In fact p is obtained as composition

where p% is injective, pf(dloggα/3) = 0 if and only if L is the dualizing sheaf ω, and
pf(d\oggaβ) = 0 if and only if L is trivial, being Jί g an f/ + -fibration over Jί"g. Now
the Chern class

Cι:H
ι(Θχ)-*H2(Jlg) (4.13)

is obtained by considering the de Rham class of dloggaβ. Thus we need to prove
that d\oggaβ is d-exact if it is δ"-exact. If Jίg were complete we would have, by
Hodge theory, a natural inclusion H1(Ω1

Ms)-^H2(Jίg, (C) (in fact we believe that
such an injection exists in our case). A possible way around this is given by Harer's
theorem [H]. By this theorem L is a multiple of λu and λί is positive on Jίg.
Suppose then that d\oggaβ is <3"-exact, hence d-exact on any compact curve in ,Mq.
Integrating d\oggaβ over a compact curve contained in Jίg we get zero, therefore
implying that L is trivial on Mg i.e. d\oggaβ is d-exact.

From our discussion we also get that, using Harer's theorem, there is a
canonical isomorphism for g ^ 3

v:H2(d)-^->H2(JΐgX). (4.14)

Using the results of the next section, namely Corollary (5.7), we will also get a
canonical isomorphism for g ̂  5

μ:H\<3})^n\^-,X), (4.15)

where J^"_ ι is the relative Picard variety of

5. A Cohomology Computation

Let Jίp g ̂  5, be the moduli space of curves of genus g. Let Jί C Mg be the Zariski
open set corresponding to automorphism free curves. Let Γ be the mapping class
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group. It is well known [H] that

B\Jίφ Ί) * H2(J/9 Έ) = H2(Γg). (5.1)

Let

be the universal family of curves over Jί and let <β - ^ Jί{l) be the universal family
of pointed curves over Jί{1\ Consider the relative Picard variety

(5.2)

When Λ = g —1, we have as in (1.5) the translation homomorphism

We are going to prove the following

(5.3) Theorem. J J 2 ( J ^ , Z ) ^ Z 4 , H1(JSΓ

A,Z) = 0.

Proof. In view of the isomorphism (1.4) we shall work with either h = 0orh = g — 1.
We first exhibit four linearly independent elements in H2(^g-UΈ). To do this we
consider, as in the first section, the line bundles θ, θt, λ, ω on J^_ l 5 where λ is the
pull-back, via p, of the Hodge bundle /lx on Jί{l) and ω is the pull-back, via p, of
ωMw\M- With this notation the case n = 2 of Corollary (1.12) together with the
relation λ2 = 13λ1 gives

2>. (5.4)

On the other hand one has

t*λ = λ, t*ω = ω,t*θ = θt (by definition).

Therefore, if we denote by Λ the free abelian group Z ω φ Z λ φ Z θ φ Z Θ , , the matrix
of

ίS /
/I 0 0 8L

0 1 0 - 1 2

0 0 0 - 1

\0 0 1 2

Now, it is easily seen that this matrix is nilpotent with Jordan partition (3,1) and
that

Consider now the map

given by the Chern class. Since t induces a map on i ί 2 (J^_ x) which is compatible
with t*, the kernel of c is ί*-stable, and hence contains a vector fixed by ί*. This
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vector must then lie in Zλζ&Zω. On the other hand the existence of the section ξ in
(5.2) shows that the homomorphism

p* \H2{JΪ{1\Έ)-*H2{^g_uΈ)

is an injection with p*(\_λ1]) = c(λ), P*([ω^(1)/^]) = c(ω), and, as well known [AC],
H2(Jί{l\Έ) is freely generated by \_λ{\ and [ω^ ( i ) M J. It follows that c is an
injection. We now show that the number of generators of H2(έFh,Έ) is not greater
than 4. Let S be a topological compact oriented surface of genus g, and 3Γq = 3Γg(S)
the corresponding Teichmϋller space. Set πί=πί(S, q\ H ί= H ̂ S, Έ). Consider the
mapping class group Γg of the pointed surface (S, q) and the extension Γ' of Γ by
Hί9 given by the natural action o f Γ o n H ^ Finally consider the fiber product

f >Γ

I I
Γ1 • Γ
1g ι g

It is clear that Γ is an extension of Γ by πx x Hί and that Γ acts quasi-freely on
^gxAx(£9 = X. (A = {ZE(C: \z\ = ί}). Removing the points of X with nontrivial
isotropy yields, by factoring the action off, an open set of #Q whose complement
in #o has high codimension. Therefore

Consider the spectral sequence associated to the short exact sequence

l^TΓiXi/ i-^ f^Γ^l , (5.5)
and recall that by [H],

H2(Γ,Z)^Z, H1(Γ,H1) = 0, Hί(Γ9X) = 0.

Also notice that

By Kunneth formula we get

U\πγ x Hι)^

where the action of Γ on Hι factors through the homomorphism of Γ into
Sp(2g,Z). Thus an easy computation of invariants yields

The E2 term of the Hochschild-Serre spectral sequence is

Έ? ...

0 0 ...

Έ 0 Έ ....

This shows at the same time that ί ί 1 (f,Z) = 0 and that H2(Γ,Z) has at most 4
generators. Q.E.D.
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Consider now the family of pointed curves with tangent vector (1.13)

σ"

and let

i^" = PicΛ(π'')

A simple spectral sequence argument based on Theorem (5.3) yields the following

(5.7) Corollary. H\^\ Έ) = 0, H2(^\ Z)^Z3. Moreover the elements λu θ. 0, arc
linearly independent in R2(βFζ^Έ) and the translation isomorphism ί* of Έλx

φΈθt into itself is given by the matrix

(Notice that the above matrix does not depend on g.) Furthermore the natural
projection induces identifications

Έλγ = H2{Jίg) = E\M'') = H2(&" γf. (5.8)

6. Appendix: A Representation Theory
of the Universal Central Extension of the Lie Algebra Q)¥

Let §) be the universal central extension of the Lie algebra Q)F. Due to
Proposition 2.1 (3), the center of §) is 3-dimensional and we can choose a basis
dm, zm(m E I), c,ca,c3 of Φ) such that c,ca,c3 is a basis of the center of Θ, and the
following commutation relations hold:

ldm,dA=(m-n)dm+n + ύδmt-Jίm3-m)c9 (6.1)

lz^zn-]=mδm^nca, (6.2)

2 ^ _ M c 3 . (6.3)

Note that in the quotient by the center, dm may be identified with — z m + 1 —-.

The choice of the cocycle in (6.3) is the most convenient one for the study of unitary
representations of §). Note that 3) is also the universal central extension of the
semidirect product of Lie algebras (6.1) (the Virasoro algebra Vir) and (6.2) (the
oscillator algebra = affine algebra associated to the 1-dimensional Lie algebra) by
a 1-dimensional center, in a sharp contrast with the non-abelian case [in which
(6.2) is replaced by an affine algebra associated to a simple Lie algebra], when there
is no further non-trivial central extension.

Given a quintuple of real numbers (c,h,ca,ha,c3), there exists a unique
irreducible representation of the Lie algebra Q), denoted by R(c,h,ca,ha,c3) such
that the central elements c,ca, and c 3 operate as scalars (denoted by the same
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letters) and there exists a non-zero vector v e R(c, ft, cω ha, c3) with the property

dn(v) = 0 and zn(v) = 0 for n>0; (6.4 a)

do{υ) = hυ,z°{Ό) = haΌ. (6.4b)

A Verma module R(c, ft, ca, hω c3) is defined in the usual way. It carries a unique
Hermitian form < | > such that d% = d_n, zn* = z~n, and (v\v} = l for a highest
weight vector v. This is called the contravariant Hermitian form. One has the
induced contravariant Hermitian form on

R(c, ft, cω hω c3)/Ker < | > = #fe K cβ, ha, c 3). (6.5)

(6.6) Theorem. The representation R(c, h, ca, ha, c3) is unitary (i.e. the contravariant
Hermitian form is positive definite) in precisely the following cases:

I) ca = 0; then c 3 = 0, ha = 0, and (c,h) is the highest weight of a unitary
representation of Vir (the list is well-known).

II) ca>0; then either

or

c 2

ca (m + 2)(m
where meΈ>0, and

22ca 4(m + 2)(m

with

One has the following eigenspace decomposition with respect to d0:

R(c9h,ca,ha9c3)= © Rh+n;

since d0 is selfadjoint, the eigenspaces Rh+n are orthogonal to each other. We
denote by detπ(c, ft, ca, ha, c3) the determinant of the contravariant form restricted
to Rh + n (it is defined up to a positive constant factor depending on the choice of the
basis). Let Σp(2)(n)<f = fΊ (l-<f)~2

(6.7) Theorem 2. Introduce the following polynomials in the 5 variables c, ft, ca, ftα,
and c3:

-s2)2c2

a for

and

Then one has:

detn(c,h,ca,ha,c3)= Π ΦUin-rs).
Zr,seZ>o

s<r
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Proof. The proof of these two theorems is based on the following construction

from string theory.

Let L(ca, ha) be a highest weight representation of the oscillator algebra (6.2):

zm H-> αm (m e Έ). Given c 3 e IR, this representation extends to the whole Lie algebra

3, provided that c f lΦθ, as follows:

1/1 . \

^-uΣ^Wr'w l f

Ca

This gives us

Uca,ha) = R ( i + ί ^ , ^^,ca,ha,c3). (6.8)

Furthermore, a highest weight representation V(c9 h) of Vir extends trivially to

3, giving

V(c,h) = R(c,h9 0,0,0). (6.9)

From (6.8) and (6.9) we deduce, provided c α φ0:

\2c2 h2 + c2\

\ ^ ^ (6.10)

Theorem 1 in the case ca + 0 follows from (6.10) and the known classification of

unitary highest weight representations of Vir. [We use also the trivial fact that

L(cfl, ha) is unitary iff ca ^ 0.]

Theorem 2 follows from the analogue of (6.10) for Verma modules and the

known determinant formula for Vir. Now Theorem 1 in the case ca = 0 follows

from Theorem 2 with ca = 0. Q.E.D.

(6.11) Remark. Theorems 1 and 2 in the case c 3 = 0 were obtained in [K], where

one can also find all the related references.
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